101
|
Vijayakumar K, Bharathidasan V, Manigandan V, Jeyapragash D. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb Pathog 2020; 149:104286. [PMID: 32502632 DOI: 10.1016/j.micpath.2020.104286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
The present study evaluated the quebrachitol (QBC) antibiofilm and antivirulence potential against methicillin-resistant Staphylococcus aureus (MRSA). QBC inhibited MRSA biofilm formation at concentration dependent manner without affecting the bacterial growth. Then, QBC biofilm efficacy was confirmed with light and confocal laser scanning microscopy analysis. QBC treatment significantly inhibited the biofilm formation on stainless steel, titanium and silicone surfaces. Besides, QBC treatment significantly reduced the MRSA virulence productions such as lipase and hemolysis. Moreover, it reduced MRSA survival rate in the presence of hydrogen peroxide. QBC treatment inhibited the MRSA adherence on hydrophobic, hydrophilic, collagen coating and fibrinogen coating surfaces. As well as it significantly reduced the autolysin and bacterial aggregation progress. The real-time PCR analysis revealed the ability of QBC downregulated the virulence genes expression including global regulator sarA, agr and polysaccharide intracellular adhesion (PIA) encode ica. The cumulative results of the present study suggest that QBC as a potential agent to combat against MRSA pathogenesis.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Veeraiyan Bharathidasan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
102
|
Gnaim R, Golberg A, Sheviryov J, Rubinsky B, González CA. Detection and differentiation of bacteria by electrical bioimpedance spectroscopy. Biotechniques 2020; 69:384-394. [PMID: 32486835 DOI: 10.2144/btn-2019-0080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Detecting bacteria in samples and differentiating between Gram-negative and Gram-positive species is an important challenge, and the most common method, Gram staining, is very time consuming. The aim of this study was to evaluate the electrical bioimpedance spectroscopy (EBIS) technique as an inexpensive and practical tool for real-time detection of bacteria and differentiation between Gram-positive and Gram-negative species. The relevant sensitivity for differentiating between species was found in the magnitude and phase at frequencies of 158,489 and 5248 Hz, respectively, at a bacterial concentration of 1 μg/μl. Subsequently, the sensitivity was estimated as a function of bacterial concentration. Our results demonstrated that EBIS can potentially distinguish between presence and absence of bacteria as well as between different types of bacteria.
Collapse
Affiliation(s)
- Rima Gnaim
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel.,The Triangle Regional Research & Development Center, Kfar Qari' 30075, Israel
| | - Alexander Golberg
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel
| | - Julia Sheviryov
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel
| | - Boris Rubinsky
- Mechanical Engineering Department, University of California-Berkeley, CA, USA
| | - César A González
- Porter School of Environment & Earth Sciences, Tel Aviv University. Tel Aviv-Yafo, Israel.,Escuela Superior de Medicina-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
103
|
Quadros MD, Bugs RCF, Soares RDO, Rossato AM, Rocha LDL, d'Azevedo PA. Identifying gram-positive cocci in dermatoscopes and smartphone adapters using MALDI-TOF MS: a cross-sectional study. An Bras Dermatol 2020; 95:298-306. [PMID: 32303433 PMCID: PMC7253918 DOI: 10.1016/j.abd.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background The increasingly frequent use of dermoscopy makes us think about the possibility of transfer of microorganisms, through the dermatoscope, between doctor and patients. Objectives To identify the most frequent gram-positive cocci in dermatoscopes and smartphone adapters, as well as the resistance profile, and to evaluate the factors associated with a higher risk of bacterial contamination of the dermatoscopes. Methods A cross-sectional study was carried out with 118 dermatologists from Porto Alegre/Brazil between September 2017 and July 2018. Gram-positive cocci were identified by MALDI-TOF MS and habits of use of the dermatoscope were evaluated through an anonymous questionnaire. Results Of the dermatoscopes analysed, 46.6% had growth of gram-positive cocci on the lens and 37.3% on the on/off button. The microorganisms most frequently found were S. epidermidis, S. hominis and S. warneri. Attending a hospital, using the dermatoscope at the hospital, with inpatients and in the intensive care unit were significantly associated with colonisation by gram-positive cocci. The highest resistance rates were observed for penicillin, erythromycin and sulfamethoxazole-trimethoprim. Study limitations The non-search of gram-negative bacilli, fungi and viruses. Moreover, the small number of adapters did not make it possible to better define if the frequency differences were statistically significant. Conclusion Coagulase-negative staphylococci were frequently identified. S. aureus was detected only on the lens.
Collapse
Affiliation(s)
- Maurício de Quadros
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil; Department of Dermatology, Hospital Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Roberto Carlos Freitas Bugs
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Renata de Oliveira Soares
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Adriana Medianeira Rossato
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lisiane da Luz Rocha
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Alves d'Azevedo
- Gram-positive Cocci Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
104
|
Wang X, Zhang J, Chen W, Tang Y, Zhou Y, Chen Y, Huang Y, Liu D. Study on the Effects of Estradiol in Staphylococcus epidermidis Device-Related Capsule Formation. Aesthetic Plast Surg 2020; 44:558-569. [PMID: 31832737 DOI: 10.1007/s00266-019-01567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Capsular contracture, mainly caused by Staphylococcus epidermidis (S. epidermidis) biofilm formation, is a complex problem for breast cancer patients who undergo surgical prosthetic breast reconstruction. Estradiol has been reported to be involved in the formation of bacterial biofilms. Thus, the underlying mechanism of estradiol in capsular contracture needs to be investigated. METHODS Biofilm-related gene expressions were measured by qRT-PCR after sterilizing the silicone with bacterial suspension and E2 treatment in vitro. Rat models were established with bilateral ovariectomy operations and estradiol subcutaneous injections. The effects of estradiol on capsular contracture were detected by monitoring serum estradiol levels, bacterial infection rate in organs, biofilm formation and capsular contracture in vivo; inflammatory factors in vivo were examined as well. Biofilm on the silicone implants was observed under a scanning electron microscope. RESULTS Both positive regulatory genes and negative regulatory genes were increased by the high concentration of estradiol, suggesting that estradiol can promote the formation of biofilm by not only positive but also negative regulations. High estradiol levels increased bacterial infection rate in organs, biofilm formation and capsular contracture. Further, high estradiol caused a large number of inflammatory cells to infiltrate and caused serious inflammatory reactions that aggravate the immune imbalances of the host. CONCLUSION High estradiol levels contribute to increasing capsular contracture caused by S. epidermidis biofilm formation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
105
|
Quebrachitol from Rhizophora mucronata inhibits biofilm formation and virulence production in Staphylococcus epidermidis by impairment of initial attachment and intercellular adhesion. Arch Microbiol 2020; 202:1327-1340. [DOI: 10.1007/s00203-020-01844-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
|
106
|
Nayyar R, Dadhwal R, Kapil A, Pandey RM, Dogra P. Urethral Instillation of Povidone-Iodine Reduces Post-Cystoscopy Urinary Tract Infection in Males: A Randomized Controlled Trial. Sci Rep 2020; 10:3585. [PMID: 32108161 PMCID: PMC7046644 DOI: 10.1038/s41598-020-60522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Office cystoscopy may be associated with urinary tract infection (UTI) in up to 10-20% of patients. Current practice of surgical part preparation in males with povidone-iodine excludes distal urethra in males, leaving a possibility for resident intra-urethral flora to cause post-procedural UTI. We designed this randomized study to assess whether additional cleaning of distal urethra with povidone-iodine solution can help reduce post-procedural incidence of UTIs in this setting. Additionally, urethral swab culture was done in the entire cohort to identify the prevalent microflora in the distal male urethra and to evaluate its role in causation of post-procedural UTI. Using a specialized urethral swab culture methodology, 85% males demonstrated some bacteria and 16% showed common uro-pathogens. 28 (14.5%) cases had post-procedure culture positive UTI. The incidence of UTI in control group (22%) was significantly more than the intervention group (7%) (p value <0.007). This result strongly supports inclusion of distal urethral irrigation with povidone-iodine in males before office cystoscopy, even when pre-procedure mid-stream urine culture is sterile.
Collapse
Affiliation(s)
- Rishi Nayyar
- Department of Urology, AIIMS, New Delhi, 110029, New Delhi, India.
| | - Rohit Dadhwal
- Department of Urology, AIIMS, New Delhi, 110029, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, AIIMS, New Delhi, 110029, New Delhi, India
| | | | - PremNath Dogra
- Department of Urology, AIIMS, New Delhi, 110029, New Delhi, India
| |
Collapse
|
107
|
Yarawsky AE, Johns SL, Schuck P, Herr AB. The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers. J Biol Chem 2020; 295:4411-4427. [PMID: 32102851 DOI: 10.1074/jbc.ra119.010874] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/23/2020] [Indexed: 12/17/2022] Open
Abstract
The skin-colonizing commensal bacterium Staphylococcus epidermidis is a leading cause of hospital-acquired and device-related infections. Its pathogenicity in humans is largely due to its propensity to form biofilms, surface-adherent bacterial accumulations that are remarkably resistant to chemical and physical stresses. Accumulation-associated protein (Aap) from S. epidermidis has been shown to be necessary and sufficient for mature biofilm formation and catheter infection. Aap contains up to 17 tandem B-repeat domains, capable of zinc-dependent assembly into twisted, rope-like intercellular filaments in the biofilm. Using microscopic and biophysical techniques, we show here that Aap B-repeat constructs assemble further into zinc-dependent functional amyloid fibers. We observed such amyloid fibers by confocal microscopy during both early and late stages of S. epidermidis biofilm formation, and we confirmed that extracellular fibrils from these biofilms contain Aap. Unlike what has been observed for amyloidogenic biofilm proteins from other bacteria, which typically use chaperones or initiator proteins to initiate amyloid assembly, our findings indicate that Aap from S. epidermidis requires Zn2+ as a catalyst that drives amyloid fiber formation, similar to many mammalian amyloid-forming proteins that require metals for assembly. This work provides detailed insights into S. epidermidis biofilm formation and architecture that improve our understanding of persistent staphylococcal infections.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Graduate Program in Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Stefanie L Johns
- Graduate Program in Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Bioengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20814
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
108
|
Pedroza-Dávila U, Uribe-Alvarez C, Morales-García L, Espinoza-Simón E, Méndez-Romero O, Muhlia-Almazán A, Chiquete-Félix N, Uribe-Carvajal S. Metabolism, ATP production and biofilm generation by Staphylococcus epidermidis in either respiratory or fermentative conditions. AMB Express 2020; 10:31. [PMID: 32048056 PMCID: PMC7013028 DOI: 10.1186/s13568-020-00966-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus epidermidis is a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin that becomes a health hazard when it is carried across the skin through punctures or wounds. Pathogenicity is enhanced by the ability of S. epidermidis to associate into biofilms, where it avoids attacks by the host and antibiotics. To test the effect of oxygen on metabolism and biofilm generation, cells were cultured at different oxygen concentrations ([O2]). As [O2] decreased, S. epidermidis metabolism went from respiratory to fermentative. Remarkably, the rate of growth decreased at low [O2] while a high concentration of ATP ([ATP]) was kept. Under hypoxic conditions bacteria associated into biofilms. Aerobic activity sensitized the cell to hydrogen peroxide-mediated damage. In the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that at low [O2] S. epidermidis limits its growth and develops the ability to form biofilms.
