101
|
Huang C, Li J, Chen N, Ma WY, Bowden GT, Dong Z. Inhibition of atypical PKC blocks ultraviolet-induced AP-1 activation by specifically inhibiting ERKs activation. Mol Carcinog 2000. [DOI: 10.1002/(sici)1098-2744(200002)27:2<65::aid-mc2>3.0.co;2-e] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
102
|
Abstract
Consumption of plant-derived foods, especially fruits and vegetables, has been linked to decreased risk of cancer. Laboratory studies with animals and cells in culture have shown cancer preventive activity of chemicals isolated from soy, tea, rice and many green, yellow and orange fruits and vegetables. Using cell culture, transgenic mice and knockout mice models to examine the anti-cancer effects of these dietary factors at the molecular level, we found that (11) (-)-epigallocatechin gallate (EGCG), the major active polyphenol in green tea, and theaflavins, the major active components in black tea, inhibit epidermal growth factor (EGF)- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced JB6 cell transformation. At the same dose range that inhibited cell transformation, EGCG and theaflavins inhibited activator protein-1 (AP-1) activation. These compounds also inhibited ultraviolet B (UVB)-induced AP-1 and nuclear factor kappa B (NFkappaB)-dependent transcriptional activation; (2) resveratrol, found at high levels in grapes, inhibited cell transformation through the induction of apoptosis, mediated through JNK and p53-dependent pathways; (3) inositol hexaphosphate (InsP6), an active compound from rice and other grains, inhibited TPA- or EGF-induced transformation and signal transduction through its effects on phosphatidylinositol-3 kinase (PI-3) kinase; (4) phenethyl isothiocyanate (PEITC), which occurs as a conjugate in certain cruciferous vegetables, inhibited cell transformation corresponding with the induction of apoptosis. An elevation of p53 is required for PEITC-induced apoptosis. Our studies indicated that the chemopreventive effect of these food factors may be mediated by their effects on different signal transduction pathways; (5) retinoids (vitamin A and its metabolites) inhibited tumor promoter-induced cell transformation and tumor promotion in transgenic mice through the inhibition of AP-1 action but not through the activation of retinoic acid response element (RARE).
Collapse
Affiliation(s)
- Z Dong
- The Hormel Institute, University of Minnesota, Austin 55912, USA.
| |
Collapse
|
103
|
Troussard AA, Tan C, Yoganathan TN, Dedhar S. Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol Cell Biol 1999; 19:7420-7. [PMID: 10523630 PMCID: PMC84735 DOI: 10.1128/mcb.19.11.7420] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated interactions of cells with components of the extracellular matrix regulate cell survival, cell proliferation, cell differentiation, and cell migration. Some of these physiological responses are regulated via activation of transcription factors such as activator protein 1 (AP-1). Integrin-linked kinase (ILK) is an ankyrin repeat containing serine-threonine protein kinase whose activity is rapidly and transiently stimulated by cell-fibronectin interactions as well as by insulin stimulation. ILK activates protein kinase B and inhibits the glycogen synthase kinase 3 (GSK-3) activity in a phosphatidylinositol-3-kinase (PI 3-kinase)-dependent manner. We now show that cell adhesion to fibronectin results in a rapid and transient stimulation of AP-1 activity. At the same time, the kinase activity of ILK is stimulated whereas that of GSK-3 is inhibited. This fibronectin-dependent activation of AP-1 activity is inhibited in a dose-dependent manner if the cells are transfected with wild-type GSK-3, and also by inhibitors of PI 3-kinase. Stable or transient overexpression of ILK results in a stimulation of AP-1 activity which is inhibited by cotransfection with wild-type GSK-3 and kinase-deficient ILK. Transient transfection of ILK in HEK-293 cells stimulates complex formation between an AP-1 consensus oligonucleotide and nuclear proteins containing c-jun. The formation of this complex is inhibited by cotransfection with active GSK-3 or kinase-deficient ILK, suggesting that ILK may regulate AP-1 activation by inhibiting GSK-3, which has previously been shown to be a negative regulator of AP-1. In the presence of serum, ILK has no effect on the phosphorylation of Ser-73 in the N-terminal transactivation domain of c-jun. These results demonstrate a novel signaling pathway for the adhesion-mediated stimulation of AP-1 transcriptional activity involving ILK and GSK-3 and the subsequent regulation of the c-jun-DNA interaction.
