101
|
Vergne-Salle P, Salle L, Fressinaud-Marie AC, Descamps-Deplas A, Montestruc F, Bonnet C, Bertin P. Diet and Disease Activity in Patients with Axial Spondyloarthritis: SpondyloArthritis and NUTrition Study (SANUT). Nutrients 2022; 14:nu14224730. [PMID: 36432416 PMCID: PMC9695957 DOI: 10.3390/nu14224730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Axial Spondyloarthritis (axSpA) patients with inflamed intestines have higher SpA activity. Diets that modulate microbiota may influence inflammation and SpA activity. Today, data concerning the impact of diet on SpA activity are scarce. SANUT was a single-center, noninterventional, cohort study that assessed dietetic profiles associated with SpA activity in axSpA. Demographic, clinical, SpA-related, quality of life (QoL), fatigue, physical activity, and dietary data were collected. SpA activity was assessed by Ankylosing Spondylitis Disease Activity Score (ASDAS) and by Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). We assessed whether high SpA activity was associated with nutriment consumption. Between 12 February 2018 and 12 February 2020, 278 patients participated. High SpA activity, as measured by ASDAS and BASDAI, was significantly associated with higher body mass index and waist circumference, negative HLA-B27, lower QoL, higher fatigue, and higher digestive-symptom scores. Furthermore, high SpA activity, as measured by BASDAI, was associated with female sex, smoking status, patients who were not actively employed, reduced physical activity, and high intake of ultra-transformed foods, while high SpA activity, as measured by ASDAS, was associated with low intake of omega-3 PUFAs and fiber. Therefore, low intakes of omega-3 PUFAs and fiber, and high intake of ultra-transformed foods, are associated with high SpA activity.
Collapse
Affiliation(s)
- Pascale Vergne-Salle
- Rheumatology Department, University Hospital of Limoges and Laboratory PEIRENE UR 22722 Institut OmegaHealth, 87042 Limoges, France
- Correspondence:
| | - Laurence Salle
- Endocrinology Department, University Hospital of Limoges and Inserm U1094, EpiMaCT—Epidemiology of Chronic Diseases in Tropical Zone, 87042 Limoges, France
| | - Anne Catherine Fressinaud-Marie
- Rheumatology Department, University Hospital of Limoges and Laboratory PEIRENE UR 22722 Institut OmegaHealth, 87042 Limoges, France
| | - Adeline Descamps-Deplas
- Rheumatology Department, University Hospital of Limoges and Laboratory PEIRENE UR 22722 Institut OmegaHealth, 87042 Limoges, France
| | | | - Christine Bonnet
- Rheumatology Department, University Hospital of Limoges and Laboratory PEIRENE UR 22722 Institut OmegaHealth, 87042 Limoges, France
| | - Philippe Bertin
- Rheumatology Department, University Hospital of Limoges and Laboratory PEIRENE UR 22722 Institut OmegaHealth, 87042 Limoges, France
| |
Collapse
|
102
|
Gut Microbiota Mediates Skin Ulceration Syndrome Outbreak by Readjusting Lipid Metabolism in Apostichopus japonicus. Int J Mol Sci 2022; 23:ijms232113583. [DOI: 10.3390/ijms232113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal tract is the most important location for symbiotes and pathogens, and the microbiota plays a crucial role in affecting the health of the gut and other host organs. Dysbacteriosis in the intestinal system has been proven to be significant in skin ulceration syndrome (SUS) in sea cucumbers. This study investigates whether the gut microbiota and lipid metabolites are relevant to the initiation and progression of SUS in a Vibrio-splendidus-infected sea cucumber model. The tight junction genes were downregulated and the inflammatory factor gene transcriptions were upregulated after V. splendidus infection in the intestinal tissue of the sea cucumber. V. splendidus infection modulated the gut microbiota by interacting with Psychromonas macrocephali, Propionigenium maris, Bacillus cereus, Lutibacter flavus, and Hoeflea halophila. Meanwhile, the metabolites of the long-chain fatty acids in the intestinal tissue, including triglycerides (TG), phosphatidylethanolamines (PE), and phosphatidylglycerols (PG), were altered after V. splendidus infection. V. splendidus engaged in positive interactions with PG and PE and negative interactions with specific TG. These results related to gut microbiota and metabolites can offer practical assistance in the identification of the inflammatory mechanisms related to SUS, and this study may serve as a reference for predicting the disease.
Collapse
|
103
|
Cardoso MH, Meneguetti BT, Oliveira-Júnior NG, Macedo MLR, Franco OL. Antimicrobial peptide production in response to gut microbiota imbalance. Peptides 2022; 157:170865. [PMID: 36038014 DOI: 10.1016/j.peptides.2022.170865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022]
Abstract
The gut microbiota presents essential functions in the immune response. The gut epithelium acts as a protective barrier and, therefore, can produce several antimicrobial peptides (AMPs) that can act against pathogenic microorganisms, including bacteria. Several factors cause a disturbance in gut microbiota, including the exacerbated and erroneous use of antibiotics. Antibiotic therapy has been closely related to bacterial resistance and is also correlated with undesired side-effects to the host, including the eradication of commensal bacteria. Consequently, this results in gut microbiota imbalance and inflammatory bowel diseases (IBD) development. In this context, AMPs in the gut epithelium play a restructuring role for gut microbiota. Some naturally occurring AMPs are selective for pathogenic bacteria, thus preserving the health microbiota. Therefore, AMPs produced by the host's epithelial cells represent effective molecules in treating gut bacterial infections. Bearing this in mind, this review focused on describing the importance of the host's AMPs in gut microbiota modulation and their role as anti-infective agents against pathogenic bacteria.
Collapse
Affiliation(s)
- Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil; Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Beatriz T Meneguetti
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil
| | - Nelson G Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070900 Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117900, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil.
| |
Collapse
|
104
|
Armstrong D, Dregan A, Ashworth M, White P. Prior antibiotics and risk of subsequent Herpes zoster: A population-based case control study. PLoS One 2022; 17:e0276807. [PMID: 36301976 PMCID: PMC9612511 DOI: 10.1371/journal.pone.0276807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The effect of antibiotics on the human microbiome is now well established, but their indirect effect on the related immune response is less clear. The possible association of Herpes zoster, which involves a reactivation of a previous varicella zoster virus infection, with prior antibiotic exposure might indicate a potential link with the immune response. Methods A case-control study was carried out using a clinical database, the UK’s Clinical Practice Research Datalink. A total of 163,754 patients with varicella zoster virus infection and 331,559 age/sex matched controls were identified and their antibiotic exposure over the previous 10 years, and longer when data permitted, was identified. Conditional logistic regression was used to identify the association between antibiotic exposure and subsequent infection in terms of volume and timing. Results The study found an association of antibiotic prescription and subsequent risk of varicella zoster virus infection (adjusted odds ratio of 1.50; 95%CIs: 1.42–1.58). The strongest association was with a first antibiotic over 10 years ago (aOR: 1.92; 95%CIs: 1.88–1.96) which was particularly pronounced in the younger age group of 18 to 50 (aOR 2.77; 95%CIs: 1.95–3.92). Conclusions By finding an association between prior antibiotics and Herpes zoster this study has shown that antibiotics may be involved in the reactivation of the varicella zoster virus. That effect, moreover, may be relatively long term. This indirect effect of antibiotics on viruses, possibly mediated through their effect on the microbiome and immune system, merits further study.
Collapse
Affiliation(s)
- David Armstrong
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychological and Neurosciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Mark Ashworth
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Patrick White
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
105
|
Antibiotic Changes Host Susceptibility to Eimeria falciformis Infection Associated with Alteration of Gut Microbiota. Infect Immun 2022; 90:e0022922. [PMID: 36040156 PMCID: PMC9584326 DOI: 10.1128/iai.00229-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eimeria falciformis is a murine-infecting coccidium that mainly infects the cecum and colon where it coexists with a large number of endogenous bacteria. Here, we found that mice treated with a broad-spectrum antibiotic cocktail including ampicillin, neomycin, metronidazole, and vancomycin had less oocyst production and milder pathological consequences after E. falciformis infection than mice without antibiotics, regardless of the inoculation doses. Furthermore, we showed that antibiotic treatment reduced parasitic invasion and prolonged asexual stage during E. falciformis infection, which may result in alleviating the infection. Interestingly, when further defining different antibiotic combinations for E. falciformis infection, it was shown that mice treated with ampicillin plus vancomycin had substantially attenuated E. falciformis infections as measured by cecal parasite counts and histopathological features. In contrast, treatment with metronidazole plus neomycin was beneficial to E. falciformis infection. Analyses of gut microbiota revealed various changes in bacterial composition and diversity following antibiotic treatments that were associated with host susceptibility to E. falciformis infection. Together, these findings suggest that gut microbiota may regulate the course and pathogenicity of E. falciformis infection, while the mechanisms need to be further investigated, especially for the development of coccidial vaccines for use in farm animals.
Collapse
|
106
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
107
|
Xin X, Wang Q, Qing J, Song W, Gui Y, Li X, Li Y. Th17 cells in primary Sjögren’s syndrome negatively correlate with increased Roseburia and Coprococcus. Front Immunol 2022; 13:974648. [PMID: 36275752 PMCID: PMC9579428 DOI: 10.3389/fimmu.2022.974648] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Dysbiosis of the gut microbiota is closely related to chronic systemic inflammation and autoimmunity, playing an essential role in the pathogenesis of primary Sjögren’s syndrome (pSS). Abnormalities in the proportions of blood T lymphocyte subtype, that is Th17/Treg, were detected in pSS patients. We aimed to determine the associations between gut microbiota and Th17/Treg in pSS. Method 98 pSS patients and 105 healthy controls (NC) were enrolled between Dec 1, 2018, and Aug 31, 2019. The baseline information and clinical parameters on pSS patients and healthy controls were collected. 16S rRNA sequencing was performed to characterize the gut microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, associations between relative abundances of specific bacterial taxa in the gut and clinical outcome parameters were evaluated. Results Patients with pSS show decreased gut microbial diversity and richness, decreased abundance of butyrate producing bacteria, such as Roseburia and Coprococcus, and increased abundance of other taxa, such as Eubacterium rectale and Roseburia inulinivorans. These bacteria are enriched with functions related to glycolytic and lipogenic, energy, substance, galactose, pentose metabolism pathways and glucuronate interconversions, decreased with functions related to peptidoglycan biosynthesis, pyrimidine metabolism pathways. An integrative analysis identified pSS-related specific bacterial taxa in the gut, for which the abundance of Eubacterium rectale is negatively correlated with Th17/Treg. Furthermore, the pathways of biosynthesis of secondary metabolites, biosynthesis of amino acids, peptidoglycan biosynthesis and pyrimidine, galactose, pentose, microbial metabolism in diverse environments, glyoxylate and dicarboxylate metabolism are associated with Treg or Th17/Treg. Conclusions Primary Sjögren’s syndrome could lead to decreased gut microbial diversity and richness of intestinal flora in patients. The proportions of Th17 and Treg cells induced by microbiota were predictive pSS manifestations and accounted for the pSS severity.
