101
|
Fox CP, Chaganti S, McIlroy G, Barrington SF, Burton C, Cwynarski K, Eyre TA, Illidge T, Kalakonda N, Kuhnl A, McKay P, Davies AJ. The management of newly diagnosed large B-cell lymphoma: A British Society for Haematology Guideline. Br J Haematol 2024; 204:1178-1192. [PMID: 38247115 PMCID: PMC7616447 DOI: 10.1111/bjh.19273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Affiliation(s)
| | - Sridhar Chaganti
- Centre for Clinical Haematology, University Hospitals Birmingham, Birmingham, UK
| | - Graham McIlroy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Cathy Burton
- Department of Haematology, The Leeds Teaching Hospitals, Leeds, UK
| | - Kate Cwynarski
- Department of Haematology, University College London Hospitals, London, UK
| | - Toby A Eyre
- Oxford Cancer and Haematology Centre, Oxford University Hospitals, Oxford, UK
| | - Timothy Illidge
- Division of Cancer Sciences, Manchester NIHR Biomedical Research Centre, University of Manchester, Manchester, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrea Kuhnl
- Department of Haematology, King's College Hospital, London, UK
| | - Pam McKay
- Department of Haematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Andrew J Davies
- Cancer Sciences Division, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| |
Collapse
|
102
|
Atallah-Yunes SA, Khurana A, Maurer M. Challenges identifying DLBCL patients with poor outcomes to upfront chemoimmunotherapy and its impact on frontline clinical trials. Leuk Lymphoma 2024; 65:430-439. [PMID: 38180317 PMCID: PMC10932918 DOI: 10.1080/10428194.2023.2298705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) has a variable course of disease among patients as it consists of subgroups that are clinically, biologically and molecularly heterogeneous. In this review, we will discuss how this heterogeneity has likely hindered the ability of traditional prognostic models to identify DLBCL patients at high risk of having poor outcomes with conventional upfront chemoimmunotherapy. We will highlight the challenges and downsides of using these models for risk stratification in clinical trials. Also, we present some of the novel prognosticators that have shown a prognostic value independently or when incorporated into existing prognostic models. Additionally, since the failure of frontline clinical trials to improve outcomes beyond R-CHOP chemoimmunotherapy may be at least partially explained by the restrictive eligibility criteria, risk stratification methods and the selection bias encountered due to the complexed logistics of clinical trials; we will discuss strategies to refine and modernize clinical trial design.
Collapse
Affiliation(s)
| | - Arushi Khurana
- Mayo Clinic Rochester - Division of Hematology, Rochester, MN, USA
| | - Matthew Maurer
- Mayo Clinic Rochester - Division of Hematology, Rochester, MN, USA
| |
Collapse
|
103
|
Abrisqueta P. New Insights into First-Line Therapy in Diffuse Large B-Cell Lymphoma: Are We Improving Outcomes? J Clin Med 2024; 13:1929. [PMID: 38610693 PMCID: PMC11012802 DOI: 10.3390/jcm13071929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most prevalent subtype of lymphoma, comprising heterogeneous patient subgroups with distinctive biological and clinical characteristics. The R-CHOP combination (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) has been the standard initial treatment, yielding prolonged remissions in over 60% of patients with advanced-stage disease. Several attempts to enhance the outcomes of this regimen over the last two decades have shown limited success. Various novel therapeutic approaches have recently emerged in lymphoma, demonstrating promising results. These include small molecules, novel monoclonal antibodies, antibody-drug conjugates (ADC), bispecific antibodies (BsAbs), and chimeric antigen receptor (CAR) T-cell therapy. This review explores recent advancements in therapeutic strategies for DLBCL and their potential impact on the initial management of DLBCL patients.
Collapse
Affiliation(s)
- Pau Abrisqueta
- Department of Hematology, Vall d’Hebron Hospital Universitari, Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
104
|
Cho SF, Yeh TJ, Wang HC, Du JS, Gau YC, Lin YY, Chuang TM, Liu YC, Hsiao HH, Moi SH. Prognostic mutation signature would serve as a potential prognostic predictor in patients with diffuse large B-cell lymphoma. Sci Rep 2024; 14:6161. [PMID: 38485750 PMCID: PMC10940711 DOI: 10.1038/s41598-024-56583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
The present study aimed to elucidate the prognostic mutation signature (PMS) associated with long-term survival in a diffuse large B-cell lymphoma (DLBCL) cohort. All data including derivation and validation cohorts were retrospectively retrieved from The Cancer Genome Atlas (TCGA) database and whole-exome sequencing (WES) data. The Lasso Cox regression analysis was used to construct the PMS based on WES data, and the PMS was determined using the area under the receiver operating curve (AUC). The predictive performance of eligible PMS was analyzed by time-dependent receiver operating curve (ROC) analyses. After the initial evaluation, a PMS composed of 94 PFS-related genes was constructed. Notably, this constructed PMS accurately predicted the 12-, 36-, and 60-month PFS, with AUC values of 0.982, 0.983, and 0.987, respectively. A higher level of PMS was closely linked to a significantly worse PFS, regardless of the molecular subtype. Further evaluation by forest plot revealed incorporation of international prognostic index or tumor mutational burden into PMS increased the prediction capability for PFS. The drug-gene interaction and pathway exploration revealed the PFS-related genes were associated with DNA damage, TP53, apoptosis, and immune cell functions. In conclusion, this study utilizing a high throughput genetic approach demonstrated that the PMS could serve as a prognostic predictor in DLBCL patients. Furthermore, the identification of the key signaling pathways for disease progression also provides information for further investigation to gain more insight into novel drug-resistant mechanisms.
Collapse
Affiliation(s)
- Shih-Feng Cho
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuh-Ching Gau
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Yin Lin
- Health Management Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-Chang Liu
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
105
|
Flümann R, Hansen J, Meinel J, Pfeiffer P, Goldfarb Wittkopf H, Lütz A, Wirtz J, Möllmann M, Zhou T, Tabatabai A, Lohmann T, Jauch M, Beleggia F, Pelzer B, Ullrich F, Höfmann S, Arora A, Persigehl T, Büttner R, von Tresckow B, Klein S, Jachimowicz RD, Reinhardt HC, Knittel G. An inducible Cd79b mutation confers ibrutinib sensitivity in mouse models of Myd88-driven diffuse large B-cell lymphoma. Blood Adv 2024; 8:1063-1074. [PMID: 38060829 PMCID: PMC10907402 DOI: 10.1182/bloodadvances.2023011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/26/2023] [Indexed: 02/29/2024] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma and constitutes a highly heterogenous disease. Recent comprehensive genomic profiling revealed the identity of numerous molecularly defined DLBCL subtypes, including a cluster which is characterized by recurrent aberrations in MYD88, CD79B, and BCL2, as well as various lesions promoting a block in plasma cell differentiation, including PRDM1, TBL1XR1, and SPIB. Here, we generated a series of autochthonous mouse models to mimic this DLBCL cluster and specifically focused on the impact of Cd79b mutations in this setting. We show that canonical Cd79b immunoreceptor tyrosine-based activation motif (ITAM) mutations do not accelerate Myd88- and BCL2-driven lymphomagenesis. Cd79b-mutant murine DLBCL were enriched for IgM surface expression, reminiscent of their human counterparts. Moreover, Cd79b-mutant lymphomas displayed a robust formation of cytoplasmic signaling complexes involving MYD88, CD79B, MALT1, and BTK. These complexes were disrupted upon pharmacological BTK inhibition. The BTK inhibitor-mediated disruption of these signaling complexes translated into a selective ibrutinib sensitivity of lymphomas harboring combined Cd79b and Myd88 mutations. Altogether, this in-depth cross-species comparison provides a framework for the development of molecularly targeted therapeutic intervention strategies in DLBCL.
Collapse
Affiliation(s)
- Ruth Flümann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Hansen
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pauline Pfeiffer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannah Goldfarb Wittkopf
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Lütz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jessica Wirtz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael Möllmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Zhou
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Filippo Beleggia
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Benedikt Pelzer
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
| | - Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten Persigehl
- Department of Radiology and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
106
|
Liu M, Bertolazzi G, Sridhar S, Lee RX, Jaynes P, Mulder K, Syn N, Hoppe MM, Fan S, Peng Y, Thng J, Chua R, Jayalakshmi, Batumalai Y, De Mel S, Poon L, Chan EHL, Lee J, Hue SSS, Chang ST, Chuang SS, Chandy KG, Ye X, Pan-Hammarström Q, Ginhoux F, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Spatially-resolved transcriptomics reveal macrophage heterogeneity and prognostic significance in diffuse large B-cell lymphoma. Nat Commun 2024; 15:2113. [PMID: 38459052 PMCID: PMC10923916 DOI: 10.1038/s41467-024-46220-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
Macrophages are abundant immune cells in the microenvironment of diffuse large B-cell lymphoma (DLBCL). Macrophage estimation by immunohistochemistry shows varying prognostic significance across studies in DLBCL, and does not provide a comprehensive analysis of macrophage subtypes. Here, using digital spatial profiling with whole transcriptome analysis of CD68+ cells, we characterize macrophages in distinct spatial niches of reactive lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences between macrophages within RLTs (light zone /dark zone, germinal center/ interfollicular), and between disease states (RLTs/ DLBCL), which we then use to generate six spatially-derived macrophage signatures (MacroSigs). We proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell RNA-sequencing datasets, and in gene-expression data from multiple DLBCL cohorts. We show that specific MacroSigs are associated with cell-of-origin subtypes and overall survival in DLBCL. This study provides a spatially-resolved whole-transcriptome atlas of macrophages in reactive and malignant lymphoid tissues, showing biological and clinical significance.
Collapse
Affiliation(s)
- Min Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, PR China
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, PR China
| | - Giorgio Bertolazzi
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kevin Mulder
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicholas Syn
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jocelyn Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Reiya Chua
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Jayalakshmi
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Yogeshini Batumalai
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan, ROC
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan, ROC
| | - K George Chandy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Xiaofei Ye
- Kindstar Global Precision Medicine Institute, Wuhan, PR China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Institut National de la Santé Et de la Recherche Medicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy.