Collapse
|
109
|
da Silva Filho RG, Campos AC, Souza IDS, Saramago CSDM, de Lima e Silva AA. Production of Poly-γ-Glutamic Acid (γ-PGA) by Clinical Isolates of Staphylococcus Epidermidis. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background and Objective:Poly-γ-glutamic acid (γ-PGA) is a constituent of theBacillus anthraciscapsule and a potential virulence factor ofS. epidermidis. In this study, a methodology for the isolation, purification and quantification of γ-PGA in the isolates was adapted. In addition, the fate of the produced γ-PGA and its antiphagocytic activity were investigated.Methods:ThecapBgene was investigated by the PCR method in 50 isolates ofS. epidermidis. A modified methodology was used for the extraction, purification, and quantification of γ-PGA using Cetyltrimethylammonium Bromide (CTAB) solution. The fate of γ-PGA was determined in Tryptic Soy Broth (TSB) medium, as well as the effect of ethanol, NaCl and KCl on the induction of the polymer production. The ability of neutrophils to phagocyte both FITC-labeled latex particles in the presence of free γ-PGA andS. epidermidiswith and without anchored γ-PGA was evaluated by cytometry.Results:The production of γ-PGA was detected in 40 isolates; all of them werecapBgene carriers. Free γ-PGA was detected and in the strain, the amount of released γ-PGA in the supernatant was 67% greater than the cell anchored γ-PGA. Phagocytosis tests performed with one γ-PGA producer isolate showed a significant reduction in neutrophil internalization.Conclusion:The adapted methodology was able to detect γ-PGA in the isolates studied. In addition to being found attached to the cell wall, it was demonstrated in this study that γ-PGA can also be found in the culture supernatant. Free γ-PGA did not determine a reduction in the internalization of latex by neutrophils, but cells with anchored γ-PGA showed significant protection against phagocytosis.
Collapse
|
110
|
Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J. Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin. Cell 2020; 180:454-470.e18. [PMID: 32004459 PMCID: PMC7192218 DOI: 10.1016/j.cell.2020.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT, USA.
| |
Collapse
|
111
|
Silva KCS, Silva LOS, Silva GAA, Borges CL, Novaes E, Paccez JD, Fontes W, Giambiagi-deMarval M, Soares CMDA, Parente-Rocha JA. Staphylococcus saprophyticus Proteomic Analyses Elucidate Differences in the Protein Repertories among Clinical Strains Related to Virulence and Persistence. Pathogens 2020; 9:pathogens9010069. [PMID: 31963821 PMCID: PMC7169411 DOI: 10.3390/pathogens9010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus saprophyticus is a Gram-positive and coagulase negative cocci that composes the skin microbiota and can act as an opportunistic agent causing urinary tract infections, being more frequent in sexually active young women. The ability of a pathogen to cause infection in the host is associated to its ability to adhere to host cells and to survive host immune defenses. In this work, we presented the comparative proteomic profile of three S. saprophyticus strains. It was possible to characterize differences in the proteome content, specially related to expression of virulence factors. We compiled this data and previous data and we detected one strain (9325) possessing higher production and secretion of proteins related to virulence. Our results show that phenotypic, genotypic, and proteomic differences reflect in the ability to survive during interaction with host cells, since the 9325 strain presented a higher survival rate after macrophage interaction. In counterpart, the 7108 strain that possesses lower content of proteins related to virulence presented higher ability to form biofilm suggesting that this strain can be better adapted to persist in the host and in the environment. Our work describes, for the first time, proteomic flexibility among S. saprophyticus strains, reflecting in virulence and persistence.
Collapse
Affiliation(s)
- Karla Christina Sousa Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Guilherme Algusto Alves Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras 37200-900, Brazil;
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Wagner Fontes
- Laboratório de Química de Proteínas, Instituto de Biologia, Universidade de Brasília, UnB-Brasilia 70910-900, Brazil;
| | - Marcia Giambiagi-deMarval
- Laboratório de Microbiologia Molecular, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-902, Brazil;
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia-GO 74690-900, Brazil; (K.C.S.S.); (L.O.S.S.); (G.A.A.S.); (C.L.B.); (J.D.P.); (C.M.d.A.S.)
- Correspondence:
| |
Collapse
|
112
|
Antimicrobial Activity of Protein Fraction from Naja ashei Venom Against Staphylococcus epidermidis. Molecules 2020; 25:molecules25020293. [PMID: 31936872 PMCID: PMC7024148 DOI: 10.3390/molecules25020293] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023] Open
Abstract
One of the key problems of modern infectious disease medicine is the growing number of drug-resistant and multi-drug-resistant bacterial strains. For this reason, many studies are devoted to the search for highly active antimicrobial substances that could be used in therapy against bacterial infections. As it turns out, snake venoms are a rich source of proteins that exert a strong antibacterial effect, and therefore they have become an interesting research material. We analyzed Naja ashei venom for such antibacterial properties, and we found that a specific composition of proteins can act to eliminate individual bacterial cells, as well as the entire biofilm of Staphylococcus epidermidis. In general, we used ion exchange chromatography (IEX) to obtain 10 protein fractions with different levels of complexity, which were then tested against certified and clinical strains of S. epidermidis. One of the fractions (F2) showed exceptional antimicrobial effects both alone and in combination with antibiotics. The protein composition of the obtained fractions was determined using mass spectrometry techniques, indicating a high proportion of phospholipases A2, three-finger toxins, and L-amino acids oxidases in F2 fraction, which are most likely responsible for the unique properties of this fraction. Moreover, we were able to identify a new group of low abundant proteins containing the Ig-like domain that have not been previously described in snake venoms.
Collapse
|
113
|
Boix-Lemonche G, Guillem-Marti J, D’Este F, Manero JM, Skerlavaj B. Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity. Colloids Surf B Biointerfaces 2020; 185:110586. [DOI: 10.1016/j.colsurfb.2019.110586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
|
114
|
Shivaee A, Mohammadzadeh R, Shahbazi S, Pardakhtchi E, Ohadi E, Kalani BS. Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis. Acta Microbiol Immunol Hung 2019; 66:499-508. [PMID: 31198057 DOI: 10.1556/030.66.2019.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen causing infections related to the usage of implants and medical devices. Pathogenicity of this microorganism is mainly linked to its capability to form biofilm structures. Biofilm formation vastly depends on several factors including different proteins. We studied the expression levels of three proteins including SdrH, Bap, AtlE, and MazF at different time intervals during the course of biofilm formation. In this study, a catheter-derived S. epidermidis isolate with strong ability of biofilm formation was selected. PCR assay was used to detect sdrH, bap, atlE, and mazF genes in this isolate. Real-time PCR was used to determine the expression levels of these genes after 4, 8, and 20 h during the course of biofilm formation. The studied genes showed different expression levels at different time intervals during biofilm formation by real-time PCR method. Expression levels of atlE and sdrH genes were the highest at 4 h, whereas bap gene showed the highest expression level at 8 h during the course of biofilm formation. In addition, the expression level of mazF gene peaked at 4 h and then progressively decreased at 8 and 20 h. Our results suggest the importance of AtlE, SdrH, and MazF proteins in the establishment and development of the biofilm structure. In addition, our results showed the important role of protein Bap in the accumulation of biofilm structure. Future studies are required to understand the exact role of MazF in the process of biofilm formation.
Collapse
Affiliation(s)
- Ali Shivaee
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Shahbazi
- 2 Department of Bacteriology, Pasteur Institute of Iran, Teheran, Iran
| | - Elahe Pardakhtchi
- 3 Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- 1 Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- 3 Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
115
|
Mohammadzadeh N, Teymouri F, Razavi S, Hasannejad-Bibalan M, Zahedi Bialvaei A, Amirmozafari N, Mirzaei R. The phenotypic and genotypic characteristics of biofilm formation and SCCmec typing of Staphylococcus epidermidis isolated from different sources. GENE REPORTS 2019; 17:100444. [DOI: 10.1016/j.genrep.2019.100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
116
|
In Vitro Activity of Rifampin, Rifabutin, Rifapentine, and Rifaximin against Planktonic and Biofilm States of Staphylococci Isolated from Periprosthetic Joint Infection. Antimicrob Agents Chemother 2019; 63:AAC.00959-19. [PMID: 31451499 DOI: 10.1128/aac.00959-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/17/2019] [Indexed: 11/20/2022] Open
Abstract
The in vitro activities of rifampin, rifabutin, rifapentine, and rifaximin were tested against 200 periprosthetic joint infection (PJI)-associated staphylococci. Seven rifampin-resistant isolates had MICs of ≥4 μg/ml. Three isolates had rifampin MICs of 0.25 to 1 μg/ml and harbored an Asp471Gly RpoB variant, suggesting that the CLSI rifampin-susceptible staphylococcal breakpoint of ≤1 μg/ml may be too high. The remaining isolates had rifampin MICs of ≤0.016 μg/ml, and the rifampin, rifabutin, rifapentine, and rifaximin minimum biofilm bactericidal concentrations (MBBC) for ≥50% of isolates were 8, 1, 2, and 4 μg/ml (for S. aureus) and 2, 0.06, 0.25, and 0.5 μg/ml (for S. epidermidis), respectively, for rifampin-susceptible isolates. Nonrifampin rifamycins have promising staphylococcal activity, including antibiofilm activity.
