1451
|
Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 2006; 35:203-13. [PMID: 17158162 PMCID: PMC1802569 DOI: 10.1093/nar/gkl1068] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Controlled proteolytic cleavage of membrane-associated transcription factors (MTFs) is an intriguing activation strategy that ensures rapid transcriptional responses to incoming stimuli. Several MTFs are known to regulate diverse cellular functions in prokaryotes, yeast, and animals. In Arabidopsis, a few NAC MTFs mediate either cytokinin signaling during cell division or endoplasmic reticulum (ER) stress responses. Through genome-wide analysis, it was found that at least 13 members of the NAC family in Arabidopsis contain strong α-helical transmembrane motifs (TMs) in their C-terminal regions and are predicted to be membrane-associated. Interestingly, most of the putative NAC MTF genes are up-regulated by stress conditions, suggesting that they may be involved in stress responses. Notably, transgenic studies revealed that membrane release is essential for the function of NAC MTFs. Transgenic plants overexpressing partial-size NAC constructs devoid of the TMs, but not those overexpressing full-size constructs, showed distinct phenotypic changes, including dwarfed growth and delayed flowering. The rice genome also contains more than six NAC MTFs. Furthermore, the presence of numerous MTFs is predicted in the whole transcription factors in plants. We thus propose that proteolytic activation of MTFs is a genome-wide mechanism regulating plant genomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chung-Mo Park
- To whom correspondence should be addressed. Tel: +82 2 880 6640; Fax: +82 2 889 1568;
| |
Collapse
|
1452
|
Walther D, Brunnemann R, Selbig J. The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet 2006; 3:e11. [PMID: 17291162 PMCID: PMC1796623 DOI: 10.1371/journal.pgen.0030011] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 12/06/2006] [Indexed: 11/19/2022] Open
Abstract
Regulation of gene expression via specific cis-regulatory promoter elements has evolved in cellular organisms as a major adaptive mechanism to respond to environmental change. Assuming a simple model of transcriptional regulation, genes that are differentially expressed in response to a large number of different external stimuli should harbor more distinct regulatory elements in their upstream regions than do genes that only respond to few environmental challenges. We tested this hypothesis in Arabidopsis thaliana using the compendium of gene expression profiling data available in AtGenExpress and known cis-element motifs mapped to upstream gene promoter regions and studied the relation of the observed breadth of differential gene expression response with several fundamental genome architectural properties. We observed highly significant positive correlations between the density of cis-elements in upstream regions and the number of conditions in which a gene was differentially regulated. The correlation was most pronounced in regions immediately upstream of the transcription start sites. Multistimuli response genes were observed to be associated with significantly longer upstream intergenic regions, retain more paralogs in the Arabidopsis genome, are shorter, have fewer introns, and are more likely to contain TATA-box motifs in their promoters. In abiotic stress time series data, multistimuli response genes were found to be overrepresented among early-responding genes. Genes involved in the regulation of transcription, stress response, and signaling processes were observed to possess the greatest regulatory capacity. Our results suggest that greater gene expression regulatory complexity appears to be encoded by an increased density of cis-regulatory elements and provide further evidence for an evolutionary adaptation of the regulatory code at the genomic layout level. Larger intergenic spaces preceding multistimuli response genes may have evolved to allow greater regulatory gene expression potential. The induction or repression of specific genes has evolved in living organisms as a mechanism to respond to environmental changes. At the molecular level, this process is mediated via molecular switches, so-called regulatory elements, generally located in the genomic region adjacent to the gene they control, the gene promoter. Upon environmental change, specific proteins bind to such regulatory elements, thereby turning on or off the associated genes. As this molecular response is often specific to the external signal, genes that respond to a large number of different external stimuli should harbor more distinct regulatory elements in their promoter regions than should genes responding only to few environmental challenges. In analyzing data for the plant Arabidopsis thaliana, we observed that indeed an increased number of regulatory elements is associated with a broader range of responses. Several other genome structural properties, such as gene size, the occurrence of similar genes in the Arabidopsis genome, and the distance between genes, were also observed to be correlated with a broader breadth of response. The results suggest that greater regulatory complexity appears encoded by an increased density of regulatory elements and provide further evidence for an evolutionary adaptation of the regulatory code at the genomic architectural level.
Collapse
Affiliation(s)
- Dirk Walther
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany.
| | | | | |
Collapse
|
1453
|
Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap web tools for the analysis and identification of co-regulated genes. Nucleic Acids Res 2006; 35:D857-62. [PMID: 17148485 PMCID: PMC1761422 DOI: 10.1093/nar/gkl1006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AthaMap database generates a map of cis-regulatory elements for the whole Arabidopsis thaliana genome. This database has been extended by new tools to identify common cis-regulatory elements in specific regions of user-provided gene sets. A resulting table displays all cis-regulatory elements annotated in AthaMap including positional information relative to the respective gene. Further tables show overviews with the number of individual transcription factor binding sites (TFBS) present and TFBS common to the whole set of genes. Over represented cis-elements are easily identified. These features were used to detect specific enrichment of drought-responsive elements in cold-induced genes. For identification of co-regulated genes, the output table of the colocalization function was extended to show the closest genes and their relative distances to the colocalizing TFBS. Gene sets determined by this function can be used for a co-regulation analysis in microarray gene expression databases such as Genevestigator or PathoPlant. Additional improvements of AthaMap include display of the gene structure in the sequence window and a significant data increase. AthaMap is freely available at .
Collapse
Affiliation(s)
| | - Martin Schindler
- Software Systems Engineering Institute, Technische Universität Braunschweig, Mühlenpfordtstraße 23D-38106 Braunschweig, Germany
| | | | - Reinhard Hehl
- To whom correspondence should be addressed. Tel: +49 531 391 5772; Fax: +49 531 391 5765;
| |
Collapse
|
1454
|
Iwasaki M, Nitasaka E. The FEATHERED gene is required for polarity establishment in lateral organs especially flowers of the Japanese morning glory (I pomoea nil ). PLANT MOLECULAR BIOLOGY 2006; 62:913-25. [PMID: 16972166 DOI: 10.1007/s11103-006-9066-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 07/23/2006] [Indexed: 05/11/2023]
Abstract
Most strains harboring the feathered (fe) mutation in the Japanese morning glory (Ipomoea nil or Pharbitis nil) show deformed phenotypes such as upcurled leaves and separated or tubular petals. These phenotypes seem to be caused by loss of abaxial identity in lateral organs. The FE gene was isolated using the inserted transposon as a tag. An En/Spm-related transposable element, Tpn102, inserted in the fourth intron of the FE gene, was responsible for the fe mutation. FE encodes a GARP transcription factor closely related to Arabidopsis KANADI1 (KAN1), which promotes an abaxial cell fate. Genetic analyses and molecular studies, which showed that all fe mutant strains have the same fe allele despite their phenotypic differences, revealed that fe strains with strong phenotypes have additional mutations enhancing the fe phenotype. These findings and historical records of fe phenotypes suggest that these enhancer mutations were accumulated in the fe background during selection for strong phenotypes. The mutant phenotypes and molecular analysis of fe strains suggest that FE regulates the abaxial identity of lateral organs redundantly with modifier genes, as KAN1 does in Arabidopsis. FE, however, affects flower phenotype even in the single mutant unlike KAN1, moreover, modifier mutations affect flower phenotype only in the fe mutant background, suggesting that FE may play a more crucial role in promotion of abaxial cell fate in flowers of the Japanese morning glory.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Polarity/genetics
- DNA Transposable Elements/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Flowers/genetics
- Flowers/growth & development
- Flowers/ultrastructure
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- In Situ Hybridization
- Ipomoea/cytology
- Ipomoea/genetics
- Ipomoea/growth & development
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation/genetics
- Phenotype
- Phylogeny
- Plant Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Biological Science, Graduate School of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
1455
|
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. PLANT CELL REPORTS 2006; 25:1263-74. [PMID: 16858552 DOI: 10.1007/s00299-006-0204-8] [Citation(s) in RCA: 534] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 05/10/2023]
Abstract
Abiotic and biotic stresses negatively influence survival, biomass production and crop yield. Being multigenic as well as a quantitative trait, it is a challenge to understand the molecular basis of abiotic stress tolerance and to manipulate it as compared to biotic stresses. Lately, some transcription factor(s) that regulate the expression of several genes related to stress have been discovered. One such class of the transcription factors is DREB/CBF that binds to drought responsive cis-acting elements. DREBs belong to ERF family of transcription factors consisting of two subclasses, i.e. DREB1/CBF and DREB2 that are induced by cold and dehydration, respectively. The DREBs are apparently involved in biotic stress signaling pathway. It has been possible to engineer stress tolerance in transgenic plants by manipulating the expression of DREBs. This opens an excellent opportunity to develop stress tolerant crops in future. This review intends to focus on the structure, role of DREBs in plant stress signaling and the present status of their deployment in developing stress tolerant transgenic plants.