Collapse
Affiliation(s)
- A A Troussard
- BC Cancer Agency and Vancouver Hospital, Jack Bell Research Centre, Vancouver, British Columbia V6H 3Z6
| | | | | | | |
Collapse
|
104
|
Ding M, Shi X, Dong Z, Chen F, Lu Y, Castranova V, Vallyathan V. Freshly fractured crystalline silica induces activator protein-1 activation through ERKs and p38 MAPK. J Biol Chem 1999; 274:30611-6. [PMID: 10521445 DOI: 10.1074/jbc.274.43.30611] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor activator protein-1 (AP-1) reportedly plays an important role in the induction of neoplastic transformation and multiple genes involved in cell proliferation, differentiation, and inflammation. To investigate the mechanisms of silica-induced carcinogenesis, AP-1-luciferase reporter transgenic mice were used as an in vivo model, whereas the JB6 mouse epidermal cell line and a rat lung epithelial cell line were employed as in vitro models to study the effects of silica at the molecular level. Freshly fractured silica caused an 8-fold increase in AP-1 activity in JB6 cells and a 2.5-fold increase in rat lung epithelial cells. The induction of AP-1 activity in cultured cell lines was time- and dose-dependent. Intratracheal administration of silica was also able to induce AP-1 transactivation in transgenic mice. AP-1 activation was first observed at 2 days after silica administration and reached its maximum at 3 days post-exposure of the mice to silica. The signal transduction pathways for AP-1 activation were also investigated using these cell lines. The results demonstrate that freshly fractured silica stimulates mitogen-activated protein kinase (MAPK) family members, as determined by the phosphorylation of p38 MAPK and extracellular signal-regulated protein kinases (ERKs). Inhibition of ERKs with PD98059 or of p38 with SB203580 significantly inhibited silica-induced AP-1 activation. These findings demonstrate for the first time that freshly fractured silica induces AP-1 activation, which may be mediated through p38 MAPK and ERK pathways. Unraveling the complex mechanisms associated with these events may provide insights into the initiation and progression of silica-induced carcinogenesis.
Collapse
Affiliation(s)
- M Ding
- Pathology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, West Virginia 26505, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Huang C, Li J, Ma WY, Dong Z. JNK activation is required for JB6 cell transformation induced by tumor necrosis factor-alpha but not by 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 1999; 274:29672-6. [PMID: 10514437 DOI: 10.1074/jbc.274.42.29672] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signal transduction via mitogen-activated protein kinase pathways plays a key role in a variety of cellular responses, including cell proliferation, differentiation, tumor promotion, and cell death. c-Jun N-terminal kinases (JNKs) are identified as members of the mitogen-activated protein kinase family and are known to phosphorylate and activate several transcription factors, including c-Jun, ATF, and Elk-1. However, the role of JNK activation in tumor promotion is not yet defined. Because previous studies have indicated that exposure of JB6 Cl 41 cells to either 12-O-tetradecanoylphorbol-13-acetate (TPA) or tumor necrosis factor-alpha (TNF-alpha) results in cell transformation, we investigated the role of JNKs in this biological process by using dominant negative JNK(1) and the cell transformation model JB6 Cl 41 cells. Incubation of Cl 41 cells with TNF-alpha led to cell transformation and activation of JNKs. Introduction of the dominant negative mutant of JNK(1) into JB6 Cl 41 cells specifically inhibited TNF-alpha-induced activation of JNKs, but not Erks and p38 kinases. Most importantly, expressing dominant negative mutant JNK(1) inhibited TNF-alpha-induced cell transformation but not TPA-induced cell transformation. Our results directly demonstrated for the first time that JNK activation is required for TNF-alpha- but not TPA-induced cell transformation.
