101
|
Choi E, Sim KI, Burch KS, Lee YH. Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200186. [PMID: 35596612 PMCID: PMC9313546 DOI: 10.1002/advs.202200186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Indexed: 05/10/2023]
Abstract
Proximity effect, which is the coupling between distinct order parameters across interfaces of heterostructures, has attracted immense interest owing to the customizable multifunctionalities of diverse 3D materials. This facilitates various physical phenomena, such as spin order, charge transfer, spin torque, spin density wave, spin current, skyrmions, and Majorana fermions. These exotic physics play important roles for future spintronic applications. Nevertheless, several fundamental challenges remain for effective applications: unavoidable disorder and lattice mismatch limits in the growth process, short characteristic length of proximity, magnetic fluctuation in ultrathin films, and relatively weak spin-orbit coupling (SOC). Meanwhile, the extensive library of atomically thin, 2D van der Waals (vdW) layered materials, with unique characteristics such as strong SOC, magnetic anisotropy, and ultraclean surfaces, offers many opportunities to tailor versatile and more effective functionalities through proximity effects. Here, this paper focuses on magnetic proximity, i.e., proximitized magnetism and reviews the engineering of magnetism-related functionalities in 2D vdW layered heterostructures for next-generation electronic and spintronic devices. The essential factors of magnetism and interfacial engineering induced by magnetic layers are studied. The current limitations and future challenges associated with magnetic proximity-related physics phenomena in 2D heterostructures are further discussed.
Collapse
Affiliation(s)
- Eun‐Mi Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Kyung Ik Sim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Kenneth S. Burch
- Department of PhysicsBoston College140 Commonwealth AveChestnut HillMA02467‐3804USA
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS)Sungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| |
Collapse
|
102
|
Zheng SW, Wang D, Wang HY, Wang H, Chen X, Zhao LY, Wang L, Li XB, Sun HB. Spin-Valley Depolarization in van der Waals Heterostructures. J Phys Chem Lett 2022; 13:5501-5507. [PMID: 35695739 DOI: 10.1021/acs.jpclett.2c01414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The appearance of van der Waals heterostructures offers a new solution to valleytronics. Here, we observe the spin-valley depolarization process of electrons and holes in type-II MoS2-WSe2 heterostructures simultaneously for the first time by valley-resolved broad-band femtosecond pump-probe experiments. The different depolarization paths between electrons and holes make them have different spin-valley polarization lifetimes. The spin-valley depolarization pathway of holes is mainly dominated by a phonon-assisted intervalley scattering process, while intra- and intervalley coupling can trigger additional depolarization pathways for electrons. The hole polarization lifetime can be further prolonged to more than three times in trilayer heterostructure 2MoS2-WSe2. For MoS2-WS2 that has strong orbital hybridization of Mo and W atoms, both electrons and holes lose the spin-valley polarization extremely soon after charge separation, behaving similarly to intraexcitons in a monolayer. Our work advances the basic understanding of spin-valley depolarization of van der Waals heterostructures and facilitates the effort toward longer lifetime valleytronic devices for information transfer and storage applications.
Collapse
Affiliation(s)
- Shu-Wen Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Dan Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06511, United States
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Le-Yi Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| |
Collapse
|
103
|
Jang YJ, Kim JH. Two-dimensional transition metal dichalcogenides as an emerging platform for singlet fission solar cells. Chem Asian J 2022; 17:e202200265. [PMID: 35644937 DOI: 10.1002/asia.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Singlet fission, a rapid exciton doubling process via inverse Auger recombination, is recognized as one of the most practical and feasible means for overcoming the Shockley-Queisser limit. Singlet fission solar cells are generally developed by integrating photon downconversion organic semiconductors into conventional photovoltaic devices to break the maximum photovoltaic response of the host semiconductors by virtue of extra triplet excitons. In this regard, proper matching of two different semiconductors and heterointerface engineering are both crucial for highly efficient singlet fission solar cells. Therefore, the aim of this study is to review the prerequisite conditions for efficient triplet transfer at the heterointerfaces and thus highlight the robust spin and valley degrees of freedom of transition metal dichalcogenides with the ultimate goal of stimulating research into next-generation singlet fission solar cells.
Collapse
Affiliation(s)
- Yu Jin Jang
- Sungkyunkwan University, Convergence Research Center for Energy and Environmental Sciences, KOREA, REPUBLIC OF
| | - Ji-Hee Kim
- Sungkyunkwan University, Department of Energy Science, 2066 Seoburo, Jangangu, Suwon, KOREA, REPUBLIC OF
| |
Collapse
|
104
|
Shimasaki M, Nishihara T, Matsuda K, Endo T, Takaguchi Y, Liu Z, Miyata Y, Miyauchi Y. Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe 2-MoSe 2. ACS NANO 2022; 16:8205-8212. [PMID: 35481755 DOI: 10.1021/acsnano.2c01890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional 2D semiconductors is omnidirectional, and efficient exciton-energy transport in a specific direction is difficult to achieve. Here we demonstrate directional exciton-energy transport across the interface in tungsten diselenide (WSe2)-molybdenum diselenide (MoSe2) lateral heterostructures. Unidirectional transport is spontaneously driven by the built-in asymmetry of the exciton-energy landscape with respect to the heterojunction interface. At excitation positions close to the interface, the exciton photoluminescence (PL) intensity was substantially decreased in the WSe2 region and enhanced in the MoSe2 region. In PL excitation spectroscopy, it was confirmed that the observed phenomenon arises from lateral exciton-energy transport from WSe2 to MoSe2. This directional exciton-energy flow in lateral 2D heterostructures can be exploited in future optoelectronic devices.
Collapse
Affiliation(s)
- Masafumi Shimasaki
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Yuhei Takaguchi
- Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | - Yuhei Miyauchi
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
105
|
Bieniek M, Sadecka K, Szulakowska L, Hawrylak P. Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1582. [PMID: 35564291 PMCID: PMC9104105 DOI: 10.3390/nano12091582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Atomically thin semiconductors from the transition metal dichalcogenide family are materials in which the optical response is dominated by strongly bound excitonic complexes. Here, we present a theory of excitons in two-dimensional semiconductors using a tight-binding model of the electronic structure. In the first part, we review extensive literature on 2D van der Waals materials, with particular focus on their optical response from both experimental and theoretical points of view. In the second part, we discuss our ab initio calculations of the electronic structure of MoS2, representative of a wide class of materials, and review our minimal tight-binding model, which reproduces low-energy physics around the Fermi level and, at the same time, allows for the understanding of their electronic structure. Next, we describe how electron-hole pair excitations from the mean-field-level ground state are constructed. The electron-electron interactions mix the electron-hole pair excitations, resulting in excitonic wave functions and energies obtained by solving the Bethe-Salpeter equation. This is enabled by the efficient computation of the Coulomb matrix elements optimized for two-dimensional crystals. Next, we discuss non-local screening in various geometries usually used in experiments. We conclude with a discussion of the fine structure and excited excitonic spectra. In particular, we discuss the effect of band nesting on the exciton fine structure; Coulomb interactions; and the topology of the wave functions, screening and dielectric environment. Finally, we follow by adding another layer and discuss excitons in heterostructures built from two-dimensional semiconductors.
Collapse
Affiliation(s)
- Maciej Bieniek
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ludmiła Szulakowska
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| | - Paweł Hawrylak
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.S.); (L.S.); (P.H.)
| |
Collapse
|
106
|
Zhang Y, Kim H, Zhang W, Watanabe K, Taniguchi T, Gao Y, Maruyama M, Okada S, Shinokita K, Matsuda K. Magnon-Coupled Intralayer Moiré Trion in Monolayer Semiconductor-Antiferromagnet Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200301. [PMID: 35233833 DOI: 10.1002/adma.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Moiré fringe patterns created by stacking different 2D layered materials as artificial van der Waals (vdW) heterostructures have become a novel platform to study and engineer optically generated excitonic properties. The moiré patterns contribute to the formation of spatially ordered excitonic states (excitons and trions), which can be used in the quantum simulation of many-body systems and ensembles of coherent quantum light emitters. The intriguing moiré excitonic properties are affected by and controlled via the interaction with magnetic elements. Here, a moiré excitonic system interacting with the magnetic elementary excitation of antiferromagnetic orders in MoSe2 /MnPS3 vdW heterostructures is reported. The low-temperature photoluminescence spectra with additional fine spectral structures on the low-energy side, which are coupled magnon-trion peaks below the Néel temperature of MnPS3 , are carefully investigated. The fine spectral structures with long lifetime and coherence time are assigned to intralayer trion-magnon complexes trapped in the moiré potentials (moiré trion-magnon complexes). These findings highlight the emergence of moiré trion-magnon complexes and provide a new way to explore novel quantum phenomena in moiré excitonic systems with magnetic functionalities.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Heejun Kim
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wenjin Zhang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanlin Gao
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Mina Maruyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Susumu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
107
|
Deng JP, Li HJ, Ma XF, Liu XY, Cui Y, Ma XJ, Li ZQ, Wang ZW. Self-Trapped Interlayer Excitons in van der Waals Heterostructures. J Phys Chem Lett 2022; 13:3732-3739. [PMID: 35445599 DOI: 10.1021/acs.jpclett.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The self-trapped state (STS) of the interlayer exciton (IX) has aroused enormous interest owing to its significant impact on the fundamental properties of the van der Waals heterostructures (vdWHs). Nevertheless, the microscopic mechanisms of STS are still controversial. Herein, we study the corrections of the binding energies of the IXs stemming from the exciton-interface optical phonon coupling in four kinds of vdWHs and find that these IXs are in the STS for the appropriate ratio of the electron and hole effective masses. We show that these self-trapped IXs could be classified into type I with the increasing binding energy in the tens of millielectronvolts range, which are very agreement with the red-shift of the IX spectra in experiments, and type II with the decreasing binding energy, which provides a possible explanation for the blue-shift and broad line width of the IX's spectra at low temperatures. Moreover, these two types of exciton states could be transformed into each other by adjusting the structural parameters of vdWHs. These results not only provide an in-depth understanding for the self-trapped mechanism but also shed light on the modulations of IXs in vdWHs.
