101
|
Lee HT, Liu SP, Lin CH, Lee SW, Hsu CY, Sytwu HK, Hsieh CH, Shyu WC. A Crucial Role of CXCL14 for Promoting Regulatory T Cells Activation in Stroke. Theranostics 2017; 7:855-875. [PMID: 28382159 PMCID: PMC5381249 DOI: 10.7150/thno.17558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Inflammatory processes have a detrimental role in the pathophysiology of ischemic stroke. However, little is known about the endogenous anti-inflammatory mechanisms in ischemic brain. Here, we identify CXCL14 as a critical mediator of these mechanisms. CXCL14 levels were upregulated in the ischemic brains of humans and rodents. Moreover, hypoxia inducible factor-1α (HIF-1α) drives hypoxia- or cerebral ischemia (CI)-dependent CXCL14 expression via directly binding to the CXCL14 promoter. Depletion of CXCL14 inhibited the accumulation of immature dendritic cells (iDC) or regulatory T cells (Treg) and increased the infarct volume, whereas the supplementation of CXCL14 had the opposite effects. CXCL14 promoted the adhesion, migration, and homing of circulating CD11c+ iDC to the ischemic tissue via the upregulation of the cellular prion protein (PrPC), PECAM-1, and MMPs. The accumulation of Treg in ischemic areas of the brain was mediated through a cooperative effect of CXCL14 and iDC-secreted IL-2-induced Treg differentiation. Interestingly, CXCL14 largely promoted IL-2-induced Treg differentiation. These findings indicate that CXCL14 is a critical immunomodulator involved in the stroke-induced inflammatory reaction. Passive CXCL14 supplementation provides a tractable path for clinical translation in the improvement of stroke-induced neuroinflammation.
Collapse
|
102
|
Ramljak S, Herlyn H, Zerr I. Cellular Prion Protein (PrP c) and Hypoxia: True to Each Other in Good Times and in Bad, in Sickness, and in Health. Front Cell Neurosci 2016; 10:292. [PMID: 28066187 PMCID: PMC5165248 DOI: 10.3389/fncel.2016.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The cellular prion protein (PrPc) and hypoxia appear to be tightly intertwined. Beneficial effects of PrPc on neuronal survival under hypoxic conditions such as focal cerebral ischemia are strongly supported. Conversely, increasing evidence indicates detrimental effects of increased PrPc expression on cancer progression, another condition accompanied by low oxygen tensions. A switch between anaerobic and aerobic metabolism characterizes both conditions. A cellular process that might unite both is glycolysis. Putative role of PrPc in stimulation of glycolysis in times of need is indeed thought provoking. A significance of astrocytic PrPc expression for neuronal survival under hypoxic conditions and possible association of PrPc with the astrocyte-neuron lactate shuttle is considered. We posit PrPc-induced lactate production via transactivation of lactate dehydrogenase A by hypoxia inducible factor 1α as an important factor for survival of both neurons and tumor cells in hypoxic microenvironment. Concomitantly, we discuss a cross-talk between Wnt/β-catenin and PI3K/Akt signaling pathways in executing PrPc-induced activation of glycolysis. Finally, we would like to emphasize that we see a great potential in joining expertise from both fields, neuroscience and cancer research in revealing the mechanisms underlying hypoxia-related pathologies. PrPc may prove focal point for future research.
Collapse
Affiliation(s)
| | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases Göttingen, Germany
| |
Collapse
|
103
|
Wang T, Chen H, Lv K, Ji G, Liang F, Zhang Y, Wang Y, Liu X, Cao H, Kan G, Xiong J, Li Y, Qu L. Activation of HIF-1α and its downstream targets in rat hippocampus after long-term simulated microgravity exposure. Biochem Biophys Res Commun 2016; 485:591-597. [PMID: 27988334 DOI: 10.1016/j.bbrc.2016.12.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/22/2023]
Abstract
Microgravity has many detrimental impact on brain functions, however the underlying mechanism remain unclear. In present study, 28 days of tail-suspension (30°) was used to simulate microgravity in rats. We showed that oxidative stress in hippocampus was increased after 28 days of simulated microgravity in consideration of the decreased expression of NF-E2-related factor 2 (Nrf2) and the declined activities of total superoxide dismutase (T-SOD), CuZn-SOD, glutathione peroxidase (GSH-PX) and total antioxidant capacity (T-AOC). Using RNA-seq, we further investigated the effect of simulated microgravity on the expression of genes in hippocampus, and 849 genes were found to be differentially expressed. According to pathway analysis, the differentially expressed genes involved in cytoskeleton, metabolism, immunity, transcription regulation, etc. It is interesting to note that the differentially expressed genes were involved in hypoxia-associated pathway. In agreement with this, the expression of hypoxia induced factor-1α (HIF-1α), the master regulator of oxygen homeostasis, was significantly increased. Meanwhile, HIF-2α, a HIF-1α paralog, was elevated compared with the control group. The expression of pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDHA) and vascular endothelial growth factor (VEGF), three well-defined downstream targets of HIF-1α, were up-regulated in hippocampus after 28 days of simulated microgravity exposure. Additionally, brain oxygen saturation (SO2) and blood flow analyzed by the tissue oxygen analysis system were also significantly reduced. These findings indicate that simulated microgravity might cause an alteration in oxygen homeostasis, providing novel insight into better understanding of how simulated microgravity affects the function of hippocampus and a new direction to the development of countermeasure for brain dysfunction during spaceflight (actual microgravity).