- Histopathology Unit, Institute of Molecular Oncology Foundation (IFOM) ETS - The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
107
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
108
|
Ren W, Wan H, Own SA, Berglund M, Wang X, Yang M, Li X, Liu D, Ye X, Sonnevi K, Enblad G, Amini RM, Sander B, Wu K, Zhang H, Wahlin BE, Smedby KE, Pan-Hammarström Q. Genetic and transcriptomic analyses of diffuse large B-cell lymphoma patients with poor outcomes within two years of diagnosis. Leukemia 2024; 38:610-620. [PMID: 38158444 PMCID: PMC10912034 DOI: 10.1038/s41375-023-02120-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-κB signaling. Moreover, we developed and validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes, including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool ( https://lymphprog.serve.scilifelab.se/app/lymphprog ) that can be used for prognostic prediction for DLBCL patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Berglund
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaobo Li
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Dongbing Liu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Kristina Sonnevi
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Kui Wu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
109
|
Koudouna A, Gkioka AI, Gkiokas A, Tryfou TM, Papadatou M, Alexandropoulos A, Bartzi V, Kafasi N, Kyrtsonis MC. Serum-Soluble CD163 Levels as a Prognostic Biomarker in Patients with Diffuse Large B-Cell Lymphoma Treated with Chemoimmunotherapy. Int J Mol Sci 2024; 25:2862. [PMID: 38474108 DOI: 10.3390/ijms25052862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The majority of patients with Diffuse Large B-cell Lymphoma (DLBCL) will respond to first-line treatment and be cured. However, the disease is heterogeneous, and biomarkers able to discriminate patients with suboptimal prognosis are needed. M2 CD163-positive tumor-associated macrophages (TAMs) were shown to be implicated in DLBCL disease activity regulation. Serum-soluble CD163 (sCD163) functions as a scavenger receptor for haptoglobin-hemoglobin complexes and is mostly expressed by monocytes and macrophages. Its levels are used to determine macrophage activation. We aimed to determine serum sCD163 in a sample of DLBCL patients and study eventual correlations with parameters of disease activity or survival. Serum sCD163 levels were measured in 40 frozen sera from patients diagnosed with DLBCL and 30 healthy individuals (HIs) using an enzyme-linked immunosorbent assay (ELISA). Statistical analyses were performed using SPSS version 28. The results showed that patients who achieved complete response after standard-of-care immunochemotherapy and were alive and disease-free after 12 months of follow-up but had elevated sCD163 levels (above median) at diagnosis presented a significantly worse overall survival compared to those with initial serum sCD163 levels below the median (p = 0.03). Consequently, serum sCD163 levels in patients with DLBCL may constitute a marker of long-term response to chemoimmunotherapy.
Collapse
Affiliation(s)
- Aspasia Koudouna
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Annita Ioanna Gkioka
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Alexandros Gkiokas
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Thomai M Tryfou
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Mavra Papadatou
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Alexandros Alexandropoulos
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | - Vassiliki Bartzi
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| | | | - Marie-Christine Kyrtsonis
- Hematology Section, First Department of Propaedeutic Internal Medicine, Laikon Hospital, National and Kapodistrian University of Athens' Medical School, 11527 Athens, Greece
| |
Collapse
|
110
|
Zhang C, Stelloo E, Barrans S, Cucco F, Jiang D, Tzioni MM, Chen Z, Li Y, Swennenhuis JF, Makker J, Rásó-Barnett L, Liu H, El-Daly H, Soilleux E, Shah N, Nagumantry SK, Kyaw M, Prahladan MP, Tooze R, Westhead DR, Feitsma H, Davies AJ, Burton C, Johnson PWM, Du MQ. Non-IG::MYC in diffuse large B-cell lymphoma confers variable genomic configurations and MYC transactivation potential. Leukemia 2024; 38:621-629. [PMID: 38184753 PMCID: PMC10912016 DOI: 10.1038/s41375-023-02134-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
MYC translocation occurs in 8-14% of diffuse large B-cell lymphoma (DLBCL), and may concur with BCL2 and/or BCL6 translocation, known as double-hit (DH) or triple-hit (TH). DLBCL-MYC/BCL2-DH/TH are largely germinal centre B-cell like subtype, but show variable clinical outcome, with IG::MYC fusion significantly associated with inferior survival. While DLBCL-MYC/BCL6-DH are variable in their cell-of-origin subtypes and clinical outcome. Intriguingly, only 40-50% of DLBCL with MYC translocation show high MYC protein expression (>70%). We studied 186 DLBCLs with MYC translocation including 32 MYC/BCL2/BCL6-TH, 75 MYC/BCL2-DH and 26 MYC/BCL6-DH. FISH revealed a MYC/BCL6 fusion in 59% of DLBCL-MYC/BCL2/BCL6-TH and 27% of DLBCL-MYC/BCL6-DH. Targeted NGS showed a similar mutation profile and LymphGen genetic subtype between DLBCL-MYC/BCL2/BCL6-TH and DLBCL-MYC/BCL2-DH, but variable LymphGen subtypes among DLBCL-MYC/BCL6-DH. MYC protein expression is uniformly high in DLBCL with IG::MYC, but variable in those with non-IG::MYC including MYC/BCL6-fusion. Translocation breakpoint analyses of 8 cases by TLC-based NGS showed no obvious genomic configuration that enables MYC transactivation in 3 of the 4 cases with non-IG::MYC, while a typical promoter substitution or IGH super enhancer juxtaposition in the remaining cases. The findings potentially explain variable MYC expression in DLBCL with MYC translocation, and also bear practical implications in its routine assessment.
Collapse
Affiliation(s)
- Chunye Zhang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St James' University Hospital, Leeds, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Dan Jiang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Maria-Myrsini Tzioni
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yan Li
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Haematology, Hebei General Hospital, Shijiazhuang, PR China
| | | | - Jasmine Makker
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Lívia Rásó-Barnett
- The Haematopathology and Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hongxiang Liu
- East Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hesham El-Daly
- Cellular Pathology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Elizabeth Soilleux
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nimish Shah
- Department of Haematology, Norfolk and Norwich University Foundation Hospital, Norwich, UK
| | | | - Maw Kyaw
- Department of Haematology, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, UK
| | | | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St James' University Hospital, Leeds, UK
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - David R Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Andrew J Davies
- Southampton NIHR/Cancer Research UK Experimental Cancer Medicine Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Catherine Burton
- Haematological Malignancy Diagnostic Service, St James' University Hospital, Leeds, UK
| | - Peter W M Johnson
- Southampton NIHR/Cancer Research UK Experimental Cancer Medicine Centre and Southampton Clinical Trials Unit, University of Southampton, Southampton, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
111
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
112
|
Mishina T, Miyoshi H, Takeuchi M, Miyawaki K, Nakashima K, Yamada K, Moritsubo M, Inoue-Mitsuyama K, Shimasaki Y, Imamoto T, Kawamoto K, Furuta T, Kohno K, Kato K, Akashi K, Ohshima K. Co-expression of regulatory B-cell markers, transforming growth factor β and interleukin-10 as a prognostic factor in diffuse large B-cell lymphoma. Pathol Res Pract 2024; 254:155117. [PMID: 38262270 DOI: 10.1016/j.prp.2024.155117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Regulatory B cells (Bregs) suppress antitumor immunity by producing anti-inflammatory cytokines such as transforming growth factor β (TGF-β) and interleukin-10 (IL-10) and promoting tumor growth. It is unknown whether diffuse large B-cell lymphoma (DLBCL), a common subtype of B-cell malignancy, exhibits characteristics similar to those of Bregs. This study aimed to clarify the features of DLBCLs carrying Breg markers. In 123 DLBCL cases, we evaluated TGF-β and IL-10 expression in tumor biopsy samples using immunohistochemical staining and retrospectively analyzed their clinicopathological characteristics. Fifteen cases (12.2 %) classified as Breg-type DLBCL were positive for both TGF-β and IL-10. Breg-type DLBCL is mainly classified as having activated B cell-like cells of origin. Breg-type DLBCL cases showed significantly worse progression-free survival and overall survival (OS) than other DLBCL cases (P = 0.0016 and P = 0.042, respectively). In multivariate analysis, Breg-type DLBCL significantly affected OS (hazard ratio, 3.13; 95 % confidence interval 1.15-8.55; P = 0.025). Gene expression analysis showed that the expression of follicular dendritic cell-associated genes (FCER2, PIK3CD, FOXO1) was downregulated in Breg-type DLBCLs compared to other DLBCLs. These results suggest that the double expression of Breg markers, TGF-β and IL-10, in tumor cells indicates a poor prognosis in DLBCL patients. Further studies evaluating genomic abnormalities could confirm the characteristics of Breg-type DLBCL.
Collapse
Affiliation(s)
- Tatsuzo Mishina
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan; Division of Hematology-Oncology, Chiba Cancer Center, Chiba, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan.
| | - Mai Takeuchi
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazutaka Nakashima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kyohei Yamada
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Mayuko Moritsubo
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | | | - Yasumasa Shimasaki
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Teppei Imamoto
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan; Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Keisuke Kawamoto
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Takuya Furuta
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Kei Kohno
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, School of Medicine, Kurume University, Kurume, Japan
| |
Collapse
|
113
|
Roschewski M, Hodson DJ. Diffuse large B-cell lymphoma involving the central nervous system: biologic rationale for targeted therapy. Haematologica 2024; 109:388-400. [PMID: 37706315 PMCID: PMC10828633 DOI: 10.3324/haematol.2021.278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma curable even in advanced stages. DLBCL involving the central nervous system (CNS) is more difficult to cure and fewer treatment options exist. Primary CNS lymphoma (PCNSL) refers to aggressive lymphomas confined to the CNS, and are almost always DLBCL. Standard approaches for PCNSL use high-dose methotrexate-based combinations as induction therapy and younger patients often receive dose-intensive consolidation. However, dose-intensive therapies are not suitable for all patients, and older patients have fewer effective treatment options. Patients with relapsed or chemotherapy-refractory disease have a very poor prognosis. Secondary CNS lymphoma (SCNSL) describes aggressive lymphomas involving the CNS at initial presentation or relapses within the CNS after treatment for systemic DLBCL. Isolated CNS relapse is often managed as PCNSL, but patients with synchronous involvement of DLBCL in both the periphery and the CNS pose a unique clinical challenge. Insights into the molecular circuitry of DLBCL have identified distinct genetic subtypes including cases with a predilection for CNS invasion. PCNSL and subsets of SCNSL are characterized by chronically activated B-cell receptor and NFκB signaling along with genetic evidence of immune evasion which may be exploited therapeutically. Improved mechanistic understanding of targetable pathways underpinning CNS lymphomas has led to numerous clinical trials testing targeted agent combinations and immunotherapy approaches with promising early results. Biologically rational strategies may further improve the cure rate of CNS lymphomas, either by overcoming intrinsic or acquired treatment resistance and/or by being broadly applicable to patients of all ages.