Collapse
Affiliation(s)
- Jia-Pei Deng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| | - Hong-Juan Li
- College of Physics and Intelligent Manufacturing Engineering, Chifeng University, Chifeng 024000, Inner Mongolia, China
| | - Xu-Fei Ma
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| | - Xiao-Yi Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| | - Yu Cui
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| | - Xin-Jun Ma
- Research Team of Extreme Condition Physics, College of Mathematics and Physics, Inner Mongolia Minzu University, Tongliao 028043, Inner Mongolia, China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| | - Zi-Wu Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, Tianjin, China
| |
Collapse
|
108
|
Abstract
We study the transport properties on honeycomb networks motivated by graphene structures by using the continuous-time quantum walk (CTQW) model. For various relevant topologies we consider the average return probability and its long-time average as measures for the transport efficiency. These quantities are fully determined by the eigenvalues and the eigenvectors of the connectivity matrix of the network. For all networks derived from graphene structures we notice a nontrivial interplay between good spreading and localization effects. Flat graphene with similar number of hexagons along both directions shows a decrease in transport efficiency compared to more one-dimensional structures. This loss can be overcome by increasing the number of layers, thus creating a graphite network, but it gets less efficient when rolling up the sheets so that a nanotube structure is considered. We found peculiar results for honeycomb networks constructed from square graphene, i.e. the same number of hexagons along both directions of the graphene sheet. For these kind of networks we encounter significant differences between networks with an even or odd number of hexagons along one of the axes.
Collapse
|
109
|
Fan J, Sun M. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties. CHEM REC 2022; 22:e202100313. [PMID: 35452180 DOI: 10.1002/tcr.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
Transition metal dichalcogenides (TMDCs) have good flexibility, light absorption, and carrier mobility, and can be used to fabricate wearable devices and photodetectors. In addition, the band gaps of these materials are adjustable, which are related to the number of stacking layers. The the material properties can be changed by vertically stacking TMDCs to form van der Waals (vdW) heterostructures. Compared with single-layer TMDC, the vdW heterostructure has better light response and more efficient photoelectric conversion. Interlayer excitons formed in vdW heterostructure have a longer exciton lifetime and unique valley selectivity compared with intralayer excitons, which promotes the research on TMDCs materials in photoelectric field, valley electronics, carrier dynamics, etc. In this paper, the methods of synthesizing heterostructures are introduced. Photoelectric properties, valley dynamics, electronic properties and related applications of TMDCs vdW heterostructures are also discussed. Heterostructures stacked with different materials, stacking modes, and twist angles all can affect the properties. Hence, it brings more creativity and research direction to the material field.
Collapse
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
110
|
Wang X, Gao W, Zhao J. Strain modulation of the exciton anisotropy and carrier lifetime in black phosphorene. Phys Chem Chem Phys 2022; 24:10860-10868. [PMID: 35437538 DOI: 10.1039/d2cp00670g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Manipulating excitons is of great significance to explore the optical properties of 2D materials. In this work, we investigate the excitonic properties and carrier dynamics of bilayer black phosphorene by imposing in-plane biaxial strain. The results show that the strain can modulate not only the contribution of the excitons to optical absorption but also the anisotropic shape of the first exciton. This can be ascribed to the strain effect on the band realignment as well as to changes of the parity and the electron effective mass at the CBM. At the temperature of 300 K, a 3% strain reduces the non-adiabatic coupling between the VBM and CBM and then increases the carrier lifetime by a factor of 13, and the results can be used to estimate the strain effect on the excitonic lifetime. Our results demonstrate that manipulation of the biaxial strain is a promising strategy to modulate the exciton properties of black phosphorene.
Collapse
Affiliation(s)
- Xiaolong Wang
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Weiwei Gao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
111
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
112
|
Pang R, Wang S. Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures. NANOSCALE 2022; 14:3416-3424. [PMID: 35113117 DOI: 10.1039/d1nr06204b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The broken mirror symmetry of two-dimensional (2D) Janus materials brings novel quantum properties and various application prospects. Particularly, when stacking into heterostructures, their intrinsic dipole moments and large band offsets are very favorable to the photoexcited properties concerning electron-hole pairs, i.e., excitons. However, the effect of the intrinsic dipole moments on the interlayer excitons in the heterostructures composed of 2D Janus materials is still unclear. Here we use the GW/BSE methods to explore the effect of the intrinsic dipole moments on the interlayer excitons via varying the stacking configuration of MoSSe/WSSe heterostructures. Surprisingly, our results reveal that the parallel-arranged intrinsic dipole moments enhance the interlayer coupling in the heterostructures, and hence make the lowest interlayer exciton have an intensity comparable to the bright excitons while accompanied by a large binding energy and a radiative lifetime as long as 10-7 s at 300 K, though it is almost a spin-forbidden process, and with the out-of-plane light polarization, long lifetime interlayer excitons are observed under the effect of selection rules. More intriguingly, we found that the photoexcited properties of the interlayer excitons considering the momentum in the stacking configuration with parallel-arranged intrinsic dipole moments are greatly tunable through hydrostatic pressure. These explorations provide a basic perspective for optoelectronic applications by means of engineering the intrinsic dipole moments in Janus heterostructures.
Collapse
Affiliation(s)
- Rongtian Pang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | - Shudong Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
113
|
Dang J, Yang M, Xie X, Yang Z, Dai D, Zuo Z, Wang C, Jin K, Xu X. Enhanced Valley Polarization in WS 2 /LaMnO 3 Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106029. [PMID: 35266315 DOI: 10.1002/smll.202106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Monolayer transition metal dichalcogenides have attracted great attention for potential applications in valleytronics. However, the valley polarization degree is usually not high because of the intervalley scattering. Here, a largely enhanced valley polarization up to 80% in monolayer WS2 under nonresonant excitation at 4.2 K is demonstrated using WS2 /LaMnO3 thin film heterostructure, which is much higher than that for monolayer WS2 on SiO2 /Si substrate with a valley polarization of 15%. Furthermore, the greatly enhanced valley polarization can be maintained to a high temperature of about 160 K with a valley polarization of 53%. The temperature dependence of valley polarization is strongly correlated with the thermomagnetic curve of LaMnO3 , indicating an exciton-magnon coupling between WS2 and LaMnO3 . A simple model is introduced to illustrate the underlying mechanisms. The coupling of WS2 and LaMnO3 is further confirmed with an observation of two interlayer excitons with opposite valley polarizations in the heterostructure, resulting from the spin-orbit coupling induced splitting of the conduction bands in monolayer transition metal dichalcogenides. The results provide a pathway to control the valleytronic properties of transition metal dichalcogenides by means of ferromagnetic van der Waals engineering, paving a way to practical valleytronic applications.
