1601
|
Actin is required for cellular death. Acta Histochem 2013; 115:775-82. [PMID: 23683404 DOI: 10.1016/j.acthis.2013.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 01/26/2023]
Abstract
Actin is one of the most abundant cytoskeletal proteins, which takes part in many cellular processes. This review provides information on the history, forms and localization of actin and its role, in particular in cellular death processes. We discuss the relationships between reorganization of actin filaments and apoptosis, mitotic catastrophe and differentiation. Finally, we discuss the translocation and accumulation of actin in the nuclear area. Moreover, owing to the difficulties of F-actin localization by transmission electron microscopy (TEM), the phalloidin-based method of its detection using streptavidin-coated quantum dots is presented in this review.
Collapse
|
1602
|
Wei N, Yu S, Gu X, Chen D, Whalin MK, Xu G, Liu X, Wei L. The involvement of autophagy pathway in exaggerated ischemic brain damage in diabetic mice. CNS Neurosci Ther 2013; 19:753-63. [PMID: 23731488 PMCID: PMC6493478 DOI: 10.1111/cns.12123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Patients with Diabetes are at greater risk for ischemic stroke and usually suffer more severe ischemic brain damage than nondiabetic patients. However, the underlying mechanism of the exaggerated injury is not well defined. AIMS Macroautophagy (hereafter called autophagy in this report) plays a key role in cellular homeostasis and may contribute to cell death as well. Our aim was to determine whether autophagy was involved in the enhanced susceptibility of diabetic brain cells to ischemic injury and explore it as a possible target for the treatment of stroke in a diabetic condition. RESULTS A type II diabetic mouse model generated by combined administration of streptozotocin and nicotinamide showed enlarged infarct volume, increased cell death and excessive blood-brain barrier (BBB) disruption compared with nondiabetic stroke mice. After ischemic stroke, both diabetic and nondiabetic mice showed enhanced autophagosome formation and autophagic flux as demonstrated by increased expression of autophagy signals Beclin 1, microtubule-associated protein light-chain II (LC3-II), and decreased autophagy-specific substrate p62. The increased autophagic activity was significantly higher in diabetic stroke mice than that in nondiabetic stroke mice. The autophagy inhibitor 3-methyladenine (3-MA) attenuated the exaggerated brain injury and improved functional recovery. CONCLUSIONS These data suggest that autophagy contributes to exacerbated brain injury in diabetic condition, and autophagy-mediated cell death may be a therapeutic target in diabetic stroke.
Collapse
Affiliation(s)
- Ning Wei
- Department of NeurologyNanjing University School of Medicine, Jinling HospitalNanjingChina
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
| | - Shan‐Ping Yu
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
| | - Xiao‐Huan Gu
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
| | - Dong‐Dong Chen
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
| | - Matthew K. Whalin
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
| | - Ge‐Lin Xu
- Department of NeurologyNanjing University School of Medicine, Jinling HospitalNanjingChina
| | - Xin‐Feng Liu
- Department of NeurologyNanjing University School of Medicine, Jinling HospitalNanjingChina
| | - Ling Wei
- Department of AnesthesiologyEmory University School of MedicineAtlantaGAUSA
- Department of NeurologyEmory University School of MedicineAtlantaGAUSA
| |
Collapse
|
1603
|
Ambjørn M, Ejlerskov P, Liu Y, Lees M, Jäättelä M, Issazadeh-Navikas S. IFNB1/interferon-β-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function. Autophagy 2013; 9:287-302. [PMID: 23221969 PMCID: PMC3590251 DOI: 10.4161/auto.22831] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IFNB1/interferon (IFN)-β belongs to the type I IFNs and exerts potent antiproliferative, proapoptotic, antiangiogenic and immunemodