1501
|
Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, Walhout AJM. A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 2005; 6:R110. [PMID: 16420670 PMCID: PMC1414109 DOI: 10.1186/gb-2005-6-13-r110] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/07/2005] [Accepted: 11/28/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription regulatory networks are composed of interactions between transcription factors and their target genes. Whereas unicellular networks have been studied extensively, metazoan transcription regulatory networks remain largely unexplored. Caenorhabditis elegans provides a powerful model to study such metazoan networks because its genome is completely sequenced and many functional genomic tools are available. While C. elegans gene predictions have undergone continuous refinement, this is not true for the annotation of functional transcription factors. The comprehensive identification of transcription factors is essential for the systematic mapping of transcription regulatory networks because it enables the creation of physical transcription factor resources that can be used in assays to map interactions between transcription factors and their target genes. RESULTS By computational searches and extensive manual curation, we have identified a compendium of 934 transcription factor genes (referred to as wTF2.0). We find that manual curation drastically reduces the number of both false positive and false negative transcription factor predictions. We discuss how transcription factor splice variants and dimer formation may affect the total number of functional transcription factors. In contrast to mouse transcription factor genes, we find that C. elegans transcription factor genes do not undergo significantly more splicing than other genes. This difference may contribute to differences in organism complexity. We identify candidate redundant worm transcription factor genes and orthologous worm and human transcription factor pairs. Finally, we discuss how wTF2.0 can be used together with physical transcription factor clone resources to facilitate the systematic mapping of C. elegans transcription regulatory networks. CONCLUSION wTF2.0 provides a starting point to decipher the transcription regulatory networks that control metazoan development and function.
Collapse
Affiliation(s)
- John S Reece-Hoyes
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, School of Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Bart Deplancke
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 364 Plantation Street, Lazare Research Building, Room 605, MA 01605, USA
| | - Jane Shingles
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, School of Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Christian A Grove
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 364 Plantation Street, Lazare Research Building, Room 605, MA 01605, USA
| | - Ian A Hope
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, School of Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Albertha JM Walhout
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, 364 Plantation Street, Lazare Research Building, Room 605, MA 01605, USA
| |
Collapse
|
1502
|
Abstract
Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.
Collapse
Affiliation(s)
- Tingting Du
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
1503
|
Rodriguez-Caso C, Medina MA, Solé RV. Topology, tinkering and evolution of the human transcription factor network. FEBS J 2005; 272:6423-34. [PMID: 16336278 DOI: 10.1111/j.1742-4658.2005.05041.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Patterns of protein interactions are organized around complex heterogeneous networks. Their architecture has been suggested to be of relevance in understanding the interactome and its functional organization, which pervades cellular robustness. Transcription factors are particularly relevant in this context, given their central role in gene regulation. Here we present the first topological study of the human protein-protein interacting transcription factor network built using the TRANSFAC database. We show that the network exhibits scale-free and small-world properties with a hierarchical and modular structure, which is built around a small number of key proteins. Most of these proteins are associated with proliferative diseases and are typically not linked to each other, thus reducing the propagation of failures through compartmentalization. Network modularity is consistent with common structural and functional features and the features are generated by two distinct evolutionary strategies: amplification and shuffling of interacting domains through tinkering and acquisition of specific interacting regions. The function of the regulatory complexes may have played an active role in choosing one of them.
Collapse
|
1504
|
Zhang B, Pan X, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with big impact. Dev Biol 2005; 289:3-16. [PMID: 16325172 DOI: 10.1016/j.ydbio.2005.10.036] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Revised: 10/10/2005] [Accepted: 10/17/2005] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are an abundant new class of non-coding approximately 20-24 nt small RNAs. To date, 872 miRNAs, belonging to 42 families, have been identified in 71 plant species by genetic screening, direct cloning after isolation of small RNAs, computational strategy, and expressed sequence tag (EST) analysis. Many plant miRNAs are evolutionarily conserved from species to species, some from angiosperms to mosses. miRNAs may originate from inverted duplications of target gene sequences in plants. Although miRNA precursors display high variability, their mature sequences display extensive sequence complementarity to their target mRNA sequences. miRNAs play important roles in plant post-transcriptional gene regulation by targeting mRNAs for cleavage or repressing translation. miRNAs are involved in plant development, signal transduction, protein degradation, response to environmental stress and pathogen invasion, and regulate their own biogenesis. miRNAs regulate the expression of many important genes; a majority of these genes are transcriptional factors.
Collapse
Affiliation(s)
- Baohong Zhang
- The Institute of Environmental and Human Health (TIEHH), and Department of Environmental Toxicology, Texas Tech. University, Lubbock, 79409-1163, USA.
| | | | | | | |
Collapse
|
1505
|
Feng JX, Liu D, Pan Y, Gong W, Ma LG, Luo JC, Deng XW, Zhu YX. An annotation update via cDNA sequence analysis and comprehensive profiling of developmental, hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family. PLANT MOLECULAR BIOLOGY 2005; 59:853-68. [PMID: 16307362 DOI: 10.1007/s11103-005-1511-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 07/28/2005] [Indexed: 05/05/2023]
Abstract
AP2/EREBP transcription factors (TFs) play functionally important roles in plant growth and development, especially in hormonal regulation and in response to environmental stress. Here we reported verification and correction of annotation through an exhaustive cDNA cloning and sequence analysis performed on 145 of 147 gene family members. A RACE analysis performed on genes with potential in-frame up-stream ATG codon resulted in identification of At2g28520 as an authentic AP2/EREBP member and corrected ORF annotations for three other members. A further phylogenetic analysis of this updated and likely complete family divided it into three major subfamilies. The expression patterns of the AP2/EREBP family members among the 11 organ or tissue types were examined using an oligo microarray and their hormonal and environmental responsiveness were further characterized using cDNA custom macroarrays. These detailed expression profile results provide strong support for a role for AP2/EREBP family members in development and in response to environmental stimuli, and a foundation for future functional analysis of this gene family.
Collapse
Affiliation(s)
- Jian-Xun Feng
- The National Laboratory of Protein Engineering and Plant Genetic Engineering Peking University, 100871, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
1506
|
Sugikawa Y, Ebihara S, Tsuda K, Niwa Y, Yamazaki KI. Transcriptional coactivator MBF1s from Arabidopsis predominantly localize in nucleolus. JOURNAL OF PLANT RESEARCH 2005; 118:431-7. [PMID: 16283071 DOI: 10.1007/s10265-005-0238-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 09/08/2005] [Indexed: 05/05/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator. It has been reported that MBF1 changed its subcellular localization from cytoplasm into nuclei with a transcriptional activator for activation of a target gene expression in animals. We found that Arabidopsis MBF1s (AtMBF1s) predominantly localize in nucleolus. We previously reported that plant MBF1s were rapidly induced by several stresses, whereas animal MBF1s were not induced. Therefore, we suggest that MBF1-function in plants is controlled on the level of transcriptional induction but not by nuclear translocation, dissimilar from the case of MBF1s from animals.
Collapse
Affiliation(s)
- Yoichi Sugikawa
- Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
1507
|
Shiqing G, Huijun X, Xianguo C, Ming C, Zhaoshi X, Liancheng L, Xingguo Y, Lipu D, Xiaoyan H, Youzhi M. Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factorGmDREB of soybean (Glycine max). CHINESE SCIENCE BULLETIN-CHINESE 2005. [DOI: 10.1007/bf02899641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
1508
|
Ryu KH, Kang YH, Park YH, Hwang I, Schiefelbein J, Lee MM. The WEREWOLF MYB protein directly regulatesCAPRICEtranscription during cell fate specification in theArabidopsisroot epidermis. Development 2005; 132:4765-75. [PMID: 16207757 DOI: 10.1242/dev.02055] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arabidopsis root epidermis is composed of two types of cells,hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsisroot epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR)inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.