Collapse
Affiliation(s)
- Pradeep K Agarwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110067, India.
| | | | | | | |
Collapse
|
1456
|
Xie Y, Wang Z, Liu Q, Zhang S. Cloning and functional identification of stress-resistant BeDREB genes from Bermuda grass. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11515-006-0048-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1457
|
Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JHW, Karaba A, de Folter S, Pereira A. BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. PLANT MOLECULAR BIOLOGY 2006; 62:825-43. [PMID: 17096212 DOI: 10.1007/s11103-006-9059-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves.
Collapse
Affiliation(s)
- Nayelli Marsch-Martinez
- Plant Research International, Wageningen University and Research Centre, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1458
|
Babu MM, Iyer LM, Balaji S, Aravind L. The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 2006; 34:6505-20. [PMID: 17130173 PMCID: PMC1702500 DOI: 10.1093/nar/gkl888] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/04/2006] [Accepted: 10/09/2006] [Indexed: 11/28/2022] Open
Abstract
WRKY and GCM1 are metal chelating DNA-binding domains (DBD) which share a four stranded fold. Using sensitive sequence searches, we show that this WRKY-GCM1 fold is also shared by the FLYWCH Zn-finger domain and the DBDs of two classes of Mutator-like element (MULE) transposases. We present evidence that they share a stabilizing core, which suggests a possible origin from a BED finger-like intermediate that was in turn ultimately derived from a C2H2 Zn-finger domain. Through a systematic study of the phyletic pattern, we show that this WRKY-GCM1 superfamily is a widespread eukaryote-specific group of transcription factors (TFs). We identified several new members across diverse eukaryotic lineages, including potential TFs in animals, fungi and Entamoeba. By integrating sequence, structure, gene expression and transcriptional network data, we present evidence that at least two major global regulators belonging to this superfamily in Saccharomyces cerevisiae (Rcs1p and Aft2p) have evolved from transposons, and attained the status of transcription regulatory hubs in recent course of ascomycete yeast evolution. In plants, we show that the lineage-specific expansion of WRKY-GCM1 domain proteins acquired functional diversity mainly through expression divergence rather than by protein sequence divergence. We also use the WRKY-GCM1 superfamily as an example to illustrate the importance of transposons in the emergence of new TFs in different lineages.
Collapse
Affiliation(s)
- M. Madan Babu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
- MRC Laboratory of Molecular BiologyHills Road, Cambridge CB2 2QH, UK
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| | - S. Balaji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20894, USA
| |
Collapse
|
1459
|
Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 2006; 277:189-98. [PMID: 17089163 DOI: 10.1007/s00438-006-0183-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 10/14/2006] [Indexed: 10/24/2022]
Abstract
Abiotic stress-mediated gene expression is regulated via different transcription factors of which drought-responsive element-binding (DREB) proteins play an important role. There are two types of DREBs. Presently, the function of DREB1 type protein is well studied; however, much less information is available for DREB2. In this study, a cDNA with an open reading frame of 332 amino acids, encoding the transcription activation factor DREB2A, was cloned from Pennisetum glaucum, a stress tolerant food grain crop. Phylogenetic tree revealed that PgDREB2A is more close to DREBs isolated from monocots, though it forms an independent branch. The PgDREB2A transcript was up-regulated in response to drought within 1 h of the treatment, whereas the induction was delayed in response to cold and salinity stress. However, during cold stress, the transcript was induced more as compared to drought and salinity. The recombinant PgDREB2A protein having a molecular mass of 36.6 kDa was purified using Ni-NTA affinity chromatography. Gel mobility shift assays using the purified protein and two cis elements of rd29A (responsive to dehydration 29A) gene promoter of Arabidopsis revealed that PgDREB2A binds to drought-responsive element (DRE) ACCGAC and not to GCCGAC. PgDREB2A is a phosphoprotein, which has not been reported earlier. The phosphorylation of PgDREB2A in vitro by P. glaucum total cell extract occurred at threonine residue(s). The phosphorylated PgDREB2A did not bind to the DREs. The present data indicate that stress induction of genes could occur via post-translational modification by phosphorylation of DREB2A.
Collapse
Affiliation(s)
- Parinita Agarwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, 110 067, India
| | | | | | | | | |
Collapse
|
1460
|
Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:535-47. [PMID: 17059409 DOI: 10.1111/j.1365-313x.2006.02889.x] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We isolated 76 high-light and heat-shock (HL + HS) stress-inducible genes, including a putative heat-shock transcription factor (HsfA2), by suppression-subtractive hybridization from Arabidopsis. The transcript level of HsfA2 was significantly increased under the several stress conditions or by the H(2)O(2) treatment. Furthermore, the induction of HsfA2 expression was highest among those of other class A HSFs in response to HL + HS stress conditions. The promoter assay revealed that HsfA2 is induced mainly in rosette leaves under HL + HS stress conditions. In the HsfA2-overexpressing Arabidopsis (Pro(35S):HsfA2) plants, 46 genes, including a large number of heat-shock proteins, ascorbate peroxidase 2 and galactinol synthase 1 and 2, were highly expressed compared with those in the wild-type plants. The transcript levels of the HsfA2 target genes are highly correlated with those of HsfA2 in the Pro(35S):HsfA2 plants. The transcript levels of the HsfA2 target genes, as well as HsfA2 transcripts, were induced by treating with exogenous H(2)O(2). In the knockout HsfA2 Arabidopsis plants, the induction of 26 HsfA2 target genes was strongly reduced for up to 2 h under HL + HS stress conditions. Furthermore, the Pro(35S):HsfA2 plants showed increased tolerance to combined environmental stresses. Our present results indicate that HsfA2 is a key regulator in the induction of the defence system under several types of environmental stress.
Collapse
Affiliation(s)
- Ayako Nishizawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | | | | | | | | | | |
Collapse
|
1461
|
Jiang Y, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC PLANT BIOLOGY 2006; 6:25. [PMID: 17038189 PMCID: PMC1621065 DOI: 10.1186/1471-2229-6-25] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/12/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Roots are an attractive system for genomic and post-genomic studies of NaCl responses, due to their primary importance to agriculture, and because of their relative structural and biochemical simplicity. Excellent genomic resources have been established for the study of Arabidopsis roots, however, a comprehensive microarray analysis of the root transcriptome following NaCl exposure is required to further understand plant responses to abiotic stress and facilitate future, systems-based analyses of the underlying regulatory networks. RESULTS We used microarrays of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes to identify root transcripts that changed in relative abundance following 6 h, 24 h, or 48 h of hydroponic exposure to 150 mM NaCl. Enrichment analysis identified groups of structurally or functionally related genes whose members were statistically over-represented among up- or down-regulated transcripts. Our results are consistent with generally observed stress response themes, and highlight potentially important roles for underappreciated gene families, including: several groups of transporters (e.g. MATE, LeOPT1-like); signalling molecules (e.g. PERK kinases, MLO-like receptors), carbohydrate active enzymes (e.g. XTH18), transcription factors (e.g. members of ZIM, WRKY, NAC), and other proteins (e.g. 4CL-like, COMT-like, LOB-Class 1). We verified the NaCl-inducible expression of selected transcription factors and other genes by qRT-PCR. CONCLUSION Microarray profiling of NaCl-treated Arabidopsis roots revealed dynamic changes in transcript abundance for at least 20% of the genome, including hundreds of transcription factors, kinases/phosphatases, hormone-related genes, and effectors of homeostasis, all of which highlight the complexity of this stress response. Our identification of these transcriptional responses, and groups of evolutionarily related genes with either similar or divergent transcriptional responses to stress, will facilitate mapping of regulatory networks and extend our ability to improve salt tolerance in plants.