Collapse
Affiliation(s)
- Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer nstitute, Bethesda, MD, 20892.
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge.
| |
Collapse
|
114
|
Cooper A, Tumuluru S, Kissick K, Venkataraman G, Song JY, Lytle A, Duns G, Yu J, Kotlov N, Bagaev A, Hodkinson B, Srinivasan S, Smith SM, Scott DW, Steidl C, Godfrey JK, Kline J. CD5 Gene Signature Identifies Diffuse Large B-Cell Lymphomas Sensitive to Bruton's Tyrosine Kinase Inhibition. J Clin Oncol 2024; 42:467-480. [PMID: 38079587 DOI: 10.1200/jco.23.01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.
Collapse
Affiliation(s)
- Alan Cooper
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Sravya Tumuluru
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Kyle Kissick
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Andrew Lytle
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC
| | - Gerben Duns
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Jovian Yu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | | | | | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Srimathi Srinivasan
- Oncology Translational Research, Janssen Research & Development, Lower Gwynedd Township, PA
| | - Sonali M Smith
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - David W Scott
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada
| | - James K Godfrey
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Justin Kline
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
115
|
Deng T, Zhang S, Xiao M, Gu J, Huang L, Zhou X. A single-centre, real-world study of BTK inhibitors for the initial treatment of MYD88 mut /CD79B mut diffuse large B-cell lymphoma. Cancer Med 2024; 13:e7005. [PMID: 38457222 PMCID: PMC10923040 DOI: 10.1002/cam4.7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND MCD (MYD88L265P /CD79Bmut ) diffuse large B-cell lymphoma has a poor prognosis. There is no published clinical research conclusion regarding zanubrutinib or orelabrutinib for the initial treatment of MCD DLBCL. AIMS This study aimed to analyse the efficacy and safety of Bruton's tyrosine kinase inhibitor (BTKi) (zanubrutinib or orelabrutinib) therapy for newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut . MATERIALS AND METHODS Twenty-three newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut from June 2020 to June 2022 received BTKi combined with rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) or rituximab + lenalidomide (R2 ). A control group of 17 patients with MYD88mut and/or CD79Bmut DLBCL who received the standard R-CHOP therapy was also assessed. We retrospectively analysed clinical characteristics, safety, overall response rate (ORR), complete response (CR) rate and progression-free survival (PFS) of the two groups. RESULTS The main clinical features were a high International Prognostic Index (IPI) score (≥3, 22/40, 55%) and a high rate of extranodal involvement (27/40,67.5%). Among the 23 DLBCL patients, 18 received BTKi + R-CHOP, and five elderly DLBCL patients were treated with BTKi + R2 . Compared with those in the control group (ORR 70.6%, CRR 52.9%, 1-year PFS rate 41.2%), improved ORR, CRR and PFS results were observed in the BTKi + R-CHOP group (100%, 94.4% and 88.9%, p = 0.019, 0.007, and 0.0001). In subgroup analyses based on genetic subtypes, cell origin, dual expression or IPI score, patients in the BTKi + R-CHOP group had better PFS than patients in the control group. In the BTKi + R-CHOP group, no significant difference was found in ORR, CRR and PFS based on subtype analysis, while BTKi-type subgroups exhibited statistically significant differences in 1-year PFS (p = 0.028). There were no significant differences in grade 3-4 haematological toxicity (p = 1) and grade 3-4 non-haematological toxicity (p = 0.49) between the BTKi + R-CHOP and R-CHOP treatment groups. In the BTKi + R2 group, the ORR was 100%, the CRR was 80%, and the 1-year PFS rate was 80%. The incidences of grade 3-4 haematologic toxicity and non-haematological toxicity were both 40%. No bleeding or cardiovascular events of grade 3 or higher occurred in any patients. DISCUSSION The efficacy of BTKi combined with R-CHOP was similar to previous reports, which was significantly better than R-CHOP alone. It is necessary to fully consider that 14 patients in the BTKi + R-CHOP group received a BTKi as maintenance therapy when evaluating efficacy. Meanwhile, the addition of a BTKi may improve the prognosis of non-GCB, DEL or high-IPI-score DLBCL patients with MYD88mut and/or CD79Bmut . In our study, five elderly DLBCL patients with MYD88mut and/or CD79Bmut were achieved better ORR, CRR, PFS than the historical data of R-miniCHOP treatment and Ibrutinib + R2 treatment. However, the efficacy and benefit of BTKis for this type of DLBCL need to be further analysed using a larger sample size. CONCLUSION This study suggests that newly diagnosed DLBCL patients with MYD88mut and/or CD79Bmut may benefit from BTKis according to real-world clinical data.
Collapse
Affiliation(s)
- Ting Deng
- Department of HematologyChongqing Fifth People's HospitalChongqingPR China
| | - Shiyuan Zhang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Min Xiao
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Jia Gu
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Liang Huang
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| | - Xiaoxi Zhou
- Department of HematologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiPR China
| |
Collapse
|
116
|
Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch 2024; 484:195-214. [PMID: 37747559 PMCID: PMC10948535 DOI: 10.1007/s00428-023-03644-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
With the explosion in knowledge about the molecular landscape of lymphoid malignancies and the increasing availability of high throughput techniques, molecular diagnostics in hematopathology has moved from isolated marker studies to a more comprehensive approach, integrating results of multiple genes analyzed with a variety of techniques on the DNA and RNA level. Although diagnosis of lymphoma still relies on the careful integration of clinical, morphological, phenotypic, and, if necessary molecular features, and only few entities are defined strictly by genetic features, genetic profiling has contributed profoundly to our current understanding of lymphomas and shaped the two current lymphoma classifications, the International Consensus Classification and the fifth edition of the WHO classification of lymphoid malignancies. In this review, the current state of the art of molecular diagnostics in lymphoproliferations is summarized, including clonality analysis, mutational studies, and gene expression profiling, with a focus on practical applications for diagnosis and prognostication. With consideration for differences in accessibility of high throughput techniques and cost limitations, we tried to distinguish between diagnostically relevant and in part disease-defining molecular features and optional, more extensive genetic profiling, which is usually restricted to clinical studies, patients with relapsed or refractory disease or specific therapeutic decisions. Although molecular diagnostics in lymphomas currently is primarily done for diagnosis and subclassification, prognostic stratification and predictive markers will gain importance in the near future.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
117
|
Zaccaria GM, Altini N, Mezzolla G, Vegliante MC, Stranieri M, Pappagallo SA, Ciavarella S, Guarini A, Bevilacqua V. SurvIAE: Survival prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma gene expression data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107966. [PMID: 38091844 DOI: 10.1016/j.cmpb.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intelligence (XAI) to stratify prognosis and derive a gene-based signature. METHODS AE was exploited to learn an unsupervised representation of the gene expression (GE) from three publicly available datasets, each with its own technology. Multi-layer perceptron (MLP) was used to classify prognosis from latent representation. GE data were preprocessed as normalized, scaled, and standardized. Four different AE architectures (Large, Medium, Small and Extra Small) were compared to find the most suitable for GE data. The joint AE-MLP classified patients on six different outcomes: overall survival at 12, 36, 60 months and progression-free survival (PFS) at 12, 36, 60 months. XAI techniques were used to derive a gene-based signature aimed at refining the Revised International Prognostic Index (R-IPI) risk, which was validated in a fourth independent publicly available dataset. We named our tool SurvIAE: Survival prediction with Interpretable AE. RESULTS From the latent space of AEs, we observed that scaled and standardized data reduced the batch effect. SurvIAE models outperformed R-IPI with Matthews Correlation Coefficient up to 0.42 vs. 0.18 for the validation-set (PFS36) and to 0.30 vs. 0.19 for the test-set (PFS60). We selected the SurvIAE-Small-PFS36 as the best model and, from its gene signature, we stratified patients in three risk groups: R-IPI Poor patients with High levels of GAB1, R-IPI Poor patients with Low levels of GAB1 or R-IPI Good/Very Good patients with Low levels of GPR132, and R-IPI Good/Very Good patients with High levels of GPR132. CONCLUSIONS SurvIAE showed the potential to derive a gene signature with translational purpose in DLBCL. The pipeline was made publicly available and can be reused for other pathologies.