Collapse
Affiliation(s)
- C Huang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | |
Collapse
|
106
|
Abstract
Colorectal cancer is a significant cause of mortality in Western societies. The progression of the disease from normal colonic epithelium to the acquisition of the malignant phenotype is accompanied by numerous genetic and epigenetic alterations. Compelling experimental and epidemiological evidence indicates that diet and nutrition are key factors in the modulation of colorectal cancer. A salient case in point is the recent observation that a dietary regimen based on a Western-style diet provokes in the rodent colon the appearance of preneoplastic lesions in the absence of any genotoxic insult. This review mainly describes dietary factors that inhibit the development and progression of colorectal cancer. Much is unknown about the precise mechanisms of action of chemically disparate nutrients and how they interfere with the development and progression of this disease. Current knowledge about this important issue is summarized. We believe that continuing scrutiny and precise assessment of the benefits (and potential risks) of nutrients in the treatment and prevention of colorectal cancer will prove significant to controlling this devastating disease.
Collapse
Affiliation(s)
- M Lipkin
- Strang Cancer Prevention Center, New York, USA.
| | | | | | | |
Collapse
|
107
|
Kiso S, Kawata S, Tamura S, Umeki S, Ito N, Tsushima H, Yamada A, Miyagawa J, Higashiyama S, Taniguchi N, Matsuzawa Y. Effects of exogenous human heparin-binding epidermal growth factor-like growth factor on DNA synthesis of hepatocytes in normal mouse liver. Biochem Biophys Res Commun 1999; 259:683-7. [PMID: 10364479 DOI: 10.1006/bbrc.1999.0845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) has been reported to stimulate DNA synthesis of the hepatocytes in culture and highly express in regenerating rat liver after partial hepatectomy. We examined mitogenic effects and activation of transcription factors caused by exogenous human HB-EGF (hHB-EGF) in mouse liver. The mean labeling index in hepatocytes of hHB-EGF-injected mice was 2.6%, a significant increase over that in saline-injected controls (under 0.01%). By exogenous hHB-EGF injection, activation of transcription factors such as nuclear factor (NF)-kappaB and activator factor (AP)-1 was observed in the liver. By Northern blot analysis, hepatocyte growth factor (HGF) gene expression in the liver was found to be induced in the hHB-EGF-injected mice. In conclusion, intravenously injected hHB-EGF showed a limited but definite effect on the DNA synthesis of hepatocytes in the mice liver. HB-EGF may serve as a hepatotrophic factor in vivo.
Collapse
Affiliation(s)
- S Kiso
- Second Department of Internal Medicine, Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Osaka, Suita, 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Huang C, Ma WY, Li J, Goranson A, Dong Z. Requirement of Erk, but not JNK, for arsenite-induced cell transformation. J Biol Chem 1999; 274:14595-601. [PMID: 10329651 DOI: 10.1074/jbc.274.21.14595] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trivalent arsenic (arsenite, As3+) is a human carcinogen, which is associated with cancers of skin, lung, liver, and bladder. However, the mechanism by which arsenite causes cancer is not well understood. In this study, we found that exposure of Cl 41 cells, a well characterized mouse epidermal cell model for tumor promotion, to a low concentration of arsenite (<25 microM) induces cell transformation. Interestingly, arsenite induces Erk phosphorylation and increased Erk activity at doses ranging from 0.8 to 200 microM, while higher doses (more than 50 microM) are required for activation of JNK. Arsenite-induced Erk activation was markedly inhibited by introduction of dominant negative Erk2 into cells, while expression of dominant negative Erk2 did not show inhibition of JNK and MEK1/2. Furthermore, arsenite-induced cell transformation was blocked in cells expressing the dominant negative Erk2. In contrast, overexpression of dominant negative JNK1 was shown to increase cell transformation even though it inhibits arsenite-induced JNK activation. Our results not only show that arsenite induces Erk activation, but also for the first time demonstrates that activation of Erk, but not JNK, by arsenite is required for its effects on cell transformation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
109
|
