1601
|
Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 1999; 19:546-51. [PMID: 10073956 DOI: 10.1161/01.atv.19.3.546] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasminogen activator inhibitor type-1 (PAI-1) is a major physiological inhibitor of fibrinolysis, with its plasma levels correlating with the risk for myocardial infarction and venous thrombosis. The regulation of PAI-1 transcription by endothelial cells (ECs), a major source of PAI-1, remains incompletely understood. Adipocytes also produce PAI-1, suggesting possible common regulatory pathways between adipocytes and ECs. Peroxisomal proliferator-activated receptor-gamma (PPAR)gamma is a ligand-activated transcription factor that regulates gene expression in response to various mediators such as 15-deoxy-Delta12, 14-prostaglandin J2 (15d-PGJ2) and oxidized linoleic acid (9- and 13-HODE). The present study tested the hypotheses that human ECs express PPARgamma and that this transcriptional activator regulates PAI-1 expression in this cell type. We found that human ECs contain both PPARgamma mRNA and protein. Immunohistochemistry of human carotid arteries also revealed the presence of PPARgamma in ECs. Bovine ECs transfected with a PPAR response element (PPRE)-luciferase construct responded to stimulation by the PPARgamma agonist 15d-PGJ2 in a concentration-dependent manner, suggesting a functional PPARgamma in ECs. Treatment of human ECs with 15d-PGJ2, 9(S)-HODE, or 13(S)-HODE augmented PAI-1 mRNA and protein expression, whereas multiple PPARalpha activators did not change PAI-1 levels. Introduction of increasing amounts of a PPARgamma expression construct in human fibroblasts enhanced PAI-1 secretion from these cells in proportion to the amount of transfected DNA. Thus, ECs express functionally active PPARgamma that regulates PAI-1 expression in ECs. Our results establish a role for PPARgamma in the regulation of EC gene expression, with important implications for the clinical links between obesity and atherosclerosis.
Collapse
Affiliation(s)
- N Marx
- Vascular Medicine and Atherosclerosis Unit, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
1602
|
Burris TP, Pelton PD, Zhou L, Osborne MC, Cryan E, Demarest KT. A novel method for analysis of nuclear receptor function at natural promoters: peroxisome proliferator-activated receptor gamma agonist actions on aP2 gene expression detected using branched DNA messenger RNA quantitation. Mol Endocrinol 1999; 13:410-7. [PMID: 10076998 DOI: 10.1210/mend.13.3.0246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily, plays an essential role in the mediation of the actions of antidiabetic drugs known as thiazolidinediones (TZDs). PPARgamma activates many target genes involved in lipid anabolism including the adipocyte fatty acid binding protein (aP2). In this study, induction of aP2 gene expression by PPARgamma agonists was examined in both cultured cells and diabetic mice using branched DNA (bDNA)-mediated mRNA quantitation. bDNA technology allows for the direct measurement of a particular mRNA directly within cellular lysate using a 96-well plate format in a time frame comparable to a reporter gene assay. In cultured human subcutaneous preadipocytes, the TZDs, troglitazone and BRL-49653, both rapidly induced aP2 mRNA as detected with the bDNA method. In these cells, the effect of BRL-49653 on aP2 mRNA levels was detectable as early as 30 min after treatment (47% increase) and was maximal after 24 h of treatment (12-fold increase). The effects of troglitazone on aP2 mRNA induction were similar to those of BRL-49653 except that the maximal level of induction was consistently lower (e.g. 24 h treatment = 4-fold increase). Dose-response relationships for both of the TZDs were also determined using the 24-h treatment time point. EC50s for both BRL-49653 and troglitazone were estimated to be 80 nM and 690 nM, respectively. A natural PPARgamma ligand, 15-deoxy-delta12,14-PGJ2, was also active in this assay with a maximal induction of aP2 mRNA of approximately 5-fold when tested at 1 microM. Since the PPARgamma:retinoid X receptor (RXR) heterodimer has been characterized as a permissive heterodimer with respect to RXR ligands, the ability of 9-cis-retinoic acid (9-cis-RA) to induce aP2 mRNA was examined. Although 9-cis-RA had very low efficacy (2-fold induction), the maximal effect was reached at 100 nM. No synergism or additivity in aP2 mRNA induction was detected when 9-cis-RA was included with either of the TZDs used in this study. Significant induction of aP2 mRNA in bone marrow of db/db mice treated with either troglitazone or BRL-49653 was also detected, indicating that the bDNA assay may be a simple method to monitor nuclear receptor target gene induction in vivo.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Animals
- Base Sequence
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Chromans/pharmacology
- DNA Probes
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/metabolism
- Fatty Acid-Binding Protein 7
- Fatty Acid-Binding Proteins
- Female
- Gene Expression Regulation/drug effects
- Genetic Techniques
- Humans
- Hypoglycemic Agents/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Molecular Sequence Data
- Myelin P2 Protein/drug effects
- Myelin P2 Protein/genetics
- Myelin P2 Protein/metabolism
- Neoplasm Proteins
- Nerve Tissue Proteins
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rosiglitazone
- Thiazoles/pharmacology
- Thiazolidinediones
- Transcription Factors/agonists
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tretinoin/pharmacology
- Troglitazone
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- T P Burris
- Department of Drug Discovery, The R.W. Johnson Pharmaceutical Research Institute, Raritan, New Jersey 08869, USA.
| | | | | | | | | | | |
Collapse
|
1603
|
Fukuzawa M, Satoh J, Qiang X, Miyaguchi S, Sakata Y, Nakazawa T, Ikehata F, Ohta S, Toyota T. Inhibition of tumor necrosis factor-alpha with anti-diabetic agents. Diabetes Res Clin Pract 1999; 43:147-54. [PMID: 10369423 DOI: 10.1016/s0168-8227(99)00005-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has recently been indicated that tumor necrosis factor-alpha (TNF-alpha) production is increased under chronic hyperglycemia and TNF-alpha has harmful effects on insulin sensitivity and possibly on chronic diabetic complications. Therefore it will be favorable for diabetes treatment if anti-diabetic agents also have anti-TNF-alpha activities. In this study, we have investigated effects of hypoglycemic sulfonylureas (gliclazide and glibenclamide) and a thiazolidinedione (troglitazone) on lipopolysaccharide-induced TNF-alpha production, which was evaluated by immunoassay and bioassay, in vivo using mice and partly in vitro using human peripheral blood mononuclear cells. Gliclazide significantly inhibited TNF-alpha production in vivo and also in vitro at a concentration of 10(-3) mol/l. However, glibenclamide had neither effect on TNF-alpha production nor action. On the other hand, troglitazone inhibited action rather than production of TNF-alpha in vivo. In vitro troglitazone (10(-4) mol/l) significantly reduced cytolytic activity of TNF-alpha against LM cells. These results indicate that gliclazide and troglitazone have inhibitory effect on TNF-alpha.