Collapse
Affiliation(s)
- Tingmei Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China; Space Institute of Southern China (Shenzhen), Shamiao Road 4#, Pingdi Street, Longgang District, Shenzhen, 518117, China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Fengji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yongliang Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yanli Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hongqing Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Jianghui Xiong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
104
|
Iyalomhe O, Swierczek S, Enwerem N, Chen Y, Adedeji MO, Allard J, Ntekim O, Johnson S, Hughes K, Kurian P, Obisesan TO. The Role of Hypoxia-Inducible Factor 1 in Mild Cognitive Impairment. Cell Mol Neurobiol 2016; 37:969-977. [PMID: 27858285 DOI: 10.1007/s10571-016-0440-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 01/16/2023]
Abstract
Neuroinflammation and reactive oxygen species are thought to mediate the pathogenesis of Alzheimer's disease (AD), suggesting that mild cognitive impairment (MCI), a prodromal stage of AD, may be driven by similar insults. Several studies document that hypoxia-inducible factor 1 (HIF-1) is neuroprotective in the setting of neuronal insults, since this transcription factor drives the expression of critical genes that diminish neuronal cell death. HIF-1 facilitates glycolysis and glucose metabolism, thus helping to generate reductive equivalents of NADH/NADPH that counter oxidative stress. HIF-1 also improves cerebral blood flow which opposes the toxicity of hypoxia. Increased HIF-1 activity and/or expression of HIF-1 target genes, such as those involved in glycolysis or vascular flow, may be an early adaptation to the oxidative stressors that characterize MCI pathology. The molecular events that constitute this early adaptation are likely neuroprotective, and might mitigate cognitive decline or the onset of full-blown AD. On the other hand, prolonged or overwhelming stressors can convert HIF-1 into an activator of cell death through agents such as Bnip3, an event that is more likely to occur in late MCI or advanced Alzheimer's dementia.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Sabina Swierczek
- Department of Hematology/BMT, University of Utah School of Medicine, 30 N Medical Dr, Salt Lake City, UT, 84132, USA
| | - Ngozi Enwerem
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Yuanxiu Chen
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Monica O Adedeji
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Joanne Allard
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Oyonumo Ntekim
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Sheree Johnson
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Kakra Hughes
- Division of Endovascular Surgery, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Philip Kurian
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA.,Human Genome Center, Howard University, 2041 Georgia Ave NW, Washington, DC, 20060, USA
| | - Thomas O Obisesan
- Geriatrics Division, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC, 20060, USA. .,Howard University Clinical Research Unit (GHUCCTS CTSA), 2041 Georgia Ave, NW, Washington, DC, 20060, USA.
| |
Collapse
|
105
|
Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp Neurol 2016; 286:93-106. [PMID: 27720797 DOI: 10.1016/j.expneurol.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022]
Abstract
Episodes of cerebral hypoxia/ischemia increase the risk of dementia, which is associated with impaired learning and memory. Previous studies in rodent models of dementia indicated a favorable effect of the hypoxia-inducible factor (HIF) targets VEGF (vascular endothelial growth factor) and erythropoietin (Epo). In the present study we thus investigated whether activation of the entire adaptive HIF pathway in neurons by cell-specific deletion of the HIF suppressor prolyl-4-hydroxylase 2 (PHD2) improves cognitive abilities in young (3months) and old (18-28months) mice suffering from chronic brain hypoperfusion. Mice underwent permanent occlusion of the left common carotid artery, and cognitive function was assessed using the Morris water navigation task. Under conditions of both normal and decreased brain perfusion, neuronal PHD2 deficiency resulted in improved and faster spatial learning in young mice, which was preserved to some extent also in old animals. The loss of PHD2 in neurons resulted in enhanced hippocampal mRNA and protein levels of Epo and VEGF, but did not alter local microvascular density, dendritic spine morphology, or expression of synaptic plasticity-related genes in the hippocampus. Instead, better cognitive function in PHD2 deficient animals was accompanied by an increased number of neuronal precursor cells along the subgranular zone of the dentate gyrus. Overall, our current pre-clinical findings indicate an important role for the endogenous oxygen sensing machinery, encompassing PHDs, HIFs and HIF target genes, for proper cognitive function. Thus, pharmacological compounds affecting the PHD-HIF axis might well be suited to treat cognitive dysfunction and neurodegenerative processes.