Huang C, Ma WY, Dong Z. The extracellular-signal-regulated protein kinases (Erks) are required for UV-induced AP-1 activation in JB6 cells. Oncogene 1999; 18:2828-35. [PMID: 10362253 DOI: 10.1038/sj.onc.1202639] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitogen activated protein (MAP) kinase belongs to a large family of serine/threonine protein kinases, including extracellular-signal-regulated protein kinases (Erks), P38 kinase and c-Jun N-terminal kinases (JNKs). Although previous work has shown that both Erks and JNKs are activated in cells in response to ultraviolet (UV) irradiation, most studies have focused only on the role of JNKs in UV-induced AP-1 activation. Hence, the role of Erks in UV-induced AP-1 activity is not well defined. We here have investigated this issue by using MAP kinase kinase (MEK1) inhibitor PD098059 and a dominant negative Erk2, as well as wild-type Erk2, in a JB6 cell model. PD098059 inhibited UVB- or UVC-induced AP-1 activity and phosphorylation of MEK1 and Erks, but not JNKs, in JB6 Cl 41 cells. Overexpression of wild-type Erk2 in Cl 30.7b cells that contain small amounts of Erks caused a 46.6- or 138.1-fold increase of AP-1 activity by UVB and UVC, respectively; introduction of a dominant negative Erk2 into Cl 41 cells significantly blocked the UV-induced Erks activation as well as the AP-1 activation. In contrast, overexpression of wild-type Erk2 in Cl 30.7b cells and dominant negative Erk2 in Cl 41 cells did not show a marked influence on the phosphorylation of JNKs. These results demonstrate that activation of Erks, in addition to the previously reported JNKs, is required for UV-induced AP-1 activation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | |
Collapse
|
110
|
Huang C, Ma WY, Maxiner A, Sun Y, Dong Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 1999; 274:12229-35. [PMID: 10212189 DOI: 10.1074/jbc.274.18.12229] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that plays a key role in the process of apoptosis and the cell's defense against tumor development. Activation of p53 occurs, at least in part, by phosphorylation of its protein. Very recently it has been reported that UV induced a functional activation of p53 via phosphorylation at serine 389. Here, we report that the UV-induced phosphorylation of p53 at serine 389 is mediated by p38 kinase. UVC-induced phosphorylation of p53 at serine 389 was markedly impaired by either pretreatment of cells with p38 kinase inhibitor, SB202190, or stable expression of a dominant negative mutant of p38 kinase. In contrast, there was no inhibition observed in cells treated with specific MEK1 inhibitor, PD98059, or with stable expression of a dominant negative mutant of ERK2 or JNK1. Most importantly, p38 kinase could be co-immunoprecipitated with p53 by using antibodies against p53. Incubation of active p38 kinase with p53 protein caused the phosphorylation of p53 protein at serine 389 in vitro, while no phosphorylation of p53 at serine 389 was observed when p53 was incubated with activated JNK2 or ERK2. Furthermore, pretreatment of cells with SB202190 blocked the p53 DNA binding activity and p53-dependent transcription. These results strongly suggest that the p38 kinase is at least one of the most important mediators of p53 phosphorylation at serine 389 induced by UVC radiation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
111
|
Bavelloni A, Santi S, Sirri A, Riccio M, Faenza I, Zini N, Cecchi S, Ferri A, Auron P, Maraldi NM, Marmiroli S. Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J Cell Sci 1999; 112 ( Pt 5):631-40. [PMID: 9973598 DOI: 10.1242/jcs.112.5.631] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although interleukin 1 (IL-1) functions have been extensively characterized, the mechanisms by which IL-1 signals are transduced from the plasma membrane to the nucleus are less known. Recent evidence indicates that phosphatidylinositol 3-kinase (PI3-kinase) could be activated by a direct association with the activated IL-1 receptor. In this study we analyzed the effects of IL-1 on the intracellular distribution of PI3-kinase in wild-type Saos-2 human osteosarcoma cells, and in cell clones overexpressing type I IL-1 receptor (IL-1RI). PI3-kinase intracellular distribution displays two distinct patterns. In quiescent cells, PI3-kinase is distributed through the cytoplasm, although a portion is present in the nucleus; following stimulation with IL-1, PI3-kinase is redistributed, increasing in the nuclear compartment. Both immunoblotting and immunofluorescence data indicate that IL-1 causes a rapid and transient translocation of PI3-kinase from the cytoplasm to the nucleus. This phenomenon is prevented by PI3-kinase inhibitors, suggesting that the maintenance of PI3-kinase activity is essential for IL-1-induced translocation. Indeed, in cell clones stably transfected with Y479F receptor mutant, in which the binding of the enzyme to the activated receptor is blocked, IL-1-induced PI3-kinase translocation to the nucleus is completely prevented. These data suggest that PI3-kinase translocation to the nucleus upon IL-1R activation is an early event in IL-1 signaling mechanism, and may be involved in transcriptional activation.