Collapse
Affiliation(s)
- M Fukuzawa
- Third Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1604
|
Versteeg HH, van Bergen en Henegouwen PM, van Deventer SJ, Peppelenbosch MP. Cyclooxygenase-dependent signalling: molecular events and consequences. FEBS Lett 1999; 445:1-5. [PMID: 10069362 DOI: 10.1016/s0014-5793(99)00105-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) currently attract large interest. Next to pain relief, NSAIDs have important anti-thrombotic and anti-oncogenic effects. NSAIDs exert their action by inhibition of cyclooxygenase, the enzyme responsible for the production of prostanoids. Prostanoid signal transduction is still poorly understood, but it has become clear that these inflammatory lipids influence cellular physiology at three different levels: (1) activation of a 7 x transmembrane receptor coupled to heterotrimeric G proteins, (2) the inhibition of inflammation by activating corticosteroid-like receptors, (3) participation in receptor protein tyrosine kinase signal transduction. In this review prostanoid signalling at these three different levels will be reviewed and the relevance in (patho)physiological processes will be evaluated.
Collapse
Affiliation(s)
- H H Versteeg
- Laboratory for Experimental Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
1605
|
Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL, Laharrague P, Casteilla L, Pénicaud L. A role for preadipocytes as macrophage-like cells. FASEB J 1999; 13:305-12. [PMID: 9973318 DOI: 10.1096/fasebj.13.2.305] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several lines of evidence have supported a link betweeen adipose tissue and immunocompetent cells. This link is illustrated in obesity, where excess adiposity and impaired immune function have been described in both humans and genetically obese rodents. In addition, numerous factors involved in inflammatory response are secreted by both preadipocytes and macrophages. Here we show that proliferating preadipocytes in cell lines and primary cultures, develop phagocytic activity toward microorganisms. This is demonstrated by phagocytosis assays and confocal microscopy. This function disappears when preadipocytes stop proliferating and differentiate into adipocytes. After phagocytosis, preadipocytes show microbicide activity via an oxygen-dependent mechanism. In addition, preadipocytes as well as adipocytes are stained with MOMA-2, a marker of monocyte-macrophage lineage, but are negative for specific mature macrophage markers (F4/80 and Mac-1). These results suggest that preadipocytes could function as macrophage-like cells and raise the possibility of a potential direct involvement of adipose tissue in inflammatory processes.
Collapse
Affiliation(s)
- B Cousin
- ESA 5018-UPS CNRS, IFR 31, CHU Rangueil, 31403 Toulouse Cédex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
1606
|
Kitamura Y, Shimohama S, Koike H, Kakimura JI, Matsuoka Y, Nomura Y, Gebicke-Haerter PJ, Taniguchi T. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem Biophys Res Commun 1999; 254:582-6. [PMID: 9920782 DOI: 10.1006/bbrc.1998.9981] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that inflammatory events are associated with plaque formation in the brains of patients with Alzheimer's disease (AD). Treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) of these patients appears to slow the progression of disease. We assessed the occurrence of cyclooxygenases (COX-1 and -2) and peroxisome proliferator-activated receptor-gamma (PPARgamma) in temporal cortex from normal and AD brains using specific antibodies. In AD brains, protein levels of COX-1 were increased in both cytosolic and particulate fractions, and COX-2 protein was also increased in the particulate fraction. On the other hand, PPARgamma level was increased in the cytosolic fraction but not in the particulate fraction. Thus, expression levels of COX-1, COX-2, and PPARgamma may change in AD brains. In addition, several NSAIDs which are also PPARgamma activators, such as indomethacin, inhibited COX-2 expression in glial cells. These results suggest that PPARgamma activators have inhibitory effects on inflammatory events in AD brains.
Collapse
Affiliation(s)
- Y Kitamura
- Department of Neurobiology, Kyoto Pharmaceutical University, Kyoto, 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1607
|
Abstract
Prostaglandin (PG) D2 is recognized as the most potent endogenous sleep-promoting substance whose action mechanism is the best characterized among the various sleep-substances thus far reported. The PGD2 concentration in rat cerebrospinal fluid (CSF) shows a circadian change coupled to the sleep-wake cycle and elevates with an increase in sleep propensity during sleep deprivation. Lipocalin-type PGD synthase is dominantly produced in the arachnoid membrane and choroid plexus of the brain, and is secreted into the CSF to become beta-trace, a major protein component of the CSF. The PGD synthase as well as the PGD2 thus produced circulates in the ventricular system, subarachnoidal space, and extracellular space in the brain system. PGD2 then interacts with DP receptors in the chemosensory region of the ventro-medial surface of the rostral basal forebrain to initiate the signal to promote sleep probably via the activation of adenosine A2A receptive neurons. The activation of DP receptors in the PGD2-sensitive chemosensory region results in activation of a cluster of neurons within the ventrolateral preoptic area, which may promote sleep by inhibiting tuberomammillary nucleus, the source of the ascending histaminergic arousal system.
Collapse
Affiliation(s)
- Y Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Japan.
| | | |
Collapse
|
1608
|
Tondelier D, Brouillard F, Lipecka J, Labarthe R, Bali M, Costa de Beauregard MA, Torossi T, Cougnon M, Edelman A, Baudouin-Legros M. Aspirin and some other nonsteroidal anti-inflammatory drugs inhibit cystic fibrosis transmembrane conductance regulator protein gene expression in T-84 cells. Mediators Inflamm 1999; 8:219-27. [PMID: 10704076 PMCID: PMC1781806 DOI: 10.1080/09629359990388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR), a transmembrane protein that acts as a cAMP-regulated chloride channel The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations of CF are uncertain. The present study was undertaken to determine whether three nonsteroidal anti-inflammatory drugs (NSAIDs) (aspirin, ibuprofen, and indomethacin) modulate CFTR gene expression in T-84 cells. Treatment with NSAIDs reduced CFTR transcripts, and decreased cAMP-stimulated anion fluxes, an index of CFTR function. However, the two phenomena occurred at different concentrations of both drugs. The results indicate that NSAIDs can regulate both CFTR gene expression and the function of CFTR-related chloride transport, and suggest that NSAIDs act via multiple transduction pathways.