Collapse
|
106
|
Hypoxia-Sensitive Materials for Biomedical Applications. Ann Biomed Eng 2016; 44:1931-45. [DOI: 10.1007/s10439-016-1578-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
107
|
Chen S, Sang N. Hypoxia-Inducible Factor-1: A Critical Player in the Survival Strategy of Stressed Cells. J Cell Biochem 2016; 117:267-78. [PMID: 26206147 PMCID: PMC4715696 DOI: 10.1002/jcb.25283] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 12/31/2022]
Abstract
HIF-1 activation has been well known as an adaptive strategy to hypoxia. Recently it became clear that hypoxia was often accompanied by insufficient supply of glucose or amino acids as a common result of poor circulation that frequently occurs in solid tumors and ischemic lesions, creating a mixed nutrient insufficiency. In response to nutrient insufficiency, stressed cells elicit survival strategies including activation of AMPK and HIF-1 to cope with the stress. Particularly, in solid tumors, HIF-1 promotes cell survival and migration, stimulates angiogenesis, and induces resistance to radiation and chemotherapy. Interestingly, radiation and some chemotherapeutics are reported to trigger the activation of AMPK. Here we discuss the recent advances that may potentially link the stress responsive mechanisms including AMPK activation, ATF4 activation and the enhancement of Hsp70/Hsp90 function to HIF-1 activation. Potential implication and application of the stress-facilitated HIF-1 activation in solid tumors and ischemic disorders will be discussed. A better understanding of HIF-1 activation in cells exposed to stresses is expected to facilitate the design of therapeutic approaches that specifically modulate cell survival strategy.
Collapse
Affiliation(s)
- Shuyang Chen
- Department of Biology and Graduate Program of Biological Sciences, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania
| | - Nianli Sang
- Department of Biology and Graduate Program of Biological Sciences, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sydney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
108
|
Vakhitova YV, Sadovnikov SV, Borisevich SS, Ostrovskaya RU, A.Gudasheva T, Seredenin SB. Molecular Mechanism Underlying the Action of Substituted Pro-Gly Dipeptide Noopept. Acta Naturae 2016; 8:82-9. [PMID: 27099787 PMCID: PMC4837574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was performed in order to reveal the effect of Noopept (ethyl ester of N-phenylacetyl-Lprolylglycine, GVS-111) on the DNA-binding activity of transcriptional factors (TF) in HEK293 cells transiently transfected with luciferase reporter constructs containing sequences for CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, HSF1, and HIF-1. Noopept (10 μM) was shown to increase the DNA-binding activity of HIF-1 only, while lacking the ability to affect that of CREB, NFAT, NF-κB, p53, STAT1, GAS, VDR, and HSF1. Noopept provoked an additional increase in the DNA-binding activity of HIF-1 when applied in conditions of CoCl2-induced HIF- 1 stabilization. The degree of this HIF-positive effect of Noopept was shown to be concentration-dependent. Piracetam (1 mM) failed to affect significantly any of the TF under study. The results of molecular docking showed that Noopept (L-isomer), as well as its metabolite, L-isomer of N-phenyl-acetylprolyl, unlike its pharmacologically ineffective D-isomer, is able to bind to the active site of prolyl hydroxylase 2. Taking into account the important role of the genes activated by HIF-1 in the formation of an adaptive response to hypoxia, data on the ability of Noopept to provoke a selective increase in the DNA-binding activity of HIF-1 explain the wide spectrum of neurochemical and pharmacological effects of Noopept revealed before. The obtained data allow one to propose the HIF-positive effect as the primary mechanism of the activity of this Pro-Gly-containing dipeptide.