Collapse
Affiliation(s)
- Yuanqing Jiang
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
1462
|
Swindell WR. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 2006; 174:1811-24. [PMID: 17028338 PMCID: PMC1698639 DOI: 10.1534/genetics.106.061374] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The identification and analysis of genes exhibiting large expression responses to several different types of stress may provide insights into the functional basis of multiple stress tolerance in plant species. This study considered whole-genome transcriptional profiles from Arabidopsis thaliana root and shoot organs under nine abiotic stress conditions (cold, osmotic stress, salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and high temperature) and at six different time points of stress exposure (0.5, 1, 3, 6, 12, and 24 hr). In roots, genomewide correlations between transcriptional responses to different stress treatments peaked following 1 hr of stress exposure, while in shoots, correlations tended to increase following 6 hr of stress exposure. The generality of stress responses at the transcriptional level was therefore time and organ dependent. A total of 67 genes were identified as exhibiting a statistically significant pattern of gene expression characterized by large transcriptional responses to all nine stress treatments. Most genes were identified from early to middle (1-6 hr) time points of stress exposure. Analysis of this gene set indicated that cell rescue/defense/virulence, energy, and metabolism functional classes were overrepresented, providing novel insight into the functional basis of multiple stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- William R Swindell
- Department of Probability and Statistics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
1463
|
Qu LJ, Zhu YX. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:544-9. [PMID: 16877030 DOI: 10.1016/j.pbi.2006.07.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 07/14/2006] [Indexed: 05/11/2023]
Abstract
Transcription factors (TFs) are a group of proteins that control cellular processes by regulating the expression of downstream target genes. Recent progress has been made in the cloning and characterization of Arabidopsis TFs on the genome scale, especially on the cloning of open reading frames (ORFs), sequence analysis and the expression profiling of different TF families. Huge difference in numbers of subfamily members were found for Arabidopsis MYB, C2H2 (Zn), C3H-type 1 (Zn), C3H-type 2 (Zn) TFs by independent research groups, mainly because of differences in bioinformatic search stringency. However, the Arabidopsis and rice genomes contain very different numbers of TFs in the WRKY, NAC, bZIP, MADS, ALFIN-like, GRAS and C2C2 (Zn)-dof families, indicating a possible divergence of biological functions from dicots to monocots. TFs have also been found to play key roles in the biosynthesis and signaling of plant hormones, in cell growth and differentiation, and in photomorphogenesis.
Collapse
Affiliation(s)
- Li-Jia Qu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
1464
|
Ramalingam J, Pathan MS, Feril O, Ross K, Ma XF, Mahmoud AA, Layton J, Rodriguez-Milla MA, Chikmawati T, Valliyodan B, Skinner R, Matthews DE, Gustafson JP, Nguyen HT. Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 2006; 49:1324-40. [PMID: 17218960 DOI: 10.1139/g06-094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To gain insights into the structure and function of the wheat (Triticum aestivum L.) genomes, we identified 278 ESTs related to abiotic stress (cold, heat, drought, salinity, and aluminum) from 7671 ESTs previously mapped to wheat chromosomes. Of the 278 abiotic stress related ESTs, 259 (811 loci) were assigned to chromosome deletion bins and analyzed for their distribution pattern among the 7 homoeologous chromosome groups. Distribution of abiotic stress related EST loci were not uniform throughout the different regions of the chromosomes of the 3 wheat genomes. Both the short and long arms of group 4 chromosomes showed a higher number of loci in their distal regions compared with proximal regions. Of the 811 loci, the number of mapped loci on the A, B, and D genomes were 258, 281, and 272, respectively. The highest number of abiotic stress related loci were found in homoeologous chromosome group 2 (142 loci) and the lowest number were found in group 6 (94 loci). When considering the genome-specific ESTs, the B genome showed the highest number of unique ESTs (7 loci), while none were found in the D genome. Similarly, considering homoeologous group-specific ESTs, group 2 showed the highest number with 16 unique ESTs (58 loci), followed by group 4 with 9 unique ESTs (33 loci). Many of the classified proteins fell into the biological process categories associated with metabolism, cell growth, and cell maintenance. Most of the mapped ESTs fell into the category of enzyme activity (28%), followed by binding activity (27%). Enzymes related to abiotic stress such as β-galactosidase, peroxidase, glutathione reductase, and trehalose-6-phosphate synthase were identified. The comparison of stress-responsive ESTs with genomic sequences of rice (Oryza sativa L.) chromosomes revealed the complexities of colinearity. This bin map provides insight into the structural and functional details of wheat genomic regions in relation to abiotic stress.
Collapse
Affiliation(s)
- J Ramalingam
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1465
|
Cao D, Cheng H, Wu W, Soo HM, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. PLANT PHYSIOLOGY 2006; 142:509-25. [PMID: 16920880 PMCID: PMC1586041 DOI: 10.1104/pp.106.082289] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Severe Arabidopsis (Arabidopsis thaliana) gibberellin (GA)-deficient mutant ga1-3 fails to germinate and is impaired in floral organ development. In contrast, the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant confers GA-independent seed germination and floral development. This fact suggests that GA-regulated transcriptomes for seed germination and floral development are DELLA dependent. However, it is currently not known if all GA-regulated genes are GA regulated in a DELLA-dependent fashion and if a similar set of DELLA-regulated genes is mobilized to repress both seed germination and floral development. Here, we compared the global gene expression patterns in the imbibed seeds and unopened flower buds of the ga1-3 mutant with that of the wild type and of the ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 mutant. We found that about one-half of total GA-regulated genes are apparently regulated in a DELLA-dependent fashion, suggesting that there might be a DELLA-independent or -partially-dependent component of GA-dependent gene regulation. A cross-comparison based on gene identity revealed that the GA-regulated DELLA-dependent transcriptomes in the imbibed seeds and flower buds are distinct from each other. Detailed ontology analysis showed that, on one hand, DELLAs differentially regulate the expression of different individual members of a gene family to run similar biochemical pathways in seeds and flower. Meanwhile, DELLAs control many functionally different genes to run specific pathways in seeds or flower buds to mark the two different developmental processes. Our data shown here not only confirm many previous reports but also single out some novel aspects of DELLA functions that are instructive to our future research.
Collapse
Affiliation(s)
- Dongni Cao
- Functional Genomics Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | |
Collapse
|
1466
|
|
1467
|
Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latché A, Pech JC, Bouzayen M. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. PLANT & CELL PHYSIOLOGY 2006; 47:1195-205. [PMID: 16857696 DOI: 10.1093/pcp/pcj084] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene response factors (ERFs) are plant transcriptional regulators mediating ethylene-dependent gene expression via binding to the GCC motif found in the promoter region of ethylene-regulated genes. We report here on the structural and functional characterization of the tomato Sl-ERF2 gene that belongs to a distinct class of the large ERF gene family. Both spliced and unspliced versions of Sl-ERF2 transcripts were amplified from RNA samples and the search in the public tomato expressed sequence tag (EST) database confirmed the existence of the two transcript species in a number of cDNA libraries. The unspliced transcript contains two open reading frames yielding two hypothetical proteins, a small highly truncated version lacking the APETALA2 domain and a bigger protein lacking the N-terminal MCGGAAI(I)/(L) consensus peptide specific to ERF members from subfamily IV. Nevertheless, functional Sl-ERF2 protein may only derive from spliced transcripts since, depending on the tissue, the level of the spliced transcript is much higher than that of the unspliced transcript. Sl-ERF2 is expressed in all plant tissues tested, though its transcript accumulates preferentially in germinating seeds and ripening fruit. Overexpression of the Sl-ERF2 gene in transgenic tomato lines results in premature seed germination and enhanced hook formation of dark-grown seedlings, which is indicative of increased ethylene sensitivity. The expression of the mannanase2 gene is upregulated in Sl-ERF2-overexpressing seeds, suggesting that Sl-ERF2 stimulates seed germination through the induction of the mannanase2 gene. It is noteworthy that the exaggerated hook phenotype is abolished when ethylene perception is blocked, strongly suggesting that Sl-ERF2 requires other ethylene-dependent components to impact the hook formation process.