Collapse
Affiliation(s)
- A Bavelloni
- Laboratory of Cell Biology and Electron Microscopy, IOR, and Institute of Normal and Pathological Cytomorphology, CNR c/o IOR, Bologna 40136, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Walker F, Kato A, Gonez LJ, Hibbs ML, Pouliot N, Levitzki A, Burgess AW. Activation of the Ras/mitogen-activated protein kinase pathway by kinase-defective epidermal growth factor receptors results in cell survival but not proliferation. Mol Cell Biol 1998; 18:7192-204. [PMID: 9819406 PMCID: PMC109301 DOI: 10.1128/mcb.18.12.7192] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 08/24/1998] [Indexed: 11/20/2022] Open
Abstract
Signalling by the epidermal growth factor (EGF) receptor (EGFR) has been studied intensively, but for most cell types the analysis is complicated by the fact that EGFR not only homodimerizes but can also form heterodimers with other EGFR family members. Heterodimerization is a particular problem in the study of EGFR mutants, where the true phenotype of the mutants is confounded by the contribution of the heterodimer partner to signal transduction. We have made use of the murine hemopoietic cell line BaF/3, which does not express EGFR family members, to express wild-type (WT) EGFR, three kinase-defective EGFR mutants (V741G, Y740F, and K721R), or a C-terminally truncated EGFR (CT957) and have measured their responses to EGF. We found that under the appropriate conditions EGF can stimulate cell proliferation of BaF/3 cells expressing WT or CT957 EGFRs but not that of cells expressing the kinase-defective mutants. However, EGF promotes the survival of BaF/3 cells expressing either of the kinase-defective receptors (V741G and Y740F), indicating that these receptors can still transmit a survival signal. Analysis of the early signalling events by the WT, V741G, and Y740F mutant EGF receptors indicated that EGF stimulates comparable levels of Shc phosphorylation, Shc-GRB-2 association, and activation of Ras, B-Raf, and Erk-1. Blocking the mitogen-activated protein kinase (MAPK) signalling pathway with the specific inhibitor PD98059 abrogates completely the EGF-dependent survival of cells expressing the kinase-defective EGFR mutants but has no effect on the EGF-dependent proliferation mediated by WT and CT957 EGFRs. Similarly, the Src family kinase inhibitor PP1 abrogates EGF-dependent survival without affecting proliferation. However blocking phosphatidylinositol-3-kinase or JAK-2 kinase with specific inhibitors does arrest growth factor-dependent cell proliferation. Thus, EGFR-mediated mitogenic signalling in BaF/3 cells requires an intact EGFR tyrosine kinase activity and appears to depend on the activation of both the JAK-2 and PI-3 kinase pathways. Activation of the Src family of kinases or of the Ras/MAPK pathway can, however, be initiated by a kinase-impaired EGFR and is linked to survival.
Collapse
Affiliation(s)
- F Walker
- Cooperative Research Center for Cellular Growth Factors, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
113
|
Teruel T, Valverde AM, Navarro P, Benito M, Lorenzo M. Inhibition of PI 3-kinase and RAS blocks IGF-I and insulin-induced uncoupling protein 1 gene expression in brown adipocytes. J Cell Physiol 1998; 176:99-109. [PMID: 9618150 DOI: 10.1002/(sici)1097-4652(199807)176:1<99::aid-jcp12>3.0.co;2-j] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fetal brown adipocytes expressed uncoupling protein 1 (UCP1) mRNA, this expression being blunted throughout culture for 24 h in a serum-free medium. At physiological doses, either insulin-like growth factor I (IGF-I) or insulin turned out to be as potent as dibutyryl cAMP (dbcAMP) in increasing UCP1 gene transcription rate (1 h) and also UCP1 mRNA accumulation (3 h), their maximal effect (15-fold increase) reached upon treatment for 24 h. Upon treatment with either IGF-I or insulin for 48 h, a 7-fold increase in the UCP1 protein content relative to levels in the control cells was found, this induction being abolished in the presence of cycloheximide. Moreover, either IGF-I or insulin transactivates the UCP1-chloramphenicol acetyl transferase (CAT) fusion gene after transient transfection of primary brown adipocytes, these effects being tissue-specific. Transient transfection of dominant-negative form of phosphatidylinositol (PI) 3-kinase completely blocked the transactivation of the fusion gene UCP1-CAT induced by either IGF-I or insulin, although inhibition of p70S6kinase with rapamycin does not preclude transactivation of the UCP1 promoter by insulin. Furthermore, transient transfection of dominant-negative form of p21-ras or treatment of cells with a mitogen-activated protein kinase kinase (MEK-1) inhibitor (PD098059) completely abolished insulin-induced UCP1-CAT transactivation. Cotransfection with dominant-negative p85 or with dominant-negative Ras also produced down-regulation of the insulin or IGF-I-induced 12-O-tetradecanoylphorbol-13-acetate response element (TRE)-CAT (five AP-1, activating protein-1, binding sites arranged in tandem) transactivation. In addition, insulin induced AP-1 DNA binding activity, this effect being totally prevented in the presence of MEK-1 inhibitor. These results strongly suggest that either IGF-I or insulin induced thermogenic-differentiation through AP-1 activity in a PI 3-kinase and Ras/MAPK dependent manner in brown adipocytes.