Collapse
Affiliation(s)
- Kook Hui Ryu
- Department of Biology, Yonsei University, Sinchon 134, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
1509
|
Oh SK, Lee S, Yu SH, Choi D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. PLANTA 2005; 222:876-87. [PMID: 16078072 DOI: 10.1007/s00425-005-0030-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/14/2005] [Indexed: 05/03/2023]
Abstract
We aim to isolate genes in chili pepper that are regulated during the hypersensitive response to infection by nonhost pathogens, with a view to elucidating the defense responses against pathogen attack. Among the 90 transcription factors initially characterized by reverse RNA gel blot analysis, a cDNA clone, CaNAC1 (Capsicum annuum NAC1) containing the plant-specific NAC domain motif was further characterized. Expression of the CaNAC1 gene was rapidly and specifically induced during incompatible interactions between pepper and bacterial or viral pathogens. Additionally, this gene was strongly induced by exogenously applied salicylic acid and ethephon, whereas methyl jasmonate only had a transient effect. A CaNAC1-smGFP (soluble modified green fluorescent protein) fusion protein localized to the nucleus following transfection into the epidermis of onion. Using the yeast system, we further disclose that the transcription activation domain of CaNAC1 is located in the C-terminal half of the protein. Our results collectively suggest that the plant-specific NAC domain protein, CaNAC1, may play a role in the regulation of defense responses in plants.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Principal Research Scientist Plant Genomics Lab, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, 52, Eoeun-dong, Yuseong-gu, Daejon, 305-333, Republic of Korea
| | | | | | | |
Collapse
|
1510
|
Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:680-92. [PMID: 16262716 DOI: 10.1111/j.1365-313x.2005.02568.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis GATA transcription factor family has 30 members, the biological function of most of which is poorly understood. Homozygous T-DNA insertion lines for 23 of the 30 members were identified and analyzed. Genetic screening of the insertion lines in defined growth conditions revealed one line with an altered phenotype, while the other lines showed no obvious change. This line, SALK_001778, has a T-DNA insertion in the second exon of At5g56860 which prevents the expression of the GATA domain. Genetic analysis of the mutant demonstrated that the phenotypic change is caused by a single gene effect and is recessive to the wild-type allele. In wild-type plants, the expression of At5g56860 is shoot-specific, occurs at an early stage of development and is inducible by nitrate. Loss of expression of At5g56860 in the loss-of-function mutant plants resulted in reduced chlorophyll levels. A transcript profiling experiment revealed that a considerable proportion of genes downregulated in the loss-of-function mutants are involved in carbon metabolism and At5g56860 is thus designated GNC (GATA, nitrate-inducible, carbon metabolism-involved). gnc mutants with no GNC expression are more sensitive to exogenous glucose, and two hexose transporter genes, with a possible connection to glucose signaling, are significantly downregulated, while GNC over-expressing transgenic plants upregulate their expression and are less sensitive to exogenous glucose. These observations suggest a function for GNC in regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
1511
|
Rosin FM, Watanabe N, Lam E. Moonlighting vacuolar protease: multiple jobs for a busy protein. TRENDS IN PLANT SCIENCE 2005; 10:516-8. [PMID: 16202638 DOI: 10.1016/j.tplants.2005.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/08/2005] [Accepted: 09/19/2005] [Indexed: 05/04/2023]
Abstract
In this Genomics Era with a wealth of annotated sequence data, it is easy to pigeonhole a protein into a particular function. However, Noa Matarasso et al. recently found a vacuolar protease that can also function as a transcription factor. This work illustrates that a protein can serve multiple roles in a cell, raising intriguing questions as to the extent that genomic information can be deciphered de novo.
Collapse
Affiliation(s)
- Faye M Rosin
- Biotech Center, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
1512
|
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. PLANT PHYSIOLOGY 2005; 139:806-21. [PMID: 16183842 PMCID: PMC1255997 DOI: 10.1104/pp.105.065896] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
In plants, reactive oxygen species and, more particularly, hydrogen peroxide (H(2)O(2)) play a dual role as toxic by-products of normal cell metabolism and as regulatory molecules in stress perception and signal transduction. Peroxisomal catalases are an important sink for photorespiratory H(2)O(2). Using ATH1 Affymetrix microarrays, expression profiles were compared between control and catalase-deficient Arabidopsis (Arabidopsis thaliana) plants. Reduced catalase levels already provoked differences in nuclear gene expression under ambient growth conditions, and these effects were amplified by high light exposure in a sun simulator for 3 and 8 h. This genome-wide expression analysis allowed us to reveal the expression characteristics of complete pathways and functional categories during H(2)O(2) stress. In total, 349 transcripts were significantly up-regulated by high light in catalase-deficient plants and 88 were down-regulated. From this data set, H(2)O(2) was inferred to play a key role in the transcriptional up-regulation of small heat shock proteins during high light stress. In addition, several transcription factors and candidate regulatory genes involved in H(2)O(2) transcriptional gene networks were identified. Comparisons with other publicly available transcriptome data sets of abiotically stressed Arabidopsis revealed an important intersection with H(2)O(2)-deregulated genes, positioning elevated H(2)O(2) levels as an important signal within abiotic stress-induced gene expression. Finally, analysis of transcriptional changes in a combination of a genetic (catalase deficiency) and an environmental (high light) perturbation identified a transcriptional cluster that was strongly and rapidly induced by high light in control plants, but impaired in catalase-deficient plants. This cluster comprises the complete known anthocyanin regulatory and biosynthetic pathway, together with genes encoding unknown proteins.
Collapse
Affiliation(s)
- Sandy Vanderauwera
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1513
|
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:314-33. [PMID: 16212609 DOI: 10.1111/j.1365-313x.2005.02530.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytokinins are hormones that regulate many developmental and physiological processes in plants. Recent work has revealed that the cytokinin signal is transduced by two-component systems to the nucleus where target genes are activated. Most of the rapid transcriptional responses are unknown. We measured immediate-early and delayed cytokinin responses through genome-wide expression profiling with the Affymetrix ATH1 full genome array (Affymetrix Inc., Santa Clara, CA, USA). Fifteen minutes after cytokinin treatment of 5-day-old Arabidopsis seedlings, 71 genes were upregulated and 11 genes were downregulated. Immediate-early cytokinin response genes include a high portion of transcriptional regulators, among them six transcription factors that had previously not been linked to cytokinin. Five plastid transcripts were rapidly regulated as well, indicating a rapid transfer of the signal to plastids or direct perception of the cytokinin signal by plastids. After 2 h of cytokinin treatment genes coding for transcriptional regulators, signaling proteins, developmental and hormonal regulators, primary and secondary metabolism, energy generation and stress reactions were over-represented. A significant number of the responding genes are known to regulate light (PHYA, PSK1, CIP8, PAT1, APRR), auxin (Aux/IAA), ethylene (ETR2, EIN3, ERFs/EREBPs), gibberellin (GAI, RGA1, GA20 oxidase), nitrate (NTR2, NIA) and sugar (STP1, SUS1) dependent processes, indicating intense crosstalk with environmental cues, other hormones and metabolites. Analysis of cytokinin-deficient 35S:AtCKX1 transgenic seedlings has revealed additional, long-lasting cytokinin-sensitive changes of transcript abundance. Comparative overlay-analysis with the software tool mapman identified previously unknown cytokinin-sensitive metabolic genes, for example in the metabolism of trehalose-6-phosphate. Taken together, we present a genome-wide view of changes in cytokinin-responsive transcript abundance of genes that might be functionally relevant for the many biological processes that are governed by cytokinins.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Max Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
1514
|
Kim S, Soltis PS, Wall K, Soltis DE. Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 2005; 23:107-20. [PMID: 16151182 DOI: 10.1093/molbev/msj014] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The combined processes of gene duplication, nucleotide substitution, domain duplication, and intron/exon shuffling can generate a complex set of related genes that may differ substantially in their expression patterns and functions. The APETALA2-like (AP2-like) gene family exhibits patterns of both gene and domain duplication, coupled with changes in sequence, exon arrangement, and expression. In angiosperms, these genes perform an array of functions including the establishment of the floral meristem, the specification of floral organ identity, the regulation of floral homeotic gene expression, the regulation of ovule development, and the growth of floral organs. To determine patterns of gene diversification, we conducted a series of broad phylogenetic analyses of AP2-like sequences from green plants. These studies indicate that the AP2 domain was duplicated prior to the divergence of the two major lineages of AP2-like genes, euAP2 and AINTEGUMENTA (ANT). Structural features of the AP2-like genes as well as phylogenetic analyses of nucleotide and amino acid (aa) sequences of the AP2-like gene family support the presence of the two major lineages. The ANT lineage is supported by a 10-aa insertion in the AP2-R1 domain and a 1-aa insertion in the AP2-R2 domain, relative to all other members of the AP2-like family. MicroRNA172-binding sequences, the function of which has been studied in some of the AP2-like genes in Arabidopsis, are restricted to the euAP2 lineage. Within the ANT lineage, the euANT lineage is characterized by four conserved motifs: one in the 10-aa insertion in the AP2-R1 domain (euANT1) and three in the predomain region (euANT2, euANT3, and euANT4). Our expression studies show that the euAP2 homologue from Amborella trichopoda, the putative sister to all other angiosperms, is expressed in all floral organs as well as leaves.