Collapse
Affiliation(s)
- Julien Pirrello
- UMR990 INRA/INP-ENSA Toulouse Génomique et Biotechnologie des Fruits Avenue de l'Agrobiopole, BP 32607, 31326 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1468
|
Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. PLANT PHYSIOLOGY 2006; 142:280-93. [PMID: 16861571 PMCID: PMC1557610 DOI: 10.1104/pp.106.084475] [Citation(s) in RCA: 443] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transcription factors play essential roles in the developmental processes of plants. Many such factors are regulated by microRNAs (miRNAs). SQUAMOSA (SQUA) promoter-binding-like (SPL) genes encode plant-specific transcription factors, some of which contain complementary sequences of miRNA156. In this study, 19 rice (Oryza sativa) SPL (OsSPL) genes and 12 rice miRNA156 (OsmiR156) precursors were identified in the rice genome. Sequence and experimental analysis suggested that 11 OsSPL genes were putative targets of OsmiR156. Plant SPL proteins were classified into six subgroups based on the phylogenetic analysis of SQUA promoter-binding protein domain. Diverse exon-intron structures and distinct organizations of putative motifs beyond the SQUA promoter-binding protein domains were identified in the OsSPL gene family. Transcript level analysis of OsSPL genes in various rice tissues and organs revealed different tempospatial expression patterns. More than half of the OsSPL genes including most OsmiR156-targeted genes are predominantly expressed in the young panicles, whereas OsmiR156 genes are predominantly expressed in the young shoots and leaves of rice. Overexpression of two OsmiR156 genes (OsmiR156b and OsmiR156h) in rice resulted in severe dwarfism, strongly reduced panicle size, and delayed flowering, suggesting that OsmiR156 and OsSPL target genes are involved in various developmental processes, especially the flower development of rice. Different patterns of transcript changes (decreased or unchanged) of different target genes in same tissue and of same target gene in different tissues detected in the OsmiR156-overexpressing plants suggested diverse interactions between OsmiR156 and OsSPL target genes in a tissue-specific manner.
Collapse
Affiliation(s)
- Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research , Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
1469
|
Şahin-Çevik M, Moore GA. Two AP2 domain containing genes isolated from the cold-hardy Citrus relative Poncirus trifoliata are induced in response to cold. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:863-875. [PMID: 32689297 DOI: 10.1071/fp06005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 05/10/2006] [Indexed: 06/11/2023]
Abstract
Poncirus trifoliata (L.) Raf. is a cold-hardy, interfertile Citrus relative able to tolerate temperatures as low as -26°C when cold acclimated. Therefore, it has been used for improving cold tolerance in cold-sensitive commercial citrus varieties. A cold-induced cDNA library was constructed by subtractive hybridisation of non-acclimated and 2-d cold-acclimated P. trifoliata seedlings and many genes induced in response to cold were identified. Two of these cDNAs, PI-B05 and PI-C10, were selected from this library for further characterisation. Full-length cDNA sequences of these genes were obtained by 5' and 3' rapid amplification of cDNA ends (RACE). Sequence analysis revealed that PI-B05 contained an apetala2 / ethylene response factor (AP2 / ERF) domain and showed homology with ERF proteins from other plants, some of which are involved in environmental stress-induced gene expression. PI-C10 contained both AP2 / ERF and B3 DNA binding domains and showed homology with other plant proteins in the RAV subfamily of the AP2 / ERF transcription factors, some of which are induced in response to cold and other environmental stresses. Expression patterns of these genes in cold-tolerant P. trifoliata and cold-sensitive pummelo [Citrus grandis (L.) Osb.] in response to cold and drought at different time points were analysed by northern blots. Expression analysis showed that both genes were induced in response to cold, but not under drought conditions in cold-hardy P. trifoliata. However, little or no expression of these genes was detected by northern analysis in cold-sensitive pummelo under cold or drought conditions. The sequence analysis and expression data indicated that these genes may play a role in cold-responsive gene expression in cold-hardy P. trifoliata and could possibly be used for improving cold tolerance in cold-sensitive citrus cultivars.
Collapse
Affiliation(s)
- Mehtap Şahin-Çevik
- Department of Horticultural Sciences, Suleyman Demirel University, Isparta 32260, Turkey
| | - Gloria A Moore
- Horticultural Sciences Department, Plant Molecular and Cellular Biology Program, POB 110690, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
1470
|
Manfield IW, Jen CH, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM, Westhead DR. Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 2006; 34:W504-9. [PMID: 16845059 PMCID: PMC1538833 DOI: 10.1093/nar/gkl204] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Arabidopsis Co-expression Tool, ACT, ranks the genes across a large microarray dataset according to how closely their expression follows the expression of a query gene. A database stores pre-calculated co-expression results for ∼21 800 genes based on data from over 300 arrays. These results can be corroborated by calculation of co-expression results for user-defined sub-sets of arrays or experiments from the NASC/GARNet array dataset. Clique Finder (CF) identifies groups of genes which are consistently co-expressed with each other across a user-defined co-expression list. The parameters can be altered easily to adjust cluster size and the output examined for optimal inclusion of genes with known biological roles. Alternatively, a Scatter Plot tool displays the correlation coefficients for all genes against two user-selected queries on a scatter plot which can be useful for visual identification of clusters of genes with similar r-values. User-input groups of genes can be highlighted on the scatter plots. Inclusion of genes with known biology in sets of genes identified using CF and Scatter Plot tools allows inferences to be made about the roles of the other genes in the set and both tools can therefore be used to generate short lists of genes for further characterization. ACT is freely available at .
Collapse
Affiliation(s)
- Iain W. Manfield
- To whom correspondence should be addressed. Tel: +44 113 343 2901; Fax: +44 113 343 3144;
| | - Chih-Hung Jen
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsWest Yorkshire, LS2 9JT, UK
| | - John W. Pinney
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsWest Yorkshire, LS2 9JT, UK
| | - Ioannis Michalopoulos
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsWest Yorkshire, LS2 9JT, UK
| | - James R. Bradford
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsWest Yorkshire, LS2 9JT, UK
| | | | - David R. Westhead
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsWest Yorkshire, LS2 9JT, UK
| |
Collapse
|
1471
|
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 2006; 103:12987-92. [PMID: 16924117 PMCID: PMC1559740 DOI: 10.1073/pnas.0604882103] [Citation(s) in RCA: 866] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drought and salinity are major abiotic stresses to crop production. Here, we show that overexpression of stress responsive gene SNAC1 (STRESS-RESPONSIVE NAC 1) significantly enhances drought resistance in transgenic rice (22-34% higher seed setting than control) in the field under severe drought stress conditions at the reproductive stage while showing no phenotypic changes or yield penalty. The transgenic rice also shows significantly improved drought resistance and salt tolerance at the vegetative stage. Compared with WT, the transgenic rice are more sensitive to abscisic acid and lose water more slowly by closing more stomatal pores, yet display no significant difference in the rate of photosynthesis. SNAC1 is induced predominantly in guard cells by drought and encodes a NAM, ATAF, and CUC (NAC) transcription factor with transactivation activity. DNA chip analysis revealed that a large number of stress-related genes were up-regulated in the SNAC1-overexpressing rice plants. Our data suggest that SNAC1 holds promising utility in improving drought and salinity tolerance in rice.
Collapse
Affiliation(s)
- Honghong Hu
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Mingqiu Dai
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Benze Xiao
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Xianghua Li
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Qifa Zhang
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
| | - Lizhong Xiong
- *National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan) and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1472
|
Muto H, Nagao I, Demura T, Fukuda H, Kinjo M, Yamamoto KT. Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of arabidopsis expressed in HeLa cells. PLANT & CELL PHYSIOLOGY 2006; 47:1095-101. [PMID: 16854942 DOI: 10.1093/pcp/pcj080] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since auxin may elicit numerous developmental responses by the use of a combination of auxin response factors (ARFs) and their Aux/IAA repressors, it is important to determine the interaction between the two protein families in a quantitative manner. We transiently expressed the C-terminal protein-protein interaction domains (CTDs) of Arabidopsis ARFs, MP/ARF5 and NPH4/ARF7, and MSG2/IAA19, fused to fluorescent proteins in HeLa cells, and determined their molecular interactions with fluorescence cross-correlation spectroscopy (FCCS). Almost complete association was found between MSG2 and MP-CTD and between MSG2 and NPH4-CTD. Approximately 20% association was found for MSG2 homodimers, NPH4-CTD homodimers and MP-CTD/NPH4-CTD heterodimers. Homotypic binding of MP-CTD may be weaker than that of MSG2. MSG2 was localized in cytoplasmic compartments in HeLa cells, whereas it was localized in the nuclei in plant cells. The fact that the heterotypic interaction between MSG2 and ARF-CTDs is stronger than each of the homotypic interactions appears to be the molecular basis for tight control of the transcriptional activity of ARFs by auxin. These results also show that FCCS is useful to examine protein-protein interactions especially for transcriptional regulators.
Collapse
Affiliation(s)
- Hideki Muto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | | | | | | | | | | |
Collapse
|
1473
|
Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. PLANT MOLECULAR BIOLOGY 2006; 61:897-915. [PMID: 16927203 DOI: 10.1007/s11103-006-0057-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 03/28/2006] [Indexed: 05/11/2023]
Abstract
A novel pathogen-induced gene encoding the RAV (Related to ABI3/VP1) transcription factor, CARAV1, was isolated from pepper leaves infected with Xanthomonas campestris pv. vesicatoria. CARAV1 contains two distinct DNA-binding domains AP2 and B3 uniquely found in higher plants. Transient expression analysis of the smGFP:CARAV1 fusion construct in Arabidopsis protoplasts and pepper epidermal cells revealed the CARAV1 protein to be localized in the nucleus. The N-terminal region of CARAV1 fused to the GAL4 DNA-binding domain was required to activate transcription of reporter genes in yeast. In yeast one-hybrid, the recognition of CAACA and CACCTG motifs also were essential for the CARAV1 protein to bind to a specific target gene and activate the reporter gene. The expression of the CARAV1 gene was strongly induced early in pepper leaves during the pathogen infection, abiotic elicitors and environmental stresses. CARAV1 transcripts were localized in the phloem cells of leaf tissues during pathogen infection and ethylene treatment. Ectopic expression of the CARAV1 gene in transgenic Arabidopsis plants induced some PR genes and enhanced resistance against infection by Pseudomonas syringae pv. tomato DC3000 and osmotic stresses by high salinity and dehydration. The CARAV1 promoter activation was induced by P. syringae pv. tabaci, salicylic acid and abscisic acid. These data suggest that pathogen- and abiotic stress-inducible CARAV1 functions as a transcriptional activator triggering resistance to bacterial infection and tolerance to osmotic stresses.
Collapse
Affiliation(s)
- Kee Hoon Sohn
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
1474
|
Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. PLANT, CELL & ENVIRONMENT 2006; 29:1545-70. [PMID: 16898017 DOI: 10.1111/j.1365-3040.2006.01532.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Collapse
Affiliation(s)
- Steven G Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1475
|
Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, Cheng JF. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 2006; 54:37-45. [PMID: 16914294 DOI: 10.1016/j.colsurfb.2006.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/02/2006] [Accepted: 07/07/2006] [Indexed: 01/08/2023]
Abstract
Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses.
Collapse
Affiliation(s)
- Hong-Bo Shao
- Molecular Biology Laboratory, Bio-informatics College, Chongqing University of Posts & Telecom, Chongqing 400065, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
1476
|
Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H. Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2006; 119:407-13. [PMID: 16820983 DOI: 10.1007/s10265-006-0287-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 03/31/2006] [Indexed: 05/08/2023]
Abstract
The analysis of expression patterns of transcription-factor genes will be the basis for a better understanding of their biological functions in plants. In this study, we designed and developed an oligo-DNA macroarray consisting of gene-specific probes of 60-65 nucleotides for 288 transcription-factor genes, which cover COL, DOF, ERF, and NAC family genes. To investigate transcription-factor genes that are cooperatively regulated by jasmonate and ethylene in arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants, we analyzed the expression profile of transcription-factor genes using the oligo-DNA macroarray technique in arabidopsis plants treated with methyl jasmonate and 1-aminocyclopropane-1-carboxylic acid. Then, transcript levels of candidate genes-which were selected based on the result of macroarray analysis-were evaluated by the quantitative real-time RT-PCR method. Finally, we identified an ERF family gene that is cooperatively regulated by both hormones, and designated as cooperatively regulated by ethylene and jasmonate 1 (CEJ1).
Collapse
Affiliation(s)
- Toshitsugu Nakano
- Molecular and Cellular Breeding Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
1477
|
ZHAO YINHE, WANG GUOYING, ZHANG JINPENG, YANG JUNBO, PENG SHANG, GAO LIANMING, LI CHENGYUN, HU JINYONG, LI DEZHU, GAO LIZHI. Expressed sequence tags (ESTs) and phylogenetic analysis of floral genes from a paleoherb species, Asarum caudigerum. ANNALS OF BOTANY 2006; 98:157-63. [PMID: 16675604 PMCID: PMC2803548 DOI: 10.1093/aob/mcl081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Asarum caudigerum (Aristolochiaceae) is an important species of paleoherb in relation to understanding the origin and evolution of angiosperm flowers, due to its basal position in the angiosperms. The aim of this study was to isolate floral-related genes from A. caudigerum, and to infer evolutionary relationships among florally expression-related genes, to further illustrate the origin and diversification of flowers in angiosperms. METHODS A subtracted floral cDNA library was constructed from floral buds using suppression subtractive hybridization (SSH). The cDNA of floral buds and leaves at the seedling stage were used as a tester and a driver, respectively. To further identify the function of putative MADS-box transcription factors, phylogenetic trees were reconstructed in order to infer evolutionary relationships within the MADS-box gene family. KEY RESULTS In the forward-subtracted floral cDNA library, 1920 clones were randomly sequenced, from which 567 unique expressed sequence tags (ESTs) were obtained. Among them, 127 genes failed to show significant similarity to any published sequences in GenBank and thus are putatively novel genes. CONCLUSIONS Phylogenetic analysis indicated that a total of 29 MADS-box transcription factors were members of the APETALA3(AP3) subfamily, while nine others were putative MADS-box transcription factors that formed a cluster with MADS-box genes isolated from Amborella, the basal-most angiosperm, and those from the gymnosperms. This suggests that the origin of A. caudigerum is intermediate between the angiosperms and gymnosperms.
Collapse
Affiliation(s)
- YINHE ZHAO
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - GUOYING WANG
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - JINPENG ZHANG
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - JUNBO YANG
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - SHANG PENG
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - LIANMING GAO
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - CHENGYUN LI
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - JINYONG HU
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - DEZHU LI
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- For correspondence. E-mail
| | - LIZHI GAO
- Laboratory of Biodiversity and Plant Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 10-Institute for Plant Breeding Research, Carl-von-Linn0094, China, College of Agronomy and Key Laboratory for Plant Pathology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China, Max-Plancke Weg 10, Koeln 50829, Germany and Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
1478
|
Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2006; 2:e117. [PMID: 16789830 PMCID: PMC1523247 DOI: 10.1371/journal.pgen.0020117.eor] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 06/12/2006] [Indexed: 02/06/2023] Open
Abstract
Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.
Collapse
Affiliation(s)
- Frank Wellmer
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Márcio Alves-Ferreira
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Annick Dubois
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - José Luis Riechmann
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Elliot M Meyerowitz
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1479
|
Abstract
Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner. The development of flowers is one of the characteristic features of higher plants. In an effort to gain detailed insights into the molecular processes underlying flower development, the authors have analyzed the expression of the genes of the small plant Arabidopsis thaliana, which is widely used by biologists for the study of plant development, during the early stages of flower formation. To this end, they used DNA microarray analysis, a technology that allows the simultaneous detection of thousands of gene transcripts in a single experiment. Because young floral buds of Arabidopsis are minute and are difficult to dissect, the authors established a system that allows the simultaneous induction of a large number of flowers on a single plant. Using this system, they identified groups of genes, many of them novel or uncharacterized, that are highly active during distinct stages of flower development. These genes are likely involved in controlling the various developmental changes that take place during the formation of flowers. The authors also found that many of these genes are closely related in sequence, suggesting that they might be involved in similar or identical processes, and thus uncovering a large degree of potential functional redundancy during flower development.