Collapse
Affiliation(s)
- T Teruel
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
114
|
Huang C, Ma WY, Dong Z. Potentiation of insulin-induced phosphatidylinositol-3 kinase activity by phorbol ester is mediated by protein kinase C epsilon. Cell Signal 1998; 10:185-90. [PMID: 9607141 DOI: 10.1016/s0898-6568(97)00098-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our previous results have demonstrated that phorbol 12-myristate 13-acetate (TPA) and insulin synergistically stimulate the activity of phosphatidylinositol-3 kinase (PI-3 kinase) and PI-3 kinase plays an important role in both of TPA-induced AP-1 activation and cell transformation in tumour promotion sensitive (P+) JB6 cells. In the present study, we investigated the role of PKC and its isozymes in the synergistic induction of PI-3 kinase by TPA and insulin. Bisindolylmaleimide inhibits TPA- and TPA+ insulin-induced PI-3 kinase activity. Pretreatment of cells for 24 h with TPA has significant inhibitory effects on TPA-induced PI-3 kinase activity and abolishes the synergistic effect of TPA and insulin-stimulated PI-3 kinase activity. Furthermore, overexpression of a dominant negative PKC epsilon, but not dominant negative PKC alpha, blocks the synergistic effect of TPA and insulin-induced PI-3 kinase activity. These results indicate that the potentiation effect of TPA on insulin-induced PI-3 kinase activity is specific through PKC epsilon in JB6 cells.
Collapse
Affiliation(s)
- C Huang
- Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | |
Collapse
|
115
|
Huang C, Ma WY, Young MR, Colburn N, Dong Z. Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc Natl Acad Sci U S A 1998; 95:156-61. [PMID: 9419345 PMCID: PMC18158 DOI: 10.1073/pnas.95.1.156] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The JB6 mouse epidermal cell system, which includes tumor promotion-sensitive (P+) and tumor promotion-resistant (P-) cells, is a well-established and extensively used cell culture model for studying the mechanism of late-stage tumor promotion. Tumor promoters, such as 12-O-tetradecanoylphorbol 13-acetate (TPA) or epidermal growth factor (EGF), induce high levels of activator protein 1 (AP-1) activity and large, tumorigenic, anchorage-independent colonies in soft agar at a high frequency in JB6 P+ cells, but not in JB6 P- cells. We report here a molecular explanation for the defect in the AP-1 activation and promotion-resistant phenotype of P- cells. We demonstrate that the lack of AP-1 activation and cell transformation responses to TPA and EGF in P- cells appears attributable to the low level of mitogen-activated protein kinase (MAPK) (extracellular signal-regulated protein kinase, Erk) in these cells. TPA and EGF induce transactivation of AP-1 activity in P+ cells but not in P- cells. Nonphosphorylated forms and TPA- or EGF-induced phosphorylated forms of Erks (Erk1 and Erk2) in P- cells were much lower than those in P+ cells. Stable transfection of wild-type MAPK (Erk2) into P- cells restored its response to TPA and EGF for both AP-1 activation and cell transformation. These results suggest that the shortage of MAPK (Erk1 and Erk2) appears to be an important contributor to the tumor promotion-resistant phenotype in JB6 cells.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | |
Collapse
|
116
|
Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 1998; 273:200-6. [PMID: 9417065 DOI: 10.1074/jbc.273.1.200] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The most frequently found alteration of the epidermal growth factor receptor (EGFR) in human tumors is a deletion of exons 2-7. This receptor, termed EGFRvIII, can transform NIH 3T3 cells, and the frequent expression of this variant implies that it confers a selective advantage upon tumor cells in vivo. Although EGFRvIII is a constitutively activated tyrosine kinase, there is no increase in Ras.GTP levels and low levels of mitogen-activated protein kinase activity in NIH 3T3 cells expressing this variant. We investigated whether phosphatidylinositol (PI) 3-kinase was an effector in transformation by the EGFRvIII. High levels of PI 3-kinase activity were constitutively present in EGFRvIII-transformed cells and were dependent upon the kinase activity of the receptor. While mitogen-activated protein kinase activity was quickly down-regulated to basal levels after 12 h of continuous EGFR activation, there was a 3-fold increase in PI 3-kinase activity in cells expressing normal EGFR and an 8-fold increase in cells expressing EGFRvIII after 48 h. This increased activity may reflect enhanced binding to EGFRvIII and the presence of novel PI 3-kinase isoforms. Treatment with the PI 3-kinase inhibitors wortmannin and LY294002 blocked both anchorage-independent growth and growth in low serum media and also resulted in morphological reversion of EGFRvIII-transformed cells. These results support an essential role for PI 3-kinase in transformation by this EGFR variant.