Collapse
Affiliation(s)
- Gian Maria Zaccaria
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Nicola Altini
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy.
| | - Giuseppe Mezzolla
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Maria Carmela Vegliante
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Marianna Stranieri
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy
| | - Susanna Anita Pappagallo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Sabino Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Attilio Guarini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Via O. Flacco, 65, Bari 70124, Italy
| | - Vitoantonio Bevilacqua
- Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via Edoardo Orabona, 4, Bari 70126, Italy; Apulian Bioengineering srl, Via delle Violette, 14, Modugno 70026, Italy
| |
Collapse
|
118
|
Forberg AL, Unrau J, Weber KS, Rutz AC, Lund S, Guidinger J, Pelzel A, Hauge J, Hemmen AJ, Hartert KT. Integrative analyses reveal outcome-associated and targetable molecular partnerships between TP53, BRD4, TNFRSF10B, and CDKN1A in diffuse large B-cell lymphoma. Ann Hematol 2024; 103:199-209. [PMID: 37792064 DOI: 10.1007/s00277-023-05478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common, genomically heterogenous disease that presents a clinical challenge despite the success of frontline regimens and second-line chimeric antigen receptor T-cell (CAR-T) therapy. Recently, genomic alterations and tumor microenvironment features associated with poor CAR-T response have been identified, namely those to the TP53 tumor suppressor gene. This retrospective analysis aimed to integrate various data to identify genomic partnerships capable of providing further clarity and actionable treatment targets within this population. Publicly available data were analyzed for differential expression based on TP53 and 24-month event-free survival (EFS24) status, revealing enrichments of the BRD4 bromodomain oncogene (p < 0.0001, p = 0.001). High-BRD4 and TP53 alterations were significantly associated with lower CDKN1A (p21) and TNFRSF10B (TRAIL-R2), a key tumor suppressor and CAR-T modulator, respectively. Significant loss of CD8 T-cell presence within low-TNFRSF0B (p = 0.0042) and altered-TP53 (p = 0.0424) patients showcased relevant outcome-associated tumor microenvironment features. Furthermore, reduced expression of CDKN1A was associated with low TNFRSF10B (FDR < 0.0001) and increased BRD4 interactant genes (FDR < 0.0001). Promisingly, in vitro MDM2 inhibition with Idasnutlin and TP53 reactivation via Eprenetapopt was able to renew TNFRSF10B protein expression. Additionally, applying the BRD4-degrading PROTAC ARV-825 and the CDK4/6 inhibitor Abemaciclib as single-agents and in synergistic combination significantly reduced TP53-altered DLBCL cell line viability. Our analysis presents key associations within a genomic network of actionable targets capable of providing clarity within the evolving precision CAR-T treatment landscape.
Collapse
Affiliation(s)
- Aidan L Forberg
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Jordan Unrau
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Kennedee S Weber
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Alison C Rutz
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Shelby Lund
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Jinda Guidinger
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Andrew Pelzel
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Jackson Hauge
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Ainslee J Hemmen
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA
| | - Keenan T Hartert
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, MN, 56001, USA.
| |
Collapse
|
119
|
Ivanova VS, Vela V, Dirnhofer S, Dobbie M, Stenner F, Knoblich J, Tzankov A, Menter T. Molecular Characterization and Genetic Subclassification Comparison of Diffuse Large B-Cell Lymphoma: Real-Life Experience with 74 Cases. Pathobiology 2023; 91:245-253. [PMID: 38128501 PMCID: PMC11309052 DOI: 10.1159/000535938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity. Lately, several algorithms achieving therapeutically and prognostically relevant DLBCL subclassification have been published. METHODS A cohort of 74 routine DLBCL cases was broadly characterized by immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) of the BCL2, BCL6, and MYC loci, and comprehensive high-throughput sequencing (HTS). Based on the genetic alterations found, cases were reclassified using two probabilistic tools - LymphGen and Two-step classifier, allowing for comparison of the two models. RESULTS Hans and Tally's overall IHC-based subclassification success rate was 96% and 82%, respectively. HTS and FISH data allowed the LymphGen algorithm to successfully classify 11/55 cases (1 - BN2, 7 - EZB, 1 - MCD, and 2 - genetically composite EZB/N1). The total subclassification rate was 20%. On the other hand, the Two-step classifier categorized 36/55 cases, with 65.5% success (9 - BN2, 12 - EZB, 9 - MCD, 2 - N1, and 4 - ST2). Clinical correlations highlighted MCD as an aggressive subtype associated with higher relapse and mortality. CONCLUSIONS The Two-step algorithm has a better success rate at subclassifying DLBCL cases based on genetic differences. Further improvement of the classifiers is required to increase the number of classifiable cases and thus prove their applicability in routine diagnostics.
Collapse
Affiliation(s)
- Vanesa-Sindi Ivanova
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland,
| | - Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Dobbie
- Department of Oncology, Hôpital du Jura, Delemont, Switzerland
| | - Frank Stenner
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
120
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
121
|
Landsburg DJ, Morrissette JJD, Nasta SD, Barta SK, Schuster SJ, Svoboda J, Chong EA, Bagg A. TP53 mutations predict for poor outcomes in patients with newly diagnosed aggressive B-cell lymphomas in the current era. Blood Adv 2023; 7:7243-7253. [PMID: 37851898 PMCID: PMC10698538 DOI: 10.1182/bloodadvances.2023011384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
Genetic subgroups of diffuse large B-cell lymphoma (DLBCL) have been identified through comprehensive genomic analysis; however, it is unclear whether this can be applied in clinical practice. We assessed whether mutations detected by clinical laboratory mutation analysis (CLMA) were predictive of outcomes in patients with newly diagnosed DLBCL/high-grade B-cell lymphoma (HGBL). Patients diagnosed from 2018 to 2022 whose biopsy samples were subjected to CLMA and who received rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone or rituximab plus etoposide, prednisolone, vincristine, cyclophosphamide, and doxorubicin were analyzed for overall/complete response rate (ORR/CRR) and estimated progression-free/overall survival (PFS/OS). CLMA was successfully performed in 117 of 122 patient samples (96%), with a median turnaround time of 17 days. Median duration of follow-up was 31.3 months. Of the mutations detected in ≥10% of the samples, only TP53 was associated with both progression and death at 2 years. TP53 mutations were detected in 36% of tumors, and patients with TP53 mutations experienced significantly lower ORR (71% vs 90%; P = .009), CRR (55% vs 77%; P = .01), 2-year PFS (57% vs 77%; P = .006), 2-year OS (70% vs 91%; P = .001), and median OS after relapse (6.1 months vs not yet reached; P = .001) as than those without TP53 mutations. Furthermore, patients with TP53 loss-of-function (LOF) mutations experienced lower rates of 2-year PFS/OS than those with non-LOF mutations and inferior or near-inferior 2-year PFS if harboring high-risk clinicopathologic features. TP53 mutations identified through CLMA can predict for inferior outcomes in patients with newly diagnosed DLBCL/HGBL. Results of CLMA can be used in real time to inform prognosis and/or identify candidates for clinical trials.
Collapse
Affiliation(s)
- Daniel J. Landsburg
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Jennifer JD Morrissette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sunita D. Nasta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stefan K. Barta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Elise A. Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
122
|
Jaffe ES. Evolution of Lymphoma Diagnosis in the Era of Personalized Medicine: A Marriage of Pathology and Genomics for Clinical Practice. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1880-1886. [PMID: 37734589 PMCID: PMC10734280 DOI: 10.1016/j.ajpath.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
The modern taxonomy of disease builds a framework for precision medicine, by which traditional pathologic criteria are integrated with clinical and genomic features to define disease entities. Two of the most common subtypes of lymphoma on a worldwide basis are follicular lymphoma (FL) and diffuse large B-cell lymphoma. Although BCL2 translocation is the signature lesion of most nodal FL, recent studies have identified significant diversity among follicle center-derived lesions. BCL2-negative FL is a genetically heterogeneous disease that occurs in both nodal and extranodal sites. Several distinct entities have been recognized in the pediatric age group, including pediatric-type FL, testicular FL, and interferon regulatory factor 4 (IRF4)-rearranged large B-cell lymphoma. Diffuse large B-cell lymphoma is a family of aggressive B-cell neoplasms with marked variation in pathogenesis and clinical features. Gene expression profiling >20 years ago identified the cell of origin as a key discriminator, but more recently high-throughput sequencing has identified highly varied mutational profiles that point the way in the future toward improvements in targeted therapy and patient outcome.
Collapse
Affiliation(s)
- Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
123
|
Agostinelli C, Morandi L, Righi S, Cirillo L, Iommi M, Tonon C, Mazzatenta D, Zoli M, Rossi M, Bagnato G, Broccoli A, Lodi R, Zinzani PL, Sabattini E, Giannini C, Asioli S. Genomic Profiling of Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Suggests Novel Potential Therapeutic Targets. Mod Pathol 2023; 36:100323. [PMID: 37678673 DOI: 10.1016/j.modpat.2023.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Primary diffuse large B-cell lymphoma of the primary central nervous system (CNS-DLBCL) is an aggressive disease, with dismal prognosis despite the use of high-dose methotrexate-based polychemotherapy. Our study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. We selected 61 CNS-DLBCL whose formalin-fixed paraffin-embedded samples were available at first diagnosis. These were investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in situ hybridization, and CNS-DLBCL mutated genes were evaluated by next-generation sequencing. CD10, BCL6, and IRF4 were observed in 16%, 83.6%, and 93% of cases, respectively. As typical of CNS lymphoma, 10 (16.4%) of 61 cases were classified as germinal center (GCB) type and 51 (83.6%) of 61 as non-germinal center (non-GCB) type according to the Hans algorithm. Double-expression status for BCL2 and cMYC was detected in 36 (59%) of 61 cases whereas 25 (41%) of 61 were non-DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 translocation only in 1 case MYD88, PIM1, CD79B, and TP53 were mutated in 54.5%, 53.5%, 30.2%, and 18.4% cases, respectively. Novel mutations not previously reported in CNS-DLBCL were found: AIP in 23.1%, PI3KCA in 15%, NOTCH1 in 11.4%, GNAS in 8.1%, CASP8 in 7.9%, EGFR in 6.4%, PTEN in 5.1, and KRAS in 2.6% of cases. Survival was significantly longer for patients with mutated MYD88 (8.7 months vs 1.7 months; log-rank test = 5.43; P = .020) and for patients with mutated CD79B (10.8 months vs 2.5 months; log-rank test = 4.64; P = .031). MYD88 and CD79B predicted a longer survival in patients affected by CNS-DLBCL. Notably, we identified novel mutations that enrich the mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and receptor tyrosine kinase-RAS-mitogen-activated protein kinase signaling in a subset of CNS-DLBCL, and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Simona Righi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Cirillo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Marica Iommi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Maura Rossi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Gianmarco Bagnato
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Alessandro Broccoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit.
| |
Collapse
|
124
|
Kim PM, Nejati R, Lu P, Thakkar D, Mackrides N, Dupoux V, Nakhoda S, Baldwin DA, Pei J, Dave SS, Wang YL, Wasik MA. Leukemic presentation and progressive genomic alterations of MCD/C5 diffuse large B-cell lymphoma (DLBCL). Cold Spring Harb Mol Case Stud 2023; 9:a006283. [PMID: 37730436 PMCID: PMC10815299 DOI: 10.1101/mcs.a006283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.