Collapse
Affiliation(s)
- Y. V. Vakhitova
- State Zakusov Institute of Pharmacology , Baltiyskaya Str., 8, 125315, Moscow, Russia
- Institute of Biochemistry and Genetics of Ufa Scientific Centre RAS, Prospekt Oktyabrya, 71, 450065 , Ufa, Russia
| | - S. V. Sadovnikov
- Institute of Biochemistry and Genetics of Ufa Scientific Centre RAS, Prospekt Oktyabrya, 71, 450065 , Ufa, Russia
| | - S. S. Borisevich
- Institute of Biochemistry and Genetics of Ufa Scientific Centre RAS, Prospekt Oktyabrya, 71, 450065 , Ufa, Russia
- Ufa Institute of Chemistry RAS, Prospekt Oktyabrya, 71, 450065, Ufa, Russia
| | - R. U. Ostrovskaya
- State Zakusov Institute of Pharmacology , Baltiyskaya Str., 8, 125315, Moscow, Russia
| | - T. A.Gudasheva
- State Zakusov Institute of Pharmacology , Baltiyskaya Str., 8, 125315, Moscow, Russia
| | - S. B. Seredenin
- State Zakusov Institute of Pharmacology , Baltiyskaya Str., 8, 125315, Moscow, Russia
| |
Collapse
|
109
|
Raman R, Allen SP, Goodall EF, Kramer S, Ponger LL, Heath PR, Milo M, Hollinger HC, Walsh T, Highley JR, Olpin S, McDermott CJ, Shaw PJ, Kirby J. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol Appl Neurobiol 2015; 41:201-26. [PMID: 24750211 PMCID: PMC4329387 DOI: 10.1111/nan.12147] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
Aims Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS. Methods Microarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes. Results Gene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration. Conclusions The data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rohini Raman
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Involvement of inhibitory PAS domain protein in neuronal cell death in Parkinson's disease. Cell Death Discov 2015; 1:15015. [PMID: 27551449 PMCID: PMC4981001 DOI: 10.1038/cddiscovery.2015.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 11/23/2022] Open
Abstract
Inhibitory PAS domain protein (IPAS), a repressor of hypoxia-inducible factor-dependent transcription under hypoxia, was found to exert pro-apoptotic activity in oxidative stress-induced cell death. However, physiological and pathological processes associated with this activity are not known. Here we show that IPAS is a key molecule involved in neuronal cell death in Parkinson’s disease (PD). IPAS was ubiquitinated by Parkin for proteasomal degradation following carbonyl cyanide m-chlorophenyl hydrazone treatment. Phosphorylation of IPAS at Thr12 by PTEN-induced putative kinase 1 (PINK1) was required for ubiquitination to occur. Activation of the PINK1–Parkin pathway attenuated IPAS-dependent apoptosis. IPAS was markedly induced in the midbrain following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, and IPAS-deficient mice showed resistance to MPTP-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). A significant increase in IPAS expression was found in SNpc neurons in patients with sporadic PD. These results indicate a mechanism of neurodegeneration in PD.
Collapse
|
111
|
Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N. AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 2015; 14:2520-36. [PMID: 26061431 PMCID: PMC4614078 DOI: 10.1080/15384101.2015.1055426] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) transcriptionally promotes production of adenosine triphosphate (ATP) whereas AMPK senses and regulates cellular energy homeostasis. A histone deacetylase (HDAC) activity has been proven to be critical for HIF-1 activation but the underlying mechanism and its role in energy homesostasis remain unclear. Here, we demonstrate that HIF-1 activation depends on a cytosolic, enzymatically active HDAC5. HDAC5 knockdown impairs hypoxia-induced HIF-1α accumulation and HIF-1 transactivation, whereas HDAC5 overexpression enhances HIF-1α stabilization and nuclear translocation. Mechanistically, we show that Hsp70 is a cytosolic substrate of HDAC5; and hyperacetylation renders Hsp70 higher affinity for HIF-1α binding, which correlates with accelerated degradation and attenuated nuclear accumulation of HIF-1α. Physiologically, AMPK-triggered cytosolic shuttling of HDAC5 is critical; inhibition of either AMPK or HDAC5 impairs HIF-1α nuclear accumulation under hypoxia or low glucose conditions. Finally, we show specifically suppressing HDAC5 is sufficient to inhibit tumor cell proliferation under hypoxic conditions. Our data delineate a novel link between AMPK, the energy sensor, and HIF-1, the major driver of ATP production, indicating that specifically inhibiting HDAC5 may selectively suppress the survival and proliferation of hypoxic tumor cells.
Collapse
Affiliation(s)
- Shuyang Chen
- a Department of Biology and Graduate Program of Biological Sciences; CoAS; Department of Pathology & Laboratory Medicine; DUCOM; Drexel University ; Philadelphia , PA USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
113
|
Zhong R, Xu H, Chen G, Zhao G, Gao Y, Liu X, Ma S, Dong L. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells. Tumour Biol 2015; 36:7077-83. [PMID: 25874499 DOI: 10.1007/s13277-015-3425-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major effector in cell survival response to hypoxia, while the roles of HIF-1α in radiation-induced autophagy are still unclear in breast cancer cells. Human breast cancer carcinoma MCF-7 cells were stably transfected with pSUPER-shRNA against human HIF-1α or a scrambled sequence with no homology to mammalian genes, named as pSUPER-HIF-1α and pSUPER-SC, respectively. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were used to detect cell viability, Western blot was used to detect protein expression, monodansylcadaverine (MDC) staining was used to analyze autophagy, and Hoechts/PI staining was used to assess apoptosis. Ionizing radiation (IR) and cobalt chloride (CoCl2) could induce HIF-1α expression and increase the microtubule-associated protein 1 light chain 3 (MAPLC3)-II/MAPLC3-I ratio, especially in radiation + CoCl2 group. After the silencing of HIF-1α, the radiosensitivity of MCF-7 cells increased and the autophagy level decreased in response to DNA damage induced by ionizing radiation, but there was no influence on IR-induced apoptosis. HIF-1α silencing also increased the expression of phospho-Akt, mTOR, and P70S6K and activated the mTOR signals significantly. Hypoxia can induce autophagy and also improve the IR-induced autophagy via the suppression of Akt/mTOR/P70S6K pathway, which consequently lead to radioresistance.