Collapse
|
117
|
Swetha TK, Pooranachithra M, Subramenium GA, Divya V, Balamurugan K, Pandian SK. Umbelliferone Impedes Biofilm Formation and Virulence of Methicillin-Resistant Staphylococcus epidermidis via Impairment of Initial Attachment and Intercellular Adhesion. Front Cell Infect Microbiol 2019; 9:357. [PMID: 31681633 PMCID: PMC6813203 DOI: 10.3389/fcimb.2019.00357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus epidermidis is an opportunistic human pathogen, which is involved in numerous nosocomial and implant associated infections. Biofilm formation is one of the prime virulence factors of S. epidermidis that supports its colonization on biotic and abiotic surfaces. The global dissemination of three lineages of S. epidermidis superbugs highlights its clinical significance and the imperative need to combat its pathogenicity. Thus, in the current study, the antibiofilm activity of umbelliferone (UMB), a natural product of the coumarin family, was assessed against methicillin-resistant S. epidermidis (MRSE). UMB exhibited significant antibiofilm activity (83%) at 500 μg/ml concentration without growth alteration. Microscopic analysis corroborated the antibiofilm potential of UMB and unveiled its potential to impair intercellular adhesion, which was reflected in auto-aggregation and solid phase adherence assays. Furthermore, real time PCR analysis revealed the reduced expression of adhesion encoding genes (icaD, atlE, aap, bhp, ebh, sdrG, and sdrF). Down regulation of agrA and reduced production of secreted hydrolases upon UMB treatment were speculated to hinder invasive lifestyle of MRSE. Additionally, UMB hindered slime synthesis and biofilm matrix components, which were believed to augment antibiotic susceptibility. In vivo assays using Caenorhabditis elegans divulged the non-toxic nature of UMB and validated the antibiofilm, antivirulence, and antiadherence properties of UMB observed in in vitro assays. Thus, UMB impairs MRSE biofilm by turning down the initial attachment and intercellular adhesion. Altogether, the obtained results suggest the potent antibiofilm activity of UMB and the feasibility of using it in clinical settings for combating S. epidermidis infections.
Collapse
Affiliation(s)
| | | | | | - Velayutham Divya
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | | | | |
Collapse
|
118
|
Efthimiou G, Tsiamis G, Typas MA, Pappas KM. Transcriptomic Adjustments of Staphylococcus aureus COL (MRSA) Forming Biofilms Under Acidic and Alkaline Conditions. Front Microbiol 2019; 10:2393. [PMID: 31681245 PMCID: PMC6813237 DOI: 10.3389/fmicb.2019.02393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are important human pathogens and a significant health hazard for hospitals and the food industry. They are resistant to β-lactam antibiotics including methicillin and extremely difficult to treat. In this study, we show that the Staphylococcus aureus COL (MRSA) strain, with a known complete genome, can easily survive and grow under acidic and alkaline conditions (pH5 and pH9, respectively), both planktonically and as a biofilm. A microarray-based analysis of both planktonic and biofilm cells was performed under acidic and alkaline conditions showing that several genes are up- or down-regulated under different environmental conditions and growth modes. These genes were coding for transcription regulators, ion transporters, cell wall biosynthetic enzymes, autolytic enzymes, adhesion proteins and antibiotic resistance factors, most of which are associated with biofilm formation. These results will facilitate a better understanding of the physiological adjustments occurring in biofilm-associated S. aureus COL cells growing in acidic or alkaline environments, which will enable the development of new efficient treatment or disinfection strategies.
Collapse
Affiliation(s)
- Georgios Efthimiou
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Milton A Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katherine M Pappas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
119
|
Bottagisio M, Soggiu A, Piras C, Bidossi A, Greco V, Pieroni L, Bonizzi L, Roncada P, Lovati AB. Proteomic Analysis Reveals a Biofilm-Like Behavior of Planktonic Aggregates of Staphylococcus epidermidis Grown Under Environmental Pressure/Stress. Front Microbiol 2019; 10:1909. [PMID: 31551940 PMCID: PMC6743020 DOI: 10.3389/fmicb.2019.01909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Prosthetic joint replacement failure has a huge impact on quality of life and hospitalization costs. A leading cause of prosthetic joint infection is bacteria-forming biofilm on the surface of orthopedic devices. Staphylococcus epidermidis is an emergent, low-virulence pathogen implicated in chronic infections, barely indistinguishable from aseptic loosening when embedded in a mature matrix. The literature on the behavior of quiescent S. epidermidis in mature biofilms is scarce. To fill this gap, we performed comparative analysis of the whole proteomic profiles of two methicillin-resistant S. epidermidis strains growing in planktonic and in sessile form to investigate the molecular mechanisms underlying biofilm stability. After 72-h culture of biofilm-forming S. epidermidis, overexpression of proteins involved in the synthesis of nucleoside triphosphate and polysaccharides was observed, whereas planktonic bacteria expressed proteins linked to stress and anaerobic growth. Cytological analysis was performed to determine why planktonic bacteria unexpectedly expressed proteins typical of sessile culture. Images evidenced that prolonged culture under vigorous agitation can create a stressful growing environment that triggers microorganism aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. The choice of a unique late time point provided an important clue for future investigations into the biofilm-like behavior of planktonic cells. Our preliminary results may inform comparative proteomic strategies in the study of mature bacterial biofilm. Finally, there is an increasing number of studies on the aggregation of free-floating bacteria embedded in an extracellular matrix, prompting the need to gain further insight into this mode of bacterial growth.
Collapse
Affiliation(s)
- Marta Bottagisio
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Alessio Soggiu
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Cristian Piras
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Alessandro Bidossi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Clinical Chemistry and Microbiology, Milan, Italy
| | - Viviana Greco
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore Roma, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bonizzi
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - Paola Roncada
- Department of Health Sciences, Università degli Studi "Magna Græcia", Catanzaro, Italy
| | - Arianna B Lovati
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| |
Collapse
|
120
|
Whitt J, Duke C, Ali MA, Chambers SA, Khan MMK, Gilmore D, Alam MA. Synthesis and Antimicrobial Studies of 4-[3-(3-Fluorophenyl)-4-formyl-1 H-pyrazol-1-yl]benzoic Acid and 4-[3-(4-Fluorophenyl)-4-formyl-1 H-pyrazol-1-yl]benzoic Acid as Potent Growth Inhibitors of Drug-Resistant Bacteria. ACS OMEGA 2019; 4:14284-14293. [PMID: 31508552 PMCID: PMC6733178 DOI: 10.1021/acsomega.9b01967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/08/2019] [Indexed: 05/15/2023]
Abstract
Microbial resistance to antibiotics is an urgent and worldwide concern. Several pyrazole-derived hydrazones were synthesized by using benign reaction conditions. Several of these molecules are potent growth inhibitors of drug-resistant strains of Staphylococcus aureus and Acinetobacter baumannii with minimum inhibitory concentration values as low as 0.39 μg/mL. Furthermore, these molecules are nontoxic to human cells at high concentrations. Some of these molecules were tested for their ability to disrupt the bacterial membrane by using the SYTO-9/propidium iodide (BacLight) assay.
Collapse
Affiliation(s)
- Jedidiah Whitt
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Cameron Duke
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Mohamad Akbar Ali
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Steven A. Chambers
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Md Mahbub Kabir Khan
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - David Gilmore
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| | - Mohammad A. Alam
- Department
of Chemistry and Physics, College of Science and Mathematics and Department of
Biological Sciences, College of Science and Mathematics, Arkansas State University, Jonesboro, Arkansas 72467, United States
| |
Collapse
|
121
|
Paris JB, Seyer D, Jouenne T, Thébault P. Various methods to combine hyaluronic acid and antimicrobial peptides coatings and evaluation of their antibacterial behaviour. Int J Biol Macromol 2019; 139:468-474. [PMID: 31376454 DOI: 10.1016/j.ijbiomac.2019.07.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 07/27/2019] [Indexed: 11/26/2022]
Abstract
To prevent bacterial adhesion and contamination, biomaterials exhibiting both antiadhesive and biocidal properties are the most promising way. However, control of the properties combination is not so easy due, in particular, to antagonist mechanisms. Antibacterial surfaces against Staphylococcus epidermidis adhesion were here elaborated by using both nisin grafting and repelling polysaccharide coating. We evaluated two strategies aiming to improve the antimicrobial peptide (AMP) immobilization parameters (i.e., the accessibility and/or local density) in order to obtain the best antimicrobial activity on surfaces. We thus (i) grafted the nisin on a surface previously coated with hydrolyzed hyaluronic acid (HA) (to decrease the length of the polysaccharide chains) or (ii) coupled nisin and HA in solution before grafting this complex on surfaces. XPS analysis pointed out a lower amount of nisin on the surface for both approaches compared to the immobilization of nisin on native HA. However, an antibacterial activity was maintained, probably due to a higher local density of the AMP when surfaces were modified with hydrolyzed hyaluronic acid, leading to a better combination of antiadhesive-biocidal properties. Microscopy fluorescent observations demonstrated that accumulation of dead cells was also avoided by some coatings architecture.