Collapse
Affiliation(s)
- Patricia M Kim
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Pin Lu
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | - Nicholas Mackrides
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Vanessa Dupoux
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Shazia Nakhoda
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Don A Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Sandeep S Dave
- Duke University, Durham, North Carolina 27708, USA
- Data Driven Bioscience, Durham, North Carolina 27707, USA
| | - Y Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Mariusz A Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
| |
Collapse
|
125
|
Katsuragawa‐Taminishi Y, Mizutani S, Kawaji‐Kanayama Y, Onishi A, Okamoto H, Isa R, Mizuhara K, Muramatsu A, Fujino T, Tsukamoto T, Shimura Y, Taniwaki M, Miyagawa‐Hayashino A, Konishi E, Kuroda J. Triple targeting of RSK, AKT, and S6K as pivotal downstream effectors of PDPK1 by TAS0612 in B-cell lymphomas. Cancer Sci 2023; 114:4691-4705. [PMID: 37840379 PMCID: PMC10728023 DOI: 10.1111/cas.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
B-cell lymphomas (BCLs) are the most common disease entity among hematological malignancies and have various genetically and molecularly distinct subtypes. In this study, we revealed that the blockade of phosphoinositide-dependent kinase-1 (PDPK1), the master kinase of AGC kinases, induces a growth inhibition via cell cycle arrest and the induction of apoptosis in all eight BCL-derived cell lines examined, including those from activated B-cell-like diffuse large B-cell lymphoma (DLBCL), double expressor DLBCL, Burkitt lymphoma, and follicular lymphoma. We also demonstrated that, in these cell lines, RSK2, AKT, and S6K, but not PLK1, SGK, or PKC, are the major downstream therapeutic target molecules of PDPK1 and that RSK2 plays a central role and AKT and S6K play subsidiary functional roles as the downstream effectors of PDPK1 in cell survival and proliferation. Following these results, we confirmed the antilymphoma efficacy of TAS0612, a triple inhibitor for total RSK, including RSK2, AKT, and S6K, not only in these cell lines, regardless of disease subtypes, but also in all 25 patient-derived B lymphoma cells of various disease subtypes. At the molecular level, TAS0612 caused significant downregulation of MYC and mTOR target genes while inducing the tumor suppressor TP53INP1 protein in these cell lines. These results prove that the simultaneous blockade of RSK2, AKT, and S6K, which are the pivotal downstream substrates of PDPK1, is a novel therapeutic target for the various disease subtypes of BCLs and line up TAS0612 as an attractive candidate agent for BCLs for future clinical development.
Collapse
Affiliation(s)
- Yoko Katsuragawa‐Taminishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuka Kawaji‐Kanayama
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Akio Onishi
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
- Department of Blood TransfusionKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| | | | - Eiichi Konishi
- Department of Surgical PathologyKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of MedicineKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
126
|
Campo E. The 2022 classifications of lymphoid neoplasms : Keynote. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:121-127. [PMID: 37957421 DOI: 10.1007/s00292-023-01247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Classification of hematological neoplasms in the past 25 years has been generated through international efforts to achieve broad consensus among professionals. In recent years, the understanding of lymphoid neoplasms has advanced notably, particularly with the impact of genomic studies. Two classifications of these neoplasms were produced in 2022. The International Consensus Classification (ICC) was generated following the same successful process used for the third, fourth, and updated fourth editions of the World Health Organization (WHO) Classification of Hematologic Neoplasms, coordinated by a steering committee approved by the Executive Committees of the European Association for Haematopathology and the Society of Hematopathology. The topics were prepared by different working groups and subsequently discussed in the clinical advisory committee (CAC) meeting with the participation of a large group of pathologists, clinicians, and scientists who all approved the classification after reaching consensus on all topics. Simultaneously, the International Agency for Cancer Research (IARC) of the WHO has produced the fifth edition of the classification of these neoplasms with a group of professionals appointed by the agency who discussed the proposed classification in different meetings. The definition and criteria for diagnosis of many entities have been refined in both proposals. Terminology for some diseases has been adapted to the current knowledge of their biology. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many entities. Although most categories are similar in both classifications, there are also conceptual differences and differences in the diagnostic criteria for some diseases.
Collapse
Affiliation(s)
- Elias Campo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.
- Laboratory of Pathology, Clinic Barcelona Hospital, Calle Villarroel 170, 08015, Barcelona, Spain.
| |
Collapse
|
127
|
Dong N, Perez-Lamas L, Chavez JC. Emerging synthetic drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Emerg Drugs 2023; 28:181-190. [PMID: 37649373 DOI: 10.1080/14728214.2023.2250722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma. Recent advances in immunotherapy such as chimeric antigen receptor T-cell therapy have significantly improved the outcomes in patients. Despite those advances, disease still recurs in many patients after multiple lines of therapy, and they eventually die. Many novel agents are under investigation. In this review, we focus on the synthetic drugs, usually small-molecule oral agents, that target a specific tumor-cell survival pathway. AREAS COVERED We discuss immunomodulatory drugs, cereblon E3 ligase modulators, Bruton tyrosine kinase degraders, B-cell lymphoma-2 inhibitors, Enhancer of Zeste 2 inhibitors, IRAK4 inhibitors/IRAK4 protein degraders, bromodomain and extraterminal inhibitors, cyclin-dependent kinase 9 inhibitors, and menin inhibitors. We focus on their mechanisms of action, activities in DLBCL, and, in some cases, toxicity. We also discuss the challenges in developing synthetic drugs in DLBCL. EXPERT OPINION Synthetic drugs hold great potential for treating DLBCL. Many phase 1/2 trials are ongoing. To maximize their clinical benefit, a better understanding of the biology of this heterogeneous group of diseases is needed, synergic combinations need to be identified, and the sequencing of therapies needs to be considered.
Collapse
Affiliation(s)
- Ning Dong
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| | | | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
128
|
Zayac AS, Landsburg DJ, Hughes ME, Bock AM, Nowakowski GS, Ayers EC, Girton M, Hu M, Beckman AK, Li S, Medeiros LJ, Chang JE, Stepanovic A, Kurt H, Sandoval-Sus J, Ansari-Lari MA, Kothari SK, Kress A, Xu ML, Torka P, Sundaram S, Smith SD, Naresh KN, Karimi YH, Epperla N, Bond DA, Farooq U, Saad M, Evens AM, Pandya K, Naik SG, Kamdar M, Haverkos B, Karmali R, Oh TS, Vose JM, Nutsch H, Rubinstein PG, Chaudhry A, Olszewski AJ. High-grade B-cell lymphoma, not otherwise specified: a multi-institutional retrospective study. Blood Adv 2023; 7:6381-6394. [PMID: 37171397 PMCID: PMC10598493 DOI: 10.1182/bloodadvances.2023009731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
In this multi-institutional retrospective study, we examined the characteristics and outcomes of 160 patients with high-grade B-cell lymphoma, not otherwise specified (HGBL-NOS)-a rare category defined by high-grade morphologic features and lack of MYC rearrangements with BCL2 and/or BCL6 rearrangements ("double hit"). Our results show that HGBL-NOS tumors are heterogeneous: 83% of patients had a germinal center B-cell immunophenotype, 37% a dual-expressor immunophenotype (MYC and BCL2 expression), 28% MYC rearrangement, 13% BCL2 rearrangement, and 11% BCL6 rearrangement. Most patients presented with stage IV disease, a high serum lactate dehydrogenase, and other high-risk clinical factors. Most frequent first-line regimens included dose-adjusted cyclophosphamide, doxorubicin, vincristine, and etoposide, with rituximab and prednisone (DA-EPOCH-R; 43%); rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP; 33%); or other intensive chemotherapy programs. We found no significant differences in the rates of complete response (CR), progression-free survival (PFS), or overall survival (OS) between these chemotherapy regimens. CR was attained by 69% of patients. PFS at 2 years was 55.2% and OS was 68.1%. In a multivariable model, the main prognostic factors for PFS and OS were poor performance status, lactate dehydrogenase >3 × upper limit of normal, and a dual-expressor immunophenotype. Age >60 years or presence of MYC rearrangement were not prognostic, but patients with TP53 alterations had a dismal PFS. Presence of MYC rearrangement was not predictive of better PFS in patients treated with DA-EPOCH-R vs R-CHOP. Improvements in the diagnostic criteria and therapeutic approaches beyond dose-intense chemotherapy are needed to overcome the unfavorable prognosis of patients with HGBL-NOS.