Collapse
Affiliation(s)
- D K Moscatello
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
117
|
Huang C, Ma WY, Ding M, Bowden GT, Dong Z. Direct evidence for an important role of sphingomyelinase in ultraviolet-induced activation of c-Jun N-terminal kinase. J Biol Chem 1997; 272:27753-7. [PMID: 9346918 DOI: 10.1074/jbc.272.44.27753] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sphingomyelinase (SMase) and its product ceramide have recently attracted a great deal of attention because of their possible role in the signal transduction pathway. However, the role of sphingomyelinase in UV-induced c-June N-terminal kinase (JNK) activation is still unclear. Thus, we investigated this issue directly using a genetic SMase-deficient (2 approximately 3% residual acid SMase activity) lymphoblast cell line, MS1418. The results showed that while UV irradiation markedly induces JNK activation in a normal human lymphoblast cell line, JY, it induces only weak JNK activation in MS1418 cells. This difference of JNK response to UV irradiation between these two cell lines was further observed in time course and dose-response studies. In contrast, 12-O-tetradecanoylphorbol-13-acetate-induced JNK activation could be observed in both JY and MS1418 cells. Furthermore, significant JNK activation can be observed in MS1418 cells by exposure of the cells to SMase or C2-ceramide, whereas phospholipase A2 or phospholipase C did not show significant induction of JNK activity, and C2-dihydroceramide and sphingosine induce only much weaker JNK activation in MS1418 cells than that by C2-ceramide. These data demonstrated that SMase plays an essential role in UV-induced JNK activation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|
118
|
Huang C, Ma WY, Ryan CA, Dong Z. Proteinase inhibitors I and II from potatoes specifically block UV-induced activator protein-1 activation through a pathway that is independent of extracellular signal-regulated kinases, c-Jun N-terminal kinases, and P38 kinase. Proc Natl Acad Sci U S A 1997; 94:11957-62. [PMID: 9342344 PMCID: PMC23668 DOI: 10.1073/pnas.94.22.11957] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | | | | | | |
Collapse
|
119
|
Huang C, Ma WY, Hanenberger D, Cleary MP, Bowden GT, Dong Z. Inhibition of ultraviolet B-induced activator protein-1 (AP-1) activity by aspirin in AP-1-luciferase transgenic mice. J Biol Chem 1997; 272:26325-31. [PMID: 9334204 DOI: 10.1074/jbc.272.42.26325] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aspirin is under consideration as a promising chemopreventative agent for human cancers. To study the usefulness of aspirin as a chemopreventative agent for UV-induced human skin cancer, we investigated the effect of aspirin on UVB-induced activator protein-1 (AP-1) activity. In the JB6 cell culture system, aspirin or sodium salicylate (SA) inhibited UVB-induced AP-1 activity in a dose-dependent manner; this inhibitory effect occurred only in cells pretreated with aspirin or SA before UVB irradiation but not cells treated with aspirin or SA after UVB irradiation. Furthermore, these inhibitory effects on UVB-induced AP-1 activity appeared to be mediated through blocking of activation of MAP kinase family members, including extracellular signal-regulated protein kinases, c-Jun N-terminal kinases, and p38. It was not due to absorption of UVB light by aspirin. In the skin of AP-1-luciferase transgenic mice, UVB irradiation induced a rapid increase in AP-1 activity, which reached the peak at 48 h post-UVB irradiation. The topical pretreatment of mouse skin with aspirin markedly blocked the UVB-induced AP-1 transactivation in vivo. These data provide the first evidence that aspirin and SA are inhibitors of UV-induced signal transduction and thus could be used as a chemopreventative agent for skin cancer.