Collapse
Affiliation(s)
- Sangtae Kim
- Department of Botany, University of Florida, Gainesville, USA.
| | | | | | | |
Collapse
|
1515
|
Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro-RNAs from moss. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:837-48. [PMID: 16146523 DOI: 10.1111/j.1365-313x.2005.02499.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Micro-RNAs (miRNAs) are one class of endogenous tiny RNAs that play important regulatory roles in plant development and responses to external stimuli. To date, miRNAs have been cloned from higher plants such as Arabidopsis, rice and pumpkin, and there is limited information on their identity in lower plants including Bryophytes. Bryophytes are among the oldest groups of land plants among the earth's flora, and are important for our understanding of the transition to life on land. To identify miRNAs that might have played a role early in land plant evolution, we constructed a library of small RNAs from the juvenile gametophyte (protonema) of the moss Physcomitrella patens. Sequence analysis revealed five higher plant miRNA homologues, including three members of the miR319 family, previously shown to be involved in the regulation of leaf morphogenesis, and miR156, which has been suggested to regulate several members of the SQUAMOSA PROMOTER BINDING-LIKE (SPL) family in Arabidopsis. We have cloned PpSBP3, a moss SPL homologue that contains an miR156 complementary site, and demonstrated that its mRNA is cleaved within that site suggesting that it is an miR156 target in moss. Six additional candidate moss miRNAs were identified and shown to be expressed in the gametophyte, some of which were developmentally regulated or upregulated by auxin. Our observations suggest that miRNAs play important regulatory roles in mosses.
Collapse
Affiliation(s)
- Tzahi Arazi
- Department of Ornamental Horticulture, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel.
| | | | | | | | | | | |
Collapse
|
1516
|
Shiu SH, Shih MC, Li WH. Transcription factor families have much higher expansion rates in plants than in animals. PLANT PHYSIOLOGY 2005; 139:18-26. [PMID: 16166257 PMCID: PMC1203354 DOI: 10.1104/pp.105.065110] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs), which are central to the regulation of gene expression, are usually members of multigene families. In plants, they are involved in diverse processes such as developmental control and elicitation of defense and stress responses. To investigate if differences exist in the expansion patterns of TF gene families between plants and other eukaryotes, we first used Arabidopsis (Arabidopsis thaliana) TFs to identify TF DNA-binding domains. These DNA-binding domains were then used to identify related sequences in 25 other eukaryotic genomes. Interestingly, among 19 families that are shared between animals and plants, more than 14 are larger in plants than in animals. After examining the lineage-specific expansion of TF families in two plants, eight animals, and two fungi, we found that TF families shared among these organisms have undergone much more dramatic expansion in plants than in other eukaryotes. Moreover, this elevated expansion rate of plant TF is not simply due to higher duplication rates of plant genomes but also to a higher degree of expansion compared to other plant genes. Further, in many Arabidopsis-rice (Oryza sativa) TF orthologous groups, the degree of lineage-specific expansion in Arabidopsis is correlated with that in rice. This pattern of parallel expansion is much more pronounced than the whole-genome trend in rice and Arabidopsis. The high rate of expansion among plant TF genes and their propensity for parallel expansion suggest frequent adaptive responses to selection pressure common among higher plants.
Collapse
Affiliation(s)
- Shin-Han Shiu
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
1517
|
Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. PLANT MOLECULAR BIOLOGY 2005; 59:191-203. [PMID: 16217612 DOI: 10.1007/s11103-005-6503-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/25/2005] [Indexed: 05/04/2023]
Abstract
It is not known how representative the Arabidopsis thaliana complement of transcription factors (TFs) is of other plants. The availability of rice (Oryza sativa) genome sequences makes possible a comparative analysis of TFs between monocots and eudicots, the two major monophyletic groups of angiosperms. Here, we identified 1611 TF genes that belong to 37 gene families in rice, comparable to the 1510 in Arabidopsis. Several gene subfamilies, but no families, were found to be lineage-specific. Phylogenetic analyses indicated that nearly half of the TF genes form clear orthologous pairs or groups, which were derived from 383 ancestral genes in the common ancestor of rice and Arabidopsis. Investigating gene duplication mechanisms revealed twelve pairs of large intragenomic duplicated blocks, which account for more than 40% of the rice genome. About 60% of the duplicated TF genes have been retained on duplicated segments. Functional conservation and diversification of TFs across monocot and eudicot lineages are discussed.
Collapse
Affiliation(s)
- Yuqing Xiong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | | | | | |
Collapse
|
1518
|
Waltner JK, Peterson FC, Lytle BL, Volkman BF. Structure of the B3 domain from Arabidopsis thaliana protein At1g16640. Protein Sci 2005; 14:2478-83. [PMID: 16081658 PMCID: PMC2253459 DOI: 10.1110/ps.051606305] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A novel DNA binding motif, the B3 domain, has been identified in a number of transcription factors specific to higher plant species, and was recently found to define a new protein fold. Here we report the second structure of a B3 domain, that of the Arabidopsis thaliana protein, At1g16640. As part of an effort to 'rescue' structural genomics targets deemed unsuitable for structure determination as full-length proteins, we applied a combined bioinformatic and experimental strategy to identify an optimal construct containing a predicted conserved domain. By screening a series of N- and C-terminally truncated At1g16640 fragments, we isolated a stable folded domain that met our criteria for structural analysis by NMR spectroscopy. The structure of the B3 domain of At1g16640 consists of a seven-stranded beta-sheet arranged in an open barrel and two short alpha-helices, one at each end of the barrel. While At1g16640 is quite distinct from previously characterized B3 domain proteins in terms of amino acid sequence similarity, it adopts the same novel fold that was recently revealed by the RAV1 B3 domain structure. However, putative DNA-binding elements conserved in B3 domains from the RAV, ARF, and ABI3/VP1 subfamilies are largely absent in At1g16640, perhaps suggesting that B3 domains could function in contexts other than transcriptional regulation.
Collapse
Affiliation(s)
- Jeanette K Waltner
- Department of Biochemistry and Center for Eukaryotic Structural Genomics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
1519
|
Balaji S, Babu MM, Iyer LM, Aravind L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 2005; 33:3994-4006. [PMID: 16040597 PMCID: PMC1178005 DOI: 10.1093/nar/gki709] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The comparative genomics of apicomplexans, such as the malarial parasite Plasmodium, the cattle parasite Theileria and the emerging human parasite Cryptosporidium, have suggested an unexpected paucity of specific transcription factors (TFs) with DNA binding domains that are closely related to those found in the major families of TFs from other eukaryotes. This apparent lack of specific TFs is paradoxical, given that the apicomplexans show a complex developmental cycle in one or more hosts and a reproducible pattern of differential gene expression in course of this cycle. Using sensitive sequence profile searches, we show that the apicomplexans possess a lineage-specific expansion of a novel family of proteins with a version of the AP2 (Apetala2)-integrase DNA binding domain, which is present in numerous plant TFs. About 20–27 members of this apicomplexan AP2 (ApiAP2) family are encoded in different apicomplexan genomes, with each protein containing one to four copies of the AP2 DNA binding domain. Using gene expression data from Plasmodium falciparum, we show that guilds of ApiAP2 genes are expressed in different stages of intraerythrocytic development. By analogy to the plant AP2 proteins and based on the expression patterns, we predict that the ApiAP2 proteins are likely to function as previously unknown specific TFs in the apicomplexans and regulate the progression of their developmental cycle. In addition to the ApiAP2 family, we also identified two other novel families of AP2 DNA binding domains in bacteria and transposons. Using structure similarity searches, we also identified divergent versions of the AP2-integrase DNA binding domain fold in the DNA binding region of the PI-SceI homing endonuclease and the C-terminal domain of the pleckstrin homology (PH) domain-like modules of eukaryotes. Integrating these findings, we present a reconstruction of the evolutionary scenario of the AP2-integrase DNA binding domain fold, which suggests that it underwent multiple independent combinations with different types of mobile endonucleases or recombinases. It appears that the eukaryotic versions have emerged from versions of the domain associated with mobile elements, followed by independent lineage-specific expansions, which accompanied their recruitment to transcription regulation functions.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- To whom correspondence should be addressed. Tel: +1 301 594 2445; Fax: +1 301 435 7794;
| |
Collapse
|
1520
|
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:153-63. [PMID: 15960624 DOI: 10.1111/j.1365-313x.2005.02437.x] [Citation(s) in RCA: 529] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Botany Array Resource provides the means for obtaining and archiving microarray data for Arabidopsis thaliana as well as biologist-friendly tools for viewing and mining both our own and other's data, for example, from the AtGenExpress Consortium. All the data produced are publicly available through the web interface of the database at http://bbc.botany.utoronto.ca. The database has been designed in accordance with the Minimum Information About a Microarray Experiment convention -- all expression data are associated with the corresponding experimental details. The database is searchable and it also provides a set of useful and easy-to-use web-based data-mining tools for researchers with sophisticated yet understandable output graphics. These include Expression Browser for performing 'electronic Northerns', Expression Angler for identifying genes that are co-regulated with a gene of interest, and Promomer for identifying potential cis-elements in the promoters of individual or co-regulated genes.
Collapse
Affiliation(s)
- Kiana Toufighi
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2 Canada
| | | | | | | | | |
Collapse
|
1521
|
Ogawa T, Pan L, Kawai-Yamada M, Yu LH, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H. Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to Bax and abiotic stress-induced plant cell death. PLANT PHYSIOLOGY 2005; 138:1436-45. [PMID: 15980186 PMCID: PMC1176415 DOI: 10.1104/pp.105.063586] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 03/30/2005] [Accepted: 04/13/2005] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ethylene-responsive element binding protein (AtEBP) gene was isolated as a suppressor of Bax-induced cell death by functional screening in yeast (Saccharomyces cerevisiae). To further examine the cell death suppressive action of AtEBP in plant cells, we established transgenic tobacco (Nicotiana tabacum) plants overexpressing AtEBP as well as transgenic tobacco plants ectopically expressing mouse Bax protein under a dexamethasone-inducible promoter. We prepared the crosses of the selective lines of each transgenic plant, which were evaluated in terms of cell death suppression activity. Results indicate that AtEBP suppressed Bax-induced cell death in tobacco plants, an action also associated with a lowered level of ion leakage. Furthermore, tobacco Bright Yellow-2 cells overexpressing AtEBP conferred resistance to hydrogen peroxide (H(2)O(2)) and heat treatments. AtEBP protein localized in the nucleus and functioned as an in vivo transcription activator as confirmed in transient assays and experiments using stable transgenic system. Up-regulation of defense genes was observed in transgenic Arabidopsis plants overexpressing AtEBP. Based on the analysis of mRNA accumulation in ethylene-related mutants, the position of AtEBP in signaling pathway is presented.
Collapse
Affiliation(s)
- Taro Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1522
|
Yasumura Y, Moylan EC, Langdale JA. A conserved transcription factor mediates nuclear control of organelle biogenesis in anciently diverged land plants. THE PLANT CELL 2005; 17:1894-907. [PMID: 15923345 PMCID: PMC1167540 DOI: 10.1105/tpc.105.033191] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Land plant chloroplasts evolved from those found in the green algae. During land plant evolution, nuclear regulatory mechanisms have been modified to produce morphologically and functionally diverse chloroplasts in distinct developmental contexts. At least some of these mechanisms evolved independently in different plant lineages. In angiosperms, GOLDEN2-LIKE (GLK) transcription factors regulate the development of at least three chloroplast types. To determine whether GLK-mediated regulation of chloroplast development evolved within angiosperms or is a plesiomorphy within land plants, gene function was examined in the moss Physcomitrella patens. Gene expression patterns and loss-of-function mutant phenotypes suggested that GLK gene function is conserved between P. patens and Arabidopsis thaliana, species that diverged >400 million years ago. In support of this suggestion, moss genes partially complement Arabidopsis loss-of-function mutants. Therefore, GLK-mediated regulation of chloroplast development defines one of the most ancient conserved regulatory mechanisms identified in the plant kingdom.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | | |
Collapse
|
1523
|
Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. PLANT MOLECULAR BIOLOGY 2005; 58:585-96. [PMID: 16021341 DOI: 10.1007/s11103-005-7294-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
ERFs (ethylene-responsive element binding factors) belong to a large family of plant transcription factors that are found exclusively in plants. A small subfamily of ERF proteins can act as transcriptional repressors. The Arabidopsis genome contains eight ERF repressors, namely AtERF3, AtERF4, and AtERF7 to AtERF12. Members of ERF repressors show differential expression, suggesting that they may have different function. Using a transient expression system, we demonstrated that AtERF4, AtERF7, AtERF10, AtERF11 and AtERF12 can function as transcriptional repressors. The expression of AtERF4 can be induced by ethylene, jasmonic acid, and abscisic acid (ABA). By using green fluorescent protein fusion, we demonstrated that AtEFR4 accumulated in the nuclear bodies of Arabidopsis cells. Expression of 35S:AtERF4-GFP in transgenic Arabidopsis plants conferred an ethylene-insensitive phenotype and repressed the expression of Basic Chitinase and beta-1,3-Glucanase, the GCC-box-containing genes. In comparison with wild-type plants, 35S:AtERF4-GFP transgenic plants had decreased sensitivity to ABA and were hypersensitive to sodium chloride. The expression of the ABA responsive genes, ABI2, rd29B and rab18, was decreased in the 35S:AtERF4-GFP transgenic plants. Our study provides evidence that AtERF4 is a negative regulator capable of modulating ethylene and abscisic acid responses.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
1524
|
Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana. Nucleic Acids Res 2005; 33:W397-402. [PMID: 15980498 PMCID: PMC1160156 DOI: 10.1093/nar/gki395] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 11/14/2022] Open
Abstract
The AthaMap database generates a map of cis-regulatory elements for the Arabidopsis thaliana genome. AthaMap contains more than 7.4 x 10(6) putative binding sites for 36 transcription factors (TFs) from 16 different TF families. A newly implemented functionality allows the display of subsets of higher conserved transcription factor binding sites (TFBSs). Furthermore, a web tool was developed that permits a user-defined search for co-localizing cis-regulatory elements. The user can specify individually the level of conservation for each TFBS and a spacer range between them. This web tool was employed for the identification of co-localizing sites of known interacting TFs and TFs containing two DNA-binding domains. More than 1.8 x 10(5) combinatorial elements were annotated in the AthaMap database. These elements can also be used to identify more complex co-localizing elements consisting of up to four TFBSs. The AthaMap database and the connected web tools are a valuable resource for the analysis and the prediction of gene expression regulation at http://www.athamap.de.
Collapse
Affiliation(s)
- Nils Ole Steffens
- Institut für Genetik, Technische Universität BraunschweigSpielmannstraße 7, D-38106 Braunschweig, Germany
| | - Claudia Galuschka
- Institut für Genetik, Technische Universität BraunschweigSpielmannstraße 7, D-38106 Braunschweig, Germany
| | - Martin Schindler
- Institut für Genetik, Technische Universität BraunschweigSpielmannstraße 7, D-38106 Braunschweig, Germany
| | - Lorenz Bülow
- Institut für Genetik, Technische Universität BraunschweigSpielmannstraße 7, D-38106 Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität BraunschweigSpielmannstraße 7, D-38106 Braunschweig, Germany
| |
Collapse
|
1525
|
Kanhere A, Bansal M. Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 2005; 33:3165-75. [PMID: 15939933 PMCID: PMC1143579 DOI: 10.1093/nar/gki627] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the process of transcription, RNA polymerase can exactly locate a promoter sequence in the complex maze of a genome. Several experimental studies and computational analyses have shown that the promoter sequences apparently possess some special properties, such as unusual DNA structures and low stability, which make them distinct from the rest of the genome. But most of these studies have been carried out on a particular set of promoter sequences or on promoter sequences from similar organisms. To examine whether the promoters from a wide variety of organisms share these special properties, we have carried out an analysis of sets of promoters from bacteria, vertebrates and plants. These promoters were analyzed with respect to the prediction of three different properties, such as DNA curvature, bendability and stability, which are relevant to transcription. All the promoter sequences are predicted to share certain features, such as stability and bendability profiles, but there are significant differences in DNA curvature profiles and nucleotide composition between the different organisms. These similarities and differences are correlated with some of the known facts about transcription process in the promoters from the three groups of organisms.