Collapse
Affiliation(s)
- Adam S. Zayac
- Division of Hematology/Oncology, The Warren Alpert Medical School Medical School of Brown University, Providence, RI
| | | | | | | | | | - Emily C. Ayers
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Mark Girton
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA
| | - Marie Hu
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Amy K. Beckman
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Shaoying Li
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - L. Jeffrey Medeiros
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julie E. Chang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Adam Stepanovic
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Habibe Kurt
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Jose Sandoval-Sus
- Department of Malignant Hematology and Cellular Therapy, Moffitt Cancer Center at Memorial Healthcare System, Pembroke Pines, FL
| | | | - Shalin K. Kothari
- Division of Hematology, Yale University School of Medicine, New Haven, CT
| | - Anna Kress
- Division of Hematology, Yale University School of Medicine, New Haven, CT
| | - Mina L. Xu
- Department of Pathology and Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT
| | - Pallawi Torka
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Suchitra Sundaram
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Stephen D. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| | | | - Yasmin H. Karimi
- Division of Hematology-Oncology, University of Michigan Health, Ann Arbor, MI
| | | | - David A. Bond
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Umar Farooq
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Mahak Saad
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Andrew M. Evens
- Department of Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Karan Pandya
- Department of Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Seema G. Naik
- Penn State Cancer Institute, Penn State Hershey Medical Center, Hershey, PA
| | - Manali Kamdar
- Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado, Denver, CO
| | - Bradley Haverkos
- Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado, Denver, CO
| | - Reem Karmali
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Timothy S. Oh
- Division of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Julie M. Vose
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Heather Nutsch
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Paul G. Rubinstein
- Department of Medicine, Section of Hematology-Oncology, University of Illinois, Chicago, IL
| | - Amina Chaudhry
- Department of Medicine, Section of Hematology-Oncology, University of Illinois, Chicago, IL
| | - Adam J. Olszewski
- Division of Hematology/Oncology, The Warren Alpert Medical School Medical School of Brown University, Providence, RI
| |
Collapse
|
129
|
Xiao F, Cai YM, Fang JC, Shen YY, Yu BH, Zhang YW, Zhu D, Li ZH, Li GQ, Hou J, Zhang MY, Huang HH. Diffuse large B-cell lymphoma with continuously elevated immunoglobulin M following treatment: a case report with pathologic, immunophenotypic, and molecular analyses. Front Genet 2023; 14:1228372. [PMID: 38028606 PMCID: PMC10657880 DOI: 10.3389/fgene.2023.1228372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
A rare subtype of diffuse large B-cell lymphoma (DLBCL) has been reported to be accompanied by elevated immunoglobulin M (IgM) paraprotein in the serum at diagnosis, called as IgMs-DLBCL. The monoclonal IgM paraprotein disappears soon after treatment in most of these patients. Here, we described a DLBCL patient with continuously elevated IgM following therapy. A 59-year-old male was diagnosed with DLBCL (GCB subtype per Hans algorithm, stage IA) with involvement of the right cervical lymph node. After six cycles of immuno-chemotherapy with the R-CHOP regimen, complete metabolic remission was achieved, but an elevated level of serum IgM persisted. To investigate the origin of elevated IgM, pathologic, immunophenotypic, and molecular analyses of lymph node and bone marrow (BM) samples were performed pre- and post-treatment. BM infiltration of lymphoplasmacytic cells, and a typical immunophenotypic profile by flow cytometry supported the diagnosis of Waldenström macroglobulinemia (WM). The MCD subtype of DLBCL was identified by next-generation sequencing of the lymph node at initial diagnosis characterized by co-occurring point mutations in MYD88 L265P and CD79B. Additionally, two different dominant clonotypes of the immunoglobulin heavy chain (IGH) were detected in the lymph node and BM by IGH sequencing, which was IGHV 3-11*06/IGHJ 3*02 and IGHV 3-11*06/IGHJ 6*02, respectively, speculating to be two independent clonal origins. This study will provide a panoramic understanding of the origin or biological characteristics of DLBCL co-occurring with WM.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong-Mei Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Chen Fang
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Ying Shen
- Department of Pathology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Wei Zhang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Hua Li
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Qing Li
- Shanghai Rightongene Biomedical Technology Co., Ltd., Shanghai, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Yue Zhang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Hui Huang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
130
|
Hilton LK, Scott DW, Morin RD. Biological heterogeneity in diffuse large B-cell lymphoma. Semin Hematol 2023; 60:267-276. [PMID: 38151380 DOI: 10.1053/j.seminhematol.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is heterogeneous both in clinical outcomes and the underlying disease biology. Over the last 2 decades, several different approaches for dissecting biological heterogeneity have emerged. Gene expression profiling (GEP) stratifies DLBCL into 3 broad groups (ABC, GCB, and DZsig/MHG), each with parallels to different normal mature B cell developmental states and prognostic implications. More recently, several different genomic approaches have been developed to categorize DLBCL based on the co-occurrence of tumor somatic mutations, identifying more granular biologically unified subgroups that complement GEP-based approaches. We review the molecular approaches and clinical evidence supporting the stratification of DLBCL patients based on tumor biology. By offering a platform for subtype-guided therapy, these divisions remain a promising avenue for improving patient outcomes, especially in subgroups with inferior outcomes with current standard-of-care therapy.
Collapse
Affiliation(s)
- Laura K Hilton
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D Morin
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
131
|
Parry EM, Roulland S, Okosun J. DLBCL arising from indolent lymphomas: How are they different? Semin Hematol 2023; 60:277-284. [PMID: 38072721 DOI: 10.1053/j.seminhematol.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 03/12/2024]
Abstract
Transformation to diffuse large B-cell lymphoma (DLBCL) is a recognized, but unpredictable, clinical inflection point in the natural history of indolent lymphomas. Large retrospective studies highlight a wide variability in the incidence of transformation across the indolent lymphomas and the adverse outcomes associated with transformed lymphomas. Opportunities to dissect the biology of transformed indolent lymphomas have arisen with evolving technologies and unique tissue collections enabling a growing appreciation, particularly, of their genetic basis, how they relate to the preceding indolent lymphomas and the comparative biology with de novo DLBCL. This review summarizes our current understanding of both the clinical and biological aspects of transformed lymphomas and the outstanding questions that remain.
Collapse
Affiliation(s)
- Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sandrine Roulland
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; Department of Haemato-Oncology, St Bartholomew's Hospital, London, UK.
| |
Collapse
|
132
|
Tavakkoli M, Barta SK. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am J Hematol 2023; 98:1791-1805. [PMID: 37647158 DOI: 10.1002/ajh.27075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with varying clinical outcomes. Our understanding of its molecular makeup continues to improve risk stratification, and artificial-intelligence and ctDNA-based analyses have the potential to enhance risk assessment and disease monitoring. R-CHOP and Pola-R-CHP are used in the frontline setting; chimeric antigen receptor therapy (CART) is now the new standard-of-care for most with primary refractory disease; both CART and autologous stem cell transplantation are utilized in the relapsed and refractory setting. In this review, we summarize the classification and management of DLBCL with an emphasis on recent advances in the field.
Collapse
Affiliation(s)
- Montreh Tavakkoli
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan K Barta
- Department of Hematology Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
133
|
Rodrigues-Fernandes CI, Martins-Chaves RR, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Soares CD, Moreira VR, Lebron YAR, Santos LVDS, Lange LC, Canuto GAB, Gomes CC, de Macedo AN, Pontes HAR, Burbano RMR, Martins MD, Pires FR, Mesquita RA, Gomez RS, Santos-Silva AR, Lopes MA, Vargas PA, Fonseca FP. The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified. Leuk Lymphoma 2023; 64:1771-1781. [PMID: 37462418 DOI: 10.1080/10428194.2023.2234523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 11/07/2023]
Abstract
Altered metabolic fingerprints of Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS) may offer novel opportunities to identify new biomarkers and improve the understanding of its pathogenesis. This study aimed to investigate the modified metabolic pathways in extranodal, germinal center B-cell (GCB) and non-GCB DLBCL NOS from the head and neck. Formalin-fixed paraffin-embedded (FFPE) tissues from eleven DLBCL NOS classified according to Hans' algorithm using immunohistochemistry, and five normal lymphoid tissues (LT) were analyzed by high-performance liquid chromatography-mass spectrometry-based untargeted metabolomics. Partial Least Squares Discriminant Analysis showed that GCB and non-GCB DLBCL NOS have a distinct metabolomics profile, being the former more similar to normal lymphoid tissues. Metabolite pathway enrichment analysis indicated the following altered pathways: arachidonic acid, tyrosine, xenobiotics, vitamin E metabolism, and vitamin A. Our findings support that GCB and non-GCB DLBCL NOS has a distinct metabolomic profile, in which GCB possibly shares more metabolic similarities with LT than non-GCB DLBCL NOS.