Collapse
|
1480
|
Che P, Lall S, Nettleton D, Howell SH. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. PLANT PHYSIOLOGY 2006; 141:620-37. [PMID: 16648215 PMCID: PMC1475446 DOI: 10.1104/pp.106.081240] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Shoots can be regenerated from Arabidopsis (Arabidopsis thaliana) root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium. Regenerating tissues can be directed along different developmental pathways leading to the formation of shoots, new roots, or callus by transferring to the appropriate organ induction medium. Using gene-profiling methods, we identified groups of genes that serve as molecular signatures of the different developmental processes, i.e. genes that were specifically up- or down-regulated on one developmental pathway, but not on others. One transcription factor gene that was up-regulated during early shoot development was RAP2.6L (At5g13330), a member of the ERF (ethylene response factor) subfamily B-4 of the ERF/APETALA2 transcription factor gene family. RAP2.6L functions in shoot regeneration because T-DNA knockdown mutations in the gene reduced the efficiency of shoot formation in tissue culture, but not normal embryo or seedling development. RAP2.6L promoter:beta-glucuronidase fusions demonstrated that the up-regulation of the gene during shoot regeneration was, at least in part, transcriptionally controlled. The promoter:beta-glucuronidase fusions also demonstrated that RAP2.6L expression was localized to the shoot and emerging leaves, but expression declined in the leaf lamina as leaves expanded. T-DNA knockdown mutations in RAP2.6L reduced the expression of many genes that are normally up-regulated during shoot development including CUP-SHAPED COTYLEDON2 that is involved in shoot meristem specification. Thus, RAP2.6L appears to be part of a network involved in regulating the expression of many other genes in shoot regeneration.
Collapse
Affiliation(s)
- Ping Che
- Plant Sciences Institute, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
1481
|
Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:984-1008. [PMID: 16805732 DOI: 10.1111/j.1365-313x.2006.02756.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In Arabidopsis, jasmonate is required for stamen and pollen maturation. Mutants deficient in jasmonate synthesis, such as opr3, are male-sterile but become fertile when jasmonate is applied to developing flower buds. We have used ATH1 oligonucleotide arrays to follow gene expression in opr3 stamens for 22 h following jasmonate treatment. In these experiments, a total of 821 genes were specifically induced by jasmonate and 480 genes were repressed. Comparisons with data from previous studies indicate that these genes constitute a stamen-specific jasmonate transcriptome, with a large proportion (70%) of the genes expressed in the sporophytic tissue but not in the pollen. Bioinformatics tools allowed us to associate many of the induced genes with metabolic pathways that are probably upregulated during jasmonate-induced maturation. Our pathway analysis led to the identification of specific genes within larger families of homologues that apparently encode stamen-specific isozymes. Extensive additional analysis of our dataset identified 13 transcription factors that may be key regulators of the stamen maturation processes triggered by jasmonate. Two of these transcription factors, MYB21 and MYB24, are the only members of subgroup 19 of the R2R3 family of MYB proteins. A myb21 mutant obtained by reverse genetics exhibited shorter anther filaments, delayed anther dehiscence and greatly reduced male fertility. A myb24 mutant was phenotypically wild-type, but production of a myb21myb24 double mutant indicated that introduction of the myb24 mutation exacerbated all three aspects of the myb21 phenotype. Exogenous jasmonate could not restore fertility to myb21 or myb21myb24 mutant plants. Together with the data from transcriptional profiling, these results indicate that MYB21 and MYB24 are induced by jasmonate and mediate important aspects of the jasmonate response during stamen development.
Collapse
Affiliation(s)
- Ajin Mandaokar
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1482
|
Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:436-45. [PMID: 16603662 PMCID: PMC1475436 DOI: 10.1104/pp.106.078717] [Citation(s) in RCA: 531] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) are key players in the regulation of plant development, stress responses, and programmed cell death. Previous studies indicated that depending on the type of ROS (hydrogen peroxide, superoxide, or singlet oxygen) or its subcellular production site (plastidic, cytosolic, peroxisomal, or apoplastic), a different physiological, biochemical, and molecular response is provoked. We used transcriptome data generated from ROS-related microarray experiments to assess the specificity of ROS-driven transcript expression. Data sets obtained by exogenous application of oxidative stress-causing agents (methyl viologen, Alternaria alternata toxin, 3-aminotriazole, and ozone) and from a mutant (fluorescent) and transgenic plants, in which the activity of an individual antioxidant enzyme was perturbed (catalase, cytosolic ascorbate peroxidase, and copper/zinc superoxide dismutase), were compared. In total, the abundance of nearly 26,000 transcripts of Arabidopsis (Arabidopsis thaliana) was monitored in response to different ROS. Overall, 8,056, 5,312, and 3,925 transcripts showed at least a 3-, 4-, or 5-fold change in expression, respectively. In addition to marker transcripts that were specifically regulated by hydrogen peroxide, superoxide, or singlet oxygen, several transcripts were identified as general oxidative stress response markers because their steady-state levels were at least 5-fold elevated in most experiments. We also assessed the expression characteristics of all annotated transcription factors and inferred new candidate regulatory transcripts that could be responsible for orchestrating the specific transcriptomic signatures triggered by different ROS. Our analysis provides a framework that will assist future efforts to address the impact of ROS signals within environmental stress conditions and elucidate the molecular mechanisms of the oxidative stress response in plants.
Collapse
Affiliation(s)
- Ilya Gadjev
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1483
|
Gan Y, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. THE PLANT CELL 2006; 18:1383-95. [PMID: 16679458 PMCID: PMC1475498 DOI: 10.1105/tpc.106.041533] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.
Collapse
Affiliation(s)
- Yinbo Gan
- Centre for Novel Agricultural Projects, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
1484
|
Qin J, Zuo K, Zhao J, Ling H, Cao Y, Qiu C, Li F, Sun X, Tang K. Overexpression of GbERF confers alteration of ethylene-responsive gene expression and enhanced resistance to Pseudomonas syringae in transgenic tobacco. J Biosci 2006; 31:255-63. [PMID: 16809858 DOI: 10.1007/bf02703918] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GbERF belongs to the ERF (ethylene responsive factor) family of transcription factors and regulates the GCC-box containing pathogen-related (PR) genes in the ethylene signal transduction pathway. To study the function of GbERF in the process of biotic stress, transgenic tobacco plants expressing GbERF were generated. Overexpression of GbERF did not change transgenic plant's phenotype and endogenous ethylene level. However, the expression profile of some ethylene-inducible GCC-box and non-GCC-box containing genes was altered, such as PR1b, PR2, PR3, PR4, Osmotin, CHN50, ACC oxidase and ACC synthase genes. These data indicate that the cotton GbERF could act as a transcriptional activator or repressor to regulate the differential expression of ethylene-inducible genes via GCC and non-GCC cis-elements. Moreover, the constitutive expression of GbERF in transgenic tobacco enhanced the plant's resistance to Pseudomonas syringae pv tabaci infection. In conclusion, GbERF mediates the expression of a wide array of PR and ethylene-responsive genes and plays an important role in the plant's response to biotic stress.
Collapse
Affiliation(s)
- Jie Qin
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology, R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shaghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1485
|
Guo Y, Gan S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:601-12. [PMID: 16640597 DOI: 10.1111/j.1365-313x.2006.02723.x] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaf senescence is a unique developmental process that is characterized by massive programmed cell death and nutrient recycling. The underlying molecular regulatory mechanisms are not well understood. Here we report the functional analysis of AtNAP, a gene encoding a NAC family transcription factor. Expression of this gene is closely associated with the senescence process of Arabidopsis rosette leaves. Leaf senescence in two T-DNA insertion lines of this gene is significantly delayed. The T-DNA knockout plants are otherwise normal. The mutant phenotype can be restored to wild-type by the intact AtNAP, as well as by its homologs in rice and kidney bean plants that are also upregulated during leaf senescence. Furthermore, inducible overexpression of AtNAP causes precocious senescence. These data strongly suggest that AtNAP and its homologs play an important role in leaf senescence in Arabidopsis and possibly in other plant species.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Horticulture, 119 Plant Science, Cornell University, Ithaca, NY 14853-5904, USA
| | | |
Collapse
|
1486
|
McAbee JM, Hill TA, Skinner DJ, Izhaki A, Hauser BA, Meister RJ, Venugopala Reddy G, Meyerowitz EM, Bowman JL, Gasser CS. ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:522-31. [PMID: 16623911 DOI: 10.1111/j.1365-313x.2006.02717.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes.