Collapse
Affiliation(s)
- D Tondelier
- INSERM U. 467, Faculté de Médecine Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1609
|
García Pastor P, De Rosa S, De Giulio A, Payá M, Alcaraz MJ. Modulation of acute and chronic inflammatory processes by cacospongionolide B, a novel inhibitor of human synovial phospholipase A2. Br J Pharmacol 1999; 126:301-11. [PMID: 10051149 PMCID: PMC1565805 DOI: 10.1038/sj.bjp.0702302] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/1998] [Revised: 10/10/1998] [Accepted: 10/16/1998] [Indexed: 11/08/2022] Open
Abstract
1. Cacospongionolide B is a novel marine metabolite isolated from the sponge Fasciospongia cavernosa. In in vitro studies, this compound inhibited phospholipase A2 (PLA2), showing selectivity for secretory PLA2 (sPLA2) versus cytosolic PLA2 (cPLA2), and its potency on the human synovial enzyme (group II) was similar to that of manoalide. 2. This activity was confirmed in vivo in the 8 h zymosan-injected rat air pouch, on the secretory enzyme accumulating in the pouch exudate. Cacospongionolide B, that is bioavailable when is given orally, reduced the elevated levels of sPLA2 present in paw homogenates of rats with adjuvant arthritis. 3. This marine metabolite showed topical anti-inflammatory activity on the mouse ear oedema induced by 12-O-tetradecanoylphorbol acetate (TPA) and decreased carrageenin paw oedema in mice after oral administration of 5, 10 or 20 mg kg(-1). 4. In the mouse air pouch injected with zymosan, cacospongionolide B administered into the pouch, induced a dose-dependent reduction in the levels of eicosanoids and tumour necrosis factor alpha (TNFalpha) in the exudates 4 h after the stimulus. It also had a weak effect on cell migration. 5. The inflammatory response of adjuvant arthritis was reduced by cacospongionolide B, which did not significantly affect eicosanoid levels in serum, paw or stomach homogenates and did not induce toxic effects. 6 Cacospongionolide B is a new inhibitor of sPLA2 in vitro and in vivo, with anti-inflammatory properties in acute and chronic inflammation. This marine metabolite was active after oral administration and able to modify TNFalpha levels, and may offer an interesting approach in the search for new anti-inflammatory agents.
Collapse
Affiliation(s)
- P García Pastor
- Departamento de Farmacología, Universidad de Valencia, Facultad de Farmacia, Spain
| | | | | | | | | |
Collapse
|
1610
|
Poynter ME, Daynes RA. Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 1998; 273:32833-41. [PMID: 9830030 DOI: 10.1074/jbc.273.49.32833] [Citation(s) in RCA: 408] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In aged mice, the redox-regulated transcription factor nuclear factor-kappaB (NF-kappaB) becomes constitutively active in many tissues, as well as in cells of the hematopoietic system. This oxidative stress-induced activity promotes the production of a number of pro-inflammatory cytokines, which can contribute to the pathology of many disease states associated with aging. The administration to aged mice of agents capable of activating the alpha isoform of the peroxisome proliferator-activated receptor (PPARalpha) was found to restore the cellular redox balance, evidenced by a lowering of tissue lipid peroxidation, an elimination of constitutively active NF-kappaB, and a loss in spontaneous inflammatory cytokine production. Aged animals bearing a null mutation in PPARalpha failed to elicit these changes following treatment with PPARalpha activators, but remained responsive to vitamin E supplementation. Aged C57BL/6 mice were found to express reduced transcript levels of PPARalpha and the peroxisome-associated genes acyl-CoA oxidase and catalase. Supplementation of these aged mice with PPARalpha activators or with vitamin E caused elevations in these transcripts to levels seen in young animals. Our results suggest that PPARalpha and the genes under its control play a role in the evolution of oxidative stress excesses observed in aging.
Collapse
Affiliation(s)
- M E Poynter
- Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
1611
|
Finstad HS, Drevon CA, Kulseth MA, Synstad AV, Knudsen E, Kolset SO. Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid. Biochem J 1998; 336 ( Pt 2):451-9. [PMID: 9820824 PMCID: PMC1219891 DOI: 10.1042/bj3360451] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The monocytic cell line U937-1 was cultured in the presence of eicosapentaenoic acid (20:5, n-3) (EPA) or oleic acid (18:1, n-9) (OA). EPA caused a dose-dependent inhibition of cell proliferation, whereas OA had no effect. At the highest EPA concentrations, 120 and 240 microM, inhibition of cell proliferation was accompanied by initiation of apoptosis. A concentration of 60 microM EPA caused a 35% reduction in cell proliferation without inducing apoptosis, and was therefore used for further studies. Addition of antioxidants or inhibitors of eicosanoid synthesis had no influence on the reduced cell proliferation after EPA treatment. The inhibition required continuous presence of EPA in the incubation medium as the cells resumed a normal proliferation rate when they were placed in EPA-free medium. The inhibition of proliferation was not accompanied by differentiation into macrophage-like cells, as expression of serglycin and the ability to perform respiratory burst was unaffected by EPA. Expression of CD23 mRNA increased when the cells were incubated with EPA, but to a smaller extent than after retinoic acid (RA) or PMA treatment. Furthermore, expression of the monocytic differentiation markers CD36 and CD68 was lower in cells treated with EPA or OA when compared with untreated cells. The cell cycle distribution of U937-1 cells was similar in cells incubated with EPA or PMA, whereas RA-treated cells accumulated in the G1 phase. Side scatter increased in cells incubated with EPA and OA, which was ascribed to an accumulation of lipid droplets after examination of the cells by electron microscopy. The number of droplets per cell was higher in cells exposed to EPA than OA. The cellular triacylglycerol (TAG) increased 5.5- and 15.5-fold after incubation with OA and EPA respectively. No difference in the cellular content of cholesterol compared with untreated cells was observed. The TAG fraction in EPA-treated cells contained high amounts of EPA and docosapentaenoic acid and minor amounts of docosahexaenoic acid, whereas OA-treated cells had high levels of OA in the TAG. In cells incubated with a sulphur-substituted EPA, only minor effects on cell proliferation and no accumulation of cellular TAG were observed. These findings may indicate the existence of other mechanisms for regulation of cell behaviour by very-long-chain polyunsaturated n-3 fatty acids than the well established lipid peroxide and eicosanoid pathways.
