101
|
Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, Pang ST, Huang HY, Yu MC, Lee PH, Hsieh SY, Chang AY, Teh BT, Rozen SG. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2018; 9:9/412/eaan6446. [PMID: 29046434 DOI: 10.1126/scitranslmed.aan6446] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Many traditional pharmacopeias include Aristolochia and related plants, which contain nephrotoxins and mutagens in the form of aristolochic acids and similar compounds (collectively, AA). AA is implicated in multiple cancer types, sometimes with very high mutational burdens, especially in upper tract urothelial cancers (UTUCs). AA-associated kidney failure and UTUCs are prevalent in Taiwan, but AA's role in hepatocellular carcinomas (HCCs) there remains unexplored. Therefore, we sequenced the whole exomes of 98 HCCs from two hospitals in Taiwan and found that 78% showed the distinctive mutational signature of AA exposure, accounting for most of the nonsilent mutations in known cancer driver genes. We then searched for the AA signature in 1400 HCCs from diverse geographic regions. Consistent with exposure through known herbal medicines, 47% of Chinese HCCs showed the signature, albeit with lower mutation loads than in Taiwan. In addition, 29% of HCCs from Southeast Asia showed the signature. The AA signature was also detected in 13 and 2.7% of HCCs from Korea and Japan as well as in 4.8 and 1.7% of HCCs from North America and Europe, respectively, excluding one U.S. hospital where 22% of 87 "Asian" HCCs had the signature. Thus, AA exposure is geographically widespread. Asia, especially Taiwan, appears to be much more extensively affected, which is consistent with other evidence of patterns of AA exposure. We propose that additional measures aimed at primary prevention through avoidance of AA exposure and investigation of possible approaches to secondary prevention are warranted.
Collapse
Affiliation(s)
- Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Song Ling Poon
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Mi Ni Huang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jing Quan Lim
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore.,Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Arnoud Boot
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Willie Yu
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yuka Suzuki
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Saranya Thangaraju
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Cedric C Y Ng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Patrick Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore.,Genome Institute of Singapore, Singapore 138672, Singapore
| | - See-Tong Pang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hao-Yi Huang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University, Taipei 10051, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Alex Y Chang
- Johns Hopkins Singapore, Singapore 308433, Singapore.
| | - Bin T Teh
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore. .,Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore.,Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore. .,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore.,SingHealth/Duke-NUS Precision Medicine Institute, Singapore 169609, Singapore
| |
Collapse
|
102
|
Chen CJ, Yang YH, Lin MH, Lee CP, Tsan YT, Lai MN, Yang HY, Ho WC, Chen PC. Herbal medicine containing aristolochic acid and the risk of hepatocellular carcinoma in patients with hepatitis B virus infection. Int J Cancer 2018; 143:1578-1587. [PMID: 29667191 DOI: 10.1002/ijc.31544] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
It was suspected that aristolochic acid-induced mutations may be associated with hepatitis B virus (HBV), playing an important role in liver carcinogenesis. The purpose of this study was to investigate the association between the use of Chinese herbs containing aristolochic acid and the risk of hepatocellular carcinoma (HCC) among HBV-infected patients. We conducted a retrospective, population-based, cohort study on patients older than 18 years who had a diagnosis of HBV infection between January 1, 1997 and December 31, 2010 and had visited traditional Chinese medicine clinics before one year before the diagnosis of HCC or the censor dates. A total of 802,642 HBV-infected patients were identified by using the National Health Insurance Research Database in Taiwan. The use of Chinese herbal products containing aristolochic acid was identified between 1997 and 2003. Each patient was individually tracked from 1997 to 2013 to identify incident cases of HCC since 1999. There were 33,982 HCCs during the follow-up period of 11,643,790 person-years and the overall incidence rate was 291.8 HCCs per 100,000 person-years. The adjusted hazard ratios (HRs) were 1.13 (95% confidence interval [CI], 1.11-1.16), 1.21 (95% CI, 1.13-1.29), 1.37 (95% CI, 1.24-1.50) and 1.61 (95% CI, 1.40-1.84) for estimated aristolochic acid of 1-250, 251-500, 501-1,000 and more than 1,000 mg, respectively, relative to no aristolochic acid exposure. Our study found a significant dose-response relationship between the consumption of aristolochic acid and HCC in patients with HBV infection, suggesting that aristolochic acid which may be associated with HBV plays an important role in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Chi-Jen Chen
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Graduate Institute of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan.,Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Hung Lin
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
| | - Yu-Tse Tsan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Nan Lai
- Department of Statistics, Feng Chia University, Taichung, Taiwan
| | - Hsiao-Yu Yang
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.,Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | |
Collapse
|
103
|
Chang MM, Lin CN, Fang CC, Chen M, Liang PI, Li WM, Yeh BW, Cheng HC, Huang BM, Wu WJ, Chen YMA. Glycine N-methyltransferase inhibits aristolochic acid nephropathy by increasing CYP3A44 and decreasing NQO1 expression in female mouse hepatocytes. Sci Rep 2018; 8:6960. [PMID: 29725048 PMCID: PMC5934382 DOI: 10.1038/s41598-018-22298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Plants containing aristolochic acids (AA) are nephrotoxins. Glycine N-methyltransferase (GNMT) acts to bind environmental toxins such as benzo(a)pyrene and aflatoxin B1, translocate into nucleus, and alter hepatic metabolism. This study aims to determine the role of GNMT in AA-induced nephropathy. We established an AA nephropathy mouse model and found that AA type I (AAI)-induced nephropathy at a lower concentration in male than in female mice, implying sex differences in AAI resistance. Microarray analysis and AAI-treated mouse models showed that GNMT moderately reduced AAI-induced nephropathy by lowering the upregulated level of NQO1 in male, but significantly improved the nephropathy additionally by increasing Cyp3A44/3A41 in female. The protective effects of GNMT were absent in female GNMT knockout mice, in which re-expression of hepatic GNMT significantly decreased AAI-induced nephropathy. Mechanism-wise, AAI enhanced GNMT nuclear translocation, resulting in GNMT interaction with the promoter region of the genes encoding Nrf2 and CAR/PXR, the transcription factors for NQO1 and CYP3A44/3A41, respectively. Unlike the preference for Nrf2/NQO1 transcriptions at lower levels of GNMT, overexpression of GNMT preferred CAR/PXR/CYP3A44/3A41 transcriptions and alleviated kidney injury upon AAI treatment. In summary, hepatic GNMT protected mice from AAI nephropathy by enhancing CAR/PXR/CYP3A44/3A41 transcriptions and reducing Nrf2/NQO1 transcriptions.
Collapse
Affiliation(s)
- Ming-Min Chang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Ni Lin
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Marcelo Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Pingtung Hospital, Ministry of Health and Welfare, Executive Yuan, Pingtung, Taiwan.,Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Jeng Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
104
|
Ji X, Feng G, Chen G, Shi T. Lack of correlation between aristolochic acid exposure and hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2018; 61:727-728. [DOI: 10.1007/s11427-018-9288-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
|
105
|
In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res 2018; 28:654-665. [PMID: 29632087 PMCID: PMC5932606 DOI: 10.1101/gr.230219.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
Cisplatin reacts with DNA and thereby likely generates a characteristic pattern of somatic mutations, called a mutational signature. Despite widespread use of cisplatin in cancer treatment and its role in contributing to secondary malignancies, its mutational signature has not been delineated. We hypothesize that cisplatin's mutational signature can serve as a biomarker to identify cisplatin mutagenesis in suspected secondary malignancies. Knowledge of which tissues are at risk of developing cisplatin-induced secondary malignancies could lead to guidelines for noninvasive monitoring for secondary malignancies after cisplatin chemotherapy. We performed whole genome sequencing of 10 independent clones of cisplatin-exposed MCF-10A and HepG2 cells and delineated the patterns of single and dinucleotide mutations in terms of flanking sequence, transcription strand bias, and other characteristics. We used the mSigAct signature presence test and nonnegative matrix factorization to search for cisplatin mutagenesis in hepatocellular carcinomas and esophageal adenocarcinomas. All clones showed highly consistent patterns of single and dinucleotide substitutions. The proportion of dinucleotide substitutions was high: 8.1% of single nucleotide substitutions were part of dinucleotide substitutions, presumably due to cisplatin's propensity to form intra- and interstrand crosslinks between purine bases in DNA. We identified likely cisplatin exposure in nine hepatocellular carcinomas and three esophageal adenocarcinomas. All hepatocellular carcinomas for which clinical data were available and all esophageal cancers indeed had histories of cisplatin treatment. We experimentally delineated the single and dinucleotide mutational signature of cisplatin. This signature enabled us to detect previous cisplatin exposure in human hepatocellular carcinomas and esophageal adenocarcinomas with high confidence.
Collapse
|
106
|
Zhou G, Zhao X. Carcinogens that induce the A:T > T:A nucleotide substitutions in the genome. Front Med 2018; 12:236-238. [PMID: 29209916 DOI: 10.1007/s11684-017-0611-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022]
Abstract
Recently, Ng et al. reported that the A:T > T:A substitutions, proposed to be a signature of aristolochic acid (AA) exposure, were detected in 76/98 (78%) of patients with hepatocellular carcinoma (HCC) from the Taiwan Province of China, and 47% to 1.7% of HCCs from the Chinese mainland and other countries harbored the nucleotide changes. However, other carcinogens, e.g., tobacco carcinogens 4-aminobiphenyl and 1,3-butadiene, air toxic vinyl chloride and its reactive metabolites chloroethylene oxide, melphalan and chlorambucil, also cause this signature in the genome. Since tobacco smoke is a worldwide public health threat and vinyl chloride distributes globally and is an air pollutant in Taiwan Province, the estimation of the patients' exposure history is the key to determine the "culprit" of the A:T > T:A mutations. Apparently, without estimation of the patients' exposure history, the conclusion of Ng et al. is unpersuasive and misleading.
Collapse
Affiliation(s)
- Guangbiao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xinchun Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
107
|
Nakagawa H, Fujita M, Fujimoto A. Genome sequencing analysis of liver cancer for precision medicine. Semin Cancer Biol 2018; 55:120-127. [PMID: 29605648 DOI: 10.1016/j.semcancer.2018.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide. Some thousands of liver cancer genome have been sequenced globally so far and most of driver genes/mutations with high frequency are established in liver cancer, including Wnt/β-catenin pathway, TP53/cell-cycle pathways, telomere maintenance, and chromatin regulators. HBV integration into cancer-related genes is also a driver event in hepatocarcinogenesis. These genes are affected by structural variants, copy-number alterations and virus integrations as well as point mutations. Etiological factors of liver cancer is most understood among common cancers, such as hepatitis, aflatoxin, alcohol, and metabolic diseases, and mutational signatures of liver cancer can provide evidence of the association between specific etiological factors and mutational signatures. Molecular classifications based on somatic mutations profiles, RNA expression profiles, and DNA methylation profiles are related with patient prognosis. For precision medicine, several actionable mutations with solid evidence such as targets of multi-kinase inhibitors is observed in liver cancer, but there is few molecular target therapy so far. It is possible that rare actionable mutations in liver cancer can guide other specific molecular therapy and immune therapy.
Collapse
Affiliation(s)
- Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan.
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan
| | - Akihiro Fujimoto
- Laboratory for Cancer Genomics, RIKEN Center of Integrative Medical Sciences, Tokyo 108-8639, Japan; Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
108
|
Comprehensive genomic profiling of neuroendocrine bladder cancer pinpoints molecular origin and potential therapeutics. Oncogene 2018. [DOI: 10.1038/s41388-018-0192-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
109
|
Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci 2018; 109:513-522. [PMID: 29345757 PMCID: PMC5834793 DOI: 10.1111/cas.13505] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
Explosive advances in next-generation sequencer (NGS) and computational analyses have enabled exploration of somatic protein-altered mutations in most cancer types, with coding mutation data intensively accumulated. However, there is limited information on somatic mutations in non-coding regions, including introns, regulatory elements and non-coding RNA. Structural variants and pathogen in cancer genomes remain widely unexplored. Whole genome sequencing (WGS) approaches can be used to comprehensively explore all types of genomic alterations in cancer and help us to better understand the whole landscape of driver mutations and mutational signatures in cancer genomes and elucidate the functional or clinical implications of these unexplored genomic regions and mutational signatures. This review describes recently developed technical approaches for cancer WGS and the future direction of cancer WGS, and discusses its utility and limitations as an analysis platform and for mutation interpretation for cancer genomics and cancer precision medicine. Taking into account the diversity of cancer genomes and phenotypes, interpretation of abundant mutation information from WGS, especially non-coding and structure variants, requires the analysis of large-scale WGS data integrated with RNA-Seq, epigenomics, immuno-genomic and clinic-pathological information.
Collapse
Affiliation(s)
- Hidewaki Nakagawa
- Laboratory for Genome Sequencing AnalysisRIKEN Center for Integrative Medical SciencesTokyoJapan
| | - Masashi Fujita
- Laboratory for Genome Sequencing AnalysisRIKEN Center for Integrative Medical SciencesTokyoJapan
| |
Collapse
|
110
|
Abstract
The burden of disease and death attributable to environmental pollution is becoming a public health challenge worldwide, especially in developing countries. The kidney is vulnerable to environmental pollutants because most environmental toxins are concentrated by the kidney during filtration. Given the high mortality and morbidity of kidney disease, environmental risk factors and their effect on kidney disease need to be identified. In this Review, we highlight epidemiological evidence for the association between kidney disease and environmental pollutants, including air pollution, heavy metal pollution and other environmental risk factors. We discuss the potential biological mechanisms that link exposure to environmental pollutants to kidney damage and emphasize the contribution of environmental pollution to kidney disease. Regulatory efforts should be made to control environmental pollution and limit individual exposure to preventable or avoidable environmental risk. Population studies with accurate quantification of environmental exposure in polluted regions, particularly in developing countries, might aid our understanding of the dose-response relationship between pollutants and kidney diseases.
Collapse
Affiliation(s)
- Xin Xu
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Sheng Nie
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Hanying Ding
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| | - Fan Fan Hou
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China
| |
Collapse
|
111
|
Premalignant alteration assessment in liver-like tissue derived from embryonic stem cells by aristolochic acid I exposure. Oncotarget 2018; 7:78872-78882. [PMID: 27713163 PMCID: PMC5346684 DOI: 10.18632/oncotarget.12424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
The in vitro predictive evaluation of chemical carcinogenicity based on hepatic premalignance has so far not been established. Here, we report a novel approach to investigate the premalignant events triggered by human carcinogen aristolochic acid I (AAI) in the liver-like tissue derived from mouse embryonic stem cells. By AAI exposure, the liver-like tissue exhibited the paracrine interleukin-6 phenotypic characteristics. Hepatocytes expressed STAT3/p-STAT3, c-Myc and Lin28B in parallel. Some of them displayed the dedifferentiation characteristics, such as full of α-fetoprotein granules, increase in size, and nucleocytoplasmic shuttle of Oct4. When these cells were injected into mice, the xenografts mostly displayed the uniform area of hepatic-like tissue with malignant nuclei. The hepatic malignant markers, α-fetoprotein, cytokeratin 7 and cytokeratin 19, were co-expressed in albumin-positive areas, respectively. In conclusion, we established an approach to predict the hepatic premalignance triggered by carcinogen AAI. This premalignant assay system might aid to evaluate the effects of potential carcinogens in liver, and probably to screen the protecting against hepatocarcinogenic efficacy of pharmaceuticals in vitro.
Collapse
|
112
|
Lin MY, Li WM, Huang CN, Lee HL, Niu SW, Chen LT, Wu WJ, Hwang SJ. Dialysis Increases the Risk of Bladder Recurrence in Patients with Upper Tract Urothelial Cancer: A Population-Based Study. Ann Surg Oncol 2018; 25:1086-1093. [PMID: 29330720 DOI: 10.1245/s10434-017-6295-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The relation of dialysis to tumor recurrence in patients with upper tract urothelial cancer (UTUC) is unknown; however, a limited number of small-scale studies suggest that patients with renal diseases prior to UTUC are more likely to exhibit bladder recurrence. We performed a population-based analysis to determine the effect of dialysis on bladder recurrence for patients with UTUC. METHODS This retrospective cohort study included patients diagnosed with UTUC (2002-2007) from the Taiwan National Cancer Registry and divided them into two groups-dialysis and non-dialysis groups. These patients were followed up until bladder recurrence, death, or the end of 2010. Competing risk analyses adjusting covariates and death were applied to determine the relation of dialysis and bladder recurrence. RESULTS Of the 5141 eligible patients, 548 (10.7%) were undergoing dialysis. The cumulative bladder recurrence was significantly higher in the dialysis group than in the non-dialysis group (29% vs. 21%, modified log-rank p < 0.001). In the multivariable analysis, the dialysis group exhibited a 64% increased bladder recurrence risk (cause-specific hazard ratio 1.64, 95% confidence interval 1.34-2.01, p < 0.001), which was confirmed using stratification and propensity score weighting methods. The other prognostic factors for bladder recurrence were sex, diabetes, cardiac disorder, Charlson Comorbidity Index, and tumor grade. CONCLUSIONS Despite unknown reasons, approximately one-tenth of patients with UTUC have experienced dialysis treatment. Patients undergoing dialysis have a higher risk of bladder recurrence. Various treatment and screening strategies should be developed for dialysis and non-dialysis patients.
Collapse
Affiliation(s)
- Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Lan Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Wen Niu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Nephrology, Kaohsiung Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Jyh Hwang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Population Health Sciences, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
113
|
Mutational and epigenetic signatures in cancer tissue linked to environmental exposures and lifestyle. Curr Opin Oncol 2018; 30:61-67. [DOI: 10.1097/cco.0000000000000418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
114
|
Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, Dey S, Koh LK, Lim JQ, Lim WK, Myint SS, Loh JL, Ong P, Sam XX, Huang D, Lim T, Tan PH, Nagarajan S, Cheng CWS, Ho H, Ng LG, Yuen J, Lin PH, Chuang CK, Chang YH, Weng WH, Rozen SG, Tan P, Creasy CL, Pang ST, McCabe MT, Poon SL, Teh BT. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med 2017; 9:9/378/eaai8312. [PMID: 28228601 DOI: 10.1126/scitranslmed.aai8312] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A-mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A-null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A-null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A-null cell lines. EZH2 inhibition delayed tumor onset in KDM6A-null cells and caused regression of KDM6A-null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A, which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2.
Collapse
Affiliation(s)
- Lian Dee Ler
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, Singapore 117456, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Xiaoran Chai
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aye Aye Thike
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ee Yan Siew
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sucharita Dey
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore
| | - Liang Kai Koh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jing Quan Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Weng Khong Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jia Liang Loh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Pauline Ong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xin Xiu Sam
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Dachuan Huang
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tony Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Sanjanaa Nagarajan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | - Henry Ho
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Lay Guat Ng
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - John Yuen
- Department of Urology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Po-Hung Lin
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Cheng-Keng Chuang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology and Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Steven G Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.,Genome Institute of Singapore, 60 Biopolis Street Genome, Singapore 138672, Singapore
| | - Caretha L Creasy
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - See-Tong Pang
- Division of Urooncology, Department of Urology, Chang Gung University and Memorial Hospital at LinKou, TaoYuan, Taiwan.
| | - Michael T McCabe
- Cancer Epigenetics Discovery Performance Unit, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - Song Ling Poon
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore. .,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore. .,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Centre for Life Sciences, Singapore 117456, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, #07-18, Singapore 138673, Singapore
| |
Collapse
|
115
|
Zhan H, Jiang J, Sun Q, Ke A, Hu J, Hu Z, Zhu K, Luo C, Ren N, Fan J, Zhou J, Huang X. Whole-Exome Sequencing-Based Mutational Profiling of Hepatitis B Virus-Related Early-Stage Hepatocellular Carcinoma. Gastroenterol Res Pract 2017; 2017:2029315. [PMID: 29333154 PMCID: PMC5733245 DOI: 10.1155/2017/2029315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related mortality in China with increasing incidence. This study is designed to explore early genetic changes implicated in HCC tumorigenesis and progression by whole-exome sequencing. METHODS We firstly sequenced the whole exomes of 5 paired hepatitis B virus-related early-stage HCC and peripheral blood samples, followed by gene ontological analysis and pathway analysis of the single-nucleotide variants discovered. Then, the mutations of high frequency were further confirmed by Sanger sequencing. RESULTS We identified a mutational signature of dominant T:A>A:T transversion in early HCC and significantly enriched pathways including ECM-receptor interaction, axon guidance, and focal adhesion and enriched biological processes containing cell adhesion, axon guidance, and regulation of pH. Eight genes, including MUC16, UNC79, USH2A, DNAH17, PTPN13, TENM4, PCLO, and PDE1C, were frequently mutated. CONCLUSIONS This study reveals a mutational profile and a distinct mutation signature of T:A>A:T transversion in early-stage HCC with HBV infection, which will enrich our understanding of genetic characteristics of the early-stage HCC.
Collapse
Affiliation(s)
- Hao Zhan
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiahao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiman Sun
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Aiwu Ke
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwu Hu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Hu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Zhu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chubin Luo
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Ren
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xiaowu Huang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
116
|
Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat Commun 2017; 8:1315. [PMID: 29101368 PMCID: PMC5670220 DOI: 10.1038/s41467-017-01358-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Genomic alterations driving tumorigenesis result from the interaction of environmental exposures and endogenous cellular processes. With a diversity of risk factors, liver cancer is an ideal model to study these interactions. Here, we analyze the whole genomes of 44 new and 264 published liver cancers and we identify 10 mutational and 6 structural rearrangement signatures showing distinct relationships with environmental exposures, replication, transcription, and driver genes. The liver cancer-specific signature 16, associated with alcohol, displays a unique feature of transcription-coupled damage and is the main source of CTNNB1 mutations. Flood of insertions/deletions (indels) are identified in very highly expressed hepato-specific genes, likely resulting from replication-transcription collisions. Reconstruction of sub-clonal architecture reveals mutational signature evolution during tumor development exemplified by the vanishing of aflatoxin B1 signature in African migrants. Finally, chromosome duplications occur late and may represent rate-limiting events in tumorigenesis. These findings shed new light on the natural history of liver cancers. Tumorigenesis is a complex process driven by numerous risk factors. Here, genomic analysis of liver cancer reveals the evolution of mutational signatures during tumor development, highlighting mutational and structural signatures linked to environmental exposures and endogenous cellular processes.
Collapse
|
117
|
Huskova H, Ardin M, Weninger A, Vargova K, Barrin S, Villar S, Olivier M, Stopka T, Herceg Z, Hollstein M, Zavadil J, Korenjak M. Modeling cancer driver events in vitro using barrier bypass-clonal expansion assays and massively parallel sequencing. Oncogene 2017; 36:6041-6048. [PMID: 28692054 PMCID: PMC5666318 DOI: 10.1038/onc.2017.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
Abstract
The information on candidate cancer driver alterations available from public databases is often descriptive and of limited mechanistic insight, which poses difficulties for reliable distinction between true driver and passenger events. To address this challenge, we performed in-depth analysis of whole-exome sequencing data from cell lines generated by a barrier bypass-clonal expansion (BBCE) protocol. The employed strategy is based on carcinogen-driven immortalization of primary mouse embryonic fibroblasts and recapitulates early steps of cell transformation. Among the mutated genes were almost 200 COSMIC Cancer Gene Census genes, many of which were recurrently affected in the set of 25 immortalized cell lines. The alterations affected pathways regulating DNA damage response and repair, transcription and chromatin structure, cell cycle and cell death, as well as developmental pathways. The functional impact of the mutations was strongly supported by the manifestation of several known cancer hotspot mutations among the identified alterations. We identified a new set of genes encoding subunits of the BAF chromatin remodeling complex that exhibited Ras-mediated dependence on PRC2 histone methyltransferase activity, a finding that is similar to what has been observed for other BAF subunits in cancer cells. Among the affected BAF complex subunits, we determined Smarcd2 and Smarcc1 as putative driver candidates not yet fully identified by large-scale cancer genome sequencing projects. In addition, Ep400 displayed characteristics of a driver gene in that it showed a mutually exclusive mutation pattern when compared with mutations in the Trrap subunit of the TIP60 complex, both in the cell line panel and in a human tumor data set. We propose that the information generated by deep sequencing of the BBCE cell lines coupled with phenotypic analysis of the mutant cells can yield mechanistic insights into driver events relevant to human cancer development.
Collapse
Affiliation(s)
- H Huskova
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - A Weninger
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - K Vargova
- Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - S Barrin
- Dynamics of T cell Interactions Team, Institut Cochin, Inserm U1016, Paris, France
| | - S Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - M Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - T Stopka
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Z Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - M Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds, UK
| | - J Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - M Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
118
|
DNA Adducts Formed by Aristolochic Acid Are Unique Biomarkers of Exposure and Explain the Initiation Phase of Upper Urothelial Cancer. Int J Mol Sci 2017; 18:ijms18102144. [PMID: 29036902 PMCID: PMC5666826 DOI: 10.3390/ijms18102144] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 02/06/2023] Open
Abstract
Aristolochic acid (AA) is a plant alkaloid that causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN), unique renal diseases frequently associated with upper urothelial cancer (UUC). This review summarizes the significance of AA-derived DNA adducts in the aetiology of UUC leading to specific A:T to T:A transversion mutations (mutational signature) in AAN/BEN-associated tumours, which are otherwise rare in individuals with UCC not exposed to AA. Therefore, such DNA damage produced by AA-DNA adducts is one rare example of the direct association of exposure and cancer development (UUC) in humans, confirming that the covalent binding of carcinogens to DNA is causally related to tumourigenesis. Although aristolochic acid I (AAI), the major component of the natural plant extract AA, might directly cause interstitial nephropathy, enzymatic activation of AAI to reactive intermediates capable of binding to DNA is a necessary step leading to the formation of AA-DNA adducts and subsequently AA-induced malignant transformation. Therefore, AA-DNA adducts can not only be utilized as biomarkers for the assessment of AA exposure and markers of AA-induced UUC, but also be used for the mechanistic evaluation of its enzymatic activation and detoxification. Differences in AA metabolism might be one of the reasons for an individual’s susceptibility in the multi-step process of AA carcinogenesis and studying associations between activities and/or polymorphisms of the enzymes metabolising AA is an important determinant to identify individuals having a high risk of developing AA-mediated UUC.
Collapse
|
119
|
Zhivagui M, Korenjak M, Zavadil J. Modelling Mutation Spectra of Human Carcinogens Using Experimental Systems. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:16-22. [PMID: 27754614 DOI: 10.1111/bcpt.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022]
Abstract
Mutation spectra in cancer genomes provide information on the disease aetiology and the causality underlying the evolution and progression of cancer. Genome-wide mutation patterns reflect the effects of mutagenic insults and can thus reveal past carcinogen-specific exposures and inform hypotheses on the causative factors for specific cancer types. To identify mutation profiles in human cancers, single-gene studies were first employed, focusing mainly on the tumour suppressor gene TP53. Furthermore, experimental studies had been developed in model organisms. They allowed the characterization of the mutation patterns specific to known human carcinogens, such as polycyclic aromatic hydrocarbons or ultraviolet light. With the advent of massively parallel sequencing, mutation landscapes become revealed on a large scale, in human primary tumours and in experimental models, enabling deeper investigations of the functional and structural impact of mutations on the genome, including exposure-specific base-change fingerprints known as mutational signatures. These studies can now accelerate the identification of aetiological factors, contribute to carcinogen evaluation and classification and ultimately inform cancer prevention measures.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer (WHO), Lyon, France
| |
Collapse
|
120
|
Huang MN, Yu W, Teoh WW, Ardin M, Jusakul A, Ng AWT, Boot A, Abedi-Ardekani B, Villar S, Myint SS, Othman R, Poon SL, Heguy A, Olivier M, Hollstein M, Tan P, Teh BT, Sabapathy K, Zavadil J, Rozen SG. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res 2017; 27:1475-1486. [PMID: 28739859 PMCID: PMC5580708 DOI: 10.1101/gr.220038.116] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/14/2017] [Indexed: 01/16/2023]
Abstract
Aflatoxin B1 (AFB1) is a mutagen and IARC (International Agency for Research on Cancer) Group 1 carcinogen that causes hepatocellular carcinoma (HCC). Here, we present the first whole-genome data on the mutational signatures of AFB1 exposure from a total of >40,000 mutations in four experimental systems: two different human cell lines, in liver tumors in wild-type mice, and in mice that carried a hepatitis B surface antigen transgene-this to model the multiplicative effects of aflatoxin exposure and hepatitis B in causing HCC. AFB1 mutational signatures from all four experimental systems were remarkably similar. We integrated the experimental mutational signatures with data from newly sequenced HCCs from Qidong County, China, a region of well-studied aflatoxin exposure. This indicated that COSMIC mutational signature 24, previously hypothesized to stem from aflatoxin exposure, indeed likely represents AFB1 exposure, possibly combined with other exposures. Among published somatic mutation data, we found evidence of AFB1 exposure in 0.7% of HCCs treated in North America, 1% of HCCs from Japan, but 16% of HCCs from Hong Kong. Thus, aflatoxin exposure apparently remains a substantial public health issue in some areas. This aspect of our study exemplifies the promise of future widespread resequencing of tumor genomes in providing new insights into the contribution of mutagenic exposures to cancer incidence.
Collapse
Affiliation(s)
- Mi Ni Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Willie Yu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Wei Wei Teoh
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Apinya Jusakul
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Alvin Wei Tian Ng
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore
| | - Arnoud Boot
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| | - Behnoush Abedi-Ardekani
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Swe Swe Myint
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Rashidah Othman
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Song Ling Poon
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University Langone Medical Center, New York, New York 10016, USA
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, 169610, Singapore
| | - Kanaga Sabapathy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, 69008 Lyon, France
| | - Steven G Rozen
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
121
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
122
|
Beane J, Campbell JD, Lel J, Vick J, Spira A. Genomic approaches to accelerate cancer interception. Lancet Oncol 2017; 18:e494-e502. [PMID: 28759388 DOI: 10.1016/s1470-2045(17)30373-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Although major advances have been reported in the last decade in the treatment of late-stage cancer with targeted and immune-based therapies, there is a crucial unmet need to develop new approaches to improve the prevention and early detection of cancer. Advances in genomics and computational biology offer unprecedented opportunities to understand the earliest molecular events associated with carcinogenesis, enabling novel strategies to intercept the development of invasive cancers. This Series paper will highlight emerging big data genomic approaches with the potential to accelerate advances in cancer prevention, screening, and early detection across various tumour types, and the challenges inherent in the development of these tools for clinical use. Through coordinated multicentre consortia, these genomic approaches are likely to transform the landscape of cancer interception in the coming years.
Collapse
Affiliation(s)
- Jennifer Beane
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Joshua D Campbell
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Julian Lel
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Jessica Vick
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine and BU-BMC Cancer Center, Boston University, Boston, MA, USA.
| |
Collapse
|
123
|
Du H, Pan B, Chen T. Evaluation of chemical mutagenicity using next generation sequencing: A review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:140-158. [PMID: 28506110 DOI: 10.1080/10590501.2017.1328831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mutations are heritable changes in the nucleotide sequence of DNA that can lead to many adverse effects. Genotoxicity assays have been used to identify chemical mutagenicity. Recently, next generation sequencing (NGS) has been used for this purpose. In this review, we present the progress in NGS application for assessing mutagenicity of chemicals, including the methods used for detecting the induced mutations, bioinformatics tools for analyzing the sequencing data, and chemicals whose mutagenicity has been evaluated using NGS. Available information suggests that NGS technology has unparalleled advantages for evaluating mutagenicity of chemicals can be applied for the next generation of mutagenicity tests.
Collapse
Affiliation(s)
- Hua Du
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Bohu Pan
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Tao Chen
- a Division of Genetic and Molecular Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| |
Collapse
|
124
|
Zhang W, He H, Zang M, Wu Q, Zhao H, Lu LL, Ma P, Zheng H, Wang N, Zhang Y, He S, Chen X, Wu Z, Wang X, Cai J, Liu Z, Sun Z, Zeng YX, Qu C, Jiao Y. Genetic Features of Aflatoxin-Associated Hepatocellular Carcinoma. Gastroenterology 2017; 153:249-262.e2. [PMID: 28363643 DOI: 10.1053/j.gastro.2017.03.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Dietary exposure to aflatoxin is an important risk factor for hepatocellular carcinoma (HCC). However, little is known about the genomic features and mutations of aflatoxin-associated HCCs compared with HCCs not associated with aflatoxin exposure. We investigated the genetic features of aflatoxin-associated HCC that can be used to differentiate them from HCCs not associated with this carcinogen. METHODS We obtained HCC tumor tissues and matched non-tumor liver tissues from 49 patients, collected from 1990 through 2016, at the Qidong Liver Cancer Hospital Institute in China-a high-risk region for aflatoxin exposure (38.2% of food samples test positive for aflatoxin contamination). Somatic variants were identified using GATK Best Practices Pipeline. We validated part of the mutations from whole-genome sequencing and whole-exome sequencing by Sanger sequencing. We also analyzed genomes of 1072 HCCs, obtained from 5 datasets from China, the United States, France, and Japan. Mutations in 49 aflatoxin-associated HCCs and 1072 HCCs from other regions were analyzed using the Wellcome Trust Sanger Institute mutational signatures framework with non-negative matrix factorization. The mutation landscape and mutational signatures from the aflatoxin-associated HCC and HCC samples from general population were compared. We identified genetic features of aflatoxin-associated HCC, and used these to identify aflatoxin-associated HCCs in datasets from other regions. Tumor samples were analyzed by immunohistochemistry to determine microvessel density and levels of CD34 and CD274 (PD-L1). RESULTS Aflatoxin-associated HCCs frequently contained C>A transversions, the sequence motif GCN, and strand bias. In addition to previously reported mutations in TP53, we found frequent mutations in the adhesion G protein-coupled receptor B1 gene (ADGRB1), which were associated with increased capillary density of tumor tissue. Aflatoxin-associated HCC tissues contained high-level potential mutation-associated neoantigens, and many infiltrating lymphocytes and tumors cells that expressed PD-L1, compared to HCCs not associated with aflatoxin. Of the HCCs from China, 9.8% contained the aflatoxin-associated genetic features, whereas 0.4%-3.5% of HCCs from other regions contained these genetic features. CONCLUSIONS We identified specific genetic and mutation features of HCCs associated with aflatoxin exposure, including mutations in ADGRB1, compared to HCCs from general populations. We associated these mutations with increased vascularization and expression of PD-L1 in HCC tissues. These findings might be used to identify patients with HCC due to aflatoxin exposure, and select therapies.
Collapse
Affiliation(s)
- Weilong Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Collaborative Innovation Center for Cancer Medicine; Third Hospital, Peking University, Beijing, China
| | - Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengya Zang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qifeng Wu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Ling Lu
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Peiqing Ma
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Zheng
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Nengjin Wang
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Ying Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan He
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chen
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Abdominal Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongtang Sun
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Xin Zeng
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, Immunology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| |
Collapse
|
125
|
Arlt VM, Meinl W, Florian S, Nagy E, Barta F, Thomann M, Mrizova I, Krais AM, Liu M, Richards M, Mirza A, Kopka K, Phillips DH, Glatt H, Stiborova M, Schmeiser HH. Impact of genetic modulation of SULT1A enzymes on DNA adduct formation by aristolochic acids and 3-nitrobenzanthrone. Arch Toxicol 2017; 91:1957-1975. [PMID: 27557898 PMCID: PMC5364269 DOI: 10.1007/s00204-016-1808-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023]
Abstract
Exposure to aristolochic acid (AA) causes aristolochic acid nephropathy (AAN) and Balkan endemic nephropathy (BEN). Conflicting results have been found for the role of human sulfotransferase 1A1 (SULT1A1) contributing to the metabolic activation of aristolochic acid I (AAI) in vitro. We evaluated the role of human SULT1A1 in AA bioactivation in vivo after treatment of transgenic mice carrying a functional human SULT1A1-SULT1A2 gene cluster (i.e. hSULT1A1/2 mice) and Sult1a1(-/-) mice with AAI and aristolochic acid II (AAII). Both compounds formed characteristic DNA adducts in the intact mouse and in cytosolic incubations in vitro. However, we did not find differences in AAI-/AAII-DNA adduct levels between hSULT1A1/2 and wild-type (WT) mice in all tissues analysed including kidney and liver despite strong enhancement of sulfotransferase activity in both kidney and liver of hSULT1A1/2 mice relative to WT, kidney and liver being major organs involved in AA metabolism. In contrast, DNA adduct formation was strongly increased in hSULT1A1/2 mice compared to WT after treatment with 3-nitrobenzanthrone (3-NBA), another carcinogenic aromatic nitro compound where human SULT1A1/2 is known to contribute to genotoxicity. We found no differences in AAI-/AAII-DNA adduct formation in Sult1a1(-/-) and WT mice in vivo. Using renal and hepatic cytosolic fractions of hSULT1A1/2, Sult1a1(-/-) and WT mice, we investigated AAI-DNA adduct formation in vitro but failed to find a contribution of human SULT1A1/2 or murine Sult1a1 to AAI bioactivation. Our results indicate that sulfo-conjugation catalysed by human SULT1A1 does not play a role in the activation pathways of AAI and AAII in vivo, but is important in 3-NBA bioactivation.
Collapse
Affiliation(s)
- Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Walter Meinl
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Simone Florian
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Eszter Nagy
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Frantisek Barta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Marlies Thomann
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Annette M Krais
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Division of Occupational and Environmental Medicine, Lund University, 221 85, Lund, Sweden
| | - Maggie Liu
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Meirion Richards
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Amin Mirza
- Division of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, 14558, Nuthetal, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 12840, Prague 2, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
126
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
127
|
McCreery MQ, Balmain A. Chemical Carcinogenesis Models of Cancer: Back to the Future. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-122002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over a century has elapsed since the first demonstration that exposure to chemicals in coal tar can cause cancer in animals. These observations provided an essential causal mechanistic link between environmental chemicals and increased risk of cancer in human populations. Mouse models of chemical carcinogenesis have since led to the concept of multistage tumor development through distinct stages of initiation, promotion, and progression and identified many of the genetic and biological events involved in these processes. Recent breakthroughs in DNA sequencing have now given us tools to dissect complete tumor genome architectures and revealed that chemically induced cancers in the mouse carry a high point mutation load and mutation signatures that reflect the causative agent used for tumor induction. Chemical carcinogenesis models may therefore provide a route to identify the causes of mutation signatures found in human cancers and further inform studies of therapeutic drug resistance and responses to immunotherapy, which are dependent on mutation load and genetic heterogeneity.
Collapse
Affiliation(s)
- Melissa Q. McCreery
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94115;,
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94115;,
| |
Collapse
|
128
|
The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat Commun 2017; 8:4565. [PMID: 28240289 PMCID: PMC5333358 DOI: 10.1038/ncomms14565] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.
Collapse
|
129
|
Xue R, Li J, Bai F, Wang X, Ji J, Lu Y. A race to uncover a panoramic view of primary liver cancer. Cancer Biol Med 2017; 14:335-340. [PMID: 29372099 PMCID: PMC5785169 DOI: 10.20892/j.issn.2095-3941.2017.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ruidong Xue
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China.,Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Li
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China.,Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Fan Bai
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China
| | - Xinwei Wang
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China
| | - Junfang Ji
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China
| | - Yinying Lu
- Comprehensive Liver Cancer Center, Beijing 302 Hospital of PLA, Beijing 100039, China
| |
Collapse
|
130
|
A Regulatory Role for RUNX1, RUNX3 in the Maintenance of Genomic Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:491-510. [PMID: 28299675 DOI: 10.1007/978-981-10-3233-2_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
All human cells are constantly attacked by endogenous and exogenous agents that damage the integrity of their genomes. Yet, the ensuing damage is mostly fixed and very rarely gives rise to genomic defects that promote cancer formation. This is due to the co-ordinated functioning of DNA repair proteins and checkpoint mechanisms that accurately detect and repair DNA damage to ensure genomic fitness. According to accumulating evidence, the RUNX family of transcription factors participate in the maintenance of genomic stability through transcriptional and non-transcriptional mechanisms. RUNX1 and RUNX3 maintain genomic integrity in a transcriptional manner by regulating the transactivation of apoptotic genes following DNA damage via complex formation with p53. RUNX1 and RUNX3 also maintain genomic integrity in a non-transcriptional manner during interstand crosslink repair by promoting the recruitment of FANCD2 to sites of DNA damage. Since RUNX genes are frequently aberrant in human cancer, here, we argue that one of the major modes by which RUNX inactivation promotes neoplastic transformation is through the loss of genomic integrity. In particular, there exists strong evidence that leukemic RUNX1-fusions such as RUNX1-ETO disrupt genomic integrity and induce a "mutator" phenotype during the early stages of leukemogenesis. Consistent with increased DNA damage accumulation induced by RUNX1-ETO, PARP inhibition has been shown to be an effective synthetic-lethal therapeutic approach against RUNX1-ETO expressing leukemias. Here, in this chapter we will examine current evidence suggesting that the tumor suppressor potential of RUNX proteins can be at least partly attributed to their ability to ensure high-fidelity DNA repair and thus prevent mutational accumulation during cancer progression.
Collapse
|
131
|
Wang D, Li XW, Wang X, Tan HR, Jia Y, Yang L, Li XM, Shang MY, Xu F, Yang XX, Shoyama Y, Cai SQ. Alpha-Actinin-4 is a Possible Target Protein for Aristolochic Acid I in Human Kidney Cells In Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:291-304. [PMID: 27080942 DOI: 10.1142/s0192415x16500178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aristolochic acid I (AA-I) is a strong nephrotoxin, carcinogen, and mutagen found in plants such as the Aristolochia species. The mechanisms underlying AA-I toxicity in the kidneys are poorly understood. In this study, we aimed to gain insight into the mechanism of AA-I nephrotoxicity by analyzing the uptake, subcellular distribution, and intracellular targets of AA-I in the human kidney cell line HK-2 using immunocytochemistry, immunoprecipitation, and LC-MS/MS. In HK-2 cells incubated with 20[Formula: see text][Formula: see text]g/mL AA-I for different periods of time (up to 12[Formula: see text]h), AA-I was detected by a specific monoclonal antibody (MAb) against AA-I, both in the cytoplasm and nuclei. Nuclear localization depended on the exposure time. A protein with the molecular weight of 100 kDa was immunoprecipitated with the anti-AA-I MAb from the AA-I-treated cell lysates and was identified by LC-MS/MS as [Formula: see text]-actinin-4 after digestion of the protein, and was confirmed by immunoblotting with a specific anti-[Formula: see text]-actinin-4 MAb. This evidence shows, for the first time, that [Formula: see text]-actinin-4 is a protein targeted by AA-I in kidney cells. Our findings strongly suggest an association between [Formula: see text]-actinin-4 and AA-I nephrotoxic activity.
Collapse
Affiliation(s)
- Dan Wang
- * State Key Laboratory of Natural and Biomimetic Drugs.,† Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Xiao-Wei Li
- * State Key Laboratory of Natural and Biomimetic Drugs.,† Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Xuan Wang
- † Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Huan-Ran Tan
- ‡ Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, P.R. China
| | - Yan Jia
- § Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Li Yang
- § Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiao-Mei Li
- § Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | | | - Feng Xu
- * State Key Laboratory of Natural and Biomimetic Drugs
| | - Xing-Xin Yang
- * State Key Laboratory of Natural and Biomimetic Drugs
| | - Yukihiro Shoyama
- ¶ Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| | - Shao-Qing Cai
- * State Key Laboratory of Natural and Biomimetic Drugs
| |
Collapse
|
132
|
Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 2016; 65:1031-1042. [PMID: 27262756 DOI: 10.1016/j.jhep.2016.05.035] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, both clinically and from a molecular standpoint. The advent of next-generation sequencing technologies has provided new opportunities to extensively analyze molecular defects in HCC samples. This has uncovered major cancer driver genes and associated oncogenic pathways operating in HCC. More sophisticated analyses of sequencing data have linked specific nucleotide patterns to external toxic agents and defined so-called 'mutational signatures' in HCC. Molecular signatures, taking into account intra- and inter-tumor heterogeneity, and their functional validation could provide useful data to predict treatment response to molecular therapies. In this review we will focus on the current knowledge of deep sequencing in HCC and its foreseeable clinical impact.
Collapse
|
133
|
Hainaut P, Pfeifer GP. Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026179. [PMID: 27503997 DOI: 10.1101/cshperspect.a026179] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amid the complexity of genetic alterations in human cancer, TP53 mutation appears as an almost invariant component, representing by far the most frequent genetic alteration overall. Compared with previous targeted sequencing studies, recent integrated genomics studies offer a less biased view of TP53 mutation patterns, revealing that >20% of mutations occur outside the DNA-binding domain. Among the 12 mutations representing each at least 1% of all mutations, five occur at residues directly involved in specific DNA binding, four affect the tertiary fold of the DNA-binding domain, and three are nonsense mutations, two of them in the carboxyl terminus. Significant mutations also occur in introns, affecting alternative splicing events or generating rearrangements (e.g., in intron 1 in sporadic osteosarcoma). In aggressive cancers, mutation is so common that it may not have prognostic value (all these cancers have impaired p53 function caused by mutation or by other mechanisms). In several other cancers, however, mutation makes a clear difference for prognostication, as, for example, in HER2-enriched breast cancers and in lung adenocarcinoma with EGFR mutations. Thus, the clinical significance of TP53 mutation is dependent on tumor subtype and context. Understanding the clinical impact of mutation will require integrating mutation-specific information (type, frequency, and predicted impact) with data on haplotypes and on loss of heterozygosity.
Collapse
Affiliation(s)
- Pierre Hainaut
- University Grenoble Alpes, Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale (INSERM), 823 Grenoble, France
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
134
|
Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90:2595-2615. [PMID: 27538407 PMCID: PMC5065591 DOI: 10.1007/s00204-016-1819-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 02/02/2023]
Abstract
Balkan endemic nephropathy (BEN) is a unique, chronic renal disease frequently associated with upper urothelial cancer (UUC). It only affects residents of specific farming villages located along tributaries of the Danube River in Bosnia-Herzegovina, Croatia, Macedonia, Serbia, Bulgaria, and Romania where it is estimated that ~100,000 individuals are at risk of BEN, while ~25,000 have the disease. This review summarises current findings on the aetiology of BEN. Over the last 50 years, several hypotheses on the cause of BEN have been formulated, including mycotoxins, heavy metals, viruses, and trace-element insufficiencies. However, recent molecular epidemiological studies provide a strong case that chronic dietary exposure to aristolochic acid (AA) a principal component of Aristolochia clematitis which grows as a weed in the wheat fields of the endemic regions is the cause of BEN and associated UUC. One of the still enigmatic features of BEN that need to be resolved is why the prevalence of BEN is only 3-7 %. This suggests that individual genetic susceptibilities to AA exist in humans. In fact dietary ingestion of AA along with individual genetic susceptibility provides a scenario that plausibly can explain all the peculiarities of BEN such as geographical distribution and high risk of urothelial cancer. For the countries harbouring BEN implementing public health measures to avoid AA exposure is of the utmost importance because this seems to be the best way to eradicate this once mysterious disease to which the residents of BEN villages have been completely and utterly at mercy for so long.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic.
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
135
|
Choo SP, Tan WL, Goh BKP, Tai WM, Zhu AX. Comparison of hepatocellular carcinoma in Eastern versus Western populations. Cancer 2016; 122:3430-3446. [PMID: 27622302 DOI: 10.1002/cncr.30237] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease that remains highly prevalent in many Asian countries and is the second most common cause of cancer-related mortality worldwide. Significant differences exist between Eastern and Western populations on many key aspects of HCC, contributing to the potential different treatment outcomes and challenges of clinical trial design and data interpretation. In this review, the authors compare HCC in Asia versus the West and highlight 1) differences in terms of epidemiology and trends and their correlation with etiology, 2) differences in genetics and how they relate to underlying etiology, 3) differences in treatment approaches based on existing guidelines and consensus statements, and 4) differences in clinical outcomes for Asian versus non-Asian patients with HCC in clinical trials and the implications for future clinical trial design. Cancer 2016;122:3430-3446. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Su Pin Choo
- Department of Medical Oncology, National Cancer Center, Singapore
| | - Wan Ling Tan
- Department of Medical Oncology, National Cancer Center, Singapore
| | - Brian K P Goh
- Department of Hepato-Pancreaticobiliary Surgery, Singapore General Hospital, Singapore
| | - Wai Meng Tai
- Department of Medical Oncology, National Cancer Center, Singapore
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
136
|
Behjati S, Gundem G, Wedge DC, Roberts ND, Tarpey PS, Cooke SL, Van Loo P, Alexandrov LB, Ramakrishna M, Davies H, Nik-Zainal S, Hardy C, Latimer C, Raine KM, Stebbings L, Menzies A, Jones D, Shepherd R, Butler AP, Teague JW, Jorgensen M, Khatri B, Pillay N, Shlien A, Futreal PA, Badie C, McDermott U, Bova GS, Richardson AL, Flanagan AM, Stratton MR, Campbell PJ. Mutational signatures of ionizing radiation in second malignancies. Nat Commun 2016; 7:12605. [PMID: 27615322 PMCID: PMC5027243 DOI: 10.1038/ncomms12605] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a potent carcinogen, inducing cancer through DNA damage. The signatures of mutations arising in human tissues following in vivo exposure to ionizing radiation have not been documented. Here, we searched for signatures of ionizing radiation in 12 radiation-associated second malignancies of different tumour types. Two signatures of somatic mutation characterize ionizing radiation exposure irrespective of tumour type. Compared with 319 radiation-naive tumours, radiation-associated tumours carry a median extra 201 deletions genome-wide, sized 1-100 base pairs often with microhomology at the junction. Unlike deletions of radiation-naive tumours, these show no variation in density across the genome or correlation with sequence context, replication timing or chromatin structure. Furthermore, we observe a significant increase in balanced inversions in radiation-associated tumours. Both small deletions and inversions generate driver mutations. Thus, ionizing radiation generates distinctive mutational signatures that explain its carcinogenic potential.
Collapse
Affiliation(s)
- Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - David C. Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Oxford Big Data Institute and Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Nicola D. Roberts
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Patrick S. Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Susanna L. Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Peter Van Loo
- The Francis Crick Institute, London WC2A 3LY, UK
- Department of Human Genetics, University of Leuven, Leuven B-3000, Belgium
| | - Ludmil B. Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Manasa Ramakrishna
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Helen Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Claire Hardy
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Calli Latimer
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Keiran M. Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Lucy Stebbings
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Andy Menzies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - David Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Rebecca Shepherd
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Adam P. Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Jon W. Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Mette Jorgensen
- University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
| | - Bhavisha Khatri
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Nischalan Pillay
- University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Adam Shlien
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - P. Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Genomic Medicine, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, UK
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - G. Steven Bova
- Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, Tampere FI-33520, Finland
| | - Andrea L. Richardson
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215-5450, USA
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 USA
| | - Adrienne M. Flanagan
- University College London Cancer Institute, Huntley Street, London WC1E 6BT, UK
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Michael R. Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
| | - Peter J. Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA UK
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK
| |
Collapse
|
137
|
Abstract
High-throughput sequencing of cancer genomes is increasingly becoming an essential tool of clinical oncology that facilitates target identification and targeted therapy within the context of precision medicine. The cumulative profiles of somatic mutations in cancer yielded by comprehensive molecular studies also constitute a fingerprint of historical exposures to exogenous and endogenous mutagens, providing insight into cancer evolution and etiology. Mutational signatures that were first established by inspection of the TP53 gene somatic landscape have now been confirmed and expanded by comprehensive sequencing studies. Further, the degree of granularity achieved by deep sequencing allows detection of low-abundance mutations with clinical relevance. In tumors, they represent the emergence of small aggressive clones; in normal tissues, they signal a mutagenic exposure related to cancer risk; and, in blood, they may soon become effective surveillance tools for diagnostic purposes and for monitoring of cancer prognosis and recurrence.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jin Jen
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, and Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
138
|
Hoang ML, Chen CH, Chen PC, Roberts NJ, Dickman KG, Yun BH, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA. Aristolochic Acid in the Etiology of Renal Cell Carcinoma. Cancer Epidemiol Biomarkers Prev 2016; 25:1600-1608. [PMID: 27555084 DOI: 10.1158/1055-9965.epi-16-0219] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aristolochia species used in the practice of traditional herbal medicine contains aristolochic acid (AA), an established human carcinogen contributing to urothelial carcinomas of the upper urinary tract. AA binds covalently to genomic DNA, forming aristolactam (AL)-DNA adducts. Here we investigated whether AA is also an etiologic factor in clear cell renal cell carcinoma (ccRCC). METHODS We conducted a population-based case-control study to investigate the linkage between Aristolochia prescription history, cumulative AA consumption, and ccRCC incidence in Taiwan (5,709 cases and 22,836 matched controls). The presence and level of mutagenic dA-AL-I adducts were determined in the kidney DNA of 51 Taiwanese ccRCC patients. The whole-exome sequences of ccRCC tumors from 10 Taiwanese ccRCC patients with prior exposure to AA were determined. RESULTS Cumulative ingestion of more than 250 mg of AA increased risk of ccRCC (OR, 1.25), and we detected dA-AL-I adducts in 76% of Taiwanese ccRCC patients. Furthermore, the distinctive AA mutational signature was evident in six of 10 sequenced ccRCC exomes from Taiwanese patients. CONCLUSIONS This study strongly suggests that AA contributes to the etiology of certain RCCs. IMPACT The current study offers compelling evidence implicating AA in a significant fraction of the RCC arising in Taiwan and illustrates the power of integrating epidemiologic, molecular, and genetic data in the investigation of cancer etiology. Cancer Epidemiol Biomarkers Prev; 25(12); 1600-8. ©2016 AACR.
Collapse
Affiliation(s)
- Margaret L Hoang
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Chung-Hsin Chen
- Department of Urology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Department of Occupational and Environmental Medicine, National Taiwan University Hospital and Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan
| | - Nicholas J Roberts
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Kathleen G Dickman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
| | - Thomas A Rosenquist
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
139
|
Hollstein M, Alexandrov LB, Wild CP, Ardin M, Zavadil J. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene 2016; 36:158-167. [PMID: 27270430 PMCID: PMC5241425 DOI: 10.1038/onc.2016.192] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/19/2022]
Abstract
Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures can be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. Innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges.
Collapse
Affiliation(s)
- M Hollstein
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France.,Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - L B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - C P Wild
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - M Ardin
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - J Zavadil
- Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
140
|
Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Kwiatkowski DJ, Rosenberg JE, Van Allen EM, D'Andrea A, Getz G. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat Genet 2016; 48:600-606. [PMID: 27111033 PMCID: PMC4936490 DOI: 10.1038/ng.3557] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 04/01/2016] [Indexed: 12/17/2022]
Abstract
Alterations in DNA repair pathways are common in tumors and can result in characteristic mutational signatures; however, a specific mutational signature associated with somatic alterations in the nucleotide- excision repair (NER) pathway has not yet been identified. Here we examine the mutational processes operating in urothelial cancer, a tumor type in which the core NER gene ERCC2 is significantly mutated. Analysis of three independent urothelial tumor cohorts demonstrates a strong association between somatic ERCC2 mutations and the activity of a mutational signature characterized by a broad spectrum of base changes. In addition, we note an association between the activity of this signature and smoking that is independent of ERCC2 mutation status, providing genomic evidence of tobacco-related mutagenesis in urothelial cancer. Together, these analyses identify an NER-related mutational signature and highlight the related roles of DNA damage and subsequent DNA repair in shaping tumor mutational landscape.
Collapse
Affiliation(s)
- Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham & Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paz Polak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lior Z Braunstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atanas Kamburov
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - David J Kwiatkowski
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eliezer M Van Allen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D'Andrea
- Department of Radiation Oncology, Brigham & Women's Hospital, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
141
|
Rosenquist TA, Grollman AP. Mutational signature of aristolochic acid: Clue to the recognition of a global disease. DNA Repair (Amst) 2016; 44:205-211. [PMID: 27237586 DOI: 10.1016/j.dnarep.2016.05.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutational signatures associated with specific forms of DNA damage have been identified in several forms of human cancer. Such signatures provide information regarding mechanisms of tumor induction which, in turn, can reduce exposure to carcinogens by shaping public health policy. Using a molecular epidemiologic approach that takes advantage of recent advances in genome sequencing while applying sensitive and specific analytical methods to characterize DNA damage, it has become increasingly possible to establish causative linkages between certain environmental mutagens and disease risk. In this perspective, we use aristolochic acid, a human carcinogen and nephrotoxin found in Aristolochia herbs, to illustrate the power and effectiveness of this multidisciplinary approach. The genome-wide mutational signature for this toxin, detected initially in cancers of the upper urinary tract, has subsequently been associated with cancers of the liver and kidney. These findings have significant implications for global public health, especially in China, where millions of individuals have used Aristolochia herbal remedies as part of traditional Chinese medicine and, thus, are at risk of developing aristolochic acid nephropathy and/or upper urinary tract carcinomas. The studies reported here set the stage for research into prevention and early detection, both of which will be required to manage a potentially devastating global disease.
Collapse
Affiliation(s)
- Thomas A Rosenquist
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Laboratory of Chemical Biology, Stony Brook, NY, 11794, United States
| | - Arthur P Grollman
- Stony Brook University School of Medicine, Department of Pharmacological Sciences, Laboratory of Chemical Biology, Stony Brook, NY, 11794, United States.
| |
Collapse
|
142
|
Keller RR, Gestl SA, Lu AQ, Hoke A, Feith DJ, Gunther EJ. Carcinogen-specific mutations in preferred Ras-Raf pathway oncogenes directed by strand bias. Carcinogenesis 2016; 37:810-816. [PMID: 27207659 PMCID: PMC4967214 DOI: 10.1093/carcin/bgw061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/07/2016] [Indexed: 12/24/2022] Open
Abstract
Carcinogen exposures inscribe mutation patterns on cancer genomes and sometimes bias the acquisition of driver mutations toward preferred oncogenes, potentially dictating sensitivity to targeted agents. Whether and how carcinogen-specific mutation patterns direct activation of preferred oncogenes remains poorly understood. Here, mouse models of breast cancer were exploited to uncover a mechanistic link between strand-biased mutagenesis and oncogene preference. When chemical carcinogens were employed during Wnt1-initiated mammary tumorigenesis, exposure to either 7,12-dimethylbenz(a)anthracene (DMBA) or N-ethyl-N-nitrosourea (ENU) dramatically accelerated tumor onset. Mammary tumors that followed DMBA exposure nearly always activated the Ras pathway via somatic Hras(CAA61CTA) mutations. Surprisingly, mammary tumors that followed ENU exposure typically lacked Hras mutations, and instead activated the Ras pathway downstream via Braf(GTG636GAG) mutations. Hras(CAA61CTA) mutations involve an A-to-T change on the sense strand, whereas Braf(GTG636GAG) mutations involve an inverse T-to-A change, suggesting that strand-biased mutagenesis may determine oncogene preference. To examine this possibility further, we turned to an alternative Wnt-driven tumor model in which carcinogen exposures augment a latent mammary tumor predisposition in Apc(min) mice. DMBA and ENU each accelerated mammary tumor onset in Apc(min) mice by introducing somatic, "second-hit" Apc mutations. Consistent with our strand bias model, DMBA and ENU generated strikingly distinct Apc mutation patterns, including stringently strand-inverse mutation signatures at A:T sites. Crucially, these contrasting signatures precisely match those proposed to confer bias toward Hras(CAA61CTA) versus Braf(GTG636GAG) mutations in the original tumor sets. Our findings highlight a novel mechanism whereby exposure history acts through strand-biased mutagenesis to specify activation of preferred oncogenes.