Collapse
Affiliation(s)
| | - Manju Bansal
- To whom correspondence should be addressed. Tel: +91 80 2293 2534; Fax: +91 80 2360 0535;
| |
Collapse
|
1526
|
Zhang X, Feng B, Zhang Q, Zhang D, Altman N, Ma H. Genome-wide expression profiling and identification of gene activities during early flower development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2005; 58:401-19. [PMID: 16021403 DOI: 10.1007/s11103-005-5434-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 04/13/2005] [Indexed: 05/03/2023]
Abstract
We have used oligonucleotide microarrays to detect Arabidopsis gene expression during early flower development. Among the 22,746 genes represented on the Affymetrix ATH1 chip, approximately 14,660 (approximately 64.5%) genes were expressed with signal intensity at or more than 50 in each of the six organs/structures examined, including young inflorescences (floral stages 1-9), stage-12 floral buds, developing siliques, leaves, stems, and roots. 17,583 genes were expressed with an intensity at or above 50 in at least one tissue, including 12,245 genes that were expressed in all the six tissues. Comparison of genes expressed between young inflorescence or stage-12 floral buds with other tissues suggests that relatively large numbers of genes are expressed at similar levels in tissues that are related morphologically and/or developmentally, as supported by a cluster analysis with data from two other studies. Further analysis of the genes preferentially expressed in floral tissues has uncovered new genes potentially involved in Arabidopsis flower development. One hundred and four genes were determined to be preferentially expressed in young inflorescences, including 22 genes encoding putative transcription factors. We also identified 105 genes that were preferentially expressed in three reproductive structures (the young inflorescences, stage-12 floral buds and developing siliques), when compared with the vegetative tissues. RT-PCR results of selected genes are consistent with the results from these microarrays and suggest that the relative signal intensities detected with the Affymetrix microarray are reliable estimates of gene expression.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, 405D Life Sciences Building, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
1527
|
Mehrtens F, Kranz H, Bednarek P, Weisshaar B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. PLANT PHYSIOLOGY 2005; 138:1083-96. [PMID: 15923334 PMCID: PMC1150422 DOI: 10.1104/pp.104.058032] [Citation(s) in RCA: 553] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Comprehensive functional data on plant R2R3-MYB transcription factors is still scarce compared to the manifold of their occurrence. Here, we identified the Arabidopsis (Arabidopsis thaliana) R2R3-MYB transcription factor MYB12 as a flavonol-specific activator of flavonoid biosynthesis. Transient expression in Arabidopsis protoplasts revealed a high degree of functional similarity between MYB12 and the structurally closely related factor P from maize (Zea mays). Both displayed similar target gene specificity, and both activated target gene promoters only in the presence of a functional MYB recognition element. The genes encoding the flavonoid biosynthesis enzymes chalcone synthase, chalcone flavanone isomerase, flavanone 3-hydroxylase, and flavonol synthase were identified as target genes. Hence, our observations further add to the general notion of a close relationship between structure and function of R2R3-MYB factors. High-performance liquid chromatography analyses of myb12 mutant plants and MYB12 overexpression plants demonstrate a tight linkage between the expression level of functional MYB12 and the flavonol content of young seedlings. Quantitative real time reverse transcription-PCR using these mutant plants showed MYB12 to be a transcriptional regulator of CHALCONE SYNTHASE and FLAVONOL SYNTHASE in planta, the gene products of which are indispensable for the biosynthesis of flavonols.
Collapse
Affiliation(s)
- Frank Mehrtens
- Max-Planck-Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | | | | |
Collapse
|
1528
|
Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:689-707. [PMID: 15918883 DOI: 10.1111/j.1365-313x.2005.02405.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The identification of leaf wax genes involved in stress tolerance is expected to have great potential for crop improvement. Here we report the characterization of a novel AP2 domain-containing putative transcription factor gene from the model legume Medicago truncatula. The gene, designated WXP1, is able to activate wax production and confer drought tolerance in alfalfa (Medicago sativa), the most important forage legume species in the world and a close relative of M. truncatula. The predicted protein of WXP1 has 371 aa; it is one of the longest peptides of all the single AP2 domain proteins in M. truncatula. WXP1 is distinctly different from the most studied genes in the AP2/ERF transcription factor family such as AP2s, CBF/DREB1s, DREB2s, WIN1/SHN1 and GL15. Transcript level of WXP1 is inducible by cold, abscisic acid and drought treatment mainly in shoot tissues in M. truncatula. Overexpression of WXP1 under the control of the CaMV35S promoter led to a significant increase in cuticular wax loading on leaves of transgenic alfalfa. Scanning electron microscopy revealed earlier accumulation of wax crystals on the adaxial surface of newly expanded leaves and higher densities of wax crystalline structures on both adaxial and abaxial surfaces of mature leaves. Gas chromatography-mass spectrometry analysis revealed that total leaf wax accumulation per surface area increased 29.6-37.7% in the transgenic lines, and the increase was mainly contributed by C30 primary alcohol. WXP1 overexpression induced a number of wax-related genes. Transgenic leaves showed reduced water loss and chlorophyll leaching. Transgenic alfalfa plants with increased cuticular waxes showed enhanced drought tolerance demonstrated by delayed wilting after watering was ceased and quicker and better recovery when the dehydrated plants were re-watered.
Collapse
Affiliation(s)
- Ji-Yi Zhang
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | | | |
Collapse
|
1529
|
Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. PLANT PHYSIOLOGY 2005; 138:803-18. [PMID: 15923329 PMCID: PMC1150398 DOI: 10.1104/pp.105.060202] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 05/02/2023]
Abstract
The growth of secondary xylem and phloem depends on the division of cells in the vascular cambium and results in an increase in the diameter of the root and stem. Very little is known about the genetic mechanisms that control cambial activity and the differentiation of secondary xylem and phloem cell types. To begin to identify new genes required for vascular cell differentiation and function, we performed genome-wide expression profiling of xylem and phloem-cambium isolated from the root-hypocotyl of Arabidopsis (Arabidopsis thaliana). Gene expression in the remaining nonvascular tissue was also profiled. From these transcript profiles, we assembled three sets of genes with expression significantly biased toward xylem, phloem-cambium, or nonvascular tissue. We also assembled three two-tissue sets of genes with expression significantly biased toward xylem/phloem-cambium, xylem/nonvascular, or phloem-cambium/nonvascular tissues. Localizations predicted by transcript profiles were supported by results from promoter-reporter and reverse transcription-polymerase chain reaction experiments with nine xylem- or phloem-cambium-biased genes. An analysis of the members of the phloem-cambium gene set suggested that some genes involved in regulating primary meristems are also regulators of the cambium. Secondary phloem was implicated in the synthesis of auxin, glucosinolates, cytokinin, and gibberellic acid. Transcript profiles also supported the importance of class III HD ZIP and KANADI transcription factors as regulators of radial patterning during secondary growth, and identified several members of the G2-like, NAC, AP2, MADS, and MYB transcription factor families that may play roles as regulators of xylem or phloem cell differentiation and activity.
Collapse
Affiliation(s)
- Chengsong Zhao
- Department of Horticulture , Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
1530
|
Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. J Mol Biol 2005; 348:253-64. [PMID: 15811366 DOI: 10.1016/j.jmb.2005.02.065] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 10/25/2022]
Abstract
Ethylene-insensitive3 (EIN3) and EIN3-like (EIL) proteins are essential transcription factors in the ethylene signaling of higher plants. The EIN3/EIL proteins bind to the promoter regions of the downstream genes and regulate their expression. The location of the DNA-binding domain (DBD) in the primary structure was unclear, since the proteins show no sequence similarity to other known DBDs. Here, we identify the major DBD of an EIN3/EIL protein, Arabidopsis thaliana EIL3, containing a key mutational site for DNA binding and signaling (ein3-3 site), and determine its solution structure by NMR spectroscopy. The structure consists of five alpha-helices, possessing a novel fold dissimilar to known DBD structures. By a chemical-shift perturbation analysis, a region including the ein3-3 site is suggested to be involved in DNA binding.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1531
|
Khaled AS, Vernoud V, Ingram GC, Perez P, Sarda X, Rogowsky PM. Engrailed-ZmOCL1 fusions cause a transient reduction of kernel size in maize. PLANT MOLECULAR BIOLOGY 2005; 58:123-39. [PMID: 16028121 DOI: 10.1007/s11103-005-5219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 04/10/2005] [Indexed: 05/03/2023]
Abstract
ZmOCL1 is the founding member of the ZmOCL (Outer Cell Layer) family encoding putative transcription factors of the HD-ZIP IV class. It is expressed in the L1 cell layer of the embryo and several other tissues of maize. After determination of the intron/exon structure a mutator insertion was isolated in the upstream region. No notable phenotypes and wildtype levels of ZmOCL1 transcript were observed in homozygous mutant plants. In contrast transgenic plants carrying a fusion of the repressor domain of the Drosophila Engrailed gene with the DNA binding and dimerisation domains of ZmOCL1 showed a transient reduction of embryo, endosperm and kernel size that was most obvious around 15 DAP. An inverse relationship was observed between the degree of size reduction and the expression level of the transcript. In reciprocal crosses the size reduction was only observed when the transgenic plants were used as females and no expression of male transmitted transgenes was detected. Smaller kernels resembled younger kernels of wild-type siblings indicating that interference with ZmOCL1 function leads to an overall slow-down of early kernel development. Based on marker gene analysis ZmOCL1 may act via a modification of gibberellin levels. Phylogenetic analyses based on the intron/exon structure and sequence similarities of ZmOCL1 and other HD-ZIP IV proteins from maize, rice and Arabidopsis helped to identify orthologues and suggested an evolution in the function of individual genes after the divergence of monocots and dicots.
Collapse
Affiliation(s)
- Abdel-Sabour Khaled
- RDP, UMR879 INRA-CNRS-ENSL-UCBL, IFR128 BioSciences Lyon-Gerland, ENS-Lyon 46 Allée d'Italie, F-69364, Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
1532
|
Oh SK, Park JM, Joung YH, Lee S, Chung E, Kim SY, Yu SH, Choi D. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens. MOLECULAR PLANT PATHOLOGY 2005; 6:269-85. [PMID: 20565656 DOI: 10.1111/j.1364-3703.2005.00284.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Plant Genomics Laboratory, Genome Research Center, KRIBB, PO Box 115, Yusung, Taejon, 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
1533
|
Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. PLANTA 2005; 221:197-211. [PMID: 15599593 DOI: 10.1007/s00425-004-1433-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Accepted: 10/13/2004] [Indexed: 05/20/2023]
Abstract
We describe here a novel plant-specific gene, Lefsm1 (fruit SANT/MYB-like 1) harboring a single SANT/MYB domain. The expression of Lefsm1 is specific to the very early stages of tomato (Lycopersicon esculentum) fruit development. Ectopic expression of Lefsm1 results in severe developmental alterations manifested in retarded growth, and reduced apical dominance during tomato and Arabidopsis seedling development. A promoter sequence residing 1.0 kb upstream to the translation initiation codon confers the organ-specific expression of the gene. Lefsm1 belongs to a novel small gene family consisting of five to six members in tomato, Arabidopsis and rice. The SANT/MYB domain of LeFSM1 and its orthologs in Arabidopsis and rice differs from that of all other plant or animal MYB proteins and from the SANT domains found in part of the chromatin remodeling proteins. Together, our results indicate that Lefsm1 is a founding member of a small family of proteins containing a novel MYB/SANT domain which is likely to participate in the regulation of a plant-specific developmental program.
Collapse
Affiliation(s)
- Rivka Barg
- Department of Plant Genetics, Institute of Field and Garden Crops, The Volcani Center, ARO, P.O.Box 6, Bet Dagan, 50250, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
1534
|
Rieu I, Bots M, Mariani C, Weterings KAP. Isolation and expression analysis of a tobacco AINTEGUMENTA ortholog (NtANTL). PLANT & CELL PHYSIOLOGY 2005; 46:803-5. [PMID: 15746156 DOI: 10.1093/pcp/pci076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The Arabidopsis AINTEGUMENTA (ANT) protein is essential for proper ovule development, but functions in cell proliferation and organ growth throughout the plant. Here we report the isolation of a full-length cDNA clone from tobacco (Nicotiana tabacum L.) that encodes a protein with high similarity to ANT and is preferentially expressed in the pistil. In situ hybridization analysis on the tobacco ovary shows that the expression pattern of the corresponding gene is different from that of ANT in Arabidopsis.
Collapse
Affiliation(s)
- Ivo Rieu
- Department of Experimental Botany, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
1535
|
Schauser L, Wieloch W, Stougaard J. Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 2005; 60:229-37. [PMID: 15785851 DOI: 10.1007/s00239-004-0144-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 09/09/2004] [Indexed: 11/28/2022]
Abstract
Genetic studies in Lotus japonicus and pea have identified Nin as a core symbiotic gene required for establishing symbiosis between legumes and nitrogen fixing bacteria collectively called Rhizobium. Sequencing of additional Lotus cDNAs combined with analysis of genome sequences from Arabidopsis and rice reveals that Nin homologues in all three species constitute small gene families. In total, the Arabidopsis and rice genomes encode nine and three NIN-like proteins (NLPs), respectively. We present here a bioinformatics analysis and prediction of NLP evolution. On a genome scale we show that in Arabidopsis, this family has evolved through segmental duplication rather than through tandem amplification. Alignment of all predicted NLP protein sequences shows a composition with six conserved modules. In addition, Lotus and pea NLPs contain segments that might characterize NIN proteins of legumes and be of importance for their function in symbiosis. The most conserved region in NLPs, the RWP-RK domain, has secondary structure predictions consistent with DNA binding properties. This motif is shared by several other small proteins in both Arabidopsis and rice. In rice, the RWP-RK domain sequences have diversified significantly more than in Arabidopsis. Database searches reveal that, apart from its presence in Arabidopsis and rice, the motif is also found in the algae Chlamydomonas and in the slime mold Dictyostelium discoideum. Thus, the origin of this putative DNA binding region seems to predate the fungus-plant divide.
Collapse
Affiliation(s)
- Leif Schauser
- Laboratory of Gene Expression, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Arhus C, Denmark.