Collapse
Affiliation(s)
- H S Finstad
- Institute for Nutrition Research, Box 1046, University of Oslo, Blindern, 0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
1612
|
Meertens LM, Miyata KS, Cechetto JD, Rachubinski RA, Capone JP. A mitochondrial ketogenic enzyme regulates its gene expression by association with the nuclear hormone receptor PPARalpha. EMBO J 1998; 17:6972-8. [PMID: 9843503 PMCID: PMC1171045 DOI: 10.1093/emboj/17.23.6972] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMG-CoAS) is a key enzyme in ketogenesis, catalyzing the condensation of acetyl-CoA and acetoacetyl-CoA to generate HMG-CoA, which is eventually converted to ketone bodies. Transcription of the nuclear-encoded gene for mHMG-CoAS is stimulated by peroxisome proliferator-activated receptor (PPAR) alpha, a fatty acid-activated nuclear hormone receptor. Here we show that the mHMG-CoAS protein physically interacts with PPARalpha in vitro, and potentiates PPARalpha-dependent transcriptional activation via the cognate PPAR response element of the mHMG-CoAS gene in vivo. Immunofluorescence of transiently transfected cells demonstrated that in the presence of PPARalpha, mHMG-CoAS is translocated into the nucleus. Binding to PPARalpha, stimulation of PPARalpha activity and nuclear penetration require the integrity of the sequence LXXLL in mHMG-CoAS, a motif known to mediate the interaction between nuclear hormone receptors and coactivators. These findings reveal a novel mechanism of gene regulation whereby the product of a PPARalpha-responsive gene, normally resident in the mitochondria, directly interacts with this nuclear hormone receptor to autoregulate its own nuclear transcription.
Collapse
Affiliation(s)
- L M Meertens
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
1613
|
Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83:1097-103. [PMID: 9831704 PMCID: PMC4231720 DOI: 10.1161/01.res.83.11.1097] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Migration of vascular smooth muscle cells (VSMCs) plays an important role in atherogenesis and restenosis after arterial interventions. The expression of matrix metalloproteinases (MMPs), particularly MMP-9, contributes to VSMC migration. This process requires degradation of basal laminae and other components of the arterial extracellular matrix. Peroxisome proliferator-activated receptors (PPARs), members of the nuclear receptor family, regulate gene expression after activation by various ligands. Recent studies have suggested opposing effects of PPAR gamma (PPARgamma) activation on atherogenesis. The present study tested the hypotheses that human VSMCs express PPAR alpha (PPARalpha) and PPARgamma and that PPAR agonists in VSMCs modulate MMP-9 expression and activity, as well as VSMC migration. Human VSMCs expressed PPARalpha and PPARgamma mRNA and protein. Treatment of VSMCs with the PPARgamma ligands troglitazone and the naturally occurring 15-deoxy-Delta12, 14-prostaglandin J2 (15d-PGJ2) decreased phorbol 12-myristate 13-acetate-induced MMP-9 mRNA and protein levels, as well as MMP-9 gelatinolytic activity in the supernatants in a concentration-dependent manner. Six different PPARalpha activators lacked such effects. Addition of prostaglandin F2alpha, known to limit PPARgamma activity, diminished the MMP-9 inhibition seen with either troglitazone or 15d-PGJ2, further implicating PPARgamma in these effects. Finally, troglitazone and 15d-PGJ2 inhibited the platelet-derived growth factor-BB-induced migration of VSMCs in vitro in a concentration-dependent manner. PPARgamma activation may regulate VSMC migration and expression and activity of MMP-9. Thus, PPARgamma activation in VSMCs, via the antidiabetic agent troglitazone or naturally occurring ligands, may act to counterbalance other potentially proatherosclerotic PPARgamma effects.
Collapse
MESH Headings
- Becaplermin
- Cell Movement/drug effects
- Cells, Cultured/drug effects
- Chromans/pharmacology
- Collagenases/biosynthesis
- Collagenases/genetics
- Dinoprost/pharmacology
- Gelatin/metabolism
- Gene Expression/drug effects
- Humans
- Matrix Metalloproteinase 9
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Proto-Oncogene Proteins c-sis
- RNA, Messenger/biosynthesis
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Thiazoles/pharmacology
- Thiazolidinediones
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Troglitazone
Collapse
Affiliation(s)
- N Marx
- Vascular Medicine and Atherosclerosis Unit, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
1614
|
Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA. Interdomain communication regulating ligand binding by PPAR-gamma. Nature 1998; 396:377-80. [PMID: 9845075 DOI: 10.1038/24634] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Binding to receptors in the cell nucleus is crucial for the action of lipophilic hormones and ligands. PPAR-gamma (for peroxisome proliferator-activated receptor) is a nuclear hormone receptor that mediates adipocyte differentiation and modulates insulin sensitivity, cell proliferation and inflammatory processes. PPAR-gamma ligands have been implicated in the development of atherogenic foam cells and as potential cancer treatments. Transcriptional activity of PPAR-gamma is induced by binding diverse ligands, including natural fatty acid derivatives, antidiabetic thiazolidinediones, and non-steroidal anti-inflammatory drugs. Ligand binding by PPAR-gamma, as well as by the entire nuclear-receptor superfamily, is an independent property of the carboxy-terminal ligand-binding domain (LBD) of the receptor. Here we show that ligand binding by PPAR-gamma is regulated by intramolecular communication between its amino-terminal A/B domain and its carboxy-terminal LBD. Modification of the A/B domain, for example by physiological phosphorylation by MAP kinase, reduces ligand-binding affinity, thus negatively regulating the transcriptional and biological functions of PPAR-gamma. The ability of the A/B domain to regulate ligand binding has important implications for the evaluation and mechanism of action of potentially therapeutic ligands that bind PPAR-gamma and that are likely to extend to other members of the nuclear-receptor superfamily.