Collapse
Affiliation(s)
- C Huang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
120
|
Huang C, Ma WY, Dawson MI, Rincon M, Flavell RA, Dong Z. Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc Natl Acad Sci U S A 1997; 94:5826-30. [PMID: 9159159 PMCID: PMC20865 DOI: 10.1073/pnas.94.11.5826] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retinoic acid is one of the most promising drugs for chemotherapy and chemoprevention of cancer. Either blocking activator protein-1 (AP-1) activity or activating retinoic acid response element (RARE) have been proposed to be responsible for its antitumor activity. However, evidence for this hypothesis is lacking in vivo studies. To address this issue, we used an AP-1-luciferase transgenic mouse as a carcinogenesis model and new synthetic retinoids that are either selective inhibitors of AP-1 activation or selective activators of the RARE. The results showed that the SR11302, an AP-1 inhibition-specific retinoid, and other AP-1 inhibitors such as trans-retinoic acid and fluocinolone acetonide, markedly inhibit both 12-O-tetradecanoylphorbol-13-acetate-induced papilloma formation and AP-1 activation in 7,12-dimethyl benz(a)anthracene-initiated mouse skin (P < 0.05). In contrast, repeated applications of SR11235, a retinoid with RARE transactivating activity, but devoid of AP-1 inhibiting effect, did not cause significant inhibition of papilloma formation and AP-1 activation (P > 0.05). These results provide the first in vivo evidence that the antitumor effect of retinoids is mediated by blocking AP-1 activity, but not by activation of RARE.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, 801 16th Avenue, N.E., Austin, MN 55912, USA
| | | | | | | | | | | |
Collapse
|
121
|
Huang C, Schmid PC, Ma WY, Schmid HH, Dong Z. Phosphatidylinositol-3 kinase is necessary for 12-O-tetradecanoylphorbol-13-acetate-induced cell transformation and activated protein 1 activation. J Biol Chem 1997; 272:4187-94. [PMID: 9020132 DOI: 10.1074/jbc.272.7.4187] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phorbol esters, which activate isoforms of protein kinase C, are general activators of the transcription factor activated protein 1 (AP-1). The pathway involved in this signal transduction is not very clear. Currently, little is known about whether phosphatidylinositol-3 (PI-3) kinase plays any role in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced signal transduction. We demonstrate here that TPA not only has markedly synergistic effects on insulin-induced PI-3 kinase activity, but it also can induce PI-3 kinase activity and the PI-3 phosphates by itself. We also found that insulin, a PI-3 kinase activator, enhanced TPA-induced AP-1 trans-activation and transformation in JB6 promotion-sensitive cells. Furthermore, wortmannin and LY294002, two PI-3 kinase inhibitors, markedly decreased AP-1 activity induced by insulin, TPA, or TPA and insulin and inhibited JB6 promotion-sensitive cell transformation induced by TPA or TPA and insulin. Most importantly, constitutive overexpression of the dominant negative PI-3 kinase P85 mutants completely blocked insulin- or TPA-induced AP-1 trans-activation and TPA-induced cell transformation. All evidence from present studies suggests that PI-3 kinase acts as a mediator in TPA-induced AP-1 activation and transformation in JB6 cells.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | |
Collapse
|