Collapse
Affiliation(s)
- Ross R Keller
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shelley A Gestl
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amy Q Lu
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Alicia Hoke
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - David J Feith
- Division of Hematology and the Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA and
| | - Edward J Gunther
- Jake Gittlen Laboratories for Cancer Research and.,Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Medicine (Hematology/Oncology), Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
143
|
Tomkova M, McClellan M, Kriaucionis S, Schuster-Boeckler B. 5-hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. eLife 2016; 5. [PMID: 27183007 PMCID: PMC4931910 DOI: 10.7554/elife.17082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
CpG dinucleotides are the main mutational hot-spot in most cancers. The characteristic elevated C>T mutation rate in CpG sites has been related to 5-methylcytosine (5mC), an epigenetically modified base which resides in CpGs and plays a role in transcription silencing. In brain nearly a third of 5mCs have recently been found to exist in the form of 5-hydroxymethylcytosine (5hmC), yet the effect of 5hmC on mutational processes is still poorly understood. Here we show that 5hmC is associated with an up to 53% decrease in the frequency of C>T mutations in a CpG context compared to 5mC. Tissue specific 5hmC patterns in brain, kidney and blood correlate with lower regional CpG>T mutation frequency in cancers originating in the respective tissues. Together our data reveal global and opposing effects of the two most common cytosine modifications on the frequency of cancer causing somatic mutations in different cell types.
Collapse
Affiliation(s)
- Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Oxford, United Kingdom
| | - Michael McClellan
- Ludwig Cancer Research Oxford, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
144
|
Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res 2016; 5. [PMID: 27239288 PMCID: PMC4870992 DOI: 10.12688/f1000research.6946.1] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality and has an increasing incidence worldwide. HCC can be induced by multiple etiologies, is influenced by many risk factors, and has a complex pathogenesis. Furthermore, HCCs exhibit substantial heterogeneity, which compounds the difficulties in developing effective therapies against this highly lethal cancer. With advances in cancer biology and molecular and genetic profiling, a number of different mechanisms involved in the development and progression of HCC have been identified. Despite the advances in this area, the molecular pathogenesis of hepatocellular carcinoma is still not completely understood. This review aims to elaborate our current understanding of the most relevant genetic alterations and molecular pathways involved in the development and progression of HCC, and anticipate the potential impact of future advances on therapeutic drug development.
Collapse
Affiliation(s)
| | - Salome Bandoh
- Department of Medicine, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
145
|
Akre MK, Starrett GJ, Quist JS, Temiz NA, Carpenter MA, Tutt ANJ, Grigoriadis A, Harris RS. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B. PLoS One 2016; 11:e0155391. [PMID: 27163364 PMCID: PMC4862684 DOI: 10.1371/journal.pone.0155391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022] Open
Abstract
Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B) to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80–90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.
Collapse
Affiliation(s)
- Monica K. Akre
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Gabriel J. Starrett
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Jelmar S. Quist
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Nuri A. Temiz
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Michael A. Carpenter
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Andrew N. J. Tutt
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, Research Oncology, Guy’s Hospital, King’s College London, London, United Kingdom
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
146
|
Szikriszt B, Póti Á, Pipek O, Krzystanek M, Kanu N, Molnár J, Ribli D, Szeltner Z, Tusnády GE, Csabai I, Szallasi Z, Swanton C, Szüts D. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol 2016; 17:99. [PMID: 27161042 PMCID: PMC4862131 DOI: 10.1186/s13059-016-0963-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations. RESULTS We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous mutagenesis rate at 2.3 × 10(-10) per base per cell division and find that cisplatin, cyclophosphamide and etoposide induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures attributed to smoking and other sources of guanine-directed base damage. CONCLUSION This study provides support for the use of cell line mutagenesis assays to validate or predict the mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to cisplatin-induced mutations as a distinct mechanism for developing resistance.
Collapse
Affiliation(s)
- Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Marcin Krzystanek
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Nnennaya Kanu
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| | - János Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Dezső Ribli
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - Gábor E Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark.
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
- MTA-SE-NAP, Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, 1091, Budapest, Hungary.
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK.
- Francis Crick Institute, 44 Lincoln's Inn Fields, London, WCA2 3PX, UK.
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
147
|
Petljak M, Alexandrov LB. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 2016; 37:531-40. [DOI: 10.1093/carcin/bgw055] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
|
148
|
Hashimoto K, Zaitseva IN, Bonala R, Attaluri S, Ozga K, Iden CR, Johnson F, Moriya M, Grollman AP, Sidorenko VS. Sulfotransferase-1A1-dependent bioactivation of aristolochic acid I and N-hydroxyaristolactam I in human cells. Carcinogenesis 2016; 37:647-655. [PMID: 27207664 DOI: 10.1093/carcin/bgw045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/12/2016] [Indexed: 11/14/2022] Open
Abstract
Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francis Johnson
- Department of Pharmacological Sciences.,Department of Chemistry and
| | | | - Arthur P Grollman
- Department of Pharmacological Sciences.,Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
149
|
Ardin M, Cahais V, Castells X, Bouaoun L, Byrnes G, Herceg Z, Zavadil J, Olivier M. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes. BMC Bioinformatics 2016; 17:170. [PMID: 27091472 PMCID: PMC4835840 DOI: 10.1186/s12859-016-1011-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. RESULTS MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. CONCLUSIONS MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.
Collapse
Affiliation(s)
- Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Vincent Cahais
- Epigenetic Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Xavier Castells
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Liacine Bouaoun
- Biostatistics Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Graham Byrnes
- Biostatistics Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Zdenko Herceg
- Epigenetic Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, F69372, Lyon, France
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, F69372, Lyon, France.
| |
Collapse
|
150
|
Veale EL, Mathie A. Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. Br J Pharmacol 2016; 173:1639-52. [PMID: 26914156 PMCID: PMC4842925 DOI: 10.1111/bph.13465] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Aristolochic acid (AristA) is found in plants used in traditional medicines to treat pain. We investigated the action of AristA on TREK and TRESK, potassium (K2P) channels, which are potential therapeutic targets in pain. Balkan endemic nephropathy (BEN) is a renal disease associated with AristA consumption. A mutation of TASK‐2 (K2P5.1) channels (T108P) is seen in some patients susceptible to BEN, so we investigated how both this mutation and AristA affected TASK‐2 channels. Experimental Approach Currents through wild‐type and mutated human K2P channels expressed in tsA201 cells were measured using whole‐cell patch‐clamp recordings in the presence and absence of AristA. Key Results TREK‐1‐ and TREK‐2‐mediated currents were enhanced by AristA (100 μM), whereas TRESK was inhibited. Inhibition of TRESK did not depend on the phosphorylation of key intracellular serines but was completely blocked by mutation of bulky residues in the inner pore (F145A_F352A). The TASK‐2_T108P mutation markedly reduced both current density and ion selectivity. A related mutation (T108C) had similar but less marked effects. External alkalization and application of flufenamic acid enhanced TASK‐2 and TASK‐2_T108C current but did not affect TASK‐2_T108P current. AristA (300 μM) produced a modest enhancement of TASK‐2 current. Conclusions and Implications Enhancement of TREK‐1 and TREK‐2 and inhibition of TRESK by AristA may contribute to therapeutically useful effects of this compound in pain. Whilst AristA is unlikely to interact directly with TASK‐2 channels in BEN, loss of functional TASK‐2 channels may indirectly increase susceptibility to AristA toxicity.
Collapse
Affiliation(s)
- Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK
| | | |
Collapse
|