Collapse
Affiliation(s)
- D Shao
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
1615
|
Ma H, Sprecher HW, Kolattukudy PE. Estrogen-induced production of a peroxisome proliferator-activated receptor (PPAR) ligand in a PPARgamma-expressing tissue. J Biol Chem 1998; 273:30131-8. [PMID: 9804768 DOI: 10.1074/jbc.273.46.30131] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferation has been associated with carcinogenesis in the liver, and estrogen intake has been associated with increased risk of cancer in the hormone target tissues. Estrogen-induced peroxisome proliferation has been observed in an estrogen target tissue, the uropygial gland in the duck. To elucidate the molecular mechanism of this process, we previously isolated the cDNA of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) from the duck uropygial gland and found that its expression was high exclusively in this tissue of duck. However, the nature of the ligand for PPARgamma1 and how estrogen might enhance PPARgamma1-regulated gene expression were not known. Here we demonstrate that estrogen treatment of animals enhanced the metabolism of arachidonic acid in the uropygial gland. Conversion of prostaglandin D2 to a metabolite was induced by estradiol treatment preceding peroxisome proliferation. High performance liquid chromatography and TLC analyses showed that the metabolite behaved chromatographically similar to prostaglandin J2 and Delta12-prostaglandin J2. Gas chromatography/mass spectrometry revealed a striking similarity of the metabolite to Delta12-prostaglandin J2, the only form among the J2 series whose natural occurrence has been detected. Furthermore, this metabolite was able to activate duck PPARgamma1 to the same extent as the same concentrations of Delta12-prostaglandin J2 and 15-deoxy-Delta12, 14-prostaglandin J2, whereas under the same conditions, prostaglandin D2 was not effective. The results suggest that estrogen treatment induced the formation of a prostaglandin D2 metabolite that activated duck PPARgamma1, causing the induction of peroxisome proliferation in the duck uropygial gland.
Collapse
Affiliation(s)
- H Ma
- Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
1616
|
Affiliation(s)
- B Blumberg
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 USA.
| | | |
Collapse
|
1617
|
Tolón RM, Castillo AI, Aranda A. Activation of the prolactin gene by peroxisome proliferator-activated receptor-alpha appears to be DNA binding-independent. J Biol Chem 1998; 273:26652-61. [PMID: 9756906 DOI: 10.1074/jbc.273.41.26652] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the effects of the peroxisome proliferator-activated receptors (PPARs) have been studied primarily in adipocytes and liver, the wide distribution of these receptors suggests that they might also play a role in other cell types. We present evidence that PPAR activators stimulate the expression of the prolactin gene in pituitary GH4C1 cells. Transfection assays in non-pituitary HeLa cells showed that stimulation of the prolactin promoter by PPARalpha requires the presence of the transcription factor GHF-1 (or Pit-1). Proximal promoter sequences confer responsiveness to PPARalpha, and activation by this receptor is lost concomitantly with the response to GHF-1. Surprisingly, expression of the retinoid X receptor (RXR) abolishes stimulation by PPARalpha. Furthermore, the promoter region that confers PPARalpha responsiveness does not contain a PPAR response element. This suggests that the transcriptional effect of PPARalpha might be mediated by protein-protein interactions rather than by binding of PPAR/RXR to the promoter. A direct interaction between PPARalpha and GHF-1 was confirmed by in vitro binding studies. Expression of the coactivators SRC-1 and CREB-binding protein, which bind to PPAR, also enhanced the responsiveness of the prolactin promoter to PPARalpha. Furthermore, CREB-binding protein also significantly increased activation by GHF-1, and both proteins associated in vitro. Thus, PPARalpha, a receptor that normally acts as a ligand-dependent transcription factor by binding to specific DNA sequences in one context, can also stimulate the prolactin promoter by association with GHF-1 and coactivator proteins.
Collapse
Affiliation(s)
- R M Tolón
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, 28029 Madrid, Spain
| | | | | |
Collapse
|
1618
|
Ebeling P, Koistinen HA, Koivisto VA. Insulin-independent glucose transport regulates insulin sensitivity. FEBS Lett 1998; 436:301-3. [PMID: 9801136 DOI: 10.1016/s0014-5793(98)01149-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glucose transport proteins (GLUT1 and GLUT4) facilitate glucose transport into insulin-sensitive cells. GLUT1 is insulin-independent and is widely distributed in different tissues. GLUT4 is insulin-dependent and is responsible for the majority of glucose transport into muscle and adipose cells in anabolic conditions. We suggest the hypothesis that insulin resistance is dependent on whether glucose is entering through GLUT1 or GLUT4 and on the two functional compartments of glucose 6-phosphate formation within the cell. Glucose entering the muscle cell through GLUT4 and phosphorylated by hexokinase II is mainly directed to glycogen synthesis and glycolysis. If glucose is entering through GLUT1 and phosphorylated by hexokinase I, the glucose 6-phosphate so formed is available for all metabolic pathways, including the hexosamine pathway. Hexosamines have a negative feedback effect on GLUT4, and reduced GLUT4 activity decreases insulin-mediated glucose uptake. Thus, insulin-independent glucose transport through GLUT1 can meet the basal needs of the muscle cell. If glucose entrance through GLUT1 and the activation of the hexosamine pathway is abundant, it can decrease the insulin-mediated glucose transport through GLUT4 leading to insulin resistance.