| | | | | |
Collapse
|
1536
|
Baugh LR, Wen JC, Hill AA, Slonim DK, Brown EL, Hunter CP. Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions. Genome Biol 2005; 6:R45. [PMID: 15892873 PMCID: PMC1175957 DOI: 10.1186/gb-2005-6-5-r45] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/24/2004] [Accepted: 03/09/2005] [Indexed: 11/10/2022] Open
Abstract
Phenotypic robustness is evidenced when single-gene mutations do not result in an obvious phenotype. It has been suggested that such phenotypic stability results from 'buffering' activities of homologous genes as well as non-homologous genes acting in parallel pathways. One approach to characterizing mechanisms of phenotypic robustness is to identify genetic interactions, specifically, double mutants where buffering is compromised. To identify interactions among genes implicated in posterior patterning of the Caenorhabditis elegans embryo, we measured synthetic lethality following RNA interference of 22 genes in 15 mutant strains. A pair of homologous T-box transcription factors (tbx-8 and tbx-9) is found to interact in both C. elegans and C. briggsae, indicating that their compensatory function is conserved. Furthermore, a muscle module is defined by transitive interactions between the MyoD homolog hlh-1, another basic helix-loop-helix transcription factor, hnd-1, and the MADS-box transcription factor unc-120. Genetic interactions within a homologous set of genes involved in vertebrate myogenesis indicate broad conservation of the muscle module and suggest that other genetic modules identified in C. elegans will be conserved.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Current address: Biology Division, California Institute of Technology, Pasadena, CA 91125
| | - Joanne C Wen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew A Hill
- Department of Genomics, Wyeth Research, Cambridge, MA 02140, USA
| | - Donna K Slonim
- Department of Genomics, Wyeth Research, Cambridge, MA 02140, USA
- Current address: Department of Computer Science, Tufts University, Medford, MA 02155
| | - Eugene L Brown
- Department of Genomics, Wyeth Research, Cambridge, MA 02140, USA
| | - Craig P Hunter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
1537
|
Duan K, Luo YH, Luo D, Xu ZH, Xue HW. New insights into the complex and coordinated transcriptional regulation networks underlying rice seed development through cDNA chip-based analysis. PLANT MOLECULAR BIOLOGY 2005; 57:785-804. [PMID: 15952066 DOI: 10.1007/s11103-005-1803-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 02/05/2005] [Indexed: 05/02/2023]
Abstract
Transcription factors (TFs) are major, crucial factors for developmental control. To elucidate the effects of TFs on rice seed development, we generated a cDNA chip containing 325 rice cDNA clones, which are from flowering stage and encode known or putative TFs belonging to 12 different families, and used this chip for expression profiling at 8 continuous seed developmental stages. The results showed that in comparison to their expression in mature leaves, a total of 135 TF genes were preferentially transcribed in seeds. Cluster analysis based on the temporal expression patterns grouped them into 12 types, each of which contained members of various families showing common unique expression patterns. The results provide insights into possible key roles for members of several TF families during seed development. In addition, the expression patterns of these genes were examined in vegetative tissues including roots, seedlings and stems, as well as in 2-week-old seedlings following the application of plant hormones or abiotic stresses. The results showed that many of the seed-preferential TFs were also involved in hormone and/or abiotic stress effects, suggesting the potential existence of uncharacterized transcriptional networks, or cross talk between hormone and abiotic stress signaling and seed development. Furthermore, analysis on the cis-elements locating in promoter region of seed preferential TF genes suggested that Dof proteins play essential roles in hierarchical regulation of gene expressions during rice seed development, which, taken together, provided informative clues for elucidation of the molecular mechanisms of transcriptional regulation and signaling networks in the complex developmental processes of rice seeds.
Collapse
Affiliation(s)
- Ke Duan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science (SiBS), Chinese Academy of Sciences, PR China
| | | | | | | | | |
Collapse
|
1538
|
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. Solution structure of an Arabidopsis WRKY DNA binding domain. THE PLANT CELL 2005; 17:944-56. [PMID: 15705956 PMCID: PMC1069710 DOI: 10.1105/tpc.104.026435] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 12/04/2004] [Indexed: 05/18/2023]
Abstract
The WRKY proteins comprise a major family of transcription factors that are essential in pathogen and salicylic acid responses of higher plants as well as a variety of plant-specific reactions. They share a DNA binding domain, designated as the WRKY domain, which contains an invariant WRKYGQK sequence and a CX4-5CX22-23HXH zinc binding motif. Herein, we report the NMR solution structure of the C-terminal WRKY domain of the Arabidopsis thaliana WRKY4 protein. The structure consists of a four-stranded beta-sheet, with a zinc binding pocket formed by the conserved Cys/His residues located at one end of the beta-sheet, revealing a novel zinc and DNA binding structure. The WRKYGQK residues correspond to the most N-terminal beta-strand, kinked in the middle of the sequence by the Gly residue, which enables extensive hydrophobic interactions involving the Trp residue and contributes to the structural stability of the beta-sheet. Based on a profile of NMR chemical shift perturbations, we propose that the same strand enters the DNA groove and forms contacts with the DNA bases.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1539
|
Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:744-54. [PMID: 15703061 DOI: 10.1111/j.1365-313x.2005.02334.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The recessive Arabidopsis thalianafumonisin B1-resistant (fbr6) mutant was identified by its ability to survive in the presence of a programmed cell death (PCD)-inducing fungal toxin FB1. The fbr6 mutant also displays altered plant architecture in the absence of FB1, most notably elongated petioles and enhanced leaf margin serration. These phenotypes are a result of a T-DNA insertion in the SQUAMOSA promoter binding protein (SBP) domain gene, AtSPL14. AtSPL14 encodes a plant-specific protein with features characteristic of a transcriptional regulator, including a nuclear localization signal sequence, a plant-specific DNA binding domain (the SBP box), and a protein interaction motif (ankyrin repeats). A transiently expressed fusion of the AtSPL14 protein to green fluorescent protein is directed to the plant nucleus. DNA sequences immediately upstream of the translation start site direct expression of the beta-glucuronidase reporter gene primarily in the vascular tissues, consistent with the phenotypes of the fbr6 mutant. AtSPL14 activates transcription in yeast, with a transactivation domain residing within the N-terminal region of the protein. Recombinant AtSPL14 protein binds A. thaliana genomic DNA in vitro in the absence of other proteins. These results indicate that FBR6/SPL14 functions as a transcriptional regulator that plays a role not only in sensitivity to FB1, but also in the development of normal plant architecture.
Collapse
Affiliation(s)
- Julie M Stone
- Department of Biochemistry and Plant Science Initiative, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA.
| | | | | | | |
Collapse
|
1540
|
Tang M, Lü S, Jing Y, Zhou X, Sun J, Shen S. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:233-9. [PMID: 15854831 DOI: 10.1016/j.plaphy.2005.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 01/26/2005] [Indexed: 05/02/2023]
Abstract
A new DRE-binding protein gene FaDREB1 encoded for an AP2/ERFBP-type transcription factor was isolated by RACE-PCR from Festuca arundinacea Schreb seedlings. Its cDNA was sequenced with 988 bp, from which a protein with 216 amino acid residues was deduced with a predicted molecular mass of 23.479 kDa and a pI of 4.70. A search of the Protein Blast data revealed that this protein can be classified as a typical member of the AP2/EREBP family of DNA-binding proteins. The tissue organ-specific expression pattern of the FaDREB1 gene showed that its transcripts were abundant in leaves and leaf sheaths, and scarce in roots. Southern blot analysis indicated that it is a multiple-copy gene. Its mRNA accumulation profiles made clear that its expression was strongly induced by cold treatment, weakly induced by drought and salt stress, but did not respond to ABA treatment. It was concluded that the protein FaDREB1 may be involved in the process of plant response to cold stress through an ABA-independent pathway.
Collapse
Affiliation(s)
- Mingjuan Tang
- Key Laboratory of Plant Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
1541
|
Nole-Wilson S, Tranby TL, Krizek BA. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. PLANT MOLECULAR BIOLOGY 2005; 57:613-28. [PMID: 15988559 DOI: 10.1007/s11103-005-0955-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Accepted: 01/18/2005] [Indexed: 05/03/2023]
Abstract
Although several members of the AP2/ERF family of transcription factors are important developmental regulators in plants, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the 18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA (ANT) and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7 mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.
Collapse
Affiliation(s)
- Staci Nole-Wilson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
1542
|
Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J. DATF: a database of Arabidopsis transcription factors. Bioinformatics 2005; 21:2568-9. [PMID: 15731212 DOI: 10.1093/bioinformatics/bti334] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED We have probably developed the most comprehensive database of Arabidopsis transcription factors (DATF). The DATF contains known and predicted Arabidopsis transcription factors (1827 genes in 56 families) with the unique information of 1177 cloned sequences and many other features including 3D structure templates, EST expression information, transcription factor binding sites and nuclear location signals. AVAILABILITY DATF is freely available at http://datf.cbi.pku.edu.cn
Collapse
Affiliation(s)
- Anyuan Guo
- Center for Bioinformatics, Beijing 100871, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
1543
|
Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2005. [PMID: 0 DOI: 10.1080/07352680590910410] [Citation(s) in RCA: 1082] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
1544
|
Olsen AN, Ernst HA, Leggio LL, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. TRENDS IN PLANT SCIENCE 2005; 10:79-87. [PMID: 15708345 DOI: 10.1016/j.tplants.2004.12.010] [Citation(s) in RCA: 888] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protein level and localization, and to the first indications of NAC participation in transcription factor networks. The recent determination of the DNA and protein binding NAC domain structure offers insight into the molecular functions of the protein family. Research into NAC transcription factors has demonstrated the importance of this protein family in the biology of plants and the need for further studies.