Collapse
Affiliation(s)
- Xiaohong Xin
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Qian Wang
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Taiyuan, China
| | - Jianbo Qing
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Taiyuan, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yanni Gui
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Xiaofeng Li
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China
- *Correspondence: Yafeng Li, ; Xiaofeng Li,
| | - Yafeng Li
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital), Taiyuan, China
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yafeng Li, ; Xiaofeng Li,
| |
Collapse
|
108
|
Zhou J, Fu Y, Qi G, Dai J, Zhang H, Wang J, Wu S. Yeast cell-wall polysaccharides improve immunity and attenuate inflammatory response via modulating gut microbiota in LPS-challenged laying hens. Int J Biol Macromol 2022; 224:407-421. [DOI: 10.1016/j.ijbiomac.2022.10.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
109
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
110
|
The Brain–Gut Axis in Traumatic Brain Injury: Implications for Nutrition Support. CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract
Purpose of Review
Early enteral nutrition improves outcomes following traumatic brain injury (TBI). This can prove difficult due to TBI-induced feeding intolerance secondary to disruption of the brain-gut axis, a network composed of central nervous system (CNS) input, autonomic signaling, and immunologic regulation that controls gut and CNS homeostasis. Here, we discuss the pathophysiology of brain–gut axis dysregulation and outline nutrition strategies in patients with TBI.
Recent Findings
Feeding intolerance following TBI is multifactorial; complex signaling between the CNS, sympathetic nervous system, parasympathetic nervous system, and enteric nervous system that controls gut homeostasis is disrupted within hours post-injury. This has profound effects on the immune system and gut microbiome, further complicating post-TBI recovery. Despite this disruption, calorie and protein requirements increase considerably following TBI, and early nutritional supplementation improves survival following TBI. Enteral nutrition has proven more efficacious than parenteral nutrition in TBI patients and should be initiated within 48 hours following admission. Immune-fortified nutrition reduces CNS and gut inflammation and may improve outcomes in TBI patients.
Summary
Although autonomic dysregulation of the brain–gut axis results in feeding intolerance following TBI, early enteral nutrition is of paramount importance. Enteral nutrition reduces post-TBI inflammation and enhances immunologic and gut function. When feasible, enteral nutrition should be initiated within 48 hours following injury.
Collapse
|
111
|
Xu B, Wang X, Wang H, Cao L, Ge Y, Yuan B, Gao R, Li J. Efficacy and safety of herbal formulas with the function of gut microbiota regulation for gastric and colorectal cancer: A systematic review and meta-analysis. Front Cell Infect Microbiol 2022; 12:875225. [PMID: 35992176 PMCID: PMC9386000 DOI: 10.3389/fcimb.2022.875225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 01/20/2023] Open
Abstract
Background Currently, gastric cancer (GC) and colorectal cancer (CRC) are the most common causes of cancer-related mortality worldwide. Gut microbiota is closely related to the occurrence of GC and CRC and the efficacy of chemotherapy. This study is aimed at evaluating the efficacy and safety of herbal formulas with the function of gut microbiota regulation (HFGMR) in the treatment of GC and CRC and to assess the quality of the synthesized evidence. Methods A comprehensive search was performed on eight electronic databases, PubMed, EMBASE, CENTRAL, Web of Science, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, Wanfang database, Chinese Scientific Journals Database, and two registries, Chinese Clinical Trial Registry and ClinicalTrials.gov, from their initiation to January 2022. Randomized controlled trials (RCTs) studying the therapeutic effects of HFGMR were included. We used Stata 16 for data synthesis and Risk of Bias 2 (RoB 2) for methodological quality evaluation and assessed the quality of the synthesized evidence in the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Results Fifty-three RCTs involving 4,478 patients were included. These trials involve seven herbal formulas that could regulate the gut microbiota of Bifidobacterium, Lactobacillus, Escherichia coli, Bacteroides, and Enterococcus faecalis. The meta-analysis results were subgrouped to three different stages in GC and CRC. 1) For the perioperative stage, HFGMR combined with conventional therapy could shorten the time to bowel sound recovery by 1.63 h [mean difference (MD) = -1.63, 95% confidence interval (CI) (-2.62, -0.65)], the time to first flatus by 9.69 h [MD = -9.69, 95% CI (-10.89, -8.48)], and the duration of hospitalization by 2.91 days [MD = -2.91, 95% CI (-4.01, -1.80)] in GC. There were no significant differences in outcomes of gastrointestinal function recovery and adverse events in CRC. 2) For postoperative patients, combined with adjuvant chemotherapy, HFGMR could decrease the incidence of diarrhea, nausea and vomiting, anorexia, and peripheral neurotoxicity in GC; boost Karnofsky performance status (KPS) improvement rate [risk ratio (RR) = 1.96, 95% CI (1.38, 2.79)]; and decrease the incidence of leucopenia and nausea and vomiting in CRC. 3) For advanced stage, HFGMR can significantly improve the objective response rate (ORR) [RR = 1.35, 95% CI (1.19~1.53)], disease control rate (DCR) [RR = 1.14, 95% CI (1.05~1.23)], and KPS improvement rate [RR = 1.56, 95% CI (1.17, 2.09)] and decrease the incidence of leucopenia, neutropenia, anemia, nausea and vomiting, diarrhea, and fatigue in GC. There were no significant differences in ORR [RR = 1.32, 95% CI (0.94~1.86)] and DCR [RR = 1.22, 95% CI (0.99~1.50)], but they can improve the KPS response rate [RR = 1.62, 95% CI (1.13, 2.32)] and decrease the incidence of myelosuppression, nausea and vomiting, diarrhea, and hepatic and renal dysfunction in CRC. Conclusion This study indicates that herbal formulas that could regulate the composition and proportion of gut microbiota have a positive effect in three stages (perioperative, postoperative, and advanced) of GC and CRC. They could promote the recovery of postoperative gastrointestinal function, increase tumor response, improve performance status, and reduce the incidence of adverse events. Herbal formulas exerted anti-cancer efficacy through multiple mechanisms and pathways; among them, the regulation of gut microbiota has not been paid enough attention. To further support the conclusion and better understand the role of gut microbiota in the treatment of GC and CRC, more rigorously designed, large-scale, and multicenter RCTs that focus on herbal formulas and gut microbiota are needed in the future.
Collapse
Affiliation(s)
- Bowen Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuansha Ge
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Yuan
- Department of Rheumatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
112
|
Russo E, Cinci L, Di Gloria L, Baldi S, D’Ambrosio M, Nannini G, Bigagli E, Curini L, Pallecchi M, Andrea Arcese D, Scaringi S, Malentacchi C, Bartolucci G, Ramazzotti M, Luceri C, Amedei A, Giudici F. Crohn's disease recurrence updates: first surgery vs. surgical relapse patients display different profiles of ileal microbiota and systemic microbial-associated inflammatory factors. Front Immunol 2022; 13:886468. [PMID: 35967326 PMCID: PMC9374303 DOI: 10.3389/fimmu.2022.886468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) pathogenesis is still unclear. Remodeling in mucosal microbiota and systemic immunoregulation may represent an important component in tissue injury. Here, we aim to characterize the ileal microbiota in both pathological and healthy settings and to evaluate the correlated systemic microbial-associated inflammatory markers comparing first-time surgery and relapse clinical conditions. METHODS We enrolled 28 CD patients at surgery; we collected inflamed and non-inflamed mucosa tissues and blood samples from each patient. Bacterial wall adherence was observed histologically, while its composition was assessed through amplicon sequencing of the 16S rRNA gene. In addition, we evaluated the systemic microRNA (miRNA) using quantitative real-time PCR amplification and free fatty acids (FFAs) using gas chromatography-mass spectroscopy. RESULTS The total number of mucosal adherent microbiota was enriched in healthy compared to inflamed mucosa. In contrast, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between the relapse and first surgery patients regarding the families Bacillaceae 2 and Brucellaceae and the genera Escherichia/Shigella, Finegoldia, Antrobacter, Gemmatimonas, Moraxella, Anoxibacillus, and Proteus. At the systemic level, we observed a significant downregulation of circulating miR-155 and miR-223, as well as 2-methyl butyric, isobutyric, and hexanoic (caproic) acids in recurrence compared to the first surgery patients. In addition, the level of hexanoic acid seems to act as a predictor of recurrence risk in CD patients (OR 18; 95% confidence interval 1.24-261.81; p = 0.006). CONCLUSIONS We describe a dissimilarity of ileal microbiota composition comparing CD and healthy settings, as well as systemic microbial-associated inflammatory factors between first surgery and surgical relapse. We suggest that patterns of microbiota, associated with healthy ileal tissue, could be involved in triggering CD recurrence. Our findings may provide insight into the dynamics of the gut microbiota-immunity axis in CD surgical recurrence, paving the way for new diagnostics and therapeutics aimed not only at reducing inflammation but also at maintaining a general state of eubiosis in healthy tissue.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Enteric Neuroscience Program, Department of Medicine, Section of Gastroenterology and Hepatology, Mayo Clinic, Rochester MN, United States
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Donato Andrea Arcese
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Malentacchi
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
113
|
Zheng D, Hou X, Yu J, He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol 2022; 13:928369. [PMID: 35935874 PMCID: PMC9355550 DOI: 10.3389/fphar.2022.928369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
As an emerging antitumor strategy, immune checkpoint therapy is one of the most promising anticancer therapies due to its long response duration. Antibodies against the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) axis have been extensively applied to various cancers and have demonstrated unprecedented efficacy. Nevertheless, a poor response to monotherapy with anti-PD-1/PD-L1 has been observed in metastatic breast cancer. Combination therapy with other standard treatments is expected to overcome this limitation of PD-1/PD-L1 blockade in the treatment of breast cancer. In the present review, we first illustrate the biological functions of PD-1/PD-L1 and their role in maintaining immune homeostasis as well as protecting against immune-mediated tissue damage in a variety of microenvironments. Several combination therapy strategies for the combination of PD-1/PD-L1 blockade with standard treatment modalities have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including chemotherapy, radiotherapy, targeted therapy, antiangiogenic therapy, and other immunotherapies. The corresponding clinical trials provide valuable estimates of treatment effects. Notably, several combination options significantly improve the response and efficacy of PD-1/PD-L1 blockade. This review provides a PD-1/PD-L1 clinical trial landscape survey in breast cancer to guide the development of more effective and less toxic combination therapies.