Collapse
Affiliation(s)
| | - Damien Seyer
- UnivCergyPontoise, LabERRMECe, EA1391, F-95302 Cergy-Pontoise, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Pascal Thébault
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France.
| |
Collapse
|
122
|
Spicer ME, Pruitt JN, Keiser CN. Spiders, microbes and sex: Bacterial exposure on copulatory organs alters mating behaviour in funnel‐web spiders. Ethology 2019. [DOI: 10.1111/eth.12921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Jonathan N. Pruitt
- Department of Biological Sciences University of Pittsburgh Pittsburgh PA USA
| | - Carl N. Keiser
- Department of Biological Sciences University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
123
|
Guo Y, Ding Y, Liu L, Shen X, Hao Z, Duan J, Jin Y, Chen Z, Yu F. Antimicrobial susceptibility, virulence determinants profiles and molecular characteristics of Staphylococcus epidermidis isolates in Wenzhou, eastern China. BMC Microbiol 2019; 19:157. [PMID: 31288755 PMCID: PMC6617921 DOI: 10.1186/s12866-019-1523-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis has emerged as an often encountered pathogen responsible for hospital-acquired infections. The aim of present study is to investigate the microbiological characteristic of S. epidermidis isolates isolated from sterile specimens and skin in a Chinese tertiary hospital. METHODS A total of 223 non-duplicate S. epidermidis were collected from various sterile specimens of inpatients among 10 years in Wenzhou, China. 106 S. epidermidis obtained from the skin (urethral orifices) of healthy volunteers. All isolates were tested for antimicrobial susceptibility. PCR was used to detect the virulence- and resistance-associated genes and 7 housekeeping genes to determine the sequence types (STs) of selected isolates. RESULTS The resistance rates to antimicrobials tested except linezolid and vancomycin and the prevalence of methicillin-resistant S. epidermidis (MRSE) of S. epidermidis clinical isolates were significantly higher than those among colonized isolates (P < 0.05). The positive rates of virulence-associated genes including aap, sesI, ACME-arcA, IS256, bhp, altE, aae and gehD for S. epidermidis clinical isolates were significantly higher than those for colonized isolate (P < 0.05). A total of 60 STs including 28 from clinical isolates and 32 from colonized isolates were identified by MLST. A novel, rarely encountered clone, ST466, was found to be the second prevalent clone among clinical isolates. The great majority of the S. epidermidis isolates tested (73.86%) belonged to clone complex 2 (CC2). Compared with ST2, ST130, ST20 and ST59 clones, ST466 clone had the highest resistance rate to tetracycline (50.00%), the second highest prevalence of ACME-arcA (65.00%), bhp (30.00%) and qacA/B (65.00%), very low prevalence of carriage of icaA (0.00%) and biofilm formation (0.00%), the lack of sesI and high prevalence of aap, altE and aae (> 90%), which was similar to the characteristics of ST59 clone with one locus difference from ST466. ST466 clone competence with Staphylococcus aureus was relatively stronger, relative to ST2, ST20, ST130 and ST59 clones. CONCLUSION Taken together, a high-level of genetic diversity was found between clinical and colonized S. epidermidis isolates. A novel ST466 clone with distinct and similar characteristics relative to other prevalent clones, emerging as a prevalent clone in China, should be of major concern.
Collapse
Affiliation(s)
- Yinjuan Guo
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, China
| | - Yu Ding
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, Changsha, 410000, China
| | - Li Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaofei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhihao Hao
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingjing Duan
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ye Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zengqiang Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangyou Yu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
124
|
Schiffer C, Hilgarth M, Ehrmann M, Vogel RF. Bap and Cell Surface Hydrophobicity Are Important Factors in Staphylococcus xylosus Biofilm Formation. Front Microbiol 2019; 10:1387. [PMID: 31293539 PMCID: PMC6603148 DOI: 10.3389/fmicb.2019.01387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 01/04/2023] Open
Abstract
Staphylococcus (S.) xylosus is a coagulase-negative Staphylococcus species naturally present in food of animal origin with a previously described potential for biofilm formation. In this study we characterized biofilm formation of five selected strains isolated from raw fermented dry sausages, upon different growth conditions. Four strains exhibited a biofilm positive phenotype with strain-dependent intensities. Biofilm formation of S. xylosus was influenced by the addition of glucose, sodium chloride and lactate to the growth medium, respectively. It was further dependent on strain-specific cell surface properties. Three strains exhibited hydrophobic and two hydrophilic cell surface properties. The biofilm positive hydrophilic strain TMW 2.1523 adhered significantly better to hydrophilic than to hydrophobic supports, whereas the differences in adherence to hydrophobic versus hydrophilic supports were not as distinct for the hydrophobic strains TMW 2.1023, TMW 2.1323, and TMW 2.1521. Comparative genomics enabled prediction of functional biofilm-related genes and link these to phenotypic variations. While a wide range of biofilm associated factors/genes previously described for S. aureus and S. epidermidis were absent in the genomes of the five strains analyzed, they all possess the gene encoding biofilm associated protein Bap. The only biofilm negative strain TMW 2.1602 showed a mutation in the bap sequence. This study demonstrates that Bap and surface hydrophobicity are important factors in S. xylosus biofilm formation with potential impact on the assertiveness of a starter strain against autochthonous staphylococci by competitive exclusion during raw sausage fermentation.
Collapse
Affiliation(s)
- Carolin Schiffer
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Matthias Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
125
|
A Novel, Widespread qacA Allele Results in Reduced Chlorhexidine Susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother 2019; 63:AAC.02607-18. [PMID: 30988144 DOI: 10.1128/aac.02607-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chlorhexidine gluconate (CHG) is a topical antiseptic widely used in health care settings. In Staphylococcus spp., the pump QacA effluxes CHG, while the closely related QacB cannot due to a single amino acid substitution. We characterized 1,050 cutaneous Staphylococcus isolates obtained from 173 pediatric oncology patients enrolled in a multicenter CHG bathing trial. CHG susceptibility testing revealed that 63 (6%) of these isolates had elevated CHG MICs (≥4 μg/ml). Screening of all 1,050 isolates for the qacA/B gene (the same qac gene with A or B allele) by restriction fragment length polymorphism (RFLP) yielded 56 isolates with a novel qacA/B RFLP pattern, qacA/B273 The CHG MIC was significantly higher for qacA/B273 -positive isolates (MIC50, 4 μg/ml; MIC range, 0.5 to 4 μg/ml) than for other qac groups: qacA-positive isolates (n = 559; MIC50, 1 μg/ml; MIC range, 0.5 to 4 μg/ml), qacB-positive isolates (n = 17; MIC50, 1 μg/ml; MIC range, 0.25 to 2 μg/ml), and qacA/B-negative isolates (n = 418, MIC50, 1 μg/ml; MIC range, 0.125 to 2 μg/ml) (P = 0.001). A high proportion of the qacA/B273 -positive isolates also displayed methicillin resistance (96.4%) compared to the other qac groups (24.9 to 61.7%) (P = 0.001). Whole-genome sequencing revealed that qacA/B273 -positive isolates encoded a variant of QacA with 2 amino acid substitutions. This new allele, named qacA4, was carried on the novel plasmid pAQZ1. The qacA4-carrying isolates belonged to the highly resistant Staphylococcus epidermidis sequence type 2 clone. By searching available sequence data sets, we identified 39 additional qacA4-carrying S. epidermidis strains from 5 countries. Curing an isolate of qacA4 resulted in a 4-fold decrease in the CHG MIC, confirming the role of qacA4 in the elevated CHG MIC. Our results highlight the importance of further studying qacA4 and its functional role in clinical staphylococci.
Collapse
|
126
|
Haag AF, Fitzgerald JR, Penadés JR. Staphylococcus aureus in Animals. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0060-2019. [PMID: 31124433 PMCID: PMC11257167 DOI: 10.1128/microbiolspec.gpp3-0060-2019] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a mammalian commensal and opportunistic pathogen that colonizes niches such as skin, nares and diverse mucosal membranes of about 20-30% of the human population. S. aureus can cause a wide spectrum of diseases in humans and both methicillin-sensitive and methicillin-resistant strains are common causes of nosocomial- and community-acquired infections. Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, S. aureus is a major cause of infection and disease in a plethora of animal hosts leading to a significant impact on public health and agriculture. Infections in animals are deleterious to animal health, and animals can act as a reservoir for staphylococcal transmission to humans.Host-switching events between humans and animals and amongst animals are frequent and have been accentuated with the domestication and/or commercialisation of specific animal species. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements such as phages, pathogenicity islands and plasmids as well as further host-specific mutations allowing it to expand into new host populations.In this chapter, we will be giving an overview of S. aureus in animals, how this bacterial species was, and is, being transferred to new host species and the key elements thought to be involved in its adaptation to new ecological host niches. We will also highlight animal hosts as a reservoir for the development and transfer of antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Andreas F Haag
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, G12 8TA, Glasgow, UK
| | | | - José R Penadés
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, G12 8TA, Glasgow, UK
| |
Collapse
|
127
|
Abbondio M, Fois I, Longheu C, Azara E, Tola S. Biofilm production, quorum sensing system and analysis of virulence factors of Staphylococcus epidermidis collected from sheep milk samples. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
128
|
Soumya KR, Jishma P, Sugathan S, Mathew J, Radhakrishnan EK. Biofilm Changes of Clinically Isolated Coagulase Negative Staphylococci. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40011-019-01096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
129
|
Lerch MF, Schoenfelder SMK, Marincola G, Wencker FDR, Eckart M, Förstner KU, Sharma CM, Thormann KM, Kucklick M, Engelmann S, Ziebuhr W. A non-coding RNA from the intercellular adhesion (ica) locus of Staphylococcus epidermidis controls polysaccharide intercellular adhesion (PIA)-mediated biofilm formation. Mol Microbiol 2019; 111:1571-1591. [PMID: 30873665 DOI: 10.1111/mmi.14238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2019] [Indexed: 12/15/2022]
Abstract
Polysaccharide intercellular adhesin (PIA)-associated biofilm formation is mediated by the intercellular adhesin (ica) locus and represents a major pathomechanism of Staphylococcus epidermidis. Here, we report on a novel long non-coding (nc)RNA, named IcaZ, which is approximately 400 nucleotides in size. icaZ is located downstream of the ica repressor gene icaR and partially overlaps with the icaR 3' UTR. icaZ exclusively exists in ica-positive S. epidermidis, but not in S. aureus or other staphylococci. Inactivation of the gene completely abolishes PIA production. IcaZ is transcribed as a primary transcript from its own promoter during early- and mid-exponential growth and its transcription is induced by low temperature, ethanol and salt stress. IcaZ targets the icaR 5' UTR and hampers icaR mRNA translation, which alleviates repression of icaADBC operon transcription and results in PIA production. Interestingly, other than in S. aureus, posttranscriptional control of icaR mRNA in S. epidermidis does not involve icaR mRNA 5'/3' UTR base pairing. This suggests major structural and functional differences in icaADBC operon regulation between the two species that also involve the recruitment of ncRNAs. Together, the IcaZ ncRNA represents an unprecedented novel species-specific player involved in the control of PIA production in NBSP S. epidermidis.