Collapse
Affiliation(s)
- Jianchen Dang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingwei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xiulai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
114
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
115
|
Hennighausen Z, Wickramaratne D, McCreary KM, Hudak BM, Brintlinger T, Chuang HJ, Noyan MA, Jonker BT, Stroud RM, van 't Erve OM. Laser-Patterned Submicrometer Bi 2Se 3-WS 2 Pixels with Tunable Circular Polarization at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9504-9514. [PMID: 35157419 DOI: 10.1021/acsami.1c24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterizing and manipulating the circular polarization of light is central to numerous emerging technologies, including spintronics and quantum computing. Separately, monolayer tungsten disulfide (WS2) is a versatile material that has demonstrated promise in a variety of applications, including single photon emitters and valleytronics. Here, we demonstrate a method to tune the photoluminescence (PL) intensity (factor of ×161), peak position (38.4 meV range), circular polarization (39.4% range), and valley polarization of a Bi2Se3-WS2 2D heterostructure using a low-power laser (0.762 μW) in ambient conditions. Changes are spatially confined to the laser spot, enabling submicrometer (814 nm) features, and are long-term stable (>334 days). PL and valley polarization changes can be controllably reversed through laser exposure in a vacuum, allowing the material to be erased and reused. Atmospheric experiments and first-principles calculations indicate oxygen diffusion modulates the exciton radiative vs nonradiative recombination pathways, where oxygen absorption leads to brightening and desorption to darkening.
Collapse
Affiliation(s)
- Zachariah Hennighausen
- NRC Postdoc Residing at the Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Darshana Wickramaratne
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kathleen M McCreary
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Bethany M Hudak
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Todd Brintlinger
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Hsun-Jen Chuang
- Nova Research, Inc., Alexandria, Virginia 22308, United States
| | - Mehmet A Noyan
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Berend T Jonker
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Rhonda M Stroud
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Olaf M van 't Erve
- Materials Science and Technology Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
116
|
Piao H, Choi G, Jin X, Hwang SJ, Song YJ, Cho SP, Choy JH. Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis. NANO-MICRO LETTERS 2022; 14:55. [PMID: 35113289 PMCID: PMC8814173 DOI: 10.1007/s40820-022-00794-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
The g-C3N4 monolayer in the perfect 2D limit was successfully realized, for the first time, by the well-defined chemical strategy based on the bottom-up process. The most striking evidence was made from Cs-high resolution transmission electron microscopy measurements by observing directly the atomic structure of g-C3N4 unit cell, which was again supported by the corresponding high resolution transmission electron microscopy image simulation results. We demonstrated that the newly prepared g-C3N4 monolayer showed outstanding photocatalytic activity for H2O2 generation as well as excellent electrocatalytic activity for oxygen reduction reaction. The exfoliation of bulk graphitic carbon nitride (g-C3N4) into monolayer has been intensively studied to induce maximum surface area for fundamental studies, but ended in failure to realize chemically and physically well-defined monolayer of g-C3N4 mostly due to the difficulty in reducing the layer thickness down to an atomic level. It has, therefore, remained as a challenging issue in two-dimensional (2D) chemistry and physics communities. In this study, an "atomic monolayer of g-C3N4 with perfect two-dimensional limit" was successfully prepared by the chemically well-defined two-step routes. The atomically resolved monolayer of g-C3N4 was also confirmed by spectroscopic and microscopic analyses. In addition, the experimental Cs-HRTEM image was collected, for the first time, which was in excellent agreement with the theoretically simulated; the evidence of monolayer of g-C3N4 in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units. Compared to bulk g-C3N4, the present g-C3N4 monolayer showed significantly higher photocatalytic generation of H2O2 and H2, and electrocatalytic oxygen reduction reaction. In addition, its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C3N4 nanomaterials, underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C3N4.
Collapse
Affiliation(s)
- Huiyan Piao
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Jae Song
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Sung-Pyo Cho
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul, 08826, Republic of Korea.
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea.
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Pre-Medical Course, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
117
|
Ye T, Li Y, Li J, Shen H, Ren J, Ning CZ, Li D. Nonvolatile electrical switching of optical and valleytronic properties of interlayer excitons. LIGHT, SCIENCE & APPLICATIONS 2022; 11:23. [PMID: 35075106 PMCID: PMC8786835 DOI: 10.1038/s41377-022-00718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 05/10/2023]
Abstract
Long-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) stacked by monolayer transition metal dichalcogenides (TMDs) carry valley-polarized information and thus could find promising applications in valleytronic devices. Current manipulation approaches for valley polarization of IXs are mainly limited in electrical field/doping, magnetic field or twist-angle engineering. Here, we demonstrate an electrochemical-doping method, which is efficient, in-situ and nonvolatile. We find the emission characteristics of IXs in WS2/WSe2 HSs exhibit a large excitonic/valley-polarized hysteresis upon cyclic-voltage sweeping, which is ascribed to the chemical-doping of O2/H2O redox couple trapped between WSe2 and substrate. Taking advantage of the large hysteresis, a nonvolatile valley-addressable memory is successfully demonstrated. The valley-polarized information can be non-volatilely switched by electrical gating with retention time exceeding 60 min. These findings open up an avenue for nonvolatile valley-addressable memory and could stimulate more investigations on valleytronic devices.
Collapse
Affiliation(s)
- Tong Ye
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yongzhuo Li
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
- Frontier Science Center for Quantum Information, 100084, Beijing, China
| | - Junze Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hongzhi Shen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Junwen Ren
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Cun-Zheng Ning
- Department of Electronic Engineering, Tsinghua University, 100084, Beijing, China
- Frontier Science Center for Quantum Information, 100084, Beijing, China
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Dehui Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
118
|
Liang C, Cheng L, Zhang S, Yang S, Liu W, Xie J, Li MD, Chai Z, Wang Y, Wang S. Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal–Organic Framework. J Am Chem Soc 2022; 144:2189-2196. [DOI: 10.1021/jacs.1c11150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chengyu Liang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shitong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, People’s Republic of China
| | - Sirui Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
| | - Wei Liu
- School of Environment and Material Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Jian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, People’s Republic of China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
119
|
Sun Z, Ciarrocchi A, Tagarelli F, Marin JFG, Watanabe K, Taniguchi T, Kis A. Excitonic transport driven by repulsive dipolar interaction in a van der Waals heterostructure. NATURE PHOTONICS 2022; 16:79-85. [PMID: 34992677 PMCID: PMC7612161 DOI: 10.1038/s41566-021-00908-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Dipolar bosonic gases are currently the focus of intensive research due to their interesting many-body physics in the quantum regime. Their experimental embodiments range from Rydberg atoms to GaAs double quantum wells and van der Waals heterostructures built from transition metal dichalcogenides. Although quantum gases are very dilute, mutual interactions between particles could lead to exotic many-body phenomena such as Bose-Einstein condensation and high-temperature superfluidity. Here, we report the effect of repulsive dipolar interactions on the dynamics of interlayer excitons in the dilute regime. By using spatial and time-resolved photoluminescence imaging, we observe the dynamics of exciton transport, enabling a direct estimation of the exciton mobility. The presence of interactions significantly modifies the diffusive transport of excitons, effectively acting as a source of drift force and enhancing the diffusion coefficient by one order of magnitude. The repulsive dipolar interactions combined with the electrical control of interlayer excitons opens up appealing new perspectives for excitonic devices.
Collapse
Affiliation(s)
- Zhe Sun
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Correspondence should be addressed to: Zhe Sun () and Andras Kis ()
| | - Alberto Ciarrocchi
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Fedele Tagarelli
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Juan Francisco Gonzalez Marin
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andras Kis
- Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Correspondence should be addressed to: Zhe Sun () and Andras Kis ()
| |
Collapse
|
120
|
Liu M, Wang L, Yu G. Developing Graphene-Based Moiré Heterostructures for Twistronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103170. [PMID: 34723434 PMCID: PMC8728823 DOI: 10.1002/advs.202103170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based moiré heterostructures are strongly correlated materials, and they are considered to be an effective platform to investigate the challenges of condensed matter physics. This is due to the distinct electronic properties that are unique to moiré superlattices and peculiar band structures. The increasing research on strongly correlated physics via graphene-based moiré heterostructures, especially unconventional superconductors, greatly promotes the development of condensed matter physics. Herein, the preparation methods of graphene-based moiré heterostructures on both in situ growth and assembling monolayer 2D materials are discussed. Methods to improve the quality of graphene and optimize the transfer process are presented to mitigate the limitations of low-quality graphene and damage caused by the transfer process during the fabrication of graphene-based moiré heterostructures. Then, the topological properties in various graphene-based moiré heterostructures are reviewed. Furthermore, recent advances regarding the factors that influence physical performances via a changing twist angle, the exertion of strain, and regulation of the dielectric environment are presented. Moreover, various unique physical properties in graphene-based moiré heterostructures are demonstrated. Finally, the challenges faced during the preparation and characterization of graphene-based moiré heterostructures are discussed. An outlook for the further development of moiré heterostructures is also presented.
Collapse
Affiliation(s)
- Mengya Liu
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Liping Wang
- School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
121
|
Baranowski M, Surrente A, Plochocka P. Two Dimensional Perovskites/Transition Metal Dichalcogenides Heterostructures: Puzzles and Challenges. Isr J Chem 2021. [DOI: 10.1002/ijch.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michal Baranowski
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Alessandro Surrente
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
| | - Paulina Plochocka
- Department of Experimental Physics Faculty of Fundamental Problems of Technology Wroclaw University of Science and Technology 50-370 Wroclaw Poland
- Laboratoire National des Champs Magnétiques Intenses UPR 3228 CNRS-UGA-UPS-INSA 38042, 31400 Grenoble, Toulouse France
| |
Collapse
|
122
|
Wu YC, Taniguchi T, Watanabe K, Yan J. Negative valley polarization in doped monolayer MoSe 2. Phys Chem Chem Phys 2021; 24:191-196. [PMID: 34878442 DOI: 10.1039/d1cp03490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monolayer molybdenum di-selenide (1L-MoSe2) stands out in the transition metal dichalcogenide family of materials as an outlier where optical generation of valley polarization is inefficient. Here we show that using charge doping in conjunction with an external magnetic field, the valley polarization of 1L-MoSe2 can be controlled effectively. Most remarkably, the valley polarization can be tuned to negative values, where the higher energy Zeeman mode emission is more intense than the lower energy one. Our experimental observations are interpreted with valley-selective exciton-charge dressing that manifests when gate induced doping populates predominantly one valley in the presence of Zeeman splitting.
Collapse
Affiliation(s)
- Yueh-Chun Wu
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Yan
- Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
123
|
Steves MA, Rajabpour S, Wang K, Dong C, He W, Quek SY, Robinson JA, Knappenberger KL. Atomic-Level Structure Determines Electron-Phonon Scattering Rates in 2-D Polar Metal Heterostructures. ACS NANO 2021; 15:17780-17789. [PMID: 34665593 DOI: 10.1021/acsnano.1c05944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electron dynamics of atomically thin 2-D polar metal heterostructures, which consisted of a few crystalline metal atomic layers intercalated between hexagonal silicon carbide and graphene grown from the silicon carbide, were studied using nearly degenerate transient absorption spectroscopy. Optical pumping created charge carriers in both the 2-D metals and graphene components. Wavelength-dependent probing suggests that graphene-to-metal carrier transfer occurred on a sub-picosecond time scale. Following rapid (<300 fs) carrier-carrier scattering, charge carriers monitored through the metal interband transition relaxed through several consecutive cooling mechanisms that included sub-picosecond carrier-phonon scattering and dissipation to the silicon carbide substrate over tens of picoseconds. By studying 2-D In, 2-D Ga, and a Ga/In alloy, we resolved accelerated electron-phonon scattering rates upon alloy formation as well as structural influences on the excitation of in-plane phonon shear modes. More rapid cooling in alloys is attributed to increased lattice disorder, which was observed through correlative polarization-resolved second harmonic generation and electron microscopy. This connection between the electronic relaxation rates, far-field optical responses, and metal lattice disorder is made possible by the intimate relation between nonlinear optical properties and atomic-level structure in these materials. These studies provided insights into electronic carrier dynamics in 2-D crystalline elemental metals, including resolving contributions from specific components of a 2-D metal-containing heterojunction. The correlative ultrafast spectroscopy and nonlinear microscopy results suggest that the energy dissipation rates can be tuned through atomic-level structures.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials Characterization Laboratory, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wen He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117456, Singapore
| | - Su Ying Quek
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive, Singapore 117456, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117456, Singapore
- Department of Physics, National University of Singapore, Singapore 117456, Singapore
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 117456, Singapore
| | - Joshua A Robinson
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2D and Layered Materials, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
124
|
Wilson NP, Yao W, Shan J, Xu X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 2021; 599:383-392. [PMID: 34789905 DOI: 10.1038/s41586-021-03979-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
The design and control of material interfaces is a foundational approach to realize technologically useful effects and engineer material properties. This is especially true for two-dimensional (2D) materials, where van der Waals stacking allows disparate materials to be freely stacked together to form highly customizable interfaces. This has underpinned a recent wave of discoveries based on excitons in stacked double layers of transition metal dichalcogenides (TMDs), the archetypal family of 2D semiconductors. In such double-layer structures, the elegant interplay of charge, spin and moiré superlattice structure with many-body effects gives rise to diverse excitonic phenomena and correlated physics. Here we review some of the recent discoveries that highlight the versatility of TMD double layers to explore quantum optics and many-body effects. We identify outstanding challenges in the field and present a roadmap for unlocking the full potential of excitonic physics in TMD double layers and beyond, such as incorporating newly discovered ferroelectric and magnetic materials to engineer symmetries and add a new level of control to these remarkable engineered materials.
Collapse
Affiliation(s)
- Nathan P Wilson
- Department of Physics, University of Washington, Seattle, WA, USA.,Walter Schottky Institute, Technical University of Munich, Garching, Germany.,Munich Centre for Quantum Science and Technology, Munich, Germany
| | - Wang Yao
- Department of Physics, University of Hong Kong, Hong Kong, China.,HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Jie Shan
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA. .,Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
125
|
Tran TN, Kim S, White SJU, Nguyen MAP, Xiao L, Strauf S, Yang T, Aharonovich I, Xu ZQ. Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103994. [PMID: 34605163 DOI: 10.1002/smll.202103994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The emergence of interlayer excitons (IEs) from atomic layered transition metal dichalcogenides (TMDCs) heterostructures has drawn tremendous attention due to their unique and exotic optoelectronic properties. Coupling the IEs into optical cavities provides distinctive electromagnetic environments which plays an important role in controlling multiple optical processes such as optical nonlinear generation or photoluminescence enhancement. Here, the integration of IEs in TMDCs into plasmonic nanocavities based on a nanocube on a metallic mirror is reported. Spectroscopic studies reveal an order of magnitude enhancement of the IE at room temperature and a 5-time enhancement in fluorescence at cryogenic temperatures. Cavity modeling reveals that the enhancement of the emission is attributed to both increased excitation efficiency and Purcell effect from the cavity. The results show a novel method to control the excitonic processes in TMDC heterostructures to build high performance photonics and optoelectronics devices.
Collapse
Affiliation(s)
- Thinh N Tran
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Sejeong Kim
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Victoria, 3010, Australia
| | - Simon J U White
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Minh Anh Phan Nguyen
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Licheng Xiao
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Stefan Strauf
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Center for Quantum Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Tieshan Yang
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Zai-Quan Xu
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
126
|
Mol PR, Barman PK, Sarma PV, Kumar AS, Sahu S, Shaijumon MM, Kini RN. Anomalously polarised emission from a MoS 2/WS 2 heterostructure. NANOSCALE ADVANCES 2021; 3:5676-5682. [PMID: 36133269 PMCID: PMC9417150 DOI: 10.1039/d1na00462j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 05/09/2023]
Abstract
We report circularly polarised emission, with helicity opposite to the optical excitation, from a van der Waals heterostructure (HS) consisting of a monolayer MoS2 and three-layer WS2. Selective excitation of the MoS2 layer confirms that this cross-polarized emission is due to the charge transfer from the WS2 layers to the MoS2 layer. We propose that the high levels of n-doping in the constituent layers due to sulphur vacancies and defects give rise to an enhanced transition rate of electrons from the k valley of WS2 to the k' valley of MoS2, which leads to the emission, counter polarized to the excitation. Simulations based on the rate equation model support this conclusion.
Collapse
Affiliation(s)
- P Riya Mol
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Prahalad Kanti Barman
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Prasad V Sarma
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Abhishek S Kumar
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Satyam Sahu
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Manikoth M Shaijumon
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| | - Rajeev N Kini
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P. O. Vithura Kerala 695551 India
| |
Collapse
|
127
|
Robert C, Park S, Cadiz F, Lombez L, Ren L, Tornatzky H, Rowe A, Paget D, Sirotti F, Yang M, Van Tuan D, Taniguchi T, Urbaszek B, Watanabe K, Amand T, Dery H, Marie X. Spin/valley pumping of resident electrons in WSe 2 and WS 2 monolayers. Nat Commun 2021; 12:5455. [PMID: 34526493 PMCID: PMC8443707 DOI: 10.1038/s41467-021-25747-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.
Collapse
Affiliation(s)
- Cedric Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France.
| | - Sangjun Park
- Physique de la matière condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Paris, Palaiseau, France
| | - Fabian Cadiz
- Physique de la matière condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Paris, Palaiseau, France.
| | - Laurent Lombez
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Lei Ren
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Hans Tornatzky
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Alistair Rowe
- Physique de la matière condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Paris, Palaiseau, France
| | - Daniel Paget
- Physique de la matière condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Paris, Palaiseau, France
| | - Fausto Sirotti
- Physique de la matière condensée, Ecole Polytechnique, CNRS, IP Paris, 91128, Paris, Palaiseau, France
| | - Min Yang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Dinh Van Tuan
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-00044, Japan
| | - Bernhard Urbaszek
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-00044, Japan
| | - Thierry Amand
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France
| | - Hanan Dery
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, 14627, USA
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077, Toulouse, France.
| |
Collapse
|
128
|
Kumar A, Yagodkin D, Stetzuhn N, Kovalchuk S, Melnikov A, Elliott P, Sharma S, Gahl C, Bolotin KI. Spin/Valley Coupled Dynamics of Electrons and Holes at the MoS 2-MoSe 2 Interface. NANO LETTERS 2021; 21:7123-7130. [PMID: 34410727 DOI: 10.1021/acs.nanolett.1c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coupled spin and valley degrees of freedom in transition metal dichalcogenides (TMDs) are considered a promising platform for information processing. Here, we use a TMD heterostructure MoS2-MoSe2 to study optical pumping of spin/valley polarized carriers across the interface and to elucidate the mechanisms governing their subsequent relaxation. By applying time-resolved Kerr and reflectivity spectroscopies, we find that the photoexcited carriers conserve their spin for both tunneling directions across the interface. Following this, we measure dramatically different spin/valley depolarization rates for electrons and holes, ∼30 and <1 ns-1, respectively, and show that this difference relates to the disparity in the spin-orbit splitting in conduction and valence bands of TMDs. Our work provides insights into the spin/valley dynamics of photoexcited carriers unaffected by complex excitonic processes and establishes TMD heterostructures as generators of spin currents in spin/valleytronic devices.
Collapse
Affiliation(s)
- Abhijeet Kumar
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Denis Yagodkin
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nele Stetzuhn
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | | | - Alexey Melnikov
- Institute for Physics, Martin Luther University Halle, 06120 Halle, Germany
| | - Peter Elliott
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Straße 2a, 12489 Berlin, Germany
| | - Sangeeta Sharma
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born Straße 2a, 12489 Berlin, Germany
| | - Cornelius Gahl
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kirill I Bolotin
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
129
|
Yao Q, Bie YQ, Chen J, Li J, Li F, Cao Z. Anapole enhanced on-chip routing of spin-valley photons in 2D materials for silicon integrated optical communication. OPTICS LETTERS 2021; 46:4080-4083. [PMID: 34469944 DOI: 10.1364/ol.433457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Controlling the propagation direction of polarized light is crucial for optical communications and functional optical components. However, all-dielectric on-chip technology exploiting valley photon emission in transition metal dichalcogenides with enhanced emission has yet to be fully explored. Here, we report a design for enhancing valley emission and manipulating valley photon propagation based on degenerate non-radiating anapole states. By placing circularly polarized dipoles on top of a C4 symmetric cross-slotted silicon disk, the rotating anapole state is excited with a Purcell factor up to two orders. In addition, the photon coupled to the preferred direction of the waveguide are about 2 times larger than that to the opposite direction. Our design could pave the way for realizing on-chip valley-dependent optical communication.
Collapse
|
130
|
Wagner K, Zipfel J, Rosati R, Wietek E, Ziegler JD, Brem S, Perea-Causín R, Taniguchi T, Watanabe K, Glazov MM, Malic E, Chernikov A. Nonclassical Exciton Diffusion in Monolayer WSe_{2}. PHYSICAL REVIEW LETTERS 2021; 127:076801. [PMID: 34459627 DOI: 10.1103/physrevlett.127.076801] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
We experimentally demonstrate time-resolved exciton propagation in a monolayer semiconductor at cryogenic temperatures. Monitoring phonon-assisted recombination of dark states, we find a highly unusual case of exciton diffusion. While at 5 K the diffusivity is intrinsically limited by acoustic phonon scattering, we observe a pronounced decrease of the diffusion coefficient with increasing temperature, far below the activation threshold of higher-energy phonon modes. This behavior corresponds neither to well-known regimes of semiclassical free-particle transport nor to the thermally activated hopping in systems with strong localization. Its origin is discussed in the framework of both microscopic numerical and semiphenomenological analytical models illustrating the observed characteristics of nonclassical propagation. Challenging the established description of mobile excitons in monolayer semiconductors, these results open up avenues to study quantum transport phenomena for excitonic quasiparticles in atomically thin van der Waals materials and their heterostructures.
Collapse
Affiliation(s)
- Koloman Wagner
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
| | - Jonas Zipfel
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Roberto Rosati
- Department of Physics, Philipps-Universität Marburg, Renthof 7, Marburg D-35032, Germany
| | - Edith Wietek
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
| | - Jonas D Ziegler
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
| | - Samuel Brem
- Department of Physics, Philipps-Universität Marburg, Renthof 7, Marburg D-35032, Germany
| | - Raül Perea-Causín
- Department of Physics, Chalmers University of Technology, Fysikgården 1, 41258 Gothenburg, Sweden
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | | | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Renthof 7, Marburg D-35032, Germany
- Department of Physics, Chalmers University of Technology, Fysikgården 1, 41258 Gothenburg, Sweden
| | - Alexey Chernikov
- Department of Physics, University of Regensburg, Regensburg D-93053, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
131
|
Niu X, Xiao S, Sun D, Shi A, Zhou Z, Chen W, Li X, Wang J. Direct formation of interlayer exciton in two-dimensional van der Waals heterostructures. MATERIALS HORIZONS 2021; 8:2208-2215. [PMID: 34846425 DOI: 10.1039/d1mh00571e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In atomically thin two-dimensional van der Waals (2D vdW) heterostructures, spatially separated interlayer excitons play an important role in the optoelectronic performance and show great potential for the exploration of many-body quantum phenomena. A commonly accepted formation mode for interlayer excitons is via a two-step intralayer exciton transfer mechanism, namely, photo-excited intralayer excitons are initially generated in individual sublayers, and photogenerated electrons and holes are then separated into opposite sublayers based on the type-II band alignment. Herein, we expand the concept of interlayer exciton formation and reveal that bright interlayer excitons can be generated in one step by direct interlayer photoexcitation in 2D vdW heterostructures that have strong interlayer coupling and a short photoexcitation channel. First-principles and many-body perturbation theory calculations demonstrate that indium selenide/antimonene and indium selenide/black phosphorus heterostructures are two promising systems that show an exceptionally large interlayer transition probability (>500 Debye2). This study enriches the understanding of interlayer exciton formation and provides a new avenue to acquiring strong interlayer excitons in artificial 2D vdW heterostructures.
Collapse
Affiliation(s)
- Xianghong Niu
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Peimyoo N, Deilmann T, Withers F, Escolar J, Nutting D, Taniguchi T, Watanabe K, Taghizadeh A, Craciun MF, Thygesen KS, Russo S. Electrical tuning of optically active interlayer excitons in bilayer MoS 2. NATURE NANOTECHNOLOGY 2021; 16:888-893. [PMID: 34083771 DOI: 10.1038/s41565-021-00916-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Interlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design. Here, following the theoretical prediction and recent experimental confirmation of the existence of IL excitons in bilayer MoS2, we demonstrate the electrical control of such excitons up to room temperature. We find that the IL excitonic states preserve their large oscillator strength as their energies are manipulated by the electric field. We attribute this effect to the mixing of the pure IL excitons with intralayer excitons localized in a single layer. By applying an electric field perpendicular to the bilayer MoS2 crystal plane, excitons with IL character split into two peaks with an X-shaped field dependence as a clear fingerprint of the shift of the monolayer bands with respect to each other. Finally, we demonstrate the full control of the energies of IL excitons distributed homogeneously over a large area of our device.
Collapse
Affiliation(s)
- Namphung Peimyoo
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Thorsten Deilmann
- Institut für Festkörpertheorie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Freddie Withers
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Janire Escolar
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Darren Nutting
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Alireza Taghizadeh
- Department of Materials and Production, Aalborg University, Aalborg, Denmark
- CAMD, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Monica Felicia Craciun
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Kristian Sommer Thygesen
- CAMD, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Saverio Russo
- Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
133
|
Zhou H, Chen Y, Zhu H. Deciphering asymmetric charge transfer at transition metal dichalcogenide-graphene interface by helicity-resolved ultrafast spectroscopy. SCIENCE ADVANCES 2021; 7:7/34/eabg2999. [PMID: 34417175 PMCID: PMC8378813 DOI: 10.1126/sciadv.abg2999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/01/2021] [Indexed: 05/27/2023]
Abstract
Transition metal dichalcogenide (TMD)/graphene (Gr) heterostructures constitute a key component for two-dimensional devices. The operation of TMD/Gr devices relies on interfacial charge/energy transfer processes, which remains unclear and challenging to unravel. Fortunately, the coupled spin and valley index in TMDs adds a new degree of freedom to the charges and, thus, another dimension to spectroscopy. Here, by helicity-resolved ultrafast spectroscopy, we find that photoexcitation in TMDs transfers to graphene by asynchronous charge transfer, with one type of charge transferring in the order of femtoseconds and the other in picoseconds. The rate correlates well with energy offset between TMD and graphene, regardless of compositions and charge species. Spin-polarized hole injection or long-lived polarized hole can be achieved with deliberately designed heterostructures. This study shows helicity-resolved ultrafast spectroscopy as a powerful and facile approach to reveal the fundamental and complex charge/spin dynamics in TMD-based heterostructures, paving the way toward valleytronic and optoelectronic applications.
Collapse
Affiliation(s)
- Hongzhi Zhou
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuzhong Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
134
|
Wu K, Zhong H, Guo Q, Tang J, Zhang J, Qian L, Shi Z, Zhang C, Yuan S, Zhang S, Xu H. Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. Natl Sci Rev 2021; 9:nwab135. [PMID: 35795458 PMCID: PMC9252742 DOI: 10.1093/nsr/nwab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Stacking atomically thin films enables artificial construction of van der Waals heterostructures with exotic functionalities such as superconductivity, the quantum Hall effect, and engineered light-matter interactions. In particular, heterobilayers composed of monolayer transition metal dichalcogenides have attracted significant interest due to their controllable interlayer coupling and trapped valley excitons in moiré superlattices. However, the identification of twist-angle-modulated optical transitions in heterobilayers is sometimes controversial since both momentum-direct (K-K) and -indirect excitons reside on the low energy side of the bright exciton in the monolayer constituents. Here, we attribute the optical transition at approximately 1.35 eV in the WS2/WSe2 heterobilayer to an indirect Γ-K transition based on a systematic analysis and comparison of experimental PL spectra with theoretical calculations. The exciton wavefunction obtained by the state-of-the-art GW-Bethe-Salpeter equation (GW-BSE) approach indicates that both the electron and hole of the exciton are contributed by the WS2 layer. Polarization-resolved k-space imaging further confirms that the transition dipole moment of this optical transition is dominantly in-plane and is independent of the twist angle. The calculated absorption spectrum predicts that the usually called interlayer exciton peak coming from the K-K transition is located at 1.06 eV, but with a much weaker amplitude. Our work provides new insights into understanding the steady-state and dynamic properties of twist-angle-dependent excitons in van der Waals heterostructures.
Collapse
Affiliation(s)
- Ke Wu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongxia Zhong
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Quanbing Guo
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jibo Tang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jing Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lihua Qian
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chendong Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shengjun Yuan
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
135
|
Goswami T, Bhatt H, Babu KJ, Kaur G, Ghorai N, Ghosh HN. Ultrafast Insights into High Energy (C and D) Excitons in Few Layer WS 2. J Phys Chem Lett 2021; 12:6526-6534. [PMID: 34242025 DOI: 10.1021/acs.jpclett.1c01627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High energy (C and D) excitons possess extraordinary influence over the optical properties of atomically thin transition metal dichalcogenides (TMDCs), and the comprehensive understanding of these would play a pivotal role in advancing research on 2D optoelectronics. Herein, we employed transient absorption spectroscopy to monitor the underlying photophysical processes involved with different excitonic features in few layer WS2, modeled as a TMDC representative. We observed a strong intervalley coupling across the momentum space and proposed the most plausible relaxation pathway for different excitons in few layer scenario. C and D exciton dynamics were significantly slower as compared to canonical A and B excitons, as a consequence of the indirect Λ-Γ relaxation in C and D and direct K-K combination in A and B. Most importantly, all four excitons emerge in the system and influence each other irrespective of the incident photon energy, which would be extremely impactful in fabricating wide range photonic devices.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Nandan Ghorai
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
136
|
Shanks DN, Mahdikhanysarvejahany F, Muccianti C, Alfrey A, Koehler MR, Mandrus DG, Taniguchi T, Watanabe K, Yu H, LeRoy BJ, Schaibley JR. Nanoscale Trapping of Interlayer Excitons in a 2D Semiconductor Heterostructure. NANO LETTERS 2021; 21:5641-5647. [PMID: 34164985 DOI: 10.1021/acs.nanolett.1c01215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For quantum technologies based on single excitons and spins, the deterministic placement and control of a single exciton is a longstanding goal. MoSe2-WSe2 heterostructures host spatially indirect interlayer excitons (IXs) that exhibit highly tunable energies and unique spin-valley physics, making them promising candidates for quantum information processing. Previous IX trapping approaches involving moiré superlattices and nanopillars do not meet the quantum technology requirements of deterministic placement and energy tunability. Here, we use a nanopatterned graphene gate to create a sharply varying electric field in close proximity to a MoSe2-WSe2 heterostructure. The dipole interaction between the IX and the electric field creates an ∼20 nm trap. The trapped IXs show the predicted electric-field-dependent energy, saturation at low excitation power, and increased lifetime, all signatures of strong spatial confinement. The demonstrated architecture is a crucial step toward the deterministic trapping of single IXs, which has broad applications to scalable quantum technologies.
Collapse
Affiliation(s)
- Daniel N Shanks
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | | | - Christine Muccianti
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - Adam Alfrey
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael R Koehler
- JIAM Diffraction Facility, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, Tennessee 37920, United States
| | - David G Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hongyi Yu
- Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| | - Brian J LeRoy
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| | - John R Schaibley
- Department of Physics, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
137
|
Tan Q, Rasmita A, Li S, Liu S, Huang Z, Xiong Q, Yang SA, Novoselov KS, Gao WB. Layer-engineered interlayer excitons. SCIENCE ADVANCES 2021; 7:7/30/eabh0863. [PMID: 34301603 PMCID: PMC8302131 DOI: 10.1126/sciadv.abh0863] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 05/21/2023]
Abstract
Photoluminescence (PL) from excitons serves as a powerful tool to characterize the optoelectronic property and band structure of semiconductors, especially for atomically thin two-dimensional transition metal dichalcogenide (TMD) materials. However, PL quenches quickly when the thickness of TMD materials increases from monolayer to a few layers, due to the change from direct to indirect band transition. Here, we show that PL can be recovered by engineering multilayer heterostructures, with the band transition reserved to be a direct type. We report emission from layer-engineered interlayer excitons from these multilayer heterostructures. Moreover, as desired for valleytronics devices, the lifetime, valley polarization, and valley lifetime of the generated interlayer excitons can all be substantially improved as compared with that in the monolayer-monolayer heterostructure. Our results pave the way for controlling the properties of interlayer excitons by layer engineering.
Collapse
Affiliation(s)
- Qinghai Tan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Abdullah Rasmita
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Si Li
- Research Laboratory for Quantum Materials in Singapore University of Technology and Design, Singapore 487372, Singapore
- School of Physics, Northwest University, Xi' an 710069, China
| | - Sheng Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zumeng Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials in Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - K S Novoselov
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
138
|
Lloyd LT, Wood RE, Mujid F, Sohoni S, Ji KL, Ting PC, Higgins JS, Park J, Engel GS. Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS 2 Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS NANO 2021; 15:10253-10263. [PMID: 34096707 DOI: 10.1021/acsnano.1c02381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The valley pseudospin at the K and K' high-symmetry points in monolayer transition metal dichalcogenides (TMDs) has potential as an optically addressable degree of freedom in next-generation optoelectronics. However, intervalley scattering and relaxation of charge carriers leads to valley depolarization and limits practical applications. In addition, enhanced Coulomb interactions lead to pronounced excitonic effects that dominate the optical response and initial valley depolarization dynamics but complicate the interpretation of ultrafast spectroscopic experiments at short time delays. Employing broadband helicity-resolved two-dimensional electronic spectroscopy (2DES), we observe ultrafast (∼10 fs) intervalley coupling between all A and B valley exciton states that results in a complete breakdown of the valley index in large-area monolayer MoS2 films. These couplings and subsequent dynamics exhibit minimal excitation fluence or temperature dependence and are robust toward changes in sample grain size and inherent strain. Our observations strongly suggest that this direct intervalley coupling on the time scale of optical excitation is an inherent property of large-area MoS2 distinct from dynamic carrier or exciton scattering, phonon-driven processes, and multiexciton effects. This ultrafast intervalley coupling poses a fundamental challenge for exciton-based valleytronics in monolayer TMDs and must be overcome to fully realize large-area valleytronic devices.
Collapse
Affiliation(s)
- Lawson T Lloyd
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ryan E Wood
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Fauzia Mujid
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Karen L Ji
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Po-Chieh Ting
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob S Higgins
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiwoong Park
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
139
|
Liu Y, Zeng C, Yu J, Zhong J, Li B, Zhang Z, Liu Z, Wang ZM, Pan A, Duan X. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem Soc Rev 2021; 50:6401-6422. [PMID: 33942837 DOI: 10.1039/d0cs01002b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent advances in moiré superlattices and moiré excitons, such as quantum emission arrays, low-energy flat bands, and Mott insulators, have rapidly attracted attention in the fields of optoelectronics, materials, and energy research. The interlayer twist turns into a degree of freedom that alters the properties of the systems of materials, and the realization of moiré excitons also offers the feasibility of making artificial exciton crystals. Moreover, moiré excitons exhibit many exciting properties under the regulation of various external conditions, including spatial polarisation, alternating dipolar to alternating dipolar moments and gate-dependence to gate voltage dependence; all are pertinent to their applications in nano-photonics and quantum information. But the lag in theoretical development and the low-efficiency of processing technologies significantly limit the potential of moiré superlattice applications. In this review, we systematically summarise and discuss the recent progress in moiré superlattices and moiré excitons, and analyze the current challenges, and put forward relevant recommendations. There is no doubt that further research will lead to breakthroughs in their application and promote reforms and innovations in traditional solid-state physics and materials science.
Collapse
Affiliation(s)
- Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Xie K, Li X, Cao T. Theory and Ab Initio Calculation of Optically Excited States-Recent Advances in 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904306. [PMID: 31808581 DOI: 10.1002/adma.201904306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Indexed: 05/16/2023]
Abstract
Recent studies of the optical properties of 2D materials have reported unique phenomena and features that are absent in conventional bulk semiconductors. Many of these interesting properties, such as enhanced light-matter coupling, gate-tunable photoluminescence, and unusual excitonic optical selection rules arise from the nature of the two- and multi-particle excited states such as strongly bound Wannier excitons and charged excitons. The theory, modeling, and ab initio calculations of these optically excited states in 2D materials are reviewed. Several analytical and ab initio approaches are introduced. These methods are compared with each other, revealing their relative strength and limitations. Recent works that apply these methods to a variety of 2D materials and material-defect systems are then highlighted. Understanding of the optically excited states in these systems is relevant not only for fundamental scientific research of electronic excitations and correlations, but also plays an important role in the future development of quantum information science and nano-photonics.
Collapse
Affiliation(s)
- Kaichen Xie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Xiaosong Li
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ting Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
141
|
Liu E, Barré E, van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui YT, Gabor NM, Heinz TF, Chang YC, Lui CH. Signatures of moiré trions in WSe 2/MoSe 2 heterobilayers. Nature 2021; 594:46-50. [PMID: 34079140 DOI: 10.1038/s41586-021-03541-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
Moiré superlattices formed by van der Waals materials can support a wide range of electronic phases, including Mott insulators1-4, superconductors5-10 and generalized Wigner crystals2. When excitons are confined by a moiré superlattice, a new class of exciton emerges, which holds promise for realizing artificial excitonic crystals and quantum optical effects11-16. When such moiré excitons are coupled to charge carriers, correlated states may arise. However, no experimental evidence exists for charge-coupled moiré exciton states, nor have their properties been predicted by theory. Here we report the optical signatures of trions coupled to the moiré potential in tungsten diselenide/molybdenum diselenide heterobilayers. The moiré trions show multiple sharp emission lines with a complex charge-density dependence, in stark contrast to the behaviour of conventional trions. We infer distinct contributions to the trion emission from radiative decay in which the remaining carrier resides in different moiré minibands. Variation of the trion features is observed in different devices and sample areas, indicating high sensitivity to sample inhomogeneity and variability. The observation of these trion features motivates further theoretical and experimental studies of higher-order electron correlation effects in moiré superlattices.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Elyse Barré
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Matthew Wilson
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Kenji Watanabe
- National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Yong-Tao Cui
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Nathaniel M Gabor
- Department of Physics and Astronomy, University of California, Riverside, CA, USA.,Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA, USA.
| |
Collapse
|
142
|
Batalden S, Sih V. Spatially-resolved measurements of spin valley polarization in MOCVD-grown monolayer WSe 2. OPTICS EXPRESS 2021; 29:17269-17276. [PMID: 34154272 DOI: 10.1364/oe.426664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Time-resolved Kerr rotation microscopy is used to generate and measure spin valley polarization in MOCVD-grown monolayer tungsten diselenide (WSe2). The Kerr signal reveals bi-exponential decay with time constants of 100 ps and 3 ns. Measurements are performed on several triangular flakes from the same growth cycle and reveal larger spin valley polarization near the edges of the flakes. This spatial dependence is observed across multiple WSe2 flakes in the Kerr rotation measurements but not in the spatially resolved reflectivity or microphotoluminescence data. Time-resolved pump-probe overlap measurements further reveal that the Kerr signal's spatial dependence is not due to spin diffusion on the nanosecond timescale.
Collapse
|
143
|
Singh A, Jain M, Bhattacharya S. MoS 2 and Janus (MoSSe) based 2D van der Waals heterostructures: emerging direct Z-scheme photocatalysts. NANOSCALE ADVANCES 2021; 3:2837-2845. [PMID: 36134195 PMCID: PMC9417246 DOI: 10.1039/d1na00154j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) materials, viz. transition metal dichalcogenides (TMD) and transition metal oxides (TMO), offer a platform that allows the creation of heterostructures with a variety of properties. The optoelectronic industry has observed an upheaval in the research arena of MoS2 based van der Waals (vdW) heterostructures (HTSs) and Janus structures. Therefore, interest towards these structures is backed by the ability to select their electronic and optical properties. The present study investigates the photocatalytic abilites of bilayer, MoS2 and Janus (MoSSe) based vdW HTSs, viz. MoS2/TMO, MoS2/TMD, MoSSe/TMO and MoSSe/TMD, by a first-principles based approach under the framework of (hybrid) density functional theory (DFT) and many body perturbation theory (GW approximation). We have considered HfS2, ZrS2, TiS2 and WS2, and HfO2, T-SnO2 and T-PtO2 from the families of TMDs and TMOs, respectively. The photocatalytic properties of these vdW HTSs are thoroughly investigated and compared with their respective individual monolayers by visualizing their band edge alignments, electron-hole recombination and optical properties. Strikingly, we observe that, despite most of the individual monolayers not performing optimally as photocatalysts, type II band edge alignment is noticed in vdW HTSs and they appear to be efficient photocatalysts via the Z-scheme. Moreover, these vdW HTSs have also shown promising optical responses in the visible region. Finally, electron-hole recombination, H2O adsorption and hydrogen evolution reaction (HER) results establish that MoSSe/HfS2, MoSSe/TiS2, MoS2/T-SnO2 and MoSSe/ZrS2 are probable highly efficient Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Manjari Jain
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
144
|
Zhao C, Tao W, Chen Z, Zhou H, Zhang C, Lin J, Zhu H. Ultrafast Electron Transfer with Long-Lived Charge Separation and Spin Polarization in WSe 2/C 60 Heterojunction. J Phys Chem Lett 2021; 12:3691-3697. [PMID: 33829780 DOI: 10.1021/acs.jpclett.1c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong excitonic effect in monolayer transition-metal dichalcogenides (TMDs) endows them with intriguing optoelectronic properties but also short-lived population and valley polarization. Exciton dissociation by interfacial charge transfer has been shown as an effective approach to prolonging excited-state lifetimes. Herein, by ultrafast spectroscopy and building-block molecule C60, we investigated exciton and valley polarization dynamics in the prototypical WSe2/C60 inorganic-organic hybrid. We show that excitons in WSe2 can be dissociated through ultrafast (∼1 ps) electron transfer to C60, with nanosecond charge separation due to thermally activated electron diffusion in C60 film. Because of suppressed electron-hole exchange interaction after electron transfer, hole in WSe2 exhibits a spin/valley polarization lifetime of ∼60 ps at room temperature, more than 2 orders of magnitude longer than that in WSe2 monolayer. This study suggests exciton dissociation as a general approach to suppress electron-hole interaction and prolong the charge/spin/valley lifetime in TMDs.
Collapse
Affiliation(s)
- Chang Zhao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijian Tao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongzhi Zhou
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyi Lin
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
145
|
Li S, Wang H, Wang J, Chen H, Shao L. Control of light-valley interactions in 2D transition metal dichalcogenides with nanophotonic structures. NANOSCALE 2021; 13:6357-6372. [PMID: 33885520 DOI: 10.1039/d0nr08000d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electronic valley in two-dimensional transition-metal dichalcogenides (2D TMDCs) offers a new degree of freedom for information storage and processing. The valley pseudospin can be optically encoded by photons with specific helicity, enabling the construction of electronic information devices with both high performance and low power consumption. Robust detection, manipulation and transport of the valley pseudospins at room temperature are still challenging because of the short lifetime of valley-polarized carriers and excitons. Integrating 2D TMDCs with nanophotonic objects such as plasmonic nanostructures provides a competitive solution to address the challenge. The research in this field is of practical interest and can also present rich physics of light-matter interactions. In this minireview, recent progress on using nanophotonic strategies to enhance the valley polarization degree, especially at room temperature, is highlighted. Open questions, major challenges, and interesting future developments in manipulating the valley information in 2D semiconductors with the help of nanophotonic structures will also be discussed.