Collapse
Affiliation(s)
- P Ebeling
- Helsinki University Central Hospital, Department of Medicine, Hyks, Finland
| | | | | |
Collapse
|
1619
|
Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273:25573-80. [PMID: 9748221 DOI: 10.1074/jbc.273.40.25573] [Citation(s) in RCA: 686] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been implicated in metabolic diseases, such as obesity, diabetes, and atherosclerosis, due to their activity in liver and adipose tissue on genes involved in lipid and glucose homeostasis. Here, we show that the PPARalpha and PPARgamma forms are expressed in differentiated human monocyte-derived macrophages, which participate in inflammation control and atherosclerotic plaque formation. Whereas PPARalpha is already present in undifferentiated monocytes, PPARgamma expression is induced upon differentiation into macrophages. Immunocytochemistry analysis demonstrates that PPARalpha resides constitutively in the cytoplasm, whereas PPARgamma is predominantly nuclear localized. Transient transfection experiments indicate that PPARalpha and PPARgamma are transcriptionally active after ligand stimulation. Ligand activation of PPARgamma, but not of PPARalpha, results in apoptosis induction of unactivated differentiated macrophages as measured by the TUNEL assay and the appearance of the active proteolytic subunits of the cell death protease caspase-3. However, both PPARalpha and PPARgamma ligands induce apoptosis of macrophages activated with tumor necrosis factor alpha/interferon gamma. Finally, PPARgamma inhibits the transcriptional activity of the NFkappaB p65/RelA subunit, suggesting that PPAR activators induce macrophage apoptosis by negatively interfering with the anti-apoptotic NFkappaB signaling pathway. These data demonstrate a novel function of PPAR in human macrophages with likely consequences in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- G Chinetti
- U.325 INSERM, Département d'Athérosclérose, Institut Pasteur, 1 Rue Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1620
|
Rotondo D, Davidson J. Lipid metabolism. Curr Opin Lipidol 1998; 9:503-5. [PMID: 9812206 DOI: 10.1097/00041433-199810000-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
1621
|
Zhou G, Cummings R, Li Y, Mitra S, Wilkinson HA, Elbrecht A, Hermes JD, Schaeffer JM, Smith RG, Moller DE. Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol Endocrinol 1998; 12:1594-604. [PMID: 9773982 DOI: 10.1210/mend.12.10.0176] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Ligand-dependent interactions between nuclear receptors and members of a family of nuclear receptor coactivators are associated with transcriptional activation. Here we used fluorescence resonance energy transfer (FRET) as an approach for detecting and quantitating such interactions. Using the ligand binding domain (LBD) of peroxisome proliferator-activated receptor (PPARgamma) as a model, known agonists (thiazolidinediones and delta12, 14-PGJ2) induced a specific interaction resulting in FRET between the fluorescently labeled LBD and fluorescently labeled coactivators [CREB-binding protein (CBP) or steroid receptor coactivator-1 (SRC-1)]. Specific energy transfer was dose dependent; individual ligands displayed distinct potency and maximal FRET profiles that were identical when results obtained using CBP vs. SRC-1 were compared. In addition, half-maximally effective agonist concentrations (EC59s) correlated well with reported results using cell-based assays. A site-directed AF2 mutant of PPARgamma (E471A) that abrogated ligand-stimulated transcription in transfected cells also failed to induce ligand-mediated FRET between PPARgamma LBD and CBP or SRC-1. Using estrogen receptor (ERalpha) as an alternative system, known agonists induced an interaction between ERalpha LBD and SRC-1, whereas ER antagonists disrupted agonist-induced interaction of ERalpha with SRC-1. In the presence of saturating agonist concentrations, unlabeled CBP or SRC-1 was used to compete with fluorescently labeled coactivators with saturation kinetics. Relative affinities for the individual receptor-coactivator pairs were determined as follows: PPARgamma-CBP = ERalpha-SRC-1 > PPARgamma-SRC-1 >> ERalpha-CBP. CONCLUSIONS 1) FRET-based coactivator association is a novel approach for characterizing nuclear receptor agonists or antagonists; individual ligands display potencies that are predictive of in vivo effects and distinct profiles of maximal activity that are suggestive of alternative receptor conformations. 2) PPARgamma interacts with both CBP and SRC-1; transcriptional activation and coactivator association are AF2 dependent. 3) Nuclear receptor LBDs have distinct affinities for individual coactivators; thus, PPARgamma has a greater apparent affinity for CBP than for SRC-1, whereas ERalpha interacts preferentially with SRC-1 but very weakly with CBP.
Collapse
Affiliation(s)
- G Zhou
- Department of Biochemistry and Physiology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1622
|
Ma H, Tam QT, Kolattukudy PE. Peroxisome proliferator-activated receptor gamma1 (PPAR-gamma1) as a major PPAR in a tissue in which estrogen induces peroxisome proliferation. FEBS Lett 1998; 434:394-400. [PMID: 9742961 DOI: 10.1016/s0014-5793(98)01017-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Estradiol administration induces peroxisome proliferation and the production of 3-hydroxy fatty acid pheromones in the uropygial glands of the duck, but not in the goose gland, which does not produce such pheromones. We isolated a peroxisome proliferator-activated receptor (PPAR)gamma1 cDNA from a duck uropygial gland cDNA library. Northern blots revealed two transcripts, PPAR gamma1 and gamma2, and showed that PPAR gamma was expressed at higher levels than PPAR alpha in the uropygial gland of the duck. Although PPAR gamma2 was expressed in both duck and goose uropygial gland, PPAR gamma1 was expressed only in the duck gland, which responds to estrogen by peroxisome proliferation. In NIH 3T3 transfected cells, PPAR gamma1 was activated by peroxisome proliferators such as Wy-14643, clofibric acid and Ly-171883 causing induction of the target marker gene. By cotransfection with a plasmid containing alpha-cis-retinoic acid receptor RXR alpha, the induction increased up to 9-fold. These results suggest that PPAR gamma1 may be involved in peroxisome proliferation while PPAR gamma2 may be involved in lipid metabolism.
Collapse
Affiliation(s)
- H Ma
- The Ohio State University, Neurobiotechnology Center and Department of Biochemistry, Columbus 43210, USA
| | | | | |
Collapse
|
1623
|
Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K, Briggs M, Heyman R, Auwerx J. Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat Med 1998; 4:1053-7. [PMID: 9734399 DOI: 10.1038/2036] [Citation(s) in RCA: 466] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of colorectal cancer, one of the most frequent cancers, is influenced by prostaglandins and fatty acids. Decreased prostaglandin production, seen in mice with mutations in the cyclooxygenase 2 gene or in animals and humans treated with cyclooxygenase inhibitors, prevents or attenuates colon cancer development. There is also a strong correlation between the intake of fatty acids from animal origin and colon cancer. Therefore, the peroxisome proliferator-activated receptor gamma (PPARgamma), a downstream transcriptional mediator for prostaglandins and fatty acids which is highly expressed in the colon may be involved in this process. Activation of PPARgamma by two different synthetic agonists increased the frequency and size of colon tumors in C57BL/6J-APCMin/+ mice, an animal model susceptible to intestinal neoplasia. Tumor frequency was only increased in the colon, and did not change in the small intestine, coinciding with the colon-restricted expression of PPARgamma. Treatment with PPARgamma agonists increased beta-catenin levels both in the colon of C57BL/61-APCMin/+ mice and in HT-29 colon carcinoma cells. Genetic abnormalities in the Wnt/wingless/APC pathway, which enhance the transcriptional activity of the beta-catenin-T-cell factor/lymphoid enhancer factor 1 transcription complex, often underly the development of colon tumors. Our data indicate that PPARgamma activation modifies the development of colon tumors in C57BL/61-APCMin/+ mice.