Collapse
Affiliation(s)
- Maike F Lerch
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Sonja M K Schoenfelder
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Martin Eckart
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany.,Faculty of Information Science and Communication Studies, TH Köln, Cologne, D-50678, Germany.,ZB MED-Information Centre for Life Sciences, Cologne, Germany
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| | - Kai M Thormann
- Institute of Microbiology and Molecular Biology, University of Gießen, Heinrich-Buff-Ring 26, Gießen, 35392, Germany
| | - Martin Kucklick
- Helmholtz Centre for Infection Research, Microbial Proteomics, Inhoffenstraße 7, Braunschweig, 38124, Germany.,Institute of Microbiology, Technical University Braunschweig, Spielmannstr. 7, Braunschweig, 38106, Germany
| | - Susanne Engelmann
- Helmholtz Centre for Infection Research, Microbial Proteomics, Inhoffenstraße 7, Braunschweig, 38124, Germany.,Institute of Microbiology, Technical University Braunschweig, Spielmannstr. 7, Braunschweig, 38106, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Wuerzburg, Josef-Schneider-Str. 2, Wuerzburg, D-97080, Germany
| |
Collapse
|
130
|
Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:82. [PMID: 30952208 PMCID: PMC6451225 DOI: 10.1186/s12906-019-2487-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cytinus is small genus of endophytic parasitic plants distributed in South Africa, Madagascar, and in the Mediterranean region. In the latter area, two species occur, Cytinus hypocistis and C. ruber, distinguished by both morphological characters and ecological traits. We characterized the ethanolic and aqueous extracts obtained from the inflorescences of C. hypocistis and C. ruber collected in Sardinia, Italy, and explored their tannin content, antioxidant properties and antimicrobial activities. METHODS Total phenolic contents were determined by Folin-Ciocalteu spectrophotometric method. Tannin content was determined by HPLC. Antioxidant activity of the extracts was tested with both electron transfer-based (FRAP, TEAC, DPPH) and spectrophotometric HAT methods (ORAC-PYR). The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bactericidal activity was evaluated using the time-kill method. Biofilm formation was evaluated by crystal violet (CV) staining assay. RESULTS Characterization of the tannin profile of C. hypocistis and C. ruber revealed a significant amount of gallotannins, in particular 1-O-galloyl-β-D-glucose. In addition, pentagalloyl-O-β-D-glucose was present in all extracts, reaching the concentration of 0.117 g/kg in the ethanolic extract of C. hypocistis. C. hypocistis extracts displayed a strongest antioxidant activity than C. ruber extracts. Three Gram-positive bacterial species tested (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecium) resulted sensitive to both Cytinus extracts, with MICs ranging from 125 to 500 μg/ml for aqueous extracts and from 31.25 to 250 μg/ml for ethanolic extracts; on the contrary, Gram-negative strains (Pseudomonas aeruginosa and Klebsiella pneumoniae) were not affected by Cytinus extracts. Intriguingly, we observed the suppressive activity of ethanolic extracts of C. hypocistis and C. ruber on biofilm formation of S. epidermidis. Experiments performed with synthetic compounds indicated that pentagalloyl-O-β-D-glucose is likely to be one of the active antimicrobial components of Cytinus extracts. CONCLUSIONS These findings show that Cytinus extracts have antimicrobial and antioxidant activities, suggesting a possible application of Cytinus as sources of natural antimicrobials and antioxidants.
Collapse
|
131
|
Bacterial load and pathogenic species on healthcare personnel attire: implications of alcohol hand-rub use, profession, and time of duty. J Hosp Infect 2019; 101:414-421. [DOI: 10.1016/j.jhin.2018.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
|
132
|
Olwal CO, Ang'ienda PO, Ochiel DO. Alternative sigma factor B (σ B) and catalase enzyme contribute to Staphylococcus epidermidis biofilm's tolerance against physico-chemical disinfection. Sci Rep 2019; 9:5355. [PMID: 30926870 PMCID: PMC6440968 DOI: 10.1038/s41598-019-41797-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus epidermidis is the predominant cause of recalcitrant biofilm-associated infections, which are often highly resistant to antibiotics. Thus, the use of physico-chemical agents for disinfection offers a more effective approach to the control of S. epidermidis biofilm infections. However, the underlying tolerance mechanisms employed by S. epidermidis biofilm against these physico-chemical disinfectants remain largely unknown. The expression of a σB-dependent gene, alkaline shock protein 23 (asp23) and catalase activity by S. epidermidis biofilm and planktonic cells exposed to heat (50 °C), 0.8 M sodium chloride (NaCl), 5 mM sodium hypochlorite (NaOCl) or 50 μM hydrogen peroxide (H2O2) for 60 minutes were compared. Significantly higher asp23 expression levels were observed in biofilms exposed to 50 °C, 5 mM NaOCl or 50 μM H2O2 compared to the corresponding planktonic cells (p < 0.05). Conversely, asp23 expression levels in biofilm and planktonic cells exposed to 0.8 M NaCl were not significantly different (p > 0.05). Further, biofilms exposed to 50 °C, 0.8 M NaCl, 5 mM NaOCl or 50 μM H2O2 exhibited significantly higher catalase activity than the planktonic cells (p < 0.05). These results suggest that activities of σB and catalase may be involved in the tolerance of S. epidermidis biofilm against physico-chemical disinfection.
Collapse
|
133
|
Gómez-Sanz E, Ceballos S, Ruiz-Ripa L, Zarazaga M, Torres C. Clonally Diverse Methicillin and Multidrug Resistant Coagulase Negative Staphylococci Are Ubiquitous and Pose Transfer Ability Between Pets and Their Owners. Front Microbiol 2019; 10:485. [PMID: 30972035 PMCID: PMC6443710 DOI: 10.3389/fmicb.2019.00485] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022] Open
Abstract
Sixty-eight owners and 66 pets, from 43 unrelated pet-owning households were screened for methicillin-resistant coagulase negative staphylococci (MRCoNS), potential cases of MRCoNS interspecies transmission (IT), and persistence. MRCoNS isolates were identified by microbiological and molecular tests. MLST-based phylogenetic analysis was performed in Staphylococcus epidermidis isolates. Antimicrobial susceptibility was evaluated using phenotypic and molecular methods. SCCmec type and the presence of biofilm-related ica locus was PCR-tested. Isolates suspected for MRCoNS IT cases were subjected to SmaI-PFGE analysis and individuals from positive households were followed-up for 1 year for carriage dynamics (every 3 months, T0-T4). Nineteen MRCoNS isolates from owners (27.9%) and 12 from pets (16.7%) were detected, coming from 20 households (46.5%). S. epidermidis was predominant (90 and 67% of human and animal strains, respectively), showing high phylogenetic diversity (16 STs among 24 strains). Methicillin-resistant S. epidermidis (MRSE) strains belonged to CC5 (75%), CC11 (12.5%), singleton S556 (8.3%), and S560 (4.17%). Significant host-associated differences were observed for resistance to aminoglycosides, co-trimoxazole, chloramphenicol (higher in animal isolates) and tetracycline (higher among human strains). Multidrug resistance (MDR) was common (68.4%) and associated with human strains. Great diversity of ccr and mec complexes were detected, most strains being non-typeable, followed by SCCmecIV and V. Over one third of isolates (most from owners), carried the ica locus, all MRSE CC5. Two sporadic IT cases (T0) were identified in owners and dogs from two households (4.7%), with diverse interspecies-exchanged clones detected along the sampling year, especially in dogs. A comparative analysis of all MRCoNS, with all nasal coagulase positive staphylococci (CoPS) recovered from the same individuals at T0, revealed that CoPS alone was predominant in owners and pets, followed by co-carriage of CoPS and MRCoNS in owners but single MRCoNS in pets. Statistical analyses revealed that owners are more prone to co-carriage and that co-existence of IT cases and co-carriage are positively interrelated. MRCoNS from healthy owners and their pets are genetically heterogeneous MDR strains that are spread in the community. Therefore, pets also contribute to the dissemination of successful human clones. Owner-pet inhabitancy increases the risk for staphylococcal temporal concomitance with its subsequent risk for bacterial infection and genetic exchange.
Collapse
Affiliation(s)
- Elena Gómez-Sanz
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland.,Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Sara Ceballos
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Laura Ruiz-Ripa
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| |
Collapse
|
134
|
Marincola G, Wencker FDR, Ziebuhr W. The Many Facets of the Small Non-coding RNA RsaE (RoxS) in Metabolic Niche Adaptation of Gram-Positive Bacteria. J Mol Biol 2019; 431:4684-4698. [PMID: 30914292 DOI: 10.1016/j.jmb.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Small regulatory RNAs (sRNAs) are increasingly recognized as players in the complex regulatory networks governing bacterial gene expression. RsaE (synonym RoxS) is an sRNA that is highly conserved in bacteria of the Bacillales order. Recent analyses in Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis identified RsaE/RoxS as a potent riboregulator of central carbon metabolism and energy balance with many molecular RsaE/RoxS functions and targets being shared across species. Similarities and species-specific differences in cellular processes modulated by RsaE/RoxS suggest that this sRNA plays a prominent role in the adaptation of Gram-positive bacteria to niches with varying nutrient availabilities and environmental cues. This review summarizes recent findings on the molecular function of RsaE/RoxS and its interaction with mRNA targets. Special emphasis will be on the integration of RsaE/RoxS into metabolic regulatory circuits and, derived from this, the role of RsaE/RoxS as a putative driver to generate phenotypic heterogeneity in bacterial populations. In this respect, we will particularly discuss heterogeneous RsaE expression in S. epidermidis biofilms and its possible contribution to metabolic niche diversification, programmed bacterial lysis and biofilm matrix production.