Collapse
Affiliation(s)
- Shasha Li
- Beijing Computational Science Research Center, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
146
|
Jiang Y, Chen S, Zheng W, Zheng B, Pan A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. LIGHT, SCIENCE & APPLICATIONS 2021; 10:72. [PMID: 33811214 PMCID: PMC8018964 DOI: 10.1038/s41377-021-00500-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Van der Waals (vdW) heterostructures based on transition metal dichalcogenides (TMDs) generally possess a type-II band alignment that facilitates the formation of interlayer excitons between constituent monolayers. Manipulation of the interlayer excitons in TMD vdW heterostructures holds great promise for the development of excitonic integrated circuits that serve as the counterpart of electronic integrated circuits, which allows the photons and excitons to transform into each other and thus bridges optical communication and signal processing at the integrated circuit. As a consequence, numerous studies have been carried out to obtain deep insight into the physical properties of interlayer excitons, including revealing their ultrafast formation, long population recombination lifetimes, and intriguing spin-valley dynamics. These outstanding properties ensure interlayer excitons with good transport characteristics, and may pave the way for their potential applications in efficient excitonic devices based on TMD vdW heterostructures. At present, a systematic and comprehensive overview of interlayer exciton formation, relaxation, transport, and potential applications is still lacking. In this review, we give a comprehensive description and discussion of these frontier topics for interlayer excitons in TMD vdW heterostructures to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Weihao Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, and College of Materials Science and Engineering, Hunan University, Changsha, China.
| |
Collapse
|
147
|
Zhang L, Zhang X, Lu G. Predictions of moiré excitons in twisted two-dimensional organic-inorganic halide perovskites. Chem Sci 2021; 12:6073-6080. [PMID: 33996003 PMCID: PMC8098687 DOI: 10.1039/d1sc00359c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent breakthrough in synthesizing arbitrary vertical heterostructures of Ruddlesden–Popper (RP) perovskites opens doors to myriad quantum optoelectronic applications. However, it is not clear whether moiré excitons and flat bands can be formed in such heterostructures. Here, we predict from first principles that twisted homobilayers of RP perovskite, MA2PbI4, can host moiré excitons and yield flat energy bands. The moiré excitons exhibit unique and hybridized characteristics with electrons confined in a single layer of a striped distribution while holes localized in both layers. Nearly flat valence bands can be formed in the bilayers with relatively large twist angles, thanks to the presence of hydrogen bonds that strengthen the interlayer coupling. External pressures can further increase the interlayer coupling, yielding more localized moiré excitons and flatter valence bands. Finally, electrostatic gating is predicted to tune the degree of hybridization, energy, position and localization of moiré excitons in twisted MA2PbI4 bilayers. Excitonic states in twisted MA2PbI4 bilayers were calculated by first-principles calculations.![]()
Collapse
Affiliation(s)
- Linghai Zhang
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| | - Xu Zhang
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge California 91330-8268 USA
| |
Collapse
|
148
|
Wang J, Shi Q, Shih EM, Zhou L, Wu W, Bai Y, Rhodes D, Barmak K, Hone J, Dean CR, Zhu XY. Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers. PHYSICAL REVIEW LETTERS 2021; 126:106804. [PMID: 33784140 DOI: 10.1103/physrevlett.126.106804] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/13/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Charge separated interlayer excitons in transition metal dichalcogenide heterobilayers are being explored for moiré exciton lattices and exciton condensates. The presence of permanent dipole moments and the poorly screened Coulomb interaction make many-body interactions particularly strong for interlayer excitons. Here we reveal two distinct phase transitions for interlayer excitons in the MoSe_{2}/WSe_{2} heterobilayer using time and spatially resolved photoluminescence imaging: from trapped excitons in the moiré potential to the modestly mobile exciton gas as exciton density increases to n_{ex}∼10^{11} cm^{-2} and from the exciton gas to the highly mobile charge separated electron-hole plasma for n_{ex}>10^{12} cm^{-2}. The latter is the Mott transition and is confirmed in photoconductivity measurements. These findings set fundamental limits for achieving quantum states of interlayer excitons.
Collapse
Affiliation(s)
- Jue Wang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Qianhui Shi
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - En-Min Shih
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Lin Zhou
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wenjing Wu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Yusong Bai
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Daniel Rhodes
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - X-Y Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
149
|
Zhang S, Wang Y, Wang S, Huang B, Dai Y, Wei W. Electronic Properties of Monolayer and van der Waals Bilayer of Janus TiClI. J Phys Chem Lett 2021; 12:2245-2251. [PMID: 33635653 DOI: 10.1021/acs.jpclett.1c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, the novel electronic properties of the Janus TiClI monolayer (ML) and van der Waals (vdW) bilayers (BLs) have been demonstrated. As a result of the strong spin-orbit coupling (SOC) together with the inversion symmetry breaking, the TiClI ML shows valley spin splitting of 62.67 meV at the K/K' point. In magnetic V- and Cr-doped TiClI MLs, sizable valley polarization of 36.70 and 45.35 meV occurs, respectively. TiClI vdW BLs indicate typical type-II band alignment with a quite large band offset (>500 meV), and interestingly, the interlayer-polarization PH is almost 100% for all considered stacking orders. In addition, the interlayer-polarization is insensitive to the interlayer distance. In this situation, the interlayer exciton and valley polarization lifetimes could be prolonged, and thus, TiClI vdW BLs provide new opportunities for light-energy conversion and valleytronics. As the interlayer distance decreases, the TiClI BLs of AB' and AB stacking indicate a semiconductor-to-metal transition and are characterized by hole-doping, and the doping concentration can be further tuned by changing the interlayer distance.
Collapse
Affiliation(s)
- Shuhui Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shuhua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
150
|
Zhao B, Wan Z, Liu Y, Xu J, Yang X, Shen D, Zhang Z, Guo C, Qian Q, Li J, Wu R, Lin Z, Yan X, Li B, Zhang Z, Ma H, Li B, Chen X, Qiao Y, Shakir I, Almutairi Z, Wei F, Zhang Y, Pan X, Huang Y, Ping Y, Duan X, Duan X. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021; 591:385-390. [PMID: 33731947 DOI: 10.1038/s41586-021-03338-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Two-dimensional (2D) materials1,2 and the associated van der Waals (vdW) heterostructures3-7 have provided great flexibility for integrating distinct atomic layers beyond the traditional limits of lattice-matching requirements, through layer-by-layer mechanical restacking or sequential synthesis. However, the 2D vdW heterostructures explored so far have been usually limited to relatively simple heterostructures with a small number of blocks8-18. The preparation of high-order vdW superlattices with larger number of alternating units is exponentially more difficult, owing to the limited yield and material damage associated with each sequential restacking or synthesis step8-29. Here we report a straightforward approach to realizing high-order vdW superlattices by rolling up vdW heterostructures. We show that a capillary-force-driven rolling-up process can be used to delaminate synthetic SnS2/WSe2 vdW heterostructures from the growth substrate and produce SnS2/WSe2 roll-ups with alternating monolayers of WSe2 and SnS2, thus forming high-order SnS2/WSe2 vdW superlattices. The formation of these superlattices modulates the electronic band structure and the dimensionality, resulting in a transition of the transport characteristics from semiconducting to metallic, from 2D to one-dimensional (1D), with an angle-dependent linear magnetoresistance. This strategy can be extended to create diverse 2D/2D vdW superlattices, more complex 2D/2D/2D vdW superlattices, and beyond-2D materials, including three-dimensional (3D) thin-film materials and 1D nanowires, to generate mixed-dimensional vdW superlattices, such as 3D/2D, 3D/2D/2D, 1D/2D and 1D/3D/2D vdW superlattices. This study demonstrates a general approach to producing high-order vdW superlattices with widely variable material compositions, dimensions, chirality and topology, and defines a rich material platform for both fundamental studies and technological applications.
Collapse
Affiliation(s)
- Bei Zhao
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhong Wan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Yuan Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.,School of Physics and Electronics, Hunan University, Changsha, China
| | - Junqing Xu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Xiangdong Yang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Dingyi Shen
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zucheng Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chunhao Guo
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Qi Qian
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.,Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ruixia Wu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Xingxu Yan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
| | - Bailing Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhengwei Zhang
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Huifang Ma
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Bo Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yi Qiao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Imran Shakir
- Sustainable Energy Technologies Centre, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Zeyad Almutairi
- Sustainable Energy Technologies Centre, College of Engineering, King Saud University, Riyadh, Saudi Arabia.,Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yue Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, China
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA.,Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Yuan Ping
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA. .,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|