Collapse
Affiliation(s)
- Jessica Messmer McAbee
- Section of Molecular Biology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1487
|
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. THE PLANT CELL 2006; 18:1134-51. [PMID: 16603651 PMCID: PMC1456869 DOI: 10.1105/tpc.105.040725] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 05/08/2023]
Abstract
Recent studies demonstrated that pattern formation in plants involves regulation of transcription factor families by microRNAs (miRNAs). To explore the potency, autonomy, target range, and functional conservation of miRNA genes, a systematic comparison between plants ectopically expressing pre-miRNAs and plants with corresponding multiple mutant combinations of target genes was performed. We show that regulated expression of several Arabidopsis thaliana pre-miRNA genes induced a range of phenotypic alterations, the most extreme ones being a phenocopy of combined loss of their predicted target genes. This result indicates quantitative regulation by miRNA as a potential source for diversity in developmental outcomes. Remarkably, custom-made, synthetic miRNAs vectored by endogenous pre-miRNA backbones also produced phenocopies of multiple mutant combinations of genes that are not naturally regulated by miRNA. Arabidopsis-based endogenous and synthetic pre-miRNAs were also processed effectively in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). Synthetic miR-ARF targeting Auxin Response Factors 2, 3, and 4 induced dramatic transformations of abaxial tissues into adaxial ones in all three species, which could not cross graft joints. Likewise, organ-specific expression of miR165b that coregulates the PHABULOSA-like adaxial identity genes induced localized abaxial transformations. Thus, miRNAs provide a flexible, quantitative, and autonomous platform that can be employed for regulated expression of multiple related genes in diverse species.
Collapse
Affiliation(s)
- John Paul Alvarez
- Department of Plant Sciences, Weizman Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | |
Collapse
|
1488
|
Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK. Analyses of expressed sequence tags from apple. PLANT PHYSIOLOGY 2006; 141:147-66. [PMID: 16531485 PMCID: PMC1459330 DOI: 10.1104/pp.105.076208] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5'-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop.
Collapse
Affiliation(s)
- Richard D Newcomb
- Horticultural and Food Research Institute of New Zealand Limited, Mt. Albert Research Centre, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1489
|
Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol 2006; 359:1137-49. [PMID: 16697407 DOI: 10.1016/j.jmb.2006.04.016] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 12/11/2022]
Abstract
Human transcriptional regulation factors, such as activators, repressors, and enhancer-binding factors are quite different from their prokaryotic counterparts in two respects: the average sequence in human is more than twice as long as that in prokaryotes, while the fraction of sequence aligned to domains of known structure is 31% in human transcription factors (TFs), less than half of that in bacterial TFs (72%). Intrinsically disordered (ID) regions were identified by a disorder-prediction program, and were found to be in good agreement with available experimental data. Analysis of 401 human TFs with experimental evidence from the Swiss-Prot database showed that as high as 49% of the entire sequence of human TFs is occupied by ID regions. More than half of the human TFs consist of a small DNA binding domain (DBD) and long ID regions frequently sandwiching unassigned regions. The remaining TFs have structural domains in addition to DBDs and ID regions. Experimental studies, particularly those with NMR, revealed that the transactivation domains in unbound TFs are usually unstructured, but become structured upon binding to their partners. The sequences of human and mouse TF orthologues are 90.5% identical despite a high incidence of ID regions, probably reflecting important functional roles played by ID regions. In general ID regions occupy a high fraction in TFs of eukaryotes, but not in prokaryotes. Implications of this dichotomy are discussed in connection with their functional roles in transcriptional regulation and evolution.
Collapse
Affiliation(s)
- Yoshiaki Minezaki
- Laboratory of Gene-Product Informatics, Center For Information Biology & DNA Data Bank of Japan, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
1490
|
Holt KE, Millar AH, Whelan J. ModuleFinder and CoReg: alternative tools for linking gene expression modules with promoter sequences motifs to uncover gene regulation mechanisms in plants. PLANT METHODS 2006; 2:8. [PMID: 16606469 PMCID: PMC1479336 DOI: 10.1186/1746-4811-2-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Accepted: 04/11/2006] [Indexed: 05/08/2023]
Abstract
BACKGROUND Uncovering the key sequence elements in gene promoters that regulate the expression of plant genomes is a huge task that will require a series of complementary methods for prediction, substantial innovations in experimental validation and a much greater understanding of the role of combinatorial control in the regulation of plant gene expression. RESULTS To add to this larger process and to provide alternatives to existing prediction methods, we have developed several tools in the statistical package R. ModuleFinder identifies sets of genes and treatments that we have found to form valuable sets for analysis of the mechanisms underlying gene co-expression. CoReg then links the hierarchical clustering of these co-expressed sets with frequency tables of promoter elements. These promoter elements can be drawn from known elements or all possible combinations of nucleotides in an element of various lengths. These sets of promoter elements represent putative cis-acting regulatory elements common to sets of co-expressed genes and can be prioritised for experimental testing. We have used these new tools to analyze the response of transcripts for nuclear genes encoding mitochondrial proteins in Arabidopsis to a range of chemical stresses. ModuleFinder provided a subset of co-expressed gene modules that are more logically related to biological functions than did subsets derived from traditional hierarchical clustering techniques. Importantly ModuleFinder linked responses in transcripts for electron transport chain components, carbon metabolism enzymes and solute transporter proteins. CoReg identified several promoter motifs that helped to explain the patterns of expression observed. CONCLUSION ModuleFinder identifies sets of genes and treatments that form useful sets for analysis of the mechanisms behind co-expression. CoReg links the clustering tree of expression-based relationships in these sets with frequency tables of promoter elements. These sets of promoter elements represent putative cis-acting regulatory elements for sets of genes, and can then be tested experimentally. We consider these tools, both built on an open source software product to provide valuable, alternative tools for the prioritisation of promoter elements for experimental analysis.
Collapse
Affiliation(s)
- Kathryn E Holt
- ARC Centre of Excellence in Plant Energy Biology, CMS Building M310 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, CMS Building M310 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, CMS Building M310 University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
1491
|
Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, Philippe RN, Aeschliman D, White R, Huber D, Ritland CE, Benoit F, Rigby T, Nantel A, Butterfield YSN, Kirkpatrick R, Chun E, Liu J, Palmquist D, Wynhoven B, Stott J, Yang G, Barber S, Holt RA, Siddiqui A, Jones SJM, Marra MA, Ellis BE, Douglas CJ, Ritland K, Bohlmann J. Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences. Mol Ecol 2006; 15:1275-97. [PMID: 16626454 DOI: 10.1111/j.1365-294x.2006.02824.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
As part of a genomics strategy to characterize inducible defences against insect herbivory in poplar, we developed a comprehensive suite of functional genomics resources including cDNA libraries, expressed sequence tags (ESTs) and a cDNA microarray platform. These resources are designed to complement the existing poplar genome sequence and poplar (Populus spp.) ESTs by focusing on herbivore- and elicitor-treated tissues and incorporating normalization methods to capture rare transcripts. From a set of 15 standard, normalized or full-length cDNA libraries, we generated 139,007 3'- or 5'-end sequenced ESTs, representing more than one-third of the c. 385,000 publicly available Populus ESTs. Clustering and assembly of 107,519 3'-end ESTs resulted in 14,451 contigs and 20,560 singletons, altogether representing 35,011 putative unique transcripts, or potentially more than three-quarters of the predicted c. 45,000 genes in the poplar genome. Using this EST resource, we developed a cDNA microarray containing 15,496 unique genes, which was utilized to monitor gene expression in poplar leaves in response to herbivory by forest tent caterpillars (Malacosoma disstria). After 24 h of feeding, 1191 genes were classified as up-regulated, compared to only 537 down-regulated. Functional classification of this induced gene set revealed genes with roles in plant defence (e.g. endochitinases, Kunitz protease inhibitors), octadecanoid and ethylene signalling (e.g. lipoxygenase, allene oxide synthase, 1-aminocyclopropane-1-carboxylate oxidase), transport (e.g. ABC proteins, calreticulin), secondary metabolism [e.g. polyphenol oxidase, isoflavone reductase, (-)-germacrene D synthase] and transcriptional regulation [e.g. leucine-rich repeat transmembrane kinase, several transcription factor classes (zinc finger C3H type, AP2/EREBP, WRKY, bHLH)]. This study provides the first genome-scale approach to characterize insect-induced defences in a woody perennial providing a solid platform for functional investigation of plant-insect interactions in poplar.