Collapse
Affiliation(s)
- Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaolin Hou
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- *Correspondence: Xiujing He,
| |
Collapse
|
114
|
Ma L, Zhao X, Liu T, Wang Y, Wang J, Kong L, Zhao Q, Chen Y, Chen L, Zhang H. Xuanfei Baidu decoction attenuates intestinal disorders by modulating NF-κB pathway, regulating T cell immunity and improving intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154100. [PMID: 35489324 DOI: 10.1016/j.phymed.2022.154100] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A number of studies have shown that gastrointestinal manifestations co-exist with respiratory symptoms in coronavirus disease 2019 (COVID-19) patients. Xuanfei Baidu decoction (XFBD) was recommended by the National Health Commission to treat mild and moderate COVID-19 patients and proved to effectively alleviate intestinal symptoms. However, the exact mechanisms remain elusive. PURPOSE This study aimed at exploring potential mechanisms of XFBD by utilizing a mouse model of dextran sulfate sodium (DSS)-induced acute experimental colitis, mimicking the disease conditions of intestinal microecological disorders. METHODS The network pharmacology approach was employed to identify the potential targets and pathways of XFBD on the intestinal disorders. Mice with DSS-induced intestinal disorders were utilized to evaluate the protective effect of XFBD in vivo, including body weight, disease activity index (DAI) score, colon length, spleen weight, and serum tumor necrosis factor-α (TNF-α) level. Colon tissues were used to perform hematoxylin-eosin (H&E) staining, western blot analysis, and transcriptome sequencing. Macrophages, neutrophils and the proportions of T helper cell (Th) 1 and Th2 cells were measured by flow cytometry. Intestinal contents were collected for 16S rRNA gene sequencing. RESULTS Network pharmacology analysis indicated that XFBD inhibited the progression of COVID-19-related intestinal diseases by repressing inflammation. In mice with DSS-induced intestinal inflammation, XFBD treatment significantly reduced weight loss, the spleen index, the disease activity index, TNF-α levels, and colonic tissue damage, and prevented colon shortening. Transcriptomics and flow cytometry results suggested that XFBD remodeled intestinal immunity by downregulating the Th1/Th2 ratio. Western blot analysis showed that XFBD exerted its anti-inflammatory effects by blocking the nuclear factor-κB (NF-κB) signaling pathway. Indicator analysis of microbiota showed that 75 operational taxonomic units (OTUs) were affected after XFBD administration. Among them, Akkermansia, Muribaculaceae, Lachnospiraceae, and Enterorhabdus were simultaneously negatively correlated with intestinal disorders' parameters, and Bacteroides, Escherichia-Shigella, Eubacterium nodatum,Turicibacter, and Clostridium sensu stricto 1, showed positive correlations with intestinal disorders' parameters. CONCLUSIONS Our data indicate that XFBD treatment attenuated intestinal disorders associated with inhibiting inflammation, remodeling of intestinal immunity, and improving intestinal flora. These findings provide a scientific basis for the clinical use of XFBD and offer a potential therapeutic approach for the treatment of COVID-19 patients with intestinal symptoms.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiabao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lu Kong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qianru Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuru Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
115
|
Szandruk-Bender M, Wiatrak B, Szeląg A. The Risk of Developing Alzheimer's Disease and Parkinson's Disease in Patients with Inflammatory Bowel Disease: A Meta-Analysis. J Clin Med 2022; 11:jcm11133704. [PMID: 35806985 PMCID: PMC9267426 DOI: 10.3390/jcm11133704] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, a growing body of research has linked gut microbiota dysbiosis to central nervous system diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and has suggested that AD and PD pathology may take its origin from chronic inflammation in the gastrointestinal tract. Thus, this study aimed to elucidate whether inflammatory bowel disease (IBD) is associated with a higher risk of developing AD and PD as compared to the non-IBD population by conducting a meta-analysis. A thorough search of Pubmed and Embase databases was performed to identify all relevant articles. The quality of included studies was assessed using the Newcastle-Ottawa Scale. The odds ratios (ORs) with 95% confidence intervals (CIs) were analyzed using a fixed-effect model. To assess publication bias and heterogeneity among the studies, Egger’s test and L’Abbé plots were used, respectively. A total of eight eligible studies were included in this meta-analysis. No significant heterogeneity or significant publication bias was detected. The risk of developing AD in IBD patients was higher than in non-IBD patients (OR = 0.37; 95% CI = 0.14−1.00; p = 0.05), and there was a relationship between the occurrence of AD and Crohn’s disease or ulcerative colitis (OR = 0.11; 95% CI = 0.04−0.30; p < 0.0001, OR = 0.14; 95% CI = 0.04−0.49; p = 0.0024, respectively). The risk of developing both of the most common neurodegenerative diseases, AD and PD, was also significantly higher in patients diagnosed with Crohn’s disease or ulcerative colitis (OR = 0.21; 95% CI = 0.09−0.49; p = 0.0003, OR = 0.25; 95% CI = 0.13−0.51; p = 0.0001, respectively). This meta-analysis revealed a higher risk of AD and PD among CD and UC patients compared to the general population. It may suggest a key role for the gut microbiota in the pathogenesis of not only Crohn’s disease and ulcerative colitis but also AD and PD. The identification of this potential risk may provide earlier preventive measures to be implemented to reduce comorbidity and mortality rate.
Collapse
|
116
|
Saini A, Dalal P, Sharma D. Deciphering the Interdependent Labyrinth between Gut Microbiota and the Immune System. Lett Appl Microbiol 2022; 75:1122-1135. [PMID: 35730958 DOI: 10.1111/lam.13775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
The human gut microbiome interacts with each other and the host, which has significant effects on health and disease development. Intestinal homeostasis and inflammation are maintained by the dynamic interactions between gut microbiota and the innate and adaptive immune systems. Numerous metabolic products produced by the gut microbiota play a role in mediating cross-talk between gut epithelial and immune cells. In the event of an imbalance between the immune system and microbiota, the body becomes susceptible to infections, and homeostasis is compromised. This review mainly focuses on the interplay between microbes and the immune system, such as, T-cell and B-cell mediated adaptive responses to microbiota and signaling pathways for effective communication between the two. We have also highlighted the role of microbes in the activation of the immune response, the development of memory cells, and how the immune system determines the diversity of human gut microbiota. The review also explains the relationship of commensal microbiota and their relation in the production of immunoglobulins.
Collapse
Affiliation(s)
- Anamika Saini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India.,Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan, 302006
| | - Priyanka Dalal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| |
Collapse
|
117
|
Liñares-Blanco J, Fernandez-Lozano C, Seoane JA, López-Campos G. Machine Learning Based Microbiome Signature to Predict Inflammatory Bowel Disease Subtypes. Front Microbiol 2022; 13:872671. [PMID: 35663898 PMCID: PMC9157387 DOI: 10.3389/fmicb.2022.872671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with unknown pathophysiological mechanisms. There is evidence of the role of microorganims in this disease development. Thanks to the open access to multiple omics data, it is possible to develop predictive models that are able to prognosticate the course and development of the disease. The interpretability of these models, and the study of the variables used, allows the identification of biological aspects of great importance in the development of the disease. In this work we generated a metagenomic signature with predictive capacity to identify IBD from fecal samples. Different Machine Learning models were trained, obtaining high performance measures. The predictive capacity of the identified signature was validated in two external cohorts. More precisely a cohort containing samples from patients suffering Ulcerative Colitis and another from patients suffering Crohn's Disease, the two major subtypes of IBD. The results obtained in this validation (AUC 0.74 and AUC = 0.76, respectively) show that our signature presents a generalization capacity in both subtypes. The study of the variables within the model, and a correlation study based on text mining, identified different genera that play an important and common role in the development of these two subtypes.
Collapse
Affiliation(s)
- Jose Liñares-Blanco
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC, University of A Coruña, A Coruña, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government PTS Granada, Granada, Spain.,Department of Statistics and Operational Research, University of Granada, Granada, Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC, University of A Coruña, A Coruña, Spain
| | - Jose A Seoane
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Guillermo López-Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
118
|
Facciotti F. Modulation of intestinal immune cell responses by eubiotic or dysbiotic microbiota in inflammatory bowel diseases. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
119
|
Gao S, Khan MI, Kalsoom F, Liu Z, Chen Y, Chen Z. Role of gene regulation and inter species interaction as a key factor in gut microbiota adaptation. Arch Microbiol 2022; 204:342. [PMID: 35595857 DOI: 10.1007/s00203-022-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Gut microbiota is a class of microbial flora present in various eukaryotic multicellular complex animals such as human beings. Their community's growth and survival are greatly influenced by various factors such as host-pathogen, pathogen-environment and genetic regulation. Modern technologies like metagenomics have particularly extended our capacity to uncover the microbial treasures in challenging conditions like communities surviving at high altitude. Molecular characterizations by newly developed sequencing tools have shown that this complex interaction greatly influences microbial adaptation to the environment. Literature shows that gut microbiota alters the genetic expression and switches to an alternative pathway under the influence of unfavorable conditions. The remarkable adaptability of microbial genetic regulatory networks enables them to survive and expand in tough and energy-limited conditions. Variable prevalence of species in various regions has strengthened this initial evidence. In view of the interconnection of the world in the form of a global village, this phenomenon must be explored more clearly. In this regard, recently there has been significant addition of knowledge to the field of microbial adaptation. This review summarizes and shed some light on mechanisms of microbial adaptation via gene regulation and species interaction in gut microbiota.