Collapse
Affiliation(s)
- Rui Zhong
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, 130021, China
| | - Huiying Xu
- Department of Ultrasound, The 1st Hospitals Affiliated to Jilin University, Changchun, 130021, China
| | - Ge Chen
- Department of Stomatology, The 1st Hospitals Affiliated to Jilin University, Changchun, 130021, China
| | - Gang Zhao
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, 130021, China
| | - Yan Gao
- Department of Radiation Oncology, The 1st Hospitals Affiliated to Jilin University, Changchun, 130021, China
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, 130021, China.,Department of Radiation Oncology, The 1st Hospitals Affiliated to Jilin University, Changchun, 130021, China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, 130021, China. .,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3T 3T2, Canada.
| | - Lihua Dong
- Department of Radiation Oncology, The 1st Hospitals Affiliated to Jilin University, Changchun, 130021, China.
| |
Collapse
|
114
|
Zheng H, Fridkin M, Youdim M. New approaches to treating Alzheimer's disease. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:1-8. [PMID: 25733799 PMCID: PMC4327405 DOI: 10.4137/pmc.s13210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 01/14/2023]
Abstract
To date, no truly efficacious drugs for Alzheimer’s disease (AD) have been developed; moreover, all new anti-AD drugs developed since 2003 have failed. To succeed where previous ones have failed in drug development, new approaches for AD therapy are needed. Here we discuss the potential application of network medicine as a new approach to AD treatment. Unlike traditional approaches focused on a single target/pathway, network medicine targets and restores disease-disrupted networks through simultaneous modulation of numerous proteins (targets)/pathways involved in AD pathogenesis. We consider several drug candidates under development for AD therapy, including Keap1–Nrf2 regulators, endogenous neurogenic agents, and hypoxia-inducible factor 1 (HIF-1) activators. These drug candidates are multi-target ligands with the potential to further develop as network medicines, since they act as master regulators to initiate a broad range of cellular defense mechanisms/cytoprotective genes that exert their efficacy in a holistic way. We also explore their diverse mechanisms of action and potential disease-modifying effects, which may have profound implications for drug discovery.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medicinal Chemistry, Intra-cellular Therapies Inc., New York, NY, USA
| | - Mati Fridkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
115
|
Zeaxanthin inhibits hypoxia-induced VEGF secretion by RPE cells through decreased protein levels of hypoxia-inducible factors-1α. BIOMED RESEARCH INTERNATIONAL 2015; 2015:687386. [PMID: 25688362 PMCID: PMC4320873 DOI: 10.1155/2015/687386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 01/10/2023]
Abstract
Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α) protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE) cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2) to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50-150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.
Collapse
|
116
|
Li CH, Chen WC, Liao WC, Tu CY, Lin CL, Sung FC, Chen CH, Hsu WH. The association between chronic obstructive pulmonary disease and Parkinson's disease: a nationwide population-based retrospective cohort study. QJM 2015; 108:39-45. [PMID: 25024356 DOI: 10.1093/qjmed/hcu136] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Previous research has shown that patients with chronic obstructive pulmonary disease (COPD) tend to have a higher risk for cognitive impairment and dementia, a neurodegenerative disorder. The goal of this study was to examine what relationship, if any, exists between COPD and Parkinson's disease (PD), which is also a neurodegenerative disorder. METHOD Our study analyzed medical data from the population of Taiwan from 1998 to 2008, with a follow-up period extending to the end of 2010. We identified patients with COPD by the Taiwan National Health Insurance Research Database (NHIRD). We selected a comparison cohort from the general population that was random frequency-matched by age (in 5-year increments), sex and index year, and further analyzed the risk of PD using Cox's regression model, including sex, age and comorbidities. RESULTS The study enrolled 20 728 COPD patients (71.1% male, mean age = 68.2 years) and 41 147 controls. The risk of developing PD was 1.37 times greater in patients with COPD compared with patients without COPD after adjusting for age, sex and comorbidities. A significantly increased risk of PD was also found in patients with COPD who had any comorbidity other than diabetes. CONCLUSION This nationwide retrospective cohort study demonstrates that PD risk is significantly increased in patients with COPD compared with those of the general population.