Collapse
Affiliation(s)
- Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Freya D R Wencker
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| |
Collapse
|
135
|
Schoenfelder SMK, Lange C, Prakash SA, Marincola G, Lerch MF, Wencker FDR, Förstner KU, Sharma CM, Ziebuhr W. The small non-coding RNA RsaE influences extracellular matrix composition in Staphylococcus epidermidis biofilm communities. PLoS Pathog 2019; 15:e1007618. [PMID: 30870530 PMCID: PMC6435200 DOI: 10.1371/journal.ppat.1007618] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/26/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
RsaE is a conserved small regulatory RNA (sRNA) which was previously reported to represent a riboregulator of central carbon flow and other metabolic pathways in Staphylococcus aureus and Bacillus subtilis. Here we show that RsaE contributes to extracellular (e)DNA release and biofilm-matrix switching towards polysaccharide intercellular adhesin (PIA) production in a hypervariable Staphylococcus epidermidis isolate. Transcriptome analysis through differential RNA sequencing (dRNA-seq) in combination with confocal laser scanning microscopy (CLSM) and reporter gene fusions demonstrate that S. epidermidis protein- and PIA-biofilm matrix producers differ with respect to RsaE and metabolic gene expression. RsaE is spatiotemporally expressed within S. epidermidis PIA-mediated biofilms, and its overexpression triggers a PIA biofilm phenotype as well as eDNA release in an S. epidermidis protein biofilm matrix-producing strain background. dRNA-seq and Northern blot analyses revealed RsaE to exist as a major full-length 100-nt transcript and a minor processed species lacking approximately 20 nucleotides at the 5'-end. RsaE processing results in expansion of the mRNA target spectrum. Thus, full-length RsaE interacts with S. epidermidis antiholin-encoding lrgA mRNA, facilitating bacterial lysis and eDNA release. Processed RsaE, however, interacts with the 5'-UTR of icaR and sucCD mRNAs, encoding the icaADBC biofilm operon repressor IcaR and succinyl-CoA synthetase of the tricarboxylic acid (TCA) cycle, respectively. RsaE augments PIA-mediated biofilm matrix production, most likely through activation of icaADBC operon expression via repression of icaR as well as by TCA cycle inhibition and re-programming of staphylococcal central carbon metabolism towards PIA precursor synthesis. Additionally, RsaE supports biofilm formation by mediating the release of eDNA as stabilizing biofilm matrix component. As RsaE itself is heterogeneously expressed within biofilms, we consider this sRNA to function as a factor favoring phenotypic heterogeneity and supporting division of labor in S. epidermidis biofilm communities. Bacterial biofilms are highly organized structures which functionally emulate multicellular organisms, last but not least through heterogeneous gene expression patterns displayed by biofilm subpopulations. Here we analyzed the functions of the non-coding RNA RsaE in Staphylococcus epidermidis biofilm communities. RsaE exerted unexpected influences on S. epidermidis biofilm matrix composition by triggering localized eDNA release and facilitating PIA expression. RsaE accomplishes these effects by targeting mRNAs involved in bacterial lysis control, icaADBC expression and TCA cycle activity, with RsaE undergoing processing to exploit its full target potential. Interestingly, RsaE interaction with lysis-engaged lrgA mRNA is specific for S. epidermidis lrgA, but does not occur with lrgA mRNA from S. aureus, suggesting species-specific differences in staphylococcal lysis control. We speculate that RsaE-mediated bacterial lysis might represent a form of bacterial altruism contributing to biofilm structuring by providing nutrients to neighboring bacterial cells as well as by releasing eDNA as stabilizing biofilm matrix component. Due to its heterogeneous expression, we consider RsaE as a supporting factor that facilitates population diversity. Together, the data give insight into an unanticipated role of sRNAs as players in S. epidermidis biofilm organization.
Collapse
Affiliation(s)
| | - Claudia Lange
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | | | - Gabriella Marincola
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Maike F. Lerch
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Freya D. R. Wencker
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Konrad U. Förstner
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Cynthia M. Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Wilma Ziebuhr
- University of Würzburg, Institute of Molecular Infection Biology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
136
|
Transcriptional Regulation of icaADBC by both IcaR and TcaR in Staphylococcus epidermidis. J Bacteriol 2019; 201:JB.00524-18. [PMID: 30602488 DOI: 10.1128/jb.00524-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
S. epidermidis is a primary cause of biofilm-mediated infections in humans due to adherence to foreign bodies. A major staphylococcal biofilm accumulation molecule is polysaccharide intracellular adhesin (PIA), which is synthesized by enzymes encoded by the icaADBC operon. Expression of PIA is highly variable among clinical isolates, suggesting that PIA expression levels are selected in certain niches of the host. However, the mechanisms that govern enhanced icaADBC transcription and PIA synthesis in these isolates are not known. We hypothesized that enhanced PIA synthesis in these isolates was due to function of IcaR and/or TcaR. Thus, two S. epidermidis isolates (1457 and CSF41498) with different icaADBC transcription and PIA expression levels were studied. Constitutive expression of both icaR and tcaR demonstrated that both repressors are functional and can completely repress icaADBC transcription in both 1457 and CSF41498. However, it was found that IcaR was the primary repressor for CSF41498 and TcaR was the primary repressor for 1457. Further analysis demonstrated that icaR transcription was repressed in 1457 in comparison to CSF41498, suggesting that TcaR functions as a repressor only in the absence of IcaR. Indeed, DNase I footprinting suggests IcaR and TcaR may bind to the same site within the icaR-icaA intergenic region. Lastly, we found mutants expressing variable amounts of PIA could rapidly be selected from both 1457 and CSF41498. Collectively, we propose that strains producing enhanced PIA synthesis are selected within certain niches of the host through several genetic mechanisms that function to repress icaR transcription, thus increasing PIA synthesis.IMPORTANCE Staphylococcus epidermidis is a commensal bacterium that resides on our skin. As a commensal, it protects humans from bacterial pathogens through a variety of mechanisms. However, it is also a significant cause of biofilm infections due to its ability to bind to plastic. Polysaccharide intercellular adhesin is a significant component of biofilm, and we propose that the expression of this polysaccharide is beneficial in certain host niches, such as providing extra strength when the bacterium is colonizing the lumen of a catheter, and detrimental in others, such as colonization of the skin surface. We show here that fine-tuning of icaADBC transcription, and thus PIA synthesis, is mediated via two transcriptional repressors, IcaR and TcaR.
Collapse
|
137
|
Agarwal A, Lin B, Wang JC, Schultz C, Garfin SR, Goel VK, Anand N, Agarwal AK. Efficacy of Intraoperative Implant Prophylaxis in Reducing Intraoperative Microbial Contamination. Global Spine J 2019; 9:62-66. [PMID: 30775210 PMCID: PMC6362554 DOI: 10.1177/2192568218780676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN A prospective single-center study. OBJECTIVES Assess to what degree contamination of pedicle screws occur in standard intraoperative practice and if use of an impermeable guard could mitigate or reduce such an occurrence. METHODS Two groups of sterile prepackaged pedicle screws, one with an intraoperative guard (group 1) and the other without such a guard (group 2), each consisting of 5 samples distributed over 3 time points, were loaded onto the insertion device by the scrub tech and left on the sterile table. Approximately 20 minutes later, the lead surgeon who had just finished preparing the surgical site touches the pedicle screw. Then instead of implantation it was transferred to a sterile container using fresh clean gloves for bacterial and gene analysis. Guarded screw implies that even after unwrapping from the package, the screw carries an impermeable barrier along its entire length, which is only removed seconds prior to implantation. RESULTS The standard unguarded pedicle screws presented bioburden in the range of 105 to 107 (colony forming units/implant) with bacterial genus mostly consisting of Staphylococcus and Micrococcus, the 2 most common genera found in surgical site infection reports. The common species among them were Staphylococcus epidermis, Staphylococcus aureus, Micrococcus luteus, and Staphylococcus pettenkoferi, whereas the guarded pedicle screws showed no bioburden. CONCLUSIONS Shielding the pedicle screws intraoperatively using a guard provides a superior level of asepsis than currently practiced. All unshielded pedicles screws were carrying bioburden of virulent bacterial species, which provides an opportunity for the development of postoperative infections.
Collapse
Affiliation(s)
- Aakash Agarwal
- University of Toledo, Toledo, OH, USA,Aakash Agarwal, Engineering Center for Orthopaedic Research Excellence, University of Toledo, 5051 Nitschke Hall MS 303, 2801 W, Bancroft St, Toledo, OH 43606, USA.
| | - Boren Lin
- University of Toledo, Toledo, OH, USA
| | | | | | | | | | - Neel Anand
- Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
138
|
Complete Genome Sequence of Staphylococcus epidermidis CSF41498. Microbiol Resour Announc 2019; 8:MRA01138-18. [PMID: 30643875 PMCID: PMC6328648 DOI: 10.1128/mra.01138-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus epidermidis CSF41498 is amenable to genetic manipulation and has been used to study mechanisms of biofilm formation. We report here the whole-genome sequence of this strain, which contains 2,427 protein-coding genes and 82 RNAs within its 2,481,008-bp-long genome, as well as three plasmids. Staphylococcus epidermidis CSF41498 is amenable to genetic manipulation and has been used to study mechanisms of biofilm formation. We report here the whole-genome sequence of this strain, which contains 2,427 protein-coding genes and 82 RNAs within its 2,481,008-bp-long genome, as well as three plasmids.
Collapse
|
139
|
CSF inflammatory markers differ in gram-positive versus gram-negative shunt infections. J Neuroinflammation 2019; 16:7. [PMID: 30626412 PMCID: PMC6325818 DOI: 10.1186/s12974-019-1395-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) shunt placement is frequently complicated by bacterial infection. Shunt infection diagnosis relies on bacterial culture of CSF which can often produce false-negative results. Negative cultures present a conundrum for physicians as they are left to rely on other CSF indices, which can be unremarkable. New methods are needed to swiftly and accurately diagnose shunt infections. CSF chemokines and cytokines may prove useful as diagnostic biomarkers. The objective of this study was to evaluate the potential of systemic and CSF biomarkers for identification of CSF shunt infection. Methods We conducted a retrospective chart review of children with culture-confirmed CSF shunt infection at Children’s Hospital and Medical Center from July 2013 to December 2015. CSF cytokine analysis was performed for those patients with CSF in frozen storage from the same sample that was used for diagnostic culture. Results A total of 12 infections were included in this study. Patients with shunt infection had a median C-reactive protein (CRP) of 18.25 mg/dL. Median peripheral white blood cell count was 15.53 × 103 cells/mL. Those with shunt infection had a median CSF WBC of 332 cells/mL, median CSF protein level of 406 mg/dL, and median CSF glucose of 35.5 mg/dL. An interesting trend was observed with gram-positive infections having higher levels of the anti-inflammatory cytokine interleukin (IL)-10 as well as IL-17A and vascular endothelial growth factor (VEGF) compared to gram-negative infections, although these differences did not reach statistical significance. Conversely, gram-negative infections displayed higher levels of the pro-inflammatory cytokines IL-1β, fractalkine (CX3CL1), chemokine ligand 2 (CCL2), and chemokine ligand 3 (CCL3), although again these were not significantly different. CSF from gram-positive and gram-negative shunt infections had similar levels of interferon gamma (INF-γ), tumor necrosis factor alpha (TNF-α), IL-6, and IL-8. Conclusions This pilot study is the first to characterize the CSF cytokine profile in patients with CSF shunt infection and supports the distinction of chemokine and cytokine profiles between gram-negative and gram-positive infections. Additionally, it demonstrates the potential of CSF chemokines and cytokines as biomarkers for the diagnosis of shunt infection.
Collapse
|
140
|
Kurečič M, Rijavec T, Hribernik S, Lapanje A, Kleinschek KS, Maver U. Novel electrospun fibers with incorporated commensal bacteria for potential preventive treatment of the diabetic foot. Nanomedicine (Lond) 2018; 13:1583-1594. [PMID: 30028247 DOI: 10.2217/nnm-2018-0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM A novel electrospun biocompatible nanofibrous material loaded with commensal bacteria for potential preventive treatment of the diabetic foot was developed. MATERIALS & METHODS Two biocompatible polymers (carboxymethylcellulose and polyethylene oxide) were combined with a bacterium isolate from the skin located between the toes of a healthy adult (identified using a matrix-assisted laser desorption/ionization mass spectrometry-based method as a strain of Staphylococcus epidermidis). Higher bacteria loads in the material were assured through their encapsulation in polyethylenimine. The nanofibrous material was characterized using scanning electron microscopy, zeta-potential measurements and through evaluation of cell growth and viability. RESULTS & DISCUSSION nanometer formation was confirmed using scanning electron microscopy, while the zeta-potential measurements revealed successful bacteria encapsulation. Viable and sufficiently growing cells were confirmed prior and after their incorporation. CONCLUSION The prepared materials were proven suitable to deliver viable commensal bacteria in a comparable share to the Staphylococcaceae in the foot microbiome making this approach promising for preventive diabetic foot treatment.
Collapse
Affiliation(s)
- Manja Kurečič
- Laboratory for Characterization & Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.,Institute for Chemistry & Technology of Materials, Graz University of Technology, Stremayrgasse 9, AT-8010 Graz, Austria
| | - Tomaž Rijavec
- Department for Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Silvo Hribernik
- Laboratory for Characterization & Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Aleš Lapanje
- Department for Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Karin S Kleinschek
- Laboratory for Characterization & Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia.,Institute for Chemistry & Technology of Materials, Graz University of Technology, Stremayrgasse 9, AT-8010 Graz, Austria
| | - Uroš Maver
- Department of Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences & University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
141
|
Tetrasodium EDTA Is Effective at Eradicating Biofilms Formed by Clinically Relevant Microorganisms from Patients' Central Venous Catheters. mSphere 2018; 3:3/6/e00525-18. [PMID: 30487154 PMCID: PMC6262258 DOI: 10.1128/msphere.00525-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The colonization of catheters by microorganisms often precludes their long-term use, which can be a problem for human patients that have few body sites available for new catheters. The colonizing organisms often form biofilms, and increasingly these organisms are resistant to multiple antibiotics, making them difficult to treat. In this article, we have taken microorganisms that are associated with biofilm formation in catheters from two Canadian hospitals and tested them with tetrasodium EDTA, a new antimicrobial catheter lock solution. Tetrasodium EDTA was effective at eliminating Gram-positive, Gram-negative, and fungal species and represents a promising alternative to antibiotic treatment with less chance of the organisms developing resistance. We expect that our results will be of interest to researchers and clinicians and will lead to improved patient care. Central venous access devices (CVADs) are an essential component of modern health care. However, their prolonged use commonly results in microbial colonization, which carries the potential risk of hospital-acquired bloodstream infections. These infections complicate the treatment of already sick individuals and cost the existing health care systems around the world millions of dollars. The microbes that colonize CVADs typically form multicellular biofilms that are difficult to dislodge and are resistant to antimicrobial treatments. Clinicians are searching for better ways to extend the working life span of implanted CVADs, by preventing colonization and reducing the risk of bloodstream infections. In this study, we analyzed 210 bacterial and fungal isolates from colonized CVADs or human bloodstream infections from two hospitals geographically separated in the east and west of Canada and screened the isolates for biofilm formation in vitro. Twenty isolates, representing 12 common, biofilm-forming species, were exposed to 4% tetrasodium EDTA, an antimicrobial lock solution that was recently approved in Canada for use as a medical device. The EDTA solution was effective at eradicating surface-attached biofilms from each microbial species, indicating that it could likely be used to prevent biofilm growth within CVADs and to eliminate established biofilms. This new lock solution fits with antibiotic stewardship programs worldwide by sparing the use of important antibiotic agents, targeting prevention rather than the expensive treatment of hospital-acquired infections. IMPORTANCE The colonization of catheters by microorganisms often precludes their long-term use, which can be a problem for human patients that have few body sites available for new catheters. The colonizing organisms often form biofilms, and increasingly these organisms are resistant to multiple antibiotics, making them difficult to treat. In this article, we have taken microorganisms that are associated with biofilm formation in catheters from two Canadian hospitals and tested them with tetrasodium EDTA, a new antimicrobial catheter lock solution. Tetrasodium EDTA was effective at eliminating Gram-positive, Gram-negative, and fungal species and represents a promising alternative to antibiotic treatment with less chance of the organisms developing resistance. We expect that our results will be of interest to researchers and clinicians and will lead to improved patient care.
Collapse
|
142
|
Watanabe S, Aiba Y, Tan XE, Li FY, Boonsiri T, Thitiananpakorn K, Cui B, Sato'o Y, Kiga K, Sasahara T, Cui L. Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis. BMC Genomics 2018; 19:810. [PMID: 30409159 PMCID: PMC6225691 DOI: 10.1186/s12864-018-5185-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Staphylococcus caprae is an animal-associated bacterium regarded as part of goats’ microflora. Recently, S. caprae has been reported to cause human nosocomial infections such as bacteremia and bone and joint infections. However, the mechanisms responsible for the development of nosocomial infections remain largely unknown. Moreover, the complete genome sequence of S. caprae has not been determined. Results We determined the complete genome sequences of three methicillin-resistant S. caprae strains isolated from humans and compared these sequences with the genomes of S. epidermidis and S. capitis, both of which are closely related to S. caprae and are inhabitants of human skin capable of causing opportunistic infections. The genomes showed that S. caprae JMUB145, JMUB590, and JMUB898 strains contained circular chromosomes of 2,618,380, 2,629,173, and 2,598,513 bp, respectively. JMUB145 carried type V SCCmec, while JMUB590 and JMUB898 had type IVa SCCmec. A genome-wide phylogenetic SNP tree constructed using 83 complete genome sequences of 24 Staphylococcus species and 2 S. caprae draft genome sequences confirmed that S. caprae is most closely related to S. epidermidis and S. capitis. Comparative complete genome analysis of eight S. epidermidis, three S. capitis and three S. caprae strains revealed that they shared similar virulence factors represented by biofilm formation genes. These factors include wall teichoic acid synthesis genes, poly-gamma-DL-glutamic acid capsule synthesis genes, and other genes encoding nonproteinaceous adhesins. The 17 proteinases/adhesins and extracellular proteins known to be associated with biofilm formation in S. epidermidis were also conserved in these three species, and their biofilm formation could be detected in vitro. Moreover, two virulence-associated gene clusters, the type VII secretion system and capsular polysaccharide biosynthesis gene clusters, identified in S. aureus were present in S. caprae but not in S. epidermidis and S. capitis genomes. Conclusion The complete genome sequences of three methicillin-resistant S. caprae isolates from humans were determined for the first time. Comparative genome analysis revealed that S. caprae is closely related to S. epidermidis and S. capitis at the species level, especially in the ability to form biofilms, which may lead to increased virulence during the development of S. caprae infections. Electronic supplementary material The online version of this article (10.1186/s12864-018-5185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tanit Boonsiri
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Bintao Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
143
|
Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 2018; 79:265-275. [PMID: 30125670 DOI: 10.1016/j.actbio.2018.08.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the previous study, we demonstrated that quaternized chitosan (HACC)-grafted polylactide-co-glycolide (PLGA)/hydroxyapatite (HA) scaffold (PLGA/HA/HACC) via 3D-printing technique exhibited significantly improved antimicrobial and osteoconductive property in vitro, together with good biocompatibility in vivo. Hence, the present study further investigated whether such an innovative bone substitute could effectively inhibit the bacterial biofilm formation and promote bone regeneration in vivo. To evaluate the bone repairing effects of the 3D-printed scaffolds on infected cortical and cancellous bone defects scenarios, eighty female Sprague Dawley rats and thirty-six female New Zealand white rabbits were used to establish infected femoral shaft defect and condyle defect model, respectively. X-ray, micro-CT, microbiological and histopathological analyses were used to assess the anti-infection and bone repairing potential of the dual-functional porous scaffolds. We observed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration capability in different infected bone defect models. In addition, the degradation rate of the scaffolds appeared to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In general, this investigation is of great significance as it demonstrates promising applications of the 3D-printed dual-functional PLGA/HA/HACC scaffold for repairing different types of bone defect under infection. STATEMENT OF SIGNIFICANCE Currently, it is clinically urgent to exploit bone substitutes with potential of bacterial inhibition and bone regeneration. However, bone scaffolds with relatively low risks of bacterial resistance and tissue toxicity used for combating infected bone defects remain to be developed. We have reported that quaternized chitosan (HACC)-grafted 3D-printed PLGA/HA composite scaffold had enhanced in vitro antimicrobial and osteoconductive property, and well cytocompatibility in our published study. This continuing study further confirmed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration efficacy in both cortical bone defect in rat and cancellous bone defect in rabbit under infection. Meanwhile, we also found that the degradation rate of the scaffolds seemed to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In conclusion, this study provides significant opportunities to develop a 3D-printed bone scaffold with dual functions used for infected bone defects in future plastic and orthopaedic surgery.
Collapse
|
144
|
Molecular Characteristics of Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Isolates Causing Urinary Tract Infections. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.61704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
145
|
Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. MATERIALS 2018; 11:ma11091676. [PMID: 30201944 PMCID: PMC6163278 DOI: 10.3390/ma11091676] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Biofilm formation in healthcare is an issue of considerable concern, as it results in increased morbidity and mortality, imposing a significant financial burden on the healthcare system. Biofilms are highly resistant to conventional antimicrobial therapies and lead to persistent infections. Hence, there is a high demand for novel strategies other than conventional antibiotic therapies to control biofilm-based infections. There are two approaches which have been employed so far to control biofilm formation in healthcare settings: one is the development of biofilm inhibitors based on the understanding of the molecular mechanism of biofilm formation, and the other is to modify the biomaterials which are used in medical devices to prevent biofilm formation. This review will focus on the recent advances in anti-biofilm approaches by interrupting the quorum-sensing cellular communication system and the multidrug efflux pumps which play an important role in biofilm formation. Research efforts directed towards these promising strategies could eventually lead to the development of better anti-biofilm therapies than the conventional treatments.
Collapse
|
146
|
Taleb MH, Abdeltawab NF, Shamma RN, Abdelgayed SS, Mohamed SS, Farag MA, Ramadan MA. Origanum vulgare L. Essential Oil as a Potential Anti-Acne Topical Nanoemulsion-In Vitro and In Vivo Study. Molecules 2018; 23:E2164. [PMID: 30154336 PMCID: PMC6225355 DOI: 10.3390/molecules23092164] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
Antibiotics are often prescribed in acne treatment; however, Propionibacterium acnes and Staphylococcus epidermidis, the two of the major acne-associated bacteria, developed antibiotic resistance. Essential oils (EOs) present a natural, safe, efficacious and multifunctional alternative treatment. This study aimed to assess the potential anti-acne activity of selected seven EOs commonly used in Mediterranean folk medicine. Antimicrobial activity screening of these oils showed oregano to exhibit the strongest antimicrobial activity with minimum inhibitory concentration (MIC) of 0.34 mg/mL and minimum bactericidal concentration (MBC) of 0.67 mg/mL against P. acnes; and MIC of 0.67 mg/mL and MBC of 1.34 mg/mL against S. epidermidis. The composition of the most effective EOs (oregano and thyme) was determined using gas chromatography-mass spectrometry (GC-MS). Monoterpenoid phenols predominated oregano and thyme EO with thymol percentile 99 and 72, respectively. Thymol showed MIC 0.70 mg/mL against both P. acnes and S. epidermidis whereas MBC was 1.40 and 2.80 mg/mL against P. acnes and S. epidermidis, respectively. Moreover, oregano exhibited the strongest anti-biofilm effect against S. epidermidis with MBIC 1.34 mg/mL and killing dynamic time of 12 and 8 h against P. acnes and S. epidermidis, respectively. Oregano, the most effective EO, was formulated and tested as a nanoemulsion in an acne animal mouse model. The formulation showed superior healing and antimicrobial effects compared to the reference antibiotic. Collectively, our data suggested that oregano oil nanoemulsion is a potential natural and effective alternative for treating acne and overcoming the emerging antibiotic resistance.
Collapse
Affiliation(s)
- Mohammed H Taleb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University⁻Gaza, PO Box 1277, Gaza 79702, Palestine.
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Sherein S Abdelgayed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt.
| | - Sarah S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, Cairo 11853, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
147
|
Ardon CB, Prens EP, Fuursted K, Ejaz RN, Shailes J, Jenssen H, Jemec GBE. Biofilm production and antibiotic susceptibility of Staphylococcus epidermidis strains from Hidradenitis Suppurativa lesions. J Eur Acad Dermatol Venereol 2018; 33:170-177. [PMID: 30022542 DOI: 10.1111/jdv.15183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND An aberrant interaction between commensal skin bacteria and the host skin immune system is considered important in the pathogenesis of hidradenitis suppurativa (HS). OBJECTIVE In this study, we investigated the antibiotic susceptibility and biofilm-forming capabilities of S. epidermidis strains isolated from HS patients. METHODS Skin biopsies were taken from active HS lesions such as inflammatory nodules and/or sinuses and non-involved skin from 26 patients and cultured under optimal microbiological conditions for 24 h. Planktonic growth, biofilm production, antibiotic susceptibility and biofilm eradication by clindamycin, doxycycline, rifampicin and tetracycline were tested including a laboratory control strain of S. epidermidis for reference. RESULTS Staphylococcus epidermidis was cultured in 16 of 26 HS patients (62%). In total 27 different S. epidermidis isolates were identified; 16 (59%) from non-involved skin and 11 (41%) from HS lesions. All bacterial strains showed planktonic growth. Twenty-four of 27 (89%) isolates were strong biofilm producers in vitro. The biofilm-forming capability varied amongst the strains from non-involved skin and lesional skin. Twenty-four strains had an intermediate to resistant antibiotic susceptibility to clindamycin (89%). Rifampicin was the most effective antibiotic at inhibiting planktonic growth and at eradication of biofilm (P < 0.05). CONCLUSION We observed a slight increase in S. epidermidis virulence, characterized by resistance to commonly used antibiotics, increased biofilm production and resistance to biofilm eradication. In particular, the reduced sensitivity to tetracycline and clindamycin, two standard antibiotics in the treatment of HS, is alarming. Rifampicin, also important in HS treatment, showed the greatest efficacy at eradicating the biofilm at low MIC concentrations.
Collapse
Affiliation(s)
- C B Ardon
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - E P Prens
- Department of Dermatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - K Fuursted
- Department of Microbiology and Infection Control, Staten Serum Institute, Copenhagen, Denmark
| | - R N Ejaz
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - J Shailes
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - H Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - G B E Jemec
- Department of Dermatology, University Hospital Zealand, Roskilde, Denmark
| |
Collapse
|
148
|
Balasubramanian S, Skaf J, Holzgrabe U, Bharti R, Förstner KU, Ziebuhr W, Humeida UH, Abdelmohsen UR, Oelschlaeger TA. A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Front Microbiol 2018; 9:1473. [PMID: 30050506 PMCID: PMC6050364 DOI: 10.3389/fmicb.2018.01473] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–<31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
Collapse
Affiliation(s)
| | - Joseph Skaf
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ute H Humeida
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
149
|
Heim CE, Vidlak D, Odvody J, Hartman CW, Garvin KL, Kielian T. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence. J Orthop Res 2018; 36:1605-1613. [PMID: 29139571 PMCID: PMC5953848 DOI: 10.1002/jor.23806] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33+ HLA-DR- CD66b+ CD14-/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. CLINICAL SIGNIFICANCE Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1605-1613, 2018.
Collapse
Affiliation(s)
- Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Debbie Vidlak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jessica Odvody
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Curtis W. Hartman
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kevin L. Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198,Corresponding Author: Tammy Kielian, Ph.D., University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, Phone: (402) 559-8002, FAX: (402) 559-5900,
| |
Collapse
|
150
|
Akanda ZZ, Taha M, Abdelbary H. Current review-The rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res 2018; 36:1051-1060. [PMID: 28971508 DOI: 10.1002/jor.23755] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Peri-prosthetic joint infection (PJI) is one of the most serious and dreaded complications after total joint replacement (TJR). Due to an aging population and the constant rise in demand for TJR, the incidence of PJI is also increasing. Successful treatment of PJI is challenging and is associated with high failure rates. One of the main causes for treatment failure is bacterial biofilm formation on implant surfaces and the adherence of biofilm bacteria on tissue and bone next to the implant. Biofilms are protective shields to bacterial cells and possess many unique properties that leads to antibiotic resistance. New therapeutic platforms are currently being explored to breakdown biofilm matrix in order to enhance the efficacy of antibiotics. Bacteriophages (phages) is one of these unique therapeutic platforms that can degrade biofilms as well as target the killing of bacterial cells. Preclinical studies of biofilm-mediated infections have demonstrated the ability of phage to eradicate biofilms and clear infections by working synergistically with antibiotics. There is strong preclinical evidence that phage can reduce the concentration of antibiotics required to treat an infection. These findings support a promising role for phages as a future clinical adjunct to antibiotics. In addition, phage therapy can be personalized to target a specific bacterial strain. Clinical studies using phage therapy are limited in Western literature; but phase I studies have established good safety profile with no adverse outcomes reported. In order to translate phage therapy to treat PJI in clinics, further preclinical testing is still required to study optimal delivery methods as well as the interaction between phage and the immune system in vivo. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1051-1060, 2018.
Collapse
Affiliation(s)
- Zarique Z Akanda
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| | - Mariam Taha
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| | - Hesham Abdelbary
- Department of Surgery, Division of Orthopaedics, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|