Collapse
Affiliation(s)
- Shuang Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China
| | - Muhammad Imran Khan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 260027, Anhui, People's Republic of China. .,Department of Pathology, District Headquarters Hospital, Jhang, 35200, Punjab, Islamic Republic of Pakistan.
| | - Fadia Kalsoom
- Department of Microbiology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yanxin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
120
|
Stanimirovic J, Radovanovic J, Banjac K, Obradovic M, Essack M, Zafirovic S, Gluvic Z, Gojobori T, Isenovic ER. Role of C-Reactive Protein in Diabetic Inflammation. Mediators Inflamm 2022; 2022:3706508. [PMID: 35620114 PMCID: PMC9129992 DOI: 10.1155/2022/3706508] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 01/08/2023] Open
Abstract
Even though type 2 diabetes mellitus (T2DM) represents a worldwide chronic health issue that affects about 462 million people, specific underlying determinants of insulin resistance (IR) and impaired insulin secretion are still unknown. There is growing evidence that chronic subclinical inflammation is a triggering factor in the origin of T2DM. Increased C-reactive protein (CRP) levels have been linked to excess body weight since adipocytes produce tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which are pivotal factors for CRP stimulation. Furthermore, it is known that hepatocytes produce relatively low rates of CRP in physiological conditions compared to T2DM patients, in which elevated levels of inflammatory markers are reported, including CRP. CRP also participates in endothelial dysfunction, the production of vasodilators, and vascular remodeling, and increased CRP level is closely associated with vascular system pathology and metabolic syndrome. In addition, insulin-based therapies may alter CRP levels in T2DM. Therefore, determining and clarifying the underlying CRP mechanism of T2DM is imperative for novel preventive and diagnostic procedures. Overall, CRP is one of the possible targets for T2DM progression and understanding the connection between insulin and inflammation may be helpful in clinical treatment and prevention approaches.
Collapse
Affiliation(s)
- Julijana Stanimirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Banjac
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Sonja Zafirovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
121
|
Noguera-Navarro C, Navas-Carrillo D, Orenes-Piñero E. Gut microbiota alterations and nutritional intervention in multiple sclerosis disease. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Clara Noguera-Navarro
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
| | - Diana Navas-Carrillo
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, Spain
- Department of Surgery, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
122
|
Burrello C, Strati F, Lattanzi G, Diaz-Basabe A, Mileti E, Giuffrè MR, Lopez G, Cribiù FM, Trombetta E, Kallikourdis M, Cremonesi M, Conforti F, Botti F, Porretti L, Rescigno M, Vecchi M, Fantini MC, Caprioli F, Facciotti F. IL10 Secretion Endows Intestinal Human iNKT Cells with Regulatory Functions Towards Pathogenic T Lymphocytes. J Crohns Colitis 2022; 16:1461-1474. [PMID: 35358301 PMCID: PMC9455792 DOI: 10.1093/ecco-jcc/jjac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Invariant natural killer T [iNKT] cells perform pleiotropic functions in different tissues by secreting a vast array of pro-inflammatory and cytotoxic molecules. However, the presence and function of human intestinal iNKT cells capable of secreting immunomodulatory molecules such as IL-10 has never been reported so far. Here we describe for the first time the presence of IL10-producing iNKT cells [NKT10 cells] in the intestinal lamina propria of healthy individuals and of Crohn's disease [CD] patients. METHODS Frequency and phenotype of NKT10 cells were analysed ex vivo from intestinal specimens of Crohn's disease [n = 17] and controls [n = 7]. Stable CD-derived intestinal NKT10 cell lines were used to perform in vitro suppression assays and co-cultures with patient-derived mucosa-associated microbiota. Experimental colitis models were performed by adoptive cell transfer of splenic naïve CD4+ T cells in the presence or absence of IL10-sufficient or -deficient iNKT cells. In vivo induction of NKT10 cells was performed by administration of short chain fatty acids [SCFA] by oral gavage. RESULTS Patient-derived intestinal NKT10 cells demonstrated suppressive capabilities towards pathogenic CD4+ T cells. The presence of increased proportions of mucosal NKT10 cells associated with better clinical outcomes in CD patients. Moreover, an intestinal microbial community enriched in SCFA-producing bacteria sustained the production of IL10 by iNKT cells. Finally, IL10-deficient iNKT cells failed to control the pathogenic activity of adoptively transferred CD4+ T cells in an experimental colitis model. CONCLUSIONS These results describe an unprecedentd IL10-mediated immunoregulatory role of intestinal iNKT cells in controlling the pathogenic functions of mucosal T helper subsets and in maintaining the intestinal immune homeostasis.
Collapse
Affiliation(s)
- Claudia Burrello
- Current address: Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Erika Mileti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marco Cremonesi
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- General and Emergency Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo C Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Corresponding author: Dr Federica Facciotti, Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20135, Milan, Italy.
| |
Collapse
|
123
|
Vilar MDDC, Vale SHDL, Rosado EL, Dourado Júnior MET, Brandão-Neto J, Leite-Lais L. Intestinal Microbiota and Sclerosis Lateral Amyotrophic. REVISTA CIÊNCIAS EM SAÚDE 2022. [DOI: 10.21876/rcshci.v12i1.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The human gastrointestinal tract contains numerous microorganisms. This intestinal microbiota (IM) has a mutualistic relationship with the human organism, and it plays a fundamental role in regulating metabolic, endocrine, and immunological functions. Intestinal dysbiosis is associated with phenotypes of many chronic and inflammatory diseases. This association is explained by the functions of the IM and the existing bi-directional communication of the microbiota-intestine-brain axis. Studies have uncovered new evidence between the IM and neurodegenerative diseases recently, including amyotrophic lateral sclerosis (ALS). Given this, the present narrative review discusses didactically about IM, its functions, its relationship with the neuroimmune-endocrine system, and its association with neurodegenerative diseases, with emphasis on ALS.
Collapse
|
124
|
Giambò F, Costa C, Teodoro M, Fenga C. Role-Playing Between Environmental Pollutants and Human Gut Microbiota: A Complex Bidirectional Interaction. Front Med (Lausanne) 2022; 9:810397. [PMID: 35252248 PMCID: PMC8888443 DOI: 10.3389/fmed.2022.810397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
There is a growing interest in the characterization of the involvement of toxicant and pollutant exposures in the development and the progression of several diseases such as obesity, diabetes, cancer, as well as in the disruption of the immune and reproductive homeostasis. The gut microbiota is considered a pivotal player against the toxic properties of chemicals with the establishment of a dynamic bidirectional relationship, underlining the toxicological significance of this mutual interplay. In fact, several environmental chemicals have been demonstrated to affect the composition, the biodiversity of the intestinal microbiota together with the underlining modulated metabolic pathways, which may play an important role in tailoring the microbiotype of an individual. In this review, we aimed to discuss the latest updates concerning the environmental chemicals–microbiota dual interaction, toward the identification of a distinctiveness of the gut microbial community, which, in turn, may allow to adopt personalized preventive strategies to improve risk assessment for more susceptible workers.
Collapse
Affiliation(s)
- Federica Giambò
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, Messina, Italy
| | - Michele Teodoro
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Concettina Fenga
- Occupational Medicine Section, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
125
|
Zhang L, Lan Y, Wang Y, Yang Y, Han W, Li J, Wang Y, Liu X. Secoisolariciresinol diglucoside ameliorates high fat diet-induced colon inflammation and regulates gut microbiota in mice. Food Funct 2022; 13:3009-3022. [PMID: 35195134 DOI: 10.1039/d1fo04037e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secoisolariciresinol diglucoside (SDG) has a strong anti-inflammatory effect, which depends partly on the participation of gut microbiota. We studied the effect of SDG on colonic inflammation caused by a common poor diet, high-fat diet (HFD), and the regulation of gut microbiota as well as its metabolites. Considering the difference of sources, prices, and possible bioactivity, we compared the effects of a single compound and the extract of SDG on colon inflammation. The results displayed that both the single compound and the extract ameliorated morphologic damage of the colon and improved intestinal barrier integrity. In addition, SDG suppressed the mRNA expressions of inflammatory cytokines in the colon, and the inhibitory effect of a single compound was stronger than that of the extract. The results of 16S rRNA sequencing showed that SDG altered the diversity and composition of gut microbiota, particularly the abundance of inflammation-related bacteria, and the effect of the extract was greater than that of a single compound. The analysis of short-chain fatty acids (SCFAs) manifested the improved concentration with the intervention of SDG. These results confirmed that SDG, including a single compound and extract, exerted protective effects against colon inflammation, which might be partly explained by the gut microbiome. Our research could provide a positive nutritional intervention for chronic intestinal inflammation.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Yan Wang
- Sports Department, Northwest A&F University, Yangling 712100, China
| | - Yiying Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Wenzheng Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
126
|
Yu Y, Zhang B, Ji P, Zuo Z, Huang Y, Wang N, Liu C, Liu SJ, Zhao F. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8 +/- mouse model of ASD-like behavior. Nat Commun 2022; 13:1151. [PMID: 35241668 PMCID: PMC8894489 DOI: 10.1038/s41467-022-28746-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.
Collapse
Affiliation(s)
- You Yu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peifeng Ji
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongxi Huang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
127
|
Efficacy of Probiotics-Based Interventions as Therapy for Inflammatory Bowel Disease: A Recent Update. Saudi J Biol Sci 2022; 29:3546-3567. [PMID: 35844369 PMCID: PMC9280206 DOI: 10.1016/j.sjbs.2022.02.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host’s immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.
Collapse
|
128
|
Tong G, Qian H, Li D, Li J, Chen J, Li X. Establishment and evaluation of a specific antibiotic-induced inflammatory bowel disease model in rats. PLoS One 2022; 17:e0264194. [PMID: 35192646 PMCID: PMC8863245 DOI: 10.1371/journal.pone.0264194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/06/2022] [Indexed: 12/03/2022] Open
Abstract
Physical and chemical methods for generating rat models of enteritis have been established; however, antibiotic induction has rarely been used for this purpose. The present study aimed to establish and evaluate a rat model of inflammatory bowel disease (IBD) using antibiotics. A total of 84 Sprague-Dawley (SD) rats were divided into the following groups, according to the dosage and method of administration of the antibiotics: A, control; B, low-dose clindamycin; C, medium-dose clindamycin; D, high-dose clindamycin; E, low-dose clindamycin, ampicillin and streptomycin; F, medium-dose clindamycin, ampicillin and streptomycin; and G, high-dose clindamycin, ampicillin and streptomycin. Antibiotic administration was stopped on day 7; the modeling period covered days 1-7, and the recovery period covered days 8-15. Half of the animals were dissected on day 11, with the remaining animals dissected on day 15. Food and water intake, body weight and fecal weight were recorded. Intestinal flora was analyzed via microbial culture and quantitative PCR. The content of TNF-α, IL1-β, IL-6 and C-reactive protein (CRP) was assessed in abdominal aorta blood. Colonic and rectal tissues were examined pathologically via hematoxylin-eosin staining to assess leukocyte infiltration and intestinal mucosal changes as indicators of inflammation. Rat weight, food intake, water intake and 2-h fecal weight were significantly different across the experimental groups (P = 0.040, P = 0.016, P<0.001 and P = 0.009, respectively). Microbial cultures revealed no significant differences between group A and B,C (P = 0.546,0.872) but significant differences betwenn group A and the other experimental groups (all P<0.001). Furthermore, significant differences in the levels of Bacteroides, Faecalibacterium prausnitzii and Dialister invisus on day 4 between groups A, C and F (P = 0.033, P = 0.025 and P = 0.034, respectively). Significant differences were detected in the levels of TNF-α, IL1-β, IL-6 and CRP between the groups (all P<0.001). The colonic and rectal pathological inflammation scores of the experimental groups were significantly different compared with group A (B vs. A, P = 0.002; others, all P<0.001). These findings indicated that an antibiotic-induced IBD model was successfully established in SD rats; this animal model may serve as a useful model for clinical IBD research.
Collapse
Affiliation(s)
- Guojun Tong
- Departments of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
- Central Laboratory, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Hai Qian
- Departments of General Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Dongli Li
- Central Laboratory, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jing Li
- Central Laboratory, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jing Chen
- Central Laboratory, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Xiongfeng Li
- Orthopedic Surgery, Huzhou Central Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
129
|
Sun W, Du D, Fu T, Han Y, Li P, Ju H. Alterations of the Gut Microbiota in Patients With Severe Chronic Heart Failure. Front Microbiol 2022; 12:813289. [PMID: 35173696 PMCID: PMC8843083 DOI: 10.3389/fmicb.2021.813289] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure (CHF) is the final outcome of almost all forms of cardiovascular diseases, remaining the main cause of mortality worldwide. Accumulating evidence is focused on the roles of gut microbial community in cardiovascular disease, but few studies have unveiled the alterations and further directions of gut microbiota in severe CHF patients. Aimed to investigate this deficiency, fecal samples from 29 CHF patients diagnosed with NYHA Class III-IV and 30 healthy controls were collected and then analyzed using bacterial 16S rRNA gene sequencing. As a result, there were many significant differences between the two groups. Firstly, the phylum Firmicutes was found to be remarkably decreased in severe CHF patients, and the phylum Proteobacteria was the second most abundant phyla in severe CHF patients instead of phylum Bacteroides strangely. Secondly, the α diversity indices such as chao1, PD-whole-tree and Shannon indices were significantly decreased in the severe CHF versus the control group, as well as the notable difference in β-diversity between the two groups. Thirdly, our result revealed a remarkable decrease in the abundance of the short-chain fatty acids (SCFA)-producing bacteria including genera Ruminococcaceae UCG-004, Ruminococcaceae UCG-002, Lachnospiraceae FCS020 group, Dialister and the increased abundance of the genera in Enterococcus and Enterococcaceae with an increased production of lactic acid. Finally, the alternation of the gut microbiota was presumably associated with the function including Cell cycle control, cell division, chromosome partitioning, Amino acid transport and metabolism and Carbohydrate transport and metabolism through SCFA pathway. Our findings provide the direction and theoretical knowledge for the regulation of gut flora in the treatment of severe CHF.
Collapse
Affiliation(s)
- Weiju Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Debing Du
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Tongze Fu
- Harbin Medical University, Harbin, China
| | - Ying Han
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Li
- National Center for Biomedical Analysis, Beijing, China
| | - Hong Ju
- Heilongjiang Vocational College of Biology Science and Technology, Harbin, China
| |
Collapse
|
130
|
Massironi S, Facciotti F, Cavalcoli F, Amoroso C, Rausa E, Centonze G, Cribiù FM, Invernizzi P, Milione M. Intratumor Microbiome in Neuroendocrine Neoplasms: A New Partner of Tumor Microenvironment? A Pilot Study. Cells 2022; 11:692. [PMID: 35203339 PMCID: PMC8870382 DOI: 10.3390/cells11040692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare neoplasms with heterogeneous clinical behavior. Alteration in human microbiota was reported in association with carcinogenesis in different solid tumors. However, few studies addressed the role of microbiota in NEN. We here aimed at evaluating the presence of bacterial infiltration in neuroendocrine tumoral tissue. To assess the presence of bacteria, 20 specimens from pancreatic NEN (pan-NEN) and 20 from intestinal NEN (I-NEN) were evaluated through Fluorescent In situ Hybridization and confocal microscopy. Demographic data, pre-operative investigations, operative findings, pathological diagnosis, follow-up, and survival data were evaluated. Among I-NEN, bacteria were detected in 15/20 (75%) specimens, with high variability in microbial distribution. In eight patients, a high infiltration of microorganisms was observed. Among pan-NEN, 18/20 (90%) showed microorganisms' infiltration, with a homogeneous microbial distribution. Bacterial localization in pan-NEN was observed in the proximity of blood vessels. A higher bacterial infiltration in the tumoral specimen as compared with non-tumoral tissue was reported in 10/20 pan-NEN (50%). No significant differences were observed in mean bacterial count according to age, sex, ki67%, site, tumor stage. Mean bacterial count did not result to be a predictor of disease-specific survival. This preliminary study demonstrates the presence of a significant microbiota in the NEN microenvironment. Further research is needed to investigate the potential etiological or clinical role of microbiota in NEN.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Ospedale San Gerardo, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Federica Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Federica Cavalcoli
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Chiara Amoroso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Emanuele Rausa
- General, Emergency and Trauma Surgery Department, Papa Giovanni XXIII Hospital, 24121 Bergamo, Italy;
| | - Giovanni Centonze
- First Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| | - Fulvia Milena Cribiù
- Division of Pathology, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Ospedale San Gerardo, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Massimo Milione
- First Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| |
Collapse
|
131
|
Serafini MA, Paz AH, Nunes NS. Cholinergic immunomodulation in inflammatory bowel diseases. Brain Behav Immun Health 2022; 19:100401. [PMID: 34977822 PMCID: PMC8683952 DOI: 10.1016/j.bbih.2021.100401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic intestinal disorders characterized by dysregulated immune responses to resident microbiota in genetically susceptible hosts. The activation of the cholinergic system has been proposed for the treatment of IBD patients according to its potential anti-inflammatory effect in vivo. The α-7-nicotinic-acetylcholine receptor (α7nAChR) is involved in the inhibition of inflammatory processes, modulating the production of cytokines, suppressing dendritic cells and macrophage activity, leading to the suppression of T cells. In this review, we address the most recent studies and clinical trials concerning cholinergic signaling and its therapeutic potential for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Michele A. Serafini
- Biological Sciences, Physiology Graduate Program, Federal University of Rio Grande do Sul, 90050170, Porto Alegre, Brazil
- Cells, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clinicas de Porto Alegre, 90035903, Porto Alegre, Brazil
| | - Ana H. Paz
- Morphological Sciences Department, Basic Health Sciences Institute, Federal University of Rio Grande do Sul, 90050170, Porto Alegre, Brazil
- Cells, Tissue and Genes Laboratory, Experimental Research Center, Hospital de Clinicas de Porto Alegre, 90035903, Porto Alegre, Brazil
| | - Natalia S. Nunes
- Experimental Transplantation Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 20852, Bethesda, MD, USA
| |
Collapse
|
132
|
Li X, Bi R, Xiao K, Roy A, Zhang Z, Chen X, Peng J, Wang R, Yang R, Shen X, Irwin DM, Shen Y. Hen raising helps chicks establish gut microbiota in their early life and improve microbiota stability after H9N2 challenge. MICROBIOME 2022; 10:14. [PMID: 35074015 PMCID: PMC8785444 DOI: 10.1186/s40168-021-01200-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Early gut microbial colonization is important for postnatal growth and immune development of the chicken. However, at present, commercial chickens are hatched and raised without adult hens, thus are cut off from the microbiota transfer between hens and chicks. In this study, we compared the gut microbiota composition between hen-reared and separately reared chicks, and its impact on the resistance to H9N2 avian influenza virus, with the motive of investigating the impact of this cutoff in microbiota transfer. RESULTS We used the 16SrRNA sequencing method to assess the composition of the gut microbiota in chicks represented by three hen-reared groups and one separately reared group. We found that the diversity of gut microbes in the chicks from the three hen-reared groups was more abundant than in the separately reared group, both at the phylum and genus levels. Our findings highlight the importance of early parental care in influencing the establishment of gut microbiota in the early life of chicks. SourceTracker analysis showed that the feather and cloaca microbiota of hens are the main sources of gut microbiota of chicks. After H9N2 exposure, the viral infection lasted longer in the separately reared chicks, with the viral titers in their oropharyngeal swabs being higher compared to the hen-reared chicks at day 5 post-infection. Interestingly, our results revealed that the gut microbiota of the hen-reared chicks was more stable after H9N2 infection in comparison to that of the separately reared chicks. CONCLUSIONS Microbiota transfer between the hens and their chicks promotes the establishment of a balanced and diverse microbiota in the early life of the chicks and improves microbiota stability after H9N2 challenge. These findings advance our understanding of the protective role of gut microbiota in the early life of chicks and should be instrumental in improving chick rearing in the commercial poultry industry. Video Abstract.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ran Bi
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Kangpeng Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Bengaluru, India
| | - Zhipeng Zhang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyuan Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyu Peng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruichen Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rou Yang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, M5S1A8, Canada
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, 526238, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China.
| |
Collapse
|
133
|
Gu M, Samuelson DR, de la Rua NM, Charles TP, Taylor CM, Luo M, Siggins RW, Shellito JE, Welsh DA. Host innate and adaptive immunity shapes the gut microbiota biogeography. Microbiol Immunol 2022; 66:330-341. [PMID: 35067963 DOI: 10.1111/1348-0421.12963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiota has a fundamental role in the development and the maturation of the host immune system. Both innate and adaptive immune cells have critical functions in microbial pathogen containment and clearance, but the regulation of the commensal microbiome ecosystem in the gastrointestinal tract by these major immune cell populations is incompletely defined. We investigated the role of specific innate and adaptive immune cell in the regulation of the microbiota in the intestinal tract biogeographically. Dendritic cells, macrophages, CD4+ T-cells, CD8+ T-cells, and B-cells were depleted using monoclonal antibodies and clodronate liposomes, and the microbial communities was determined by 16S rRNA gene sequencing. With specific immune cell depletion, distinct microbiota changes were observed. In general, immune cell depleted mice had higher microbiota richness and evenness at all gut anatomical sites. At each gut segment, samples from immune cell-depleted animals clustered away from the Isotype/Liposome control mice. This was especially dramatic for small intestinal microbiota. Specifically, Enterobacteriaceae, Bacteroides acidifaciens and Mucispirillum schaedleri were highly enriched in the mucosa and lumen of the small intestine in immune cell-deficient animals. Further, the mucosal microbiota had higher microbiota evenness compared to luminal microbiota at all gut segments, and the UniFrac distance between B cell depleted and isotype control mice was the largest in duodenum followed by ileum and colon. Taken together, our data suggest that innate and adaptive immune cells specifically contribute to the regulation of the gut microbiota's biogeographical distribution along the gastrointestinal tract, and microbiota in duodenum mucosa are more responsive to host immune changes compared to other anatomical sites. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Gu
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Internal Medicine, Division of Pulmonary, Critical Care, & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicholas M de la Rua
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Tysheena P Charles
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Meng Luo
- Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Judd E Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David A Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, & Parasitology, Louisiana State University Health Science Center, New Orleans, LA, USA
| |
Collapse
|
134
|
Rastogi S, Mohanty S, Sharma S, Tripathi P. Possible role of gut microbes and host's immune response in gut-lung homeostasis. Front Immunol 2022; 13:954339. [PMID: 36275735 PMCID: PMC9581402 DOI: 10.3389/fimmu.2022.954339] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.
Collapse
Affiliation(s)
- Sonakshi Rastogi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sneha Mohanty
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sapna Sharma
- Institute of Biosciences and Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- *Correspondence: Prabhanshu Tripathi, ; Sapna Sharma,
| |
Collapse
|
135
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
136
|
Choi SI, Kim N, Nam RH, Park JH, Nho H, Yu JE, Song CH, Lee SM, Lee DH. Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. J Cancer Prev 2021; 26:277-288. [PMID: 35047454 PMCID: PMC8749319 DOI: 10.15430/jcp.2021.26.4.277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022] Open
Abstract
The gut microbiota interacts with the host gut environment, which is influenced by such factors as sex, age, and host diet. These factors induce changes in the microbial composition. The aim of this study was to identify differences in the gut microbiome of Fisher-344 (F344) rats fed a high-fat diet (HFD), depending on their age and sex. Fecal microbiomes from 6-, 31-, and 74-week-old, and 2-year-old both male and female rats (corresponding to 5-, 30-, 60-, and 80-year-old humans) were analyzed using 16S rRNA gene sequencing, phylogenetic investigation of communities by reconstruction of unobserved states, and enterotype (E) assessment. Moreover, the effect of an HFD on colonic epithelial cells was measured using real-time quantitative PCR. Alpha diversity decreased in the HFD group regardless of age and sex. Based on the enterotype clustering of the whole fecal microbiome, clusters from male rats were divided into E1 and E2 enterotypes, while clusters from female rats were divided into E1, E2, and E3 enterotypes. The female E3 group showed a significantly high abundance in the Ruminococcus genus and expression of Tlr2 mRNA, which may reflect compensation to the HFD. Moreover, the female E3 group showed a lower ratio of opportunistic pathogenic strains to commensal strains compared to the female E2 group. Administration of an HFD influenced the rat fecal microbiota in all assessed age groups, which could be further differentiated by sex. In particular, female rats showed a compensatory enterotype response to an HFD compared to male rats.
Collapse
Affiliation(s)
- Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Heewon Nho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeong Eun Yu
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
137
|
Chen ZY, Xiao HW, Dong JL, Li Y, Wang B, Fan SJ, Cui M. Gut Microbiota-Derived PGF2α Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-κB Pathway. Antioxidants (Basel) 2021; 11:antiox11010065. [PMID: 35052569 PMCID: PMC8773112 DOI: 10.3390/antiox11010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Radiation pneumonia is a common and intractable side effect associated with radiotherapy for chest cancer and involves oxidative stress damage and inflammation, prematurely halting the remedy and reducing the life quality of patients. However, the therapeutic options for the complication have yielded disappointing results in clinical application. Here, we report an effective avenue for fighting against radiation pneumonia. Faecal microbiota transplantation (FMT) reduced radiation pneumonia, scavenged oxidative stress and improved lung function in mouse models. Local chest irradiation shifted the gut bacterial taxonomic proportions, which were preserved by FMT. The level of gut microbiota-derived PGF2α decreased following irradiation but increased after FMT. Experimental mice with PGF2α replenishment, via an oral route, exhibited accumulated PGF2α in faecal pellets, peripheral blood and lung tissues, resulting in the attenuation of inflammatory status of the lung and amelioration of lung respiratory function following local chest irradiation. PGF2α activated the FP/MAPK/NF-κB axis to promote cell proliferation and inhibit apoptosis with radiation challenge; silencing MAPK attenuated the protective effect of PGF2α on radiation-challenged lung cells. Together, our findings pave the way for the clinical treatment of radiotherapy-associated complications and underpin PGF2α as a gut microbiota-produced metabolite.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Hui-Wen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| |
Collapse
|
138
|
Kamali Dolatabadi R, Feizi A, Halaji M, Fazeli H, Adibi P. The Prevalence of Adherent-Invasive Escherichia coli and Its Association With Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:730243. [PMID: 34926490 PMCID: PMC8678049 DOI: 10.3389/fmed.2021.730243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are known as chronic gastrointestinal inflammatory disorders. The present systematic review and meta analysis was conducted to estimate the prevalence of adherent-invasive Escherichia coli (AIEC) isolates and their phylogenetic grouping among IBD patients compared with the controls. A systematic literature search was conducted among published papers by international authors until April 30, 2020 in Web of Science, Scopus, EMBASE, and PubMed databases. The pooled prevalence of AIEC isolates and their phylogenetic grouping among IBD patients as well as in controls was estimated using fixed or random effects models. Furthermore, for estimating the association of colonization by AIEC with IBD, odds ratio along with 95% confidence interval was reported. A total of 205 articles retrieved by the initial search of databases, 13 case–control studies met the eligibility criteria for inclusion in the meta analysis. There were 465 IBD cases (348 CD and 117 UC) and 307 controls. The pooled prevalence of AIEC isolates were 28% (95% CI: 18–39%), 29% (95% CI: 20–40%), 13% (95% CI: 1–30%), and 9% (95% CI: 3–19%), respectively among IBD, CD, UC, and control group, respectively. Our results revealed that the most frequent AIEC phylogroup in the IBD, CD, and control groups was B2. Fixed-effects meta analysis showed that colonization of AIEC is significantly associated with IBD (OR: 2.93; 95% CI: 1.90–4.52; P < 0.001) and CD (OR: 3.07; 95% CI: 1.99–4.74; P < 0.001), but not with UC (OR: 2.29; 95% CI: 0.81–6.51; P = 0.11). In summary, this meta analysis revealed that colonization by AIEC is more frequent in IBD and is associated with IBD (CD and UC). Our results suggested that the affects of IBD in patients colonized with the AIEC pathovar is not random, it is in fact a specific disease-related pathovar.
Collapse
Affiliation(s)
- Razie Kamali Dolatabadi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Microbiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
139
|
Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, He Q, Liang H, Xin X, Wang L, Lou C, Cao X, Chen X, Li B, Wang B, Zhao J. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front Immunol 2021; 12:777665. [PMID: 34899735 PMCID: PMC8652295 DOI: 10.3389/fimmu.2021.777665] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022] Open
Abstract
Lactic acid, a metabolic by-product of host and intestinal microbiota, has been recovered as an active signal molecule in the immune system. In this study, a lactic acid biosynthesis pathway that directly produces lactic acid from glucose rather than ethanol with high production was reconstructed in Saccharomyces cerevisiae. The engineered S. cerevisiae showed anti-inflammatory activity in dextran sulfate sodium (DSS)-induced mice with improved histological damage, increased mucosal barrier, and decreased intestinal immune response. Lactic acid regulated the macrophage polarization state and inhibited the expression of pro-inflammatory cytokines in vivo and in vitro. Increasing the macrophage monocarboxylic acid transporter-mediated active lactic acid uptake suppressed the excessive activation of the NLRP3 inflammasome and the downstream caspase-1 pathway in macrophages. Moreover, lactic acid promoted histone H3K9 acetylation and histone H3K18 lactylation. Meanwhile, the engineered S. cerevisiae altered the diversity and composition of the intestinal microbiota and changed the abundance of metabolic products in mice with colitis. In conclusion, this study shows that the application of engineered S. cerevisiae attenuated DSS-induced colitis in mice via suppressing macrophage pyroptosis and modulating the intestinal microbiota, which is an effective and safe treatment strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ling Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xue Bai
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qijin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Xin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Li Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chenxi Lou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bingzhi Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
140
|
Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021; 14:426-448. [PMID: 34806151 PMCID: PMC8606251 DOI: 10.1007/s12602-021-09875-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/14/2023]
Abstract
The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.
Collapse
Affiliation(s)
- Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Archana Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Kumari Priya
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - K K Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
141
|
Russo E, Giudici F, Ricci F, Scaringi S, Nannini G, Ficari F, Luceri C, Niccolai E, Baldi S, D'Ambrosio M, Ramazzotti M, Amedei A. Diving into Inflammation: A Pilot Study Exploring the Dynamics of the Immune-Microbiota Axis in Ileal Tissue Layers of Patients with Crohn's Disease. J Crohns Colitis 2021; 15:1500-1516. [PMID: 33611347 DOI: 10.1093/ecco-jcc/jjab034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of Crohn's disease [CD] is still unclear. Disorders in the mucosal immunoregulation and its crosstalk with the microbiota may represent an important component in tissue injury. We aimed to characterize the molecular immune response distribution within the ileal layers and to evaluate the correlated microbiota in pathological/healthy settings comparing first surgery/relapse clinical conditions. METHODS We enrolled 12 CD patients. A comprehensive analysis of an ileal mucosa, submucosa and serosa broad-spectrum cytokine panel was performed through a multiplex approach. In addition, ileal microbiota composition was assessed through next generation sequencing. RESULTS We observed a distinct profile [of IL1-α, IL-1β, IL-4, IL-8, ICAM-1, E-Selectin, P-Selectin, IP-10, IL 6 and IL 18] across the CD vs healthy ileal layers; and a different distribution of IFN- γ, P-Selectin, IL-27 and IL-21 in first surgery vs relapse patients. In addition, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between relapse and first surgery patients regarding the class Bacteroidia, and the genera Prevotella, Flavobacterium, Tepidimonas and Escherichia/Shigella. Finally, the abundance of the genus Mycoplasma was positively correlated with IL-18. CONCLUSIONS We describe a dissimilarity of cytokine distribution and microbiota composition within CD and adjacent healthy ileal tissue layers and between first operation and surgical relapse. Our results give potential insight into the dynamics of the gut microbiota-immune axis in CD patients, leading to detection of new biomarkers.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Federica Ricci
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Ferdinando Ficari
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Mario D'Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
142
|
Tong L, Zhang X, Hao H, Liu Q, Zhou Z, Liang X, Liu T, Gong P, Zhang L, Zhai Z, Hao Y, Yi H. Lactobacillus rhamnosus GG Derived Extracellular Vesicles Modulate Gut Microbiota and Attenuate Inflammatory in DSS-Induced Colitis Mice. Nutrients 2021; 13:3319. [PMID: 34684320 PMCID: PMC8541209 DOI: 10.3390/nu13103319] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing and remitting inflammatory disease. Probiotics have a potential beneficial effect on the prevention of UC onset and relapse in clinical trials. Lactobacillus rhamnosus GG (L. rhamnosus GG) have shown clinical benefits on UC patients, however, the precise mechanisms are unknown. The aim of this study is to explore the effect of extracellular vesicles released from L. rhamnosus GG (LGG-EVs) on dextran sulfate sodium (DSS)-induced colitis and propose the underlying mechanism of LGG-EVs for protecting against colitis. The results showed that LGG-EVs could prevent colonic tissue damage and shortening of the colon (p < 0.01), and ameliorate intestinal inflammation by inhibiting TLR4-NF-κB-NLRP3 axis activation. Consistently, the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-2) were suppressed effectively upon LGG-EVs treatment (p < 0.05). The 16S rRNA sequencing showed that LGG-EVs administration could reshape the gut microbiota in DSS-induced colitis mice, which further alters the metabolism pathways of gut microbiota. These findings propose a novel perspective of L. rhamnosus GG in attenuating inflammation mediated by extracellular vesicles and offer consideration for developing oral gavage of LGG-EVs for colitis therapies.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zihan Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Z.Z.); (Y.H.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (L.T.); (X.Z.); (H.H.); (Q.L.); (Z.Z.); (X.L.); (T.L.); (P.G.); (L.Z.)
| |
Collapse
|
143
|
Clostridium butyricum MIYAIRI 588 Modifies Bacterial Composition under Antibiotic-Induced Dysbiosis for the Activation of Interactions via Lipid Metabolism between the Gut Microbiome and the Host. Biomedicines 2021; 9:biomedicines9081065. [PMID: 34440269 PMCID: PMC8391242 DOI: 10.3390/biomedicines9081065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome is closely related to gut metabolic functions, and the gut microbiome and host metabolic functions affect each other. Clostridium butyricum MIYAIRI 588 (CBM 588) upregulates protectin D1 production in host colon tissue following G protein-coupled receptor (GPR) 120 activation to protect gut epithelial cells under antibiotic-induced dysbiosis. However, how CBM 588 enhances polyunsaturated fatty acid (PUFA) metabolites remains unclear. Therefore, we focused on the metabolic function alterations of the gut microbiome after CBM 588 and protectin D1 administration to reveal the interaction between the host and gut microbiome through lipid metabolism during antibiotic-induced dysbiosis. Consequently, CBM 588 modified gut microbiome and increased the butyric acid and oleic acid content. These lipid metabolic modifications induced GPR activation, which is a trigger of ERK 1/2 signaling and directed differentiation of downstream immune cells in the host colon tissue. Moreover, endogenous protectin D1 modified the gut microbiome, similar to CBM 588. This is the first study to report that CBM 588 influences the interrelationship between colon tissue and the gut microbiome through lipid metabolism. These findings provide insights into the mechanisms of prevention and recovery from inflammation and the improvement of host metabolism by CBM 588.
Collapse
|
144
|
Tomasova L, Grman M, Ondrias K, Ufnal M. The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health. Nutr Metab (Lond) 2021; 18:72. [PMID: 34266472 PMCID: PMC8281717 DOI: 10.1186/s12986-021-00598-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent research demonstrates a reciprocal relationship between gut microbiota-derived metabolites and the host in controlling the energy homeostasis in mammals. On the one hand, to thrive, gut bacteria exploit nutrients digested by the host. On the other hand, the host utilizes numerous products of gut bacteria metabolism as a substrate for ATP production in the colon. Finally, bacterial metabolites seep from the gut into the bloodstream and interfere with the host’s cellular bioenergetics machinery. Notably, there is an association between alterations in microbiota composition and the development of metabolic diseases and their cardiovascular complications. Some metabolites, like short-chain fatty acids and trimethylamine, are considered markers of cardiometabolic health. Others, like hydrogen sulfide and nitrite, demonstrate antihypertensive properties. Scientific databases were searched for pre-clinical and clinical studies to summarize current knowledge on the role of gut microbiota metabolites in the regulation of mammalian bioenergetics and discuss their potential involvement in the development of cardiometabolic disorders. Overall, the available data demonstrates that gut bacteria products affect physiological and pathological processes controlling energy and vascular homeostasis. Thus, the modulation of microbiota-derived metabolites may represent a new approach for treating obesity, hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Lenka Tomasova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
145
|
Han Y, Gong Z, Sun G, Xu J, Qi C, Sun W, Jiang H, Cao P, Ju H. Dysbiosis of Gut Microbiota in Patients With Acute Myocardial Infarction. Front Microbiol 2021; 12:680101. [PMID: 34295318 PMCID: PMC8290895 DOI: 10.3389/fmicb.2021.680101] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Acute myocardial infarction (AMI) continues as the main cause of morbidity and mortality worldwide. Interestingly, emerging evidence highlights the role of gut microbiota in regulating the pathogenesis of coronary heart disease, but few studies have systematically assessed the alterations and influence of gut microbiota in AMI patients. As one approach to address this deficiency, in this study the composition of fecal microflora was determined from Chinese AMI patients and links between gut microflora and clinical features and functional pathways of AMI were assessed. Fecal samples from 30 AMI patients and 30 healthy controls were collected to identify the gut microbiota composition and the alterations using bacterial 16S rRNA gene sequencing. We found that gut microflora in AMI patients contained a lower abundance of the phylum Firmicutes and a slightly higher abundance of the phylum Bacteroidetes compared to the healthy controls. Chao1 (P = 0.0472) and PD-whole-tree (P = 0.0426) indices were significantly lower in the AMI versus control group. The AMI group was characterized by higher levels of the genera Megasphaera, Butyricimonas, Acidaminococcus, and Desulfovibrio, and lower levels of Tyzzerella 3, Dialister, [Eubacterium] ventriosum group, Pseudobutyrivibrio, and Lachnospiraceae ND3007 group as compared to that in the healthy controls (P < 0.05). The common metabolites of these genera are mostly short-chain fatty acids, which reveals that the gut flora is most likely to affect the occurrence and development of AMI through the short-chain fatty acid pathway. In addition, our results provide the first evidence revealing remarkable differences in fecal microflora among subgroups of AMI patients, including the STEMI vs. NSTEMI, IRA-LAD vs. IRA-Non-LAD and Multiple (≥2 coronary stenosis) vs. Single coronary stenosis groups. Several gut microflora were also correlated with clinically significant characteristics of AMI patients, including LVEDD, LVEF, serum TnI and NT-proBNP, Syntax score, counts of leukocytes, neutrophils and monocytes, and fasting serum glucose levels. Taken together, the data generated enables the prediction of several functional pathways as based on the fecal microfloral composition of AMI patients. Such information may enhance our comprehension of AMI pathogenesis.