Collapse
Affiliation(s)
- C-H Li
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - W-C Chen
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - W-C Liao
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - C-Y Tu
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - C-L Lin
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - F-C Sung
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - C-H Chen
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan.
| | - W-H Hsu
- From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan. From the Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Department of Life Science, National Chung Hsing University, Management Office for Health Data, China Medical University Hospital, Department of Public Health and Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| |
Collapse
|
117
|
Botlagunta M. Neuronal pentraxin 1 expression is regulated by hypoxia inducible factor-1α. Biochem Biophys Res Commun 2015; 456:662-5. [DOI: 10.1016/j.bbrc.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/04/2014] [Indexed: 10/25/2022]
|
118
|
|
119
|
Age-dependent metabolic dysregulation in cancer and Alzheimer's disease. Biogerontology 2014; 15:559-77. [PMID: 25305052 DOI: 10.1007/s10522-014-9534-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/27/2014] [Indexed: 01/12/2023]
Abstract
Age is the main risk factor for cancer and neurodegeneration; two radically divergent diseases. Yet selective pressure to meet cellular metabolic needs may provide a common mechanism linking these two disorders. The exclusive use of glycolysis, despite the presence of oxygen, is commonly referred to as aerobic glycolysis and is the primary metabolic pathway of cancer cells. Recent evidence suggests that aerobic glycolysis is also a key regulator of synaptic plasticity in the brain that may positively influence cognition. Elevated aerobic glycolysis is a contributing factor to the development of cancer as increased glycolytic flux plays an important role in the biosynthesis of macromolecules and promotes proliferation. In contrast, decreased aerobic glycolysis in the brain occurs with age and could lead to a loss of cell survival mechanisms that counter pathogenic processes underlying neurodegeneration. In this review we discuss the recent findings from epidemiological studies demonstrating an inverse comorbidity of cancer and Alzheimer's disease. We summarize evidence linking the two diseases through changes in metabolism over the course of normal aging. We discuss the key steps and regulatory mechanisms of aerobic glycolysis and mitochondrial oxidative phosphorylation which could be exploited for the development of novel therapies. In addition, we outline the regulation of aerobic glycolysis at the transcriptional level by HIF-1α and Pin1 and their roles in cancer and neurodegeneration. Finally, we provide a possible explanation for metabolic dysregulation that occurs with age, and how it may be a contributing factor to age-related diseases. Determining how metabolism becomes dysregulated over time could lead to the development of effective interventions for ensuring metabolic homeostasis and healthy aging.
Collapse
|
120
|
Fang M, Feng C, Zhao YX, Liu XY. Camk2b protects neurons from homocysteine-induced apoptosis with the involvement of HIF-1α signal pathway. Int J Clin Exp Med 2014; 7:1659-1668. [PMID: 25126162 PMCID: PMC4132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
In our previous study using iTRAQ technique we found that the level of calmodulin-dependent protein kinase 2b (Camk2b) was lower in rats with hyperhomocysteinemia. We presumed that Camk2b might be involved in homocysteine-induced apoptosis and tried to explore its role in this study through the transfection with Camk2b gene. Results showed that neurons of HHcy group had lower activity measured by MTT, higher percentage of apoptotic neurons, lower expression levels of Camk2b mRNA and protein than those in normal group. Neurons with overexpression of Camk2b (Camk2b group) had lower percentage of apoptosis and higher activity than those in control group. After exposure to 2-Methoxyestradiol, the activity of neurons with overexpression of Camk2b was suppressed with more apoptotic cells observed. The expressions of BCL2, eNOS, EP300 and EPO were all elevated at both mRNA and protein levels in neurons of CamK2b group compared with other three groups. Thus, Camk2b protects neurons from Homocysteine-induced apoptosis with the involvement of HIF-1α signal pathway.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| | - Chao Feng
- The Fourth Affiliated Hospital Zhejiang University School of MedicineYiwu, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji UniversityShanghai, China
| |
Collapse
|
121
|
Neuroantibody biomarkers: links and challenges in environmental neurodegeneration and autoimmunity. Autoimmune Dis 2014; 2014:340875. [PMID: 25045531 PMCID: PMC4090524 DOI: 10.1155/2014/340875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 11/18/2022] Open
Abstract
The majority of neurodegenerative (ND) and autoimmune diseases (AID) remain idiopathic. The contribution of environmental chemicals to the development of these disorders has become of great interest in recent years. A convergence of mechanism between of ND and AID development has also emerged. In the case of ND, including neurotoxicity, the focus of this review, work over the last two decade in the realm of biomarker development, indicates that the immune response provides a venue whereby humoral immunity, in the form of autoantibodies to nervous system specific proteins, or neuroantibodies (NAb), may provide, once validated, a sensitive high throughput surrogate biomarker of effect with the potential of predicting outcome in absence of overt neurotoxicity/neurodegeneration. In addition, NAb may prove to be a contributor to the progression of the nervous system pathology, as well as biomarker of stage and therapeutic efficacy. There is a compelling need for biomarkers of effect in light of the introduction of new chemicals, such as nanoengineered material, where potential neurotoxicity remains to be defined. Furthermore, the convergence of mechanisms associated with ND and AID draws attention to the neglected arena of angiogenesis in defining the link between environment, ND, and AID.