Collapse
Affiliation(s)
- Steven Ralph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1492
|
Chen R, Ni Z, Qin Y, Nie X, Lin Z, Dong G, Sun Q. Isolation and characterization of TaDof1 transcription factor in wheat (Triticum. aestivum. L). ACTA ACUST UNITED AC 2006; 16:358-63. [PMID: 16243726 DOI: 10.1080/10425170500272940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Dof (DNA binding with one finger) proteins are plant specific transcription factors. Dof proteins are apparently encoded by a multiple gene family in higher plants. However, only one Dof gene, WPBF, was reported in wheat. In this study, a member of Dof gene family, TaDof1, was cloned from wheat. TaDof1 encode 291 amino acids, with a predicted molecular mass of 30.348 kDa. At its N-terminal end, a 52 amino acid stretch typical of Dof domain and two serine-rich stretches were observed. Sequence alignment indicated that, in Dof domain, TaDof1 share more than 75% identity with other Dof proteins of different species. TaDof1 was expressed highly in leaves and sheaths, but lowly in roots, and constitutively expressed in developing seeds of 2-12 DAP. It was interesting to note that TaDof1 was differentially expressed between hybrids F1 and parents in root, sheath and leaf. The implication of the differential expression patterns of TaDof1 was discussed in related to the up-regulation of C4 pathway related gene in hybrid rice and heterosis.
Collapse
Affiliation(s)
- Rongmin Chen
- Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Department of Plant Genetics & Breeding, Beijing, 100094, China
| | | | | | | | | | | | | |
Collapse
|
1493
|
Gao G, Zhong Y, Guo A, Zhu Q, Tang W, Zheng W, Gu X, Wei L, Luo J. DRTF: a database of rice transcription factors. Bioinformatics 2006; 22:1286-7. [PMID: 16551659 DOI: 10.1093/bioinformatics/btl107] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SUMMARY DRTF contains 2025 putative transcription factors (TFs) in Oryza sativa L. ssp. indica and 2384 in ssp. japonica, distributed in 63 families, identified by computational prediction and manual curation. It includes detailed annotations of each TF including sequence features, functional domains, Gene Ontology assignment, chromosomal localization, EST and microarray expression information, as well as multiple sequence alignment of the DNA-binding domains for each TF family. The database can be browsed and searched with a user-friendly web interface. AVAILABILITY DRTF is available at http://drtf.cbi.pku.edu.cn
Collapse
Affiliation(s)
- Ge Gao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
1494
|
Abstract
Crop domestication frequently began with the selection of plants that did not naturally shed ripe fruits or seeds. The reduction in grain shattering that led to cereal domestication involved genetic loci of large effect. The molecular basis of this key domestication transition, however, remains unknown. Here we show that human selection of an amino acid substitution in the predicted DNA binding domain encoded by a gene of previously unknown function was primarily responsible for the reduction of grain shattering in rice domestication. The substitution undermined the gene function necessary for the normal development of an abscission layer that controls the separation of a grain from the pedicel.
Collapse
Affiliation(s)
- Changbao Li
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
1495
|
Single molecule study of binding force between transcription factorTINY and its DNA responsive element. POLYMER 2006. [DOI: 10.1016/j.polymer.2005.12.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
1496
|
Palaniswamy SK, James S, Sun H, Lamb RS, Davuluri RV, Grotewold E. AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. PLANT PHYSIOLOGY 2006; 140:818-29. [PMID: 16524982 PMCID: PMC1400579 DOI: 10.1104/pp.105.072280] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gene regulatory pathways converge at the level of transcription, where interactions among regulatory genes and between regulators and target genes result in the establishment of spatiotemporal patterns of gene expression. The growing identification of direct target genes for key transcription factors (TFs) through traditional and high-throughput experimental approaches has facilitated the elucidation of regulatory networks at the genome level. To integrate this information into a Web-based knowledgebase, we have developed the Arabidopsis Gene Regulatory Information Server (AGRIS). AGRIS, which contains all Arabidopsis (Arabidopsis thaliana) promoter sequences, TFs, and their target genes and functions, provides the scientific community with a platform to establish regulatory networks. AGRIS currently houses three linked databases: AtcisDB (Arabidopsis thaliana cis-regulatory database), AtTFDB (Arabidopsis thaliana transcription factor database), and AtRegNet (Arabidopsis thaliana regulatory network). AtTFDB contains 1,690 Arabidopsis TFs and their sequences (protein and DNA) grouped into 50 (October 2005) families with information on available mutants in the corresponding genes. AtcisDB consists of 25,806 (September 2005) promoter sequences of annotated Arabidopsis genes with a description of putative cis-regulatory elements. AtRegNet links, in direct interactions, several hundred genes with the TFs that control their expression. The current release of AtRegNet contains a total of 187 (September 2005) direct targets for 66 TFs. AGRIS can be accessed at http://Arabidopsis.med.ohio-state.edu.
Collapse
Affiliation(s)
- Saranyan K Palaniswamy
- Human Cancer Genetics Program, Comprehensive Cancer Center, Department of Molecular Virology, Immunology and Medical Genetics , The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
1497
|
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. PLANT PHYSIOLOGY 2006; 140:411-32. [PMID: 16407444 PMCID: PMC1361313 DOI: 10.1104/pp.105.073783] [Citation(s) in RCA: 1414] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/05/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Genes in the ERF family encode transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. In this study, a comprehensive computational analysis identified 122 and 139 ERF family genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L. subsp. japonica), respectively. A complete overview of this gene family in Arabidopsis is presented, including the gene structures, phylogeny, chromosome locations, and conserved motifs. In addition, a comparative analysis between these genes in Arabidopsis and rice was performed. As a result of these analyses, the ERF families in Arabidopsis and rice were divided into 12 and 15 groups, respectively, and several of these groups were further divided into subgroups. Based on the observation that 11 of these groups were present in both Arabidopsis and rice, it was concluded that the major functional diversification within the ERF family predated the monocot/dicot divergence. In contrast, some groups/subgroups are species specific. We discuss the relationship between the structure and function of the ERF family proteins based on these results and published information. It was further concluded that the expansion of the ERF family in plants might have been due to chromosomal/segmental duplication and tandem duplication, as well as more ancient transposition and homing. These results will be useful for future functional analyses of the ERF family genes.
Collapse
Affiliation(s)
- Toshitsugu Nakano
- Molecular and Cellular Breeding Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
1498
|
Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu LJ, Gu H. Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun 2006; 341:1155-63. [PMID: 16460676 DOI: 10.1016/j.bbrc.2006.01.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/24/2022]
Abstract
MYB transcription factors play important roles in many plant developmental processes and various defense responses. Two groups of MYB transcription factors were found to share a W/Y-MDDIW motif. This motif alone shows no trans-activation activity in yeast, however, it enhances the trans-activation activity of the neighbor regions greatly. We further show that all the genes in the group 1, including the previously reported genes AtMYB21, PsMYB26, AmMYB305, and AmMYB340, are predominantly expressed in flowers. Furthermore, we found that these two groups of MYB transcription factor genes might be regulated by light, and probably preferentially expressed in the darkness, suggesting that they may play roles in the light signaling pathway.
Collapse
Affiliation(s)
- Jigang Li
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
1499
|
Abstract
Recent work shows that transcription factors are necessary for stomatal movements in plants. Different members of the plant-specific R2R3-MYB transcription factor family are required for mediating stomatal opening in response to light and stomatal closure in response to darkness.
Collapse
Affiliation(s)
- Julie Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
1500
|
Kummerfeld SK, Teichmann SA. DBD: a transcription factor prediction database. Nucleic Acids Res 2006; 34:D74-81. [PMID: 16381970 PMCID: PMC1347493 DOI: 10.1093/nar/gkj131] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/15/2022] Open
Abstract
Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.
Collapse
|