Collapse
Affiliation(s)
- A M Lefebvre
- LBRE, U.325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1624
|
Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM. Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 1998; 4:1046-52. [PMID: 9734398 DOI: 10.1038/2030] [Citation(s) in RCA: 751] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PPARgamma is a nuclear receptor that has a dominant regulatory role in differentiation of cells of the adipose lineage, and has recently been shown to be expressed in the colon. We show here that PPARgamma is expressed at high levels in both well- and poorly-differentiated adenocarcinomas, in normal colonic mucosa and in human colon cancer cell lines. Ligand activation of this receptor in colon cancer cells causes a considerable reduction in linear and clonogenic growth, increased expression of carcinoembryonic antigen and the reversal of many gene expression events specifically associated with colon cancer. Transplantable tumors derived from human colon cancer cells show a significant reduction of growth when mice are treated with troglitazone, a PPARgamma ligand. These results indicate that the growth and differentiation of colon cancer cells can be modulated through PPARgamma.
Collapse
Affiliation(s)
- P Sarraf
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1625
|
Jain S, Pulikuri S, Zhu Y, Qi C, Kanwar YS, Yeldandi AV, Rao MS, Reddy JK. Differential expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivators steroid receptor coactivator-1 and PPAR-binding protein PBP in the brown fat, urinary bladder, colon, and breast of the mouse. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:349-54. [PMID: 9708794 PMCID: PMC1852994 DOI: 10.1016/s0002-9440(10)65577-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/02/1998] [Indexed: 11/19/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid metabolism and adipocyte differentiation. Steroid receptor coactivator-1 (SRC-1) and PPAR-binding protein (PBP) interact with PPARgamma and act as coactivators to enhance ligand-dependent transcription. We report here that PPARgamma, SRC-1, and PBP are differentially expressed in the brown fat, transitional epithelium of the urinary bladder, colonic mucosa, and mammary epithelium of the adult mouse. PPARgamma and PBP are expressed in the transitional epithelium of urinary bladder and in brown adipose tissue, but not SRC-1. In the colonic mucosa, PPARgamma expression occurs throughout the villi, whereas the expression of both SRC-1 and PBP is confined mostly to the crypts. The expression of both SRC-1 and PBP is prominent in the breast epithelium of nonpregnant, pregnant, and lactating mice, whereas PPARgamma expression appeared prominent during lactation. During early embryonic development, PPARgamma, SRC-1, and PBP are differentially expressed, with only limited cell types displaying overlapping expression. PPARgamma and PBP expression overlapped in the brown fat and urogenital sinus at stage E15.5 of embryogenesis, whereas SRC-1 expression occurred mostly in neuroepithelium and cartilage between stages E9.5 and E13.5 of embryogenesis.
Collapse
Affiliation(s)
- S Jain
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
1626
|
Palmer CN, Wolf CR. cis-parinaric acid is a ligand for the human peroxisome proliferator activated receptor gamma: development of a novel spectrophotometric assay for the discovery of PPARgamma ligands. FEBS Lett 1998; 431:476-80. [PMID: 9714568 DOI: 10.1016/s0014-5793(98)00818-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator activated receptor gamma (PPARgamma) is the subject of intense investigation as a target for drugs against diabetes, atherosclerosis and cancer. For this reason there is considerable interest in the spectrum of compounds that bind this receptor. In this paper we have identified cis-parinaric acid (CPA) as a novel hPPARgamma ligand. The binding of this fatty acid to the receptor increases its fluorescence and causes a shift in the UV spectrum. This spectral shift is reversible by competition with other known ligands for PPARgamma. This report represents the first direct demonstration of a fatty acid binding to PPARgamma.
Collapse
Affiliation(s)
- C N Palmer
- Biomedical Research Centre and ICRF Molecular Pharmacology Unit, Ninewells Hospital and Medical School, University of Dundee, UK.
| | | |
Collapse
|
1627
|
Elstner E, Müller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci U S A 1998; 95:8806-11. [PMID: 9671760 PMCID: PMC21158 DOI: 10.1073/pnas.95.15.8806] [Citation(s) in RCA: 615] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1997] [Accepted: 05/28/1998] [Indexed: 02/08/2023] Open
Abstract
Induction of differentiation and apoptosis in cancer cells through ligands of nuclear hormone receptors (NHRs) is a novel and promising approach to cancer therapy. All-trans-retinoic acid (ATRA), an RA receptor-specific NHR ligand, is now used for selective cancers. The NHR, peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in breast cancer cells. Activation of PPARgamma through a synthetic ligand, troglitazone (TGZ), and other PPARgamma-activators cause inhibition of proliferation and lipid accumulation in cultured breast cancer cells. TGZ (10(-5) M, 4 days) reversibly inhibits clonal growth of MCF7 breast cancer cells and the combination of TGZ (10(-5) M) and ATRA (10(-6) M, 4 days) synergistically and irreversibly inhibits growth and induces apoptosis of MCF7 cells, associated with a dramatic decrease of their bcl-2 protein levels. Similar effects are noted with in vitro cultured breast cancer tissues from patients, but not with normal breast epithelial cells. The observed apoptosis mediated by TGZ and ATRA may be related to the striking down-regulation of bcl-2, because forced over-expression of bcl-2 in MCF7 cells cultured with TGZ and ATRA blocks their cell death. TGZ significantly inhibits MCF7 tumor growth in triple immunodeficient mice. Combined administration of TGZ and ATRA causes prominent apoptosis and fibrosis of these tumors without toxic effects on the mice. Taken together, this combination may provide a novel, nontoxic and selective therapy for human breast cancers.
Collapse
Affiliation(s)
- E Elstner
- Division of Hematology-Oncology, University of California Los Angeles School of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048-0750, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1628
|
Marx N, Sukhova G, Murphy C, Libby P, Plutzky J. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma(PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:17-23. [PMID: 9665460 PMCID: PMC1852950 DOI: 10.1016/s0002-9440(10)65540-x] [Citation(s) in RCA: 412] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/1998] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes play an important role in atherosclerosis and its sequela plaque rupture in part by their secretion of matrix metalloproteinases (MMPs), including MMP-9. Peroxisomal proliferator-activated receptor gamma (PPARgamma), a transcription factor in the nuclear receptor superfamily, regulates gene expression in response to various activators, including 15-deoxy-delta12,14-prostaglandin J2 and the antidiabetic agent troglitazone. The role of PPARgamma in human atherosclerosis is unexplored. We report here that monocytes/macrophages in human atherosclerotic lesions (n = 12) express immunostainable PPARgamma. Normal artery specimens (n = 6) reveal minimal immunoreactive PPARgamma. Human monocytes and monocyte-derived macrophages cultured for 6 days in 5% human serum expressed PPARgamma mRNA and protein by reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, PPARgamma mRNA expression in U937 cells increased during phorbol 12-myristate 13 acetate-induced differentiation. Stimulation of PPARgamma with troglitazone or 15-deoxy-delta12,14-prostaglandin J2 in human monocyte-derived macrophages inhibited MMP-9 gelatinolytic activity in a concentration-dependent fashion as revealed by zymography. This inhibition correlates with decreased MMP-9 secretion as determined by Western blotting. Thus, PPARgamma is present in macrophages in human atherosclerotic lesions and may regulate expression and activity of MMP-9, an enzyme implicated in plaque rupture. PPARgamma is likely to be an important regulator of monocyte/macrophage function with relevance for human atherosclerotic disease.