Collapse
|
122
|
Salimgareeva MK, Sadovnikov SV, Farafontova EI, Zainullina LF, Vakhitov VA, Vakhitova YV. Cellular test systems for the search of transcription factors activity modulators. APPL BIOCHEM MICRO+ 2014; 50:194-199. [DOI: 10.1134/s000368381402015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
123
|
Cimini S, Rizzardini M, Biella G, Cantoni L. Hypoxia causes autophagic stress and derangement of metabolic adaptation in a cell model of amyotrophic lateral sclerosis. J Neurochem 2014; 129:413-25. [PMID: 24359187 DOI: 10.1111/jnc.12642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease that affects motor neurons. The recruitment of autophagy (macroautophagy) and mitochondrial dysfunction are documented in amyotrophic lateral sclerosis patients and experimental models expressing mutant forms of Cu, Zn superoxide dismutase (SOD1) protein, but their impact in the disease remains unclear. Hypoxia is a stress closely related to the disease in patients and mutant SOD1 mice; in individual cells, hypoxia activates autophagy and regulates mitochondrial metabolism as fundamental adaptive mechanisms. Our aim was to examine whether mutant SOD1 changed this response. Hypoxia (1% O2 for 22 h) caused greater loss of viability and more marked activation of caspase 3/7 in the motor neuronal NSC-34 cell line stably transfected with the G93A mutant human SOD1 (G93A-NSC) than in the one with the wild-type SOD1 (WT-NSC) or in untransfected NSC-34. In the G93A-NSC cells, there was a more marked accumulation of the LC3-II autophagy protein, attributable to autophagic stress; 3-methyladenine, which acts on initiation of autophagy, fully rescued G93A-NSC viability and reduced the activation of caspase 3/7 indicating this was a secondary event; the metabolic handling of hypoxia was inappropriate possibly contributing to the autophagic stress. Our findings evidentiate that the G93A mutation of SOD1 profoundly altered the adaptive metabolic response to hypoxia and this could increase the cell susceptibility to this stress. Hypoxia activates autophagy and modifies glycolysis and mitochondrial respiration as fundamental cell adaptive mechanisms. This stress is closely related to amyotrophic lateral sclerosis. The recruitment of autophagy and mitochondrial dysfunction are documented in patients and models expressing mutant Cu, Zn superoxide dismutase (SOD1) protein, but their impact in the disease remains unclear. G93ASOD1 cells were more susceptible to hypoxia than wild-type SOD1 cells and showed autophagic stress and inappropriate handling of energy metabolism. Defective adaptation to hypoxia may contribute to neurodegeneration.
Collapse
Affiliation(s)
- Sara Cimini
- Laboratory of Molecular Pathology, Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | | | | | |
Collapse
|
124
|
Weinreb O, Mandel S, Youdim MBH, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 2013; 62:52-64. [PMID: 23376471 DOI: 10.1016/j.freeradbiomed.2013.01.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Brain iron accumulation has been implicated in a host of chronic neurological diseases, including Parkinson's disease (PD). The elevated iron levels observed in the substantia nigra of PD subjects have been suggested to incite the generation of reactive oxygen species and intracellular α-synuclein aggregation, terminating in the oxidative neuronal destruction of this brain area. Thus, elucidation of the molecular mechanisms involved in iron dysregulation and oxidative stress-induced neurodegeneration is a crucial step in deciphering PD pathology and in developing novel iron-complexing compounds aimed at restoring brain iron homeostasis and attenuating neurodegeneration. This review discusses the involvement of dysregulation of brain iron homeostasis in PD pathology, with an emphasis on the potential effectiveness of naturally occurring compounds and novel iron-chelating/antioxidant therapeutic hybrid molecules, exerting a spectrum of neuroprotective interrelated activities: antioxidant/monoamine oxidase inhibition, activation of the hypoxia-inducible factor (HIF)-1 signaling pathway, induction of HIF-1 target iron-regulatory and antioxidative genes, and inhibition of α-synuclein accumulation and aggregation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
125
|
Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol 2013; 45:1377-88. [DOI: 10.1016/j.biocel.2013.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 01/31/2023]
|
126
|
Dong Y, Li Y, Feng D, Wang J, Wen H, Liu D, Zhao D, Liu H, Gao G, Yin Z, Qin H. Protective effect of HIF-1α against hippocampal apoptosis and cognitive dysfunction in an experimental rat model of subarachnoid hemorrhage. Brain Res 2013; 1517:114-21. [DOI: 10.1016/j.brainres.2013.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022]
|
127