Collapse
Affiliation(s)
- Carla Isabelly Rodrigues-Fernandes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Hélder Antônio Rebelo Pontes
- Service of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fábio Ramôa Pires
- Oral Pathology, Dental School, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
134
|
Davies JR, Hilton LK, Jiang A, Barrans S, Burton C, Johnson PWM, Davies AJ, Du MQ, Tooze R, Cucco F, Care MA, Morin RD, Steidl C, Sha C, Westhead DR, Scott DW. Comparison of MHG and DZsig reveals shared biology and a core overlap group with inferior prognosis in DLBCL. Blood Adv 2023; 7:6156-6162. [PMID: 37595057 PMCID: PMC10582343 DOI: 10.1182/bloodadvances.2023010673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023] Open
Affiliation(s)
- John R. Davies
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura K. Hilton
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aixiang Jiang
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Catherine Burton
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Peter W. M. Johnson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew J. Davies
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ming-Qing Du
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Reuben Tooze
- Section of Experimental Haematology, University of Leeds, Leeds, United Kingdom
| | - Francesco Cucco
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Institute of Clinical Physiology (IFC), Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Matthew A. Care
- Section of Experimental Haematology, University of Leeds, Leeds, United Kingdom
| | - Ryan D. Morin
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Christian Steidl
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chulin Sha
- Institute of Basic Medicine and Cancer, Chinese Academy of Science, Hangzhou, China
| | - David R. Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David W. Scott
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
135
|
Li X, Luo D, Zhang L, Li Q, Fan J, Zhang J, Huang B, Yang M, Nie X, Chang X, Pan H. Accurate interpretation of p53 immunohistochemical patterns is a surrogate biomarker for TP53 alterations in large B-cell lymphoma. BMC Cancer 2023; 23:1008. [PMID: 37858047 PMCID: PMC10588220 DOI: 10.1186/s12885-023-11513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To clarify the relationship between p53 immunohistochemistry (IHC) staining and TP53 alterations (including mutations and deletions) in large B-cell lymphomas (LBCLs) and to explore the possibility of p53 IHC expression patterns as surrogate markers for TP53 alterations. METHODS A total of 95 patients diagnosed with LBCLs were selected, and paraffin samples were taken for TP53 gene sequencing, fluorescence in situ hybridization and p53 IHC staining. The results were interpreted by experienced pathologists and molecular pathologists. RESULTS Forty-three nonsynonymous TP53 mutations and p53 deletions were detected in 40 cases, whereas the remaining 55 cases had wild-type TP53 genes. The majority of TP53 mutations (34/43, 79.1%) occurred in exons 4-8, and R248Q was the most common mutation codon (4/43, 9.3%). The highest frequency single nucleotide variant was C > T (43.6%). p53 expression was interpreted as follows: Pattern A: p53 staining was positive in 0%-3% of tumor cells, Pattern B: p53 staining was positive in 4-65% of tumor cells, Pattern C: more than 65% of tumor cells were stained positive for p53. The p53 IHC expression patterns were associated with TP53 alterations. Gain of function variants and wild-type TP53 tended to exhibit type C and B p53 expression patterns, but loss of function variants were exclusively seen in type A cases. Additionally, interpretation of the staining by various observers produced significant reproducibility. CONCLUSIONS The p53 IHC expression patterns can be used to predict TP53 alterations and are reliable for diverse alteration types, making them possible surrogate biomarkers for TP53 alterations in LBCLs.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liling Zhang
- Cancer Center, Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuhui Li
- Cancer Center, Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
136
|
Qiu Z, Khalife J, Lin AP, Ethiraj P, Jaafar C, Chiou L, Huelgas-Morales G, Aslam S, Arya S, Gupta YK, Dahia PLM, Aguiar RCT. IRF8-mutant B cell lymphoma evades immunity through a CD74-dependent deregulation of antigen processing and presentation in MHC CII complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.560755. [PMID: 37873241 PMCID: PMC10592808 DOI: 10.1101/2023.10.14.560755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In diffuse large B-cell lymphoma (DLBCL), the transcription factor IRF8 is the target of a series of potentially oncogenic events, including, chromosomal translocation, focal amplification, and super-enhancer perturbations. IRF8 is also frequently mutant in DLBCL, but how these variants contribute to lymphomagenesis is unknown. We modeled IRF8 mutations in DLBCL and found that they did not meaningfully impact cell fitness. Instead, IRF8 mutants, mapping either to the DNA-binding domain (DBD) or c-terminal tail, displayed diminished transcription activity towards CIITA, a direct IRF8 target. In primary DLBCL, IRF8 mutations were mutually exclusive with mutations in genes involved in antigen presentation. Concordantly, expression of IRF8 mutants in murine B cell lymphomas uniformly suppressed CD4, but not CD8, activation elicited by antigen presentation. Unexpectedly, IRF8 mutation did not modify MHC CII expression on the cell surface, rather it downmodulated CD74 and HLA- DM, intracellular regulators of antigen peptide processing/loading in the MHC CII complex. These changes were functionally relevant as, in comparison to IRF8 WT, mice harboring IRF8 mutant lymphomas displayed a significantly higher tumor burden, in association with a substantial remodeling of the tumor microenvironment (TME), typified by depletion of CD4, CD8, Th1 and NK cells, and increase in T-regs and Tfh cells. Importantly, the clinical and immune phenotypes of IRF8-mutant lymphomas were rescued in vivo by ectopic expression of CD74. Deconvolution of bulk RNAseq data from primary human DLBCL recapitulated part of the immune remodeling detected in mice and pointed to depletion of dendritic cells as another feature of IRF8 mutant TME. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.
Collapse
|
137
|
Zhang MC, Tian S, Fu D, Wang L, Cheng S, Yi HM, Jiang XF, Song Q, Zhao Y, He Y, Li JF, Mu RJ, Fang H, Yu H, Xiong H, Li B, Chen SJ, Xu PP, Zhao WL. Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: The randomized GUIDANCE-01 trial. Cancer Cell 2023; 41:1705-1716.e5. [PMID: 37774697 DOI: 10.1016/j.ccell.2023.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/25/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
We report the results of GUIDANCE-01 (NCT04025593), a randomized, phase II trial of R-CHOP alone or combined with targeted agents (R-CHOP-X) guided by genetic subtyping of newly diagnosed, intermediate-risk, or high-risk diffuse large B cell lymphoma (DLBCL). A total of 128 patients were randomized 1:1 to receive R-CHOP-X or R-CHOP. The study achieved the primary endpoint, showing significantly higher complete response rate with R-CHOP-X than R-CHOP (88% vs. 66%, p = 0.003), with overall response rate of 92% vs. 73% (p = 0.005). Two-year progression-free survival rates were 88% vs. 63% (p < 0.001), and 2-year overall survival rates were 94% vs. 77% (p = 0.001). Meanwhile, post hoc RNA-sequencing validated our simplified genetic subtyping algorithm and previously established lymphoma microenvironment subtypes. Our findings highlight the efficacy and safety of R-CHOP-X, a mechanism-based tailored therapy, which dually targeted genetic and microenvironmental alterations in patients with newly diagnosed DLBCL.
Collapse
Affiliation(s)
- Mu-Chen Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Tian
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Song
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong-Ji Mu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Department of Research and Development, Shanghai Righton Biotechnology Co. Ltd, Shanghai, China
| | - Hui Xiong
- Department of Research and Development, Shanghai Righton Biotechnology Co. Ltd, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
138
|
Mandato E, Yan Q, Ouyang J, Paczkowska J, Qin Y, Hao Y, Bojarczuk K, Hansen J, Chapuy B, Rodig SJ, Khan SJ, Redd RA, Shipp MA. MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8. Blood 2023; 142:1219-1232. [PMID: 37467575 DOI: 10.1182/blood.2023019865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease with at least 5 recognized molecular subtypes. Cluster 5 (C5)/MCD tumors frequently exhibit concurrent alterations in the toll-like receptor (TLR) and B-cell receptor (BCR) pathway members, MYD88L265P and CD79B, and have a less favorable prognosis. In healthy B cells, the synergy between TLR and BCR signaling pathways integrates innate and adaptive immune responses and augments downstream NF-κB activation. In addition, physiologic TLR9 pathway engagement via MYD88, protein tyrosine kinase 2 (PYK2), and dedicator of cytokinesis 8 (DOCK8) increases proximal BCR signaling in healthy murine B cells. Although C5/MCD DLBCLs are selectively sensitive to Bruton tyrosine kinase (BTK) inhibition in in vitro studies and certain clinical trials, the role of mutated MYD88 in proximal BCR signaling remains undefined. Using engineered DLBCL cell line models, we found that concurrent MYD88L265P and CD79B alterations significantly increased the magnitude and duration of proximal BCR signaling, at the level of spleen tyrosine kinase and BTK, and augmented PYK2-dependent DOCK8 phosphorylation. MYD88L265P DLBCLs have significantly increased colocalization of DOCK8 with both MYD88 and the proximal BCR-associated Src kinase, LYN, in comparison with MYD88WT DLBCLs, implicating DOCK8 in MYD88L265P/proximal BCR cross talk. Additionally, DOCK8 depletion selectively decreased proximal BCR signaling, cellular proliferation, and viability of DLBCLs with endogenous MYD88L265P/CD79BY196F alterations and increased the efficacy of BTK blockade in these lymphomas. Therefore, MYD88L265P/DOCK8-enhanced proximal BCR signaling is a likely mechanism for the increased sensitivity of C5/MCD DLBCLs to BTK blockade.
Collapse
Affiliation(s)
- Elisa Mandato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Qingsheng Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jing Ouyang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Bristol Myers Squibb, Cambridge, MA
| | - Julia Paczkowska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Yan Qin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Parthenon Therapeutics, Boston, MA
| | - Yansheng Hao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY
| | - Kamil Bojarczuk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Julia Hansen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Björn Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Hematology, Oncology, and Tumor Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Sumbul Jawed Khan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Margaret A Shipp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
139
|
Pickard K, Stephenson E, Mitchell A, Jardine L, Bacon CM. Location, location, location: mapping the lymphoma tumor microenvironment using spatial transcriptomics. Front Oncol 2023; 13:1258245. [PMID: 37869076 PMCID: PMC10586500 DOI: 10.3389/fonc.2023.1258245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.