Collapse
Affiliation(s)
- N Marx
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
1629
|
Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393:790-3. [PMID: 9655393 DOI: 10.1038/31701] [Citation(s) in RCA: 877] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are key players in lipid and glucose metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as dyslipidaemia and diabetes. Whereas PPARgamma promotes lipid storage by regulating adipocyte differentiation, PPARalpha stimulates the beta-oxidative degradation of fatty acids. PPARalpha-deficient mice show a prolonged response to inflammatory stimuli, suggesting that PPARalpha is also a modulator of inflammation. Hypolipidaemic fibrate drugs are PPARalpha ligands that inhibit the progressive formation of atherosclerotic lesions, which involves chronic inflammatory processes, even in the absence of their atherogenic lipoprotein-lowering effect. Here we show that PPARalpha is expressed in human aortic smooth-muscle cells, which participate in plaque formation and post-angioplasty re-stenosis. In these smooth-muscle cells, we find that PPARalpha ligands, and not PPARgamma ligands, inhibit interleukin-1-induced production of interleukin-6 and prostaglandin and expression of cyclooxygenase-2. This inhibition of cyclooxygenase-2 induction occurs transcriptionally as a result of PPARalpha repression of NF-kappaB signalling. In hyperlipidaemic patients, fenofibrate treatment decreases the plasma concentrations of interleukin-6, fibrinogen and C-reactive protein. We conclude that activators of PPARalpha inhibit the inflammatory response of aortic smooth-muscle cells and decrease the concentration of plasma acute-phase proteins, indicating that PPARalpha in the vascular wall may influence the process of atherosclerosis and re-stenosis.
Collapse
MESH Headings
- Acute-Phase Proteins/metabolism
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- COS Cells
- Coronary Disease/blood
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/pharmacology
- Fenofibrate/pharmacology
- Gemfibrozil/pharmacology
- Gene Expression Regulation, Enzymologic
- Humans
- Hyperlipidemias/blood
- Hypolipidemic Agents/pharmacology
- Inflammation/enzymology
- Inflammation/metabolism
- Interleukin-1/metabolism
- Interleukin-6/biosynthesis
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Membrane Proteins
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiology
- NF-kappa B/metabolism
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandins/biosynthesis
- Pyrimidines/pharmacology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/physiology
- Rosiglitazone
- Thiazoles/pharmacology
- Thiazolidinediones
- Transcription Factors/biosynthesis
- Transcription Factors/chemistry
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- B Staels
- U325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1630
|
Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95:7614-9. [PMID: 9636198 PMCID: PMC22700 DOI: 10.1073/pnas.95.13.7614] [Citation(s) in RCA: 550] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARgamma is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARgamma is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARgamma expression in primary macrophages and monocytic cell lines. PPARgamma mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARgamma expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARgamma expression in macrophages. TPA induced the expression of PPARgamma in RAW 264.7 macrophages by increasing transcription from the PPARgamma1 and PPARgamma3 promoters. In concert, these observations provide insights into the regulation of PPARgamma expression in activated macrophages and raise the possibility that PPARgamma ligands may influence the progression of atherosclerosis.
Collapse
Affiliation(s)
- M Ricote
- Division of Cellular and Molecular Medicine, Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1631
|
Abstract
Atherosclerosis is characterized as a chronic inflammatory-fibroproliferative disease of the vessel wall. The attachment of monocytes and T-lymphocytes to the injured endothelium followed by their migration into the intima is one of the first and most crucial steps in lesion development. The co-localization of CD4+ T-cells and macrophages in the lesion, the abundant expression of HLA Class II molecules and the co-stimulatory molecule CD40 and its ligand (CD40L) indicate a contribution of cell-mediated immunity to atherogenesis. Transgenic mouse models revealed that dependent on the model T- and B-cells may promote lesion progression, monocytes and macrophages are in contrast essential for the development of atherosclerotic lesions. Apart from the local process in the vessel wall, systemic signs of an inflammatory reaction are also associated with lesion development. Thus plasma levels of C-reactive protein and fibrinogen and the white blood cell count are positively correlated to the risk of cardiovascular disease. Recently, an inflammatory phenotype of circulating peripheral blood monocytes could be demonstrated as a specific cellular correlate to lipid and lipoprotein risk factors. Thus the pool size of LPS receptor (CD14)dim and Fc gamma IIIa receptor (CD16a)+ monocytes positively correlates to plasma cholesterol levels, to triglycerides levels and to the apolipoprotein E4 (apo E4) phenotype in contrast to a negative correlation to the high density lipoprotein (HDL) cholesterol concentration. This CD14dim CD16a+ monocytes are further characterized by a high expression of beta 1- and beta 2-integrins, suggesting a higher capacity for attachment at sites of inflammation. A proinflammatory cytokine pattern and an expansion of these cells in other inflammatory diseases are indicating that these cells promote the inflammatory process during atherogenesis. Surface expression of the activation antigen CD45RA on monocytes in correlation to plasma LDL cholesterol and Lp(a) levels further indicates an inflammatory reaction. Regarding the potential mechanisms of the phenotypic changes of peripheral blood monocytes, in a serum free in vitro differentiation model supplemented with M-CSF monocytes from probands which are homozygous for apo E4 showed a significantly higher increase of CD16a expression compared to apo E3/E3 cells indicating that a genetic polymorphism of a single apolipoprotein gene locus may affect monocyte differentiation. The further characterization of the cellular immunology of monocytes and T-lymphocytes in lesion development will provide new specific diagnostic and therapeutic targets in atherogenesis.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laborary Medicine, University of Regensburg.
| | | | | |
Collapse
|