Collapse
Affiliation(s)
- Ying Han
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaowei Gong
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guizhi Sun
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xu
- Department of Cardiovascular, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Weiju Sun
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peigang Cao
- Department of Cardiology, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hong Ju
- Department of Information Engineering, Heilongjiang Biological Science and Technology Career Academy, Harbin, China
| |
Collapse
|
146
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
147
|
Rodríguez-Padilla Á, Morales-Martín G, Pérez-Quintero R, Rada-Morgades R, Gómez-Salgado J, Ruiz-Frutos C. Diversion Colitis and Probiotic Stimulation: Effects of Bowel Stimulation Prior to Ileostomy Closure. Front Med (Lausanne) 2021; 8:654573. [PMID: 34249962 PMCID: PMC8267790 DOI: 10.3389/fmed.2021.654573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Diversion colitis is a non-specific inflammation of a defunctionalised segment of the colon after a temporary stoma has been performed. This inflammation is associated with a change in the colonic flora. Aim: To evaluate the efficacy and safety of preoperative stimulation of the efferent loop with probiotics prior to closure of the protective ileostomy in patients operated on colorectal carcinoma and its effect on diversion colitis. A prospective, randomised, double-blind, controlled study is carried out. Methods: Patients who underwent surgery for colorectal carcinoma with protective ileostomy pending reconstructive surgery and with diversion colitis as diagnosis are included. Randomised and divided into two groups. Histological and endoscopic changes were evaluated after stimulation, after restorative surgery and during the short-term follow-up after surgery. Results: Patients in CG were distributed according to the endoscopic index of severity in pre-stimulation/post-stimulation as follows: severe n = 9/9 (25.7%), moderate n = 23/23 (65.7%), and mild n = 3/3 (8.6%); compared to the distribution in SG, severe n = 9/0 (26.5/0%), moderate n = 23/3 (67.6/8.8%), mild n = 2/19 (5.9/55.9%) and normal colonoscopy in 0/12 patients (0/35.3%). Conclusion: Probiotic stimulation of the efferent loop is a safe and effective method, managing to reduce both macroscopic and microscopic colitis, as well as a decrease in symptoms in the short term after reconstructive surgery.
Collapse
Affiliation(s)
| | - Germán Morales-Martín
- Department of General Surgery, Infanta Elena University Clinical Hospital, Huelva, Spain
| | - Rocío Pérez-Quintero
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, Huelva, Spain
| | - Ricardo Rada-Morgades
- Department of General Surgery, Juan Ramón Jiménez University Clinical Hospital, Huelva, Spain
| | - Juan Gómez-Salgado
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, Huelva, Spain
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil, Ecuador
| | - Carlos Ruiz-Frutos
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, Huelva, Spain
- Safety and Health Postgraduate Programme, Universidad Espíritu Santo, Guayaquil, Ecuador
| |
Collapse
|
148
|
Saviano A, Brigida M, Migneco A, Gunawardena G, Zanza C, Candelli M, Franceschi F, Ojetti V. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:643. [PMID: 34201542 PMCID: PMC8306447 DOI: 10.3390/medicina57070643] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: Lactobacillus reuteri DSM 17938 (L. reuteri) is a probiotic that can colonize different human body sites, including primarily the gastrointestinal tract, but also the urinary tract, the skin, and breast milk. Literature data showed that the administration of L. reuteri can be beneficial to human health. The aim of this review was to summarize current knowledge on the role of L. reuteri in the management of gastrointestinal symptoms, abdominal pain, diarrhea and constipation, both in adults and children, which are frequent reasons for admission to the emergency department (ED), in order to promote the best selection of probiotic type in the treatment of these uncomfortable and common symptoms. Materials and Methods: We searched articles on PubMed® from January 2011 to January 2021. Results: Numerous clinical studies suggested that L. reuteri may be helpful in modulating gut microbiota, eliminating infections, and attenuating the gastrointestinal symptoms of enteric colitis, antibiotic-associated diarrhea (also related to the treatment of Helicobacter pylori (HP) infection), irritable bowel syndrome, inflammatory bowel disease, and chronic constipation. In both children and in adults, L. reuteri shortens the duration of acute infectious diarrhea and improves abdominal pain in patients with colitis or inflammatory bowel disease. It can ameliorate dyspepsia and symptoms of gastritis in patients with HP infection. Moreover, it improves gut motility and chronic constipation. Conclusion: Currently, probiotics are widely used to prevent and treat numerous gastrointestinal disorders. In our opinion, L. reuteri meets all the requirements to be considered a safe, well-tolerated, and efficacious probiotic that is able to contribute to the beneficial effects on gut-human health, preventing and treating many gastrointestinal symptoms, and speeding up the recovery and discharge of patients accessing the emergency department.
Collapse
Affiliation(s)
- Angela Saviano
- Department of Emergency Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Mattia Brigida
- Department of Gastroenterology, Università Tor Vergata, 00133 Rome, Italy;
| | - Alessio Migneco
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Gayani Gunawardena
- Department of Emergency Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Christian Zanza
- Department of Anesthesiology, Critical Care and Emergency Medicine-Fondazione Nuovo Ospedale Alba-Bra, Michele and Pietro Ferrero Hospital, 12060 Verduno, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| | - Veronica Ojetti
- Department of Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (A.M.); (M.C.); (F.F.); (V.O.)
| |
Collapse
|
149
|
Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021; 14:17562848211018098. [PMID: 34104213 PMCID: PMC8165529 DOI: 10.1177/17562848211018098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Bile acids are a class of cholesterol derivatives that have been known for a long time for their critical roles in facilitating the digestion and absorption of lipid from the daily diet. The transformation of primary bile acids produced by the liver to secondary bile acids appears under the action of microbiota in the intestine, greatly expanding the molecular diversity of the intestinal environment. With the discovery of several new receptors of bile acids and signaling pathways, bile acids are considered as a family of important metabolites that play pleiotropic roles in regulating many aspects of human overall health, especially in the maintenance of the microbiota homeostasis and the balance of the mucosal immune system in the intestine. Accordingly, disruption of the process involved in the metabolism or circulation of bile acids is implicated in many disorders that mainly affect the intestine, such as inflammatory bowel disease and colon cancer. In this review, we discuss the different metabolism profiles in diseases associated with the intestinal mucosa and the diverse roles of bile acids in regulating the intestinal immune system. Furthermore, we also summarize recent advances in the field of new drugs that target bile acid signaling and highlight the importance of bile acids as a new target for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Xiang Gao
- Department of Gastroenterology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | | |
Collapse
|
150
|
Orso G, Solovyev MM, Facchiano S, Tyrikova E, Sateriale D, Kashinskaya E, Pagliarulo C, Hoseinifar HS, Simonov E, Varricchio E, Paolucci M, Imperatore R. Chestnut Shell Tannins: Effects on Intestinal Inflammation and Dysbiosis in Zebrafish. Animals (Basel) 2021; 11:ani11061538. [PMID: 34070355 PMCID: PMC8228309 DOI: 10.3390/ani11061538] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary With the increase in global population the production of animal proteins becomes increasingly crucial. Aquaculture is the first animal protein supply industry for human consumption. Intensive farming techniques are employed to increase productivity, but these may cause stressful conditions for fish, resulting in impaired growth and poor health conditions. Intestinal inflammation is one of the most common diseases of fish in intensive farming. Intestinal inflammation is usually accompanied by an alteration of the microbiota or dysbiosis. Inflammation and dysbiosis are so tightly intertwined that inflammation may contribute to or result from dysregulation of gut microbiota. Natural substances of plant origin rich in bioactive molecules or more simply phytochemicals, have been proved to be able to reduce inflammation and improve the general health status in various commercially relevant species. In this study, we evaluated the effect of tannins, a class of polyphenols, the most abundant phytochemicals, on intestinal inflammation and microbiota in zebrafish (Danio rerio), a small freshwater fish become an attractive biomedicine and aquaculture animal model during the last decades. The zebrafish has been employed in a vast array of studies aiming at investigating the essential processes underlying intestinal inflammation and injury due to its conservative gut morphology and functions. In this study, we administered a diet enriched with chestnut shell extract rich in tannins to a zebrafish model of intestinal inflammation. The treatment ameliorated the damaged intestinal morphophysiology and the microbiota asset. Our results sustain that products of natural origin with low environmental impact and low cost, such as tannins, may help to ease some of the critical issues affecting the aquaculture sector. Abstract The aim of the present study was to test the possible ameliorative efficacy of phytochemicals such as tannins on intestinal inflammation and dysbiosis. The effect of a chestnut shell (Castanea sativa) extract (CSE) rich in polyphenols, mainly represented by tannins, on k-carrageenan-induced intestinal inflammation in adult zebrafish (Danio rerio) was tested in a feeding trial. Intestinal inflammation was induced by 0.1% k-carrageenan added to the diet for 10 days. CSE was administered for 10 days after k-carrageenan induced inflammation. The intestinal morphology and histopathology, cytokine expression, and microbiota were analyzed. The k-carrageenan treatment led to gut lumen expansion, reduction of intestinal folds, and increase of the goblet cells number, accompanied by the upregulation of pro-inflammatory factors (TNFα, COX2) and alteration in the number and ratio of taxonomic groups of bacteria. CSE counteracted the inflammatory status enhancing the growth of health helpful bacteria (Enterobacteriaceae and Pseudomonas), decreasing the pro-inflammatory factors, and activating the anti-inflammatory cytokine IL-10. In conclusion, CSE acted as a prebiotic on zebrafish gut microbiota, sustaining the use of tannins as food additives to ameliorate the intestinal inflammation. Our results may be relevant for both aquaculture and medical clinic fields.
Collapse
Affiliation(s)
- Graziella Orso
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Mikhail M. Solovyev
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Biological Institute, Tomsk State University, 634050 Tomsk, Russia
| | - Serena Facchiano
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Evgeniia Tyrikova
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
- Department of Natural Sciences, Novosibirsk State University, 630091 Novosibirsk, Russia
| | - Daniela Sateriale
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Elena Kashinskaya
- Institute of Systematics and Ecology of Animals, Siberian Branch of RAS, 630091 Novosibirsk, Russia; (M.M.S.); (E.T.); (E.K.)
| | - Caterina Pagliarulo
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Hossein S. Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, 49138-15739 Gorgan, Iran;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, 625003 Tyumen, Russia;
| | - Ettore Varricchio
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| | - Marina Paolucci
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
- Correspondence:
| | - Roberta Imperatore
- Department of Science and Technology (DST), University of Sannio, 82100 Benevento, Italy; (G.O.); (S.F.); (D.S.); (C.P.); (E.V.); (R.I.)
| |
Collapse
|