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|
128
|
Hsu SC, Chung JG. Anticancer potential of emodin. Biomedicine (Taipei) 2012; 2:108-116. [PMID: 32289000 PMCID: PMC7104001 DOI: 10.1016/j.biomed.2012.03.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical research due to its low toxicity, low number of side effects, and low cost. Many components of common fruits and vegetables play well-documented roles as chemopreventive or chemotherapeutic agents that suppress tumorigenesis. Anthraquinones are commonly extracted from the Polygonaceae family of plants, e.g., Rheum palmatum and Rheum officinale. Some of the major chemical components of anthraquinone and its derivatives, such as aloe-emodin, danthron, emodin, chrysophanol, physcion, and rhein, have demonstrated potential anticancer properties. This review evaluates the pharmacological effects of emodin, a major component of Aloe vera. In particular, emodin demonstrates anti-neoplastic, anti-inflammatory, anti-angiogenesis, and toxicological potential for use in pharmacology, both in vitro and in vivo. Emodin demonstrates cytotoxic effects (e.g., cell death) through the arrest of the cell cycle and the induction of apoptosis in cancer cells. The overall molecular mechanisms of emodin include cell cycle arrest, apoptosis, and the promotion of the expression of hypoxia-inducible factor 1α, glutathione S-transferase P, N-acetyltransferase, and glutathione phase I and II detoxification enzymes while inhibiting angiogenesis, invasion, migration, chemical-induced carcinogen-DNA adduct formation, HER2/neu, CKII kinase, and p34cdc2 kinase in human cancer cells. Hopefully, this summary will provide information regarding the actions of emodin in cancer cells and broaden the application potential of chemotherapy to additional cancer patients in the future.
Collapse
Affiliation(s)
- Shu-Chun Hsu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
129
|
Tsui L, Fong TH, Wang IJ. YC-1 targeting of hypoxia-inducible factor-1α reduces RGC-5 cell viability and inhibits cell proliferation. Mol Vis 2012; 18:1594-603. [PMID: 22736948 PMCID: PMC3380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The survival of retinal ganglion cells (RGCs) is a hallmark of many optic neurodegenerative diseases such as glaucoma. YC-1, a potential anticancer drug, is known to be able to decrease the stability and protein expression of hypoxia-inducible factor (HIF)-1α that is triggered by hypoxia and related to RGC survival. We hypothesized that YC-1 may alter RGC cell viability through the down-regulation of HIF-1α. METHODS Cell viability of the RGC-5 cell line was measured with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Flow cytometry, a LIVE/DEAD viability assay, and high-content screening (HCS) with MKI67 (K(i)-67) monoclonal antibodies were used to detect cell death and cellular proliferation. RESULTS We found that cells treated with 20 µM YC-1 for 24 h decreased the HIF-1α level in an RGC-5 cell line using immunoblotting and reduced the live cell number in an MTT assay. Results of flow cytometry and HCS demonstrated that reducing the cell proliferation of RGC-5 cells, not cell death, led to the decreased level in the MTT assay. CONCLUSIONS Our findings demonstrate that YC-1-induced down-regulation of HIF-1α might reduce RGC cell proliferation and viability under normoxia, which implies a role of YC-1 in the neuroprotective effect for further clinical applications.
Collapse
Affiliation(s)
- Leo Tsui
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
130
|
Kim SY, Lee MJ, Kim JW, Na YR, Lee HY, Cho H, Lee KB, Lee YM, Lee C, Park H, Yang EG. Effects of Clioquinol Analogues on the Hypoxia-Inducible Factor Pathway and Intracelullar Mobilization of Metal Ions. Biol Pharm Bull 2012. [DOI: 10.1248/bpb.b12-00507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- So Yeon Kim
- Biomedical Research Institute, Korea Institute of Science and Technology
| | - Myong Jin Lee
- Biomedical Research Institute, Korea Institute of Science and Technology
| | - Jeong Won Kim
- Functional Proteomics Center, Korea Institute of Science and Technology
| | - Yu-Ran Na
- Functional Proteomics Center, Korea Institute of Science and Technology
| | - Ho-Youl Lee
- Department of Life Science, University of Seoul
| | - Hyunju Cho
- Biomedical Research Institute, Korea Institute of Science and Technology
| | - Keun Byeol Lee
- Department of Natural Sciences, Kyungpook National University
| | - You Mie Lee
- Department of Natural Sciences, Kyungpook National University
| | - Cheolju Lee
- Biomedical Research Institute, Korea Institute of Science and Technology
| | | | - Eun Gyeong Yang
- Biomedical Research Institute, Korea Institute of Science and Technology
- Functional Proteomics Center, Korea Institute of Science and Technology
| |
Collapse
|