Collapse
Affiliation(s)
- Addie Nina Olsen
- Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
1545
|
Kiba T, Naitou T, Koizumi N, Yamashino T, Sakakibara H, Mizuno T. Combinatorial Microarray Analysis Revealing Arabidopsis Genes Implicated in Cytokinin Responses through the His→Asp Phosphorelay Circuitry. ACTA ACUST UNITED AC 2005; 46:339-55. [PMID: 15695462 DOI: 10.1093/pcp/pci033] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In Arabidopsis thaliana, the immediate early response of plants to cytokinin is formulated as the multistep histidine kinase (AHK)-->histidine-containing phosphotransmitter (AHP)-->response regulator (ARR) phosphorelay signaling circuitry, which is initiated by the cytokinin receptor histidine protein kinases. In the hope of finding components (or genes) that function downstream of the cytokinin-mediated His-->Asp phosphorelay signaling circuitry, we carried out genome-wide microarray analyses. To this end, we used a combinatorial microarray strategy by employing not only wild-type plants, but also certain transgenic lines in which the cytokinin-mediated His-->Asp phosphorelay signaling circuitry has been genetically manipulated. These transgenic lines employed were ARR21-overexpressing and ARR22-overexpressing plants, each of which exhibits a characteristic phenotype with regard to the cytokinin-mediated His-->Asp phosphorelay. The results of extensive microarray analyses with these plants allowed us systematically to identify a certain number of genes that were up-regulated at the level of transcription in response to cytokinin directly or indirectly. Among them, some representatives were examined further in wild-type plants to support the idea that certain genes encoding transcription factors are rapidly and specifically induced at the level of transcription by cytokinin in a manner similar to that of the type-A ARR genes, which are the hallmarks of the His-->Asp phosphorelay signaling circuitry. Several interesting transcription factors were thus identified as being cytokinin responsive, including those belonging to the AP2/EREBP family, MYB family, GATA family or bHLH family. Including these, the presented list of cytokinin-up-regulated genes (214) will provide us with valuable bases for understanding the His-->Asp phosphorelay in A. thaliana.
Collapse
Affiliation(s)
- Takatoshi Kiba
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
1546
|
Morikami A, Matsunaga R, Tanaka Y, Suzuki S, Mano S, Nakamura K. Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco. Mol Genet Genomics 2005; 272:690-9. [PMID: 15654621 DOI: 10.1007/s00438-004-1100-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 12/01/2004] [Indexed: 10/25/2022]
Abstract
In this study, we generated transgenic tobacco plants that express the beta-glucuronidase (GUS) gene under the control of the 305-bp 5'-upstream region of a gene coding for sporamin A of sweet potato. Expression of GUS in excised tobacco leaves was induced by sucrose, mimicking the sugar-inducible expression of the endogenous sporamin genes in sweet potato. Deletion of the sequences extending from position -305 (relative to the transcription start site) to -283 and from -146 to -87 resulted in an approximately 40-fold enhancement in GUS reporter expression. Furthermore, the sequence from -282 to -165 conferred sucrose-inducibility on the -89 core promoter of the Cauliflower Mosaic Virus 35S RNA gene. Analysis of internal deletions, linker scanning and the introduction of base substitutions in the sequence between positions -282 and -165 indicated that sucrose-responsiveness conferred by this region was dependent on the presence of two cis-acting elements, termed CMSREs (carbohydrate metabolite signal responsive elements) 1 and 2, which are separated by a spacer. A sequence similar or identical to the core of CMSRE-1 (TGGACGG) is also present in the promoters of several other sugar-inducible genes, and sequences encopassing the TGGACGG-related motifs from two of these could functionally replace the CMSRE-1 in the truncated sporamin A promoter. These results suggest that the TGGACGG element plays an important role in the sucrose-inducible expression of a group of plant genes.
Collapse
Affiliation(s)
- Atsushi Morikami
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
1547
|
Abstract
Plants accumulate an amazing diversity of phytochemicals that play important roles in the interaction of plants with the environment. Mechanisms have been proposed to describe the evolution of phytochemicals from the perspective of the biosynthetic enzymes. However, it is not known how the transcription factors that regulate these pathways have evolved to ensure the coordinate expression of all the genes in a pathway. A model is provided here to explain how duplication and divergence of regulatory genes result in the control of new pathways. In this model, the purported ability of recently duplicated regulatory genes to activate new metabolic pathways is a consequence of mutations that partially impair function, resulting in the loss of activation of one or several steps in a metabolic pathway. Consequently, pathway intermediates accumulate and are then converted into new compounds by broad-specificity enzymes. In contrast to the resilience of developmental regulatory circuits, this model provides an explanation for the rapid evolution of new metabolic pathways from existing ones.
Collapse
Affiliation(s)
- Erich Grotewold
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
1548
|
Holmes-Davis R, Li G, Jamieson AC, Rebar EJ, Liu Q, Kong Y, Case CC, Gregory PD. Gene regulation in planta by plant-derived engineered zinc finger protein transcription factors. PLANT MOLECULAR BIOLOGY 2005; 57:411-423. [PMID: 15830130 DOI: 10.1007/s11103-004-7820-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 12/20/2004] [Indexed: 05/24/2023]
Abstract
The ability to modify plant traits is of great commercial potential in agricultural biotechnology. To this end we have engineered plant-based zinc finger protein transcription factors (ZFP TFs) that minimize the use of non-plant DNA sequences. This novel architecture supports the use of tandem arrays of zinc-finger DNA recognition domains such that the ZFP TF binds a contiguous DNA target site - thus emulating the design of ZFP TFs described previously for mammalian gene regulation. We show that this plant-based ZFP TF architecture supports high affinity DNA binding while allowing the specificity of the DNA-protein interaction to be determined by the amino acid sequences of the recognition helices. This plant-based backbone thus supports the use of previously characterized DNA recognition helices originally identified in a mammalian ZFP context without using mammalian DNA sequences. Moreover, we show that plant-based ZFP TFs employing this new architecture can up-regulate endogenous ADH activity by > 20-fold in transgenic Arabidopsis. Thus plant-based ZFP TFs are shown to be potent regulators of gene expression in vivo.
Collapse
|
1549
|
Ito M. Conservation and diversification of three-repeat Myb transcription factors in plants. JOURNAL OF PLANT RESEARCH 2005; 118:61-9. [PMID: 15703854 DOI: 10.1007/s10265-005-0192-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 12/15/2004] [Indexed: 05/23/2023]
Abstract
The Myb family of transcription factors is characterized by the presence of a conserved DNA-binding domain called the Myb domain, which typically contains two or three imperfect repeat sequences. Within this family, Myb proteins containing three repeat motifs are evolutionarily conserved and have important roles in the cell cycle. Vertebrates have three Myb proteins, c-Myb, A-Myb, and B-Myb, all of which contain three repeats and are proposed to have a role at the G1/S transition. In plants, Myb proteins with three repeats are encoded by genes in a small subfamily within the large Myb gene family, most of which encode for Myb proteins with only two repeats. We have shown that Myb proteins with three repeats have an important role at the G2/M in tobacco, by regulating transcription of cyclin B genes and many other genes that are expressed at a similar time in the cell cycle. In this review, we summarize current knowledge on structure, function, and regulation of the plant Myb factors with three repeats, and discuss their conserved and divergent features in comparison with animal counterparts.
Collapse
Affiliation(s)
- Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
1550
|
Chua G, Robinson MD, Morris Q, Hughes TR. Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 2005; 7:638-46. [PMID: 15556037 DOI: 10.1016/j.mib.2004.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A major objective in post-genome research is to fully understand the transcriptional control of each gene and the targets of each transcription factor. In yeast, large-scale experimental and computational approaches have been applied to identify co-regulated genes, cis regulatory elements, and transcription factor DNA binding sites in vivo. Methods for modeling and predicting system behavior, and for reconciling discrepancies among data types, are being explored. The results indicate that a complete and comprehensive yeast transcriptional network will ultimately be achieved.
Collapse
Affiliation(s)
- Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Room 307, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|