Collapse
Affiliation(s)
- Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Mitchell
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Haematology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Chris M. Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
140
|
Breinholt MF, Schejbel L, Gang AO, Nielsen TH, Pedersen LM, Høgdall E, Nørgaard P. Next generation sequencing in routine diagnostics of mature non-Hodgkin's B-cell lymphomas. Eur J Haematol 2023; 111:583-591. [PMID: 37452559 DOI: 10.1111/ejh.14048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Integration of molecular characterization of lymphomas in clinical diagnostics may improve subclassification and risk-stratification, and we implemented a next generation sequencing (NGS) analysis as part of routine diagnostic work-up of all mature B-cell non-Hodgkin's lymphoma (B-NHL). Here, we present data of mutational profiles with potential complementary diagnostic, prognostic, and predictive value detected in our consecutive non-selected cohort of B-NHL patients. METHODS NGS results from 298 patients with both newly diagnosed and relapsed/refractory disease were included as a single center study. NGS was performed as routine analysis together with standard diagnostic work-up using a custom-made amplicon PCR-based multiplex NGS panel covering all coding exons and consensus splice sites in 59 genes. RESULTS Mutations were detected in 94% of the 298 samples. Most lymphomas could be classified definitively, but 24 cases were classified as small B-cell lymphomas without defining characteristics. Of these, 50% (12/24 cases) could retrospectively be assigned a likely diagnostic subtype according to mutational findings. CONCLUSION Implementation of a 59 gene exome sequencing panel added diagnostic value to 50% of unclassified cases and provided in 94% of the cases possible biomarkers for disease monitoring as well as potential diagnostic, prognostic, and predictive markers for future studies.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Pathology, Herlev-Gentofte Hospital, Herlev, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Holm Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Danish Medicines Agency, Copenhagen, Denmark
| | - Lars Møller Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev-Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nørgaard
- Department of Pathology, Herlev-Gentofte Hospital, Herlev, Denmark
- Department of Pathology, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
141
|
Dcunha N, Sakhti D, Sigamani E, Chandramohan J, Korula A, George B, Manipadam MT, Pai R. Utility of reverse transcriptase - Multiplex ligation-dependant probe amplification (RT-MLPA) in the molecular classification of Diffuse Large B cell lymphoma (DLBCL) by cell-of-origin (COO). INDIAN J PATHOL MICR 2023; 66:714-719. [PMID: 38084521 DOI: 10.4103/ijpm.ijpm_326_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Classifying diffuse large B cell lymphomas, not otherwise specified (DLBCL, NOS), is based on their cell-of-origin (COO) which is included in the WHO classification (2016), is essential to characterize them better in context of prognostication. While gene expression profiling (GEP) considered the gold standard and more recently, the Nanostring-based approach, classify these tumors accurately, many laboratories with limited resources and instrumentation need an alternate approach that is reliable, inexpensive, and with a reasonable turnaround. The Reverse Transcriptase Multiplex Ligation Dependant Probe Amplification (RT-MLPA) to subtype DLBCL, NOS cases, as designed by CALYM group appears to provide a good alternative but needs to be validated in other centres. Therefore, this study evaluated DLBCL, NOS and compared the results of RT-MLPA to that obtained by immunohistochemistry using the Hans algorithm. Materials and Methods Sixty-five DLBCL, NOS cases were included and the RT-MLPA was set up and standardized using probes that were designed by the CALYM study group. Briefly, RNA was extracted converted to cDNA and the 21-gene expression classifier that also included probes to detect MYD88 mutations and EBER mRNA was performed by MLPA. The results were analyzed by the open home grown software designed by the same group and compared to the results obtained by IHC. Results Forty-four of the sixty-five cases provided concordant results (k = 0.35) and if the MYD88 results were to be used as a classifier the concordance would have improved from 67.7% to 82%. The 21 discordant cases were divided into five categories to provide a possible explanation for the discordance. Further 26% and 31% of the samples tested were positive for MYD88 mutations and EBER mRNA, respectively. The test had a turnaround of three days. Conclusion The test provided moderate (67.7%) concordance when compared with IHC and perhaps would have provided higher concordance if compared with GEP. The test also has the advantage of providing information on the MYD88 and EBV infection status. It was found to be reliable, easy to perform and standardize, requiring only routine instruments available in most molecular laboratories. The RT-MLPA assay therefore provides an alternative for laboratories that would require subtyping of DLBCL, NOS cases in the absence of an access to GEP or other instrument intensive methods.
Collapse
Affiliation(s)
- Nicholas Dcunha
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Dhananjayan Sakhti
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Jagan Chandramohan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
142
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
143
|
Koh H, Yoon SE, Kim SJ, Kim WS, Cho J. Differences in mutational signature of diffuse large B-cell lymphomas according to the primary organ. Cancer Med 2023; 12:19732-19743. [PMID: 37706649 PMCID: PMC10587923 DOI: 10.1002/cam4.6533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Comprehensive molecular subtyping of diffuse large B-cell lymphoma (DLBCL) through genetic profiling has broadened our understanding of DLBCL biology. In this study, we investigated whether DLBCL, not otherwise specified (NOS) shows differences in mutational patterns depending on the primary organ. PATIENTS AND METHODS Panel-based next-generation sequencing was performed on 345 DLBCL from various primary organs, and patterns of mutations according to primary organs were analyzed. RESULTS DLBCL showed a characteristic mutational signature in several primary organs. Among them, the mutational pattern of DLBCL in the breast and ileocecal area was particularly different from that of other DLBCL NOS. In breast DLBCL, MYD88L265P (57.1%), CD79B mutation (42.9%), and CDKN2A/B loss (71.4%) were found at high frequencies, which were similar to the mutation patterns of DLBCL of immune-privileged sites compared with DLBCL NOS. DLBCL in the ileocecal area showed a characteristic mutation pattern with the most frequent TP53 mutation (52.6%) and 18q21 gain (42.1%). This was also different from the mutational pattern observed in the stomach or other intestines. In discriminant analysis, DLBCL of the breast and ileocecal area tended to form separate genetic constellations from other DLBCL NOS. CONCLUSION DLBCL NOS has a characteristic mutational profile that depends on the primary organ. In particular, the mutational signature of DLBCL in the breast and ileocecal area was heterogeneous compared with that of other DLBCL NOS. Further research is needed to determine whether primary DLBCL in the breast and ileocecal area can be classified as an independent subtype.
Collapse
Affiliation(s)
- Hyun‐Hee Koh
- Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
- Department of Pathology, Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Internal MedicineSungkyunkwan University School of MedicineSeoulKorea
| | - Junhun Cho
- Department of Pathology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
144
|
Deaglio S. Chemoresistance pathways in DLBCL. Blood 2023; 142:943-944. [PMID: 37707876 DOI: 10.1182/blood.2023021142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
|
145
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
146
|
Bruehl FK, Ketterling RP, Rimsza LM, Santos EF, McPhail ED. "Quadruple-hit" primary testicular diffuse large B-cell lymphoma with MYD88 L265P mutation, IGH::MYC, and IRF4- and BCL6-rearrangements. J Hematop 2023; 16:161-165. [PMID: 38175404 DOI: 10.1007/s12308-023-00556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/28/2023] [Indexed: 01/05/2024] Open
Abstract
Classification of DLBCL relies on clinical, immunohistochemical, and genetic information. We report a case of primary testicular diffuse large B-cell lymphoma (PT-DLBCL) with a hitherto unreported constellation of pathologic findings to illustrate the challenges of DLBCL classification. A standard hematopathology workup was followed by gene expression profiling (GEP) to determine the DLBCL cell of origin (COO). A 75-year-old man presented with a unilateral testicular mass that had developed over the course of 1 month. Pathologic examination demonstrated involvement by DLBCL. Clinical staging revealed no systemic disease. Genetic testing showed an MYD88 mutation, as well as IGH::MYC and IRF4- and BCL6-rearrangements. Gene expression profiling demonstrated an activated B-cell expression profile. This case highlights the genetic complexity of DLBCL arising in the testis and questions the clinical significance of the identified genetic abnormalities.
Collapse
Affiliation(s)
- Frido K Bruehl
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Edward F Santos
- Department of Pathology, OSF Saint Anthony Medical Center, Rockford, IL, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
147
|
Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 2023; 23:595-610. [PMID: 36941354 PMCID: PMC11140722 DOI: 10.1038/s41577-023-00843-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Collapse
Affiliation(s)
- Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Robinette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
148
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Rodrigo JA, Song K, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse Timing Is Associated With Distinct Evolutionary Dynamics in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2023; 41:4164-4177. [PMID: 37319384 PMCID: PMC10852398 DOI: 10.1200/jco.23.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith A. Rodrigo
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin Song
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
149
|
Qin Y, Qiu T, Xie Z, Chen X, Liu P, Yang J, He X, Gui L, Zhou S, Jiang H, Zhang C, Yang S, Tang L, Shi Y. MYD88 L265P and MYD88 other variants show different molecular characteristics and prognostic significance in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023; 149:8483-8494. [PMID: 37093346 PMCID: PMC10374827 DOI: 10.1007/s00432-023-04714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/18/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE This study aims to investigate the clinical and molecular differences between diffuse large B-cell lymphoma (DLBCL) patients with MYD88L265P and MYD88other. METHODS DLBCL patients with MYD88 variations were collected from the Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CHCAMS), and Suzhou Municipal Hospital from February 6th, 2007 to May 20th, 2022. Clinicopathological parameters and treatment outcomes between MYD88L265P and MYD88other were investigated. RESULTS A total of 132 patients with MYD88 variations from a cohort of 475 DLBCL patients were included, among which, 78 were MYD88L265P, while 54 were MYD88other. MYD88L265P was more common in non-GCB subtype than MYD88other (83% vs. 60%, P = 0.004). Besides, MYD88L265P was significantly related to higher proportion of testicle/ central nervous system involvement (31% vs. 6%, P < 0.001), PIM1 mutation (71% vs. 39%, P < 0.001), and PIM1 hypermutation (28% vs. 11%, P = 0.018), compared with MYD88other. Compared with MYD88L265P, MYD88other were more likely to have higher percentage of advanced stage (60% vs. 42%, P = 0.044), extranodal site ≥ 2 (45% vs. 28%, P = 0.044), elevated LDH (55% vs. 35%, P = 0.033), positive CD10 expression (36% vs. 16%, P = 0.009), BCL-6 translocation (20% vs. 8%, P = 0.033), and NOTCH pathway gene alteration (24% vs. 13%, P = 0.040). In non-GCB DLBCL subtype, patients with MYD88other were significantly associated with worse progression free survival (PFS) than those with MYD88L265P when treated initially with R-CHOP/R-CHOP-like regimen (P = 0.010). CONCLUSION The findings of this study indicate that DLBCL patients with MYD88L265P and MYD88other are likely to be two subgroups with different clinical and molecular characteristics. The survival of patients with MYD88other is not superior than those with MYD88L265P, even poorer when focusing on the non-GCB subtype.
Collapse
Affiliation(s)
- Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zucheng Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xinrui Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Hongxin Jiang
- Department of Medical Oncology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, China
| | - Changgong Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| |
Collapse
|
150
|
Milman T, Grossniklaus HE, Goldman-Levy G, Kivelä TT, Coupland SE, White VA, Mudhar HS, Eberhart CG, Verdijk RM, Heegaard S, Gill AJ, Jager MJ, Rodríguez-Reyes AA, Esmaeli B, Hodge JC, Cree IA, on behalf of the WHO Classification of Tumours Editorial Board. The 5th Edition of the World Health Organization Classification of Tumours of the Eye and Orbit. Ocul Oncol Pathol 2023; 9:71-95. [PMID: 37900189 PMCID: PMC10601864 DOI: 10.1159/000530730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Tatyana Milman
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Hans E. Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabrielle Goldman-Levy
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tero T. Kivelä
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sarah E. Coupland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Valerie A. White
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles G. Eberhart
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Verdijk
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Heegaard
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J. Gill
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abelardo A. Rodríguez-Reyes
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
| | | | - Ian A. Cree
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - on behalf of the WHO Classification of Tumours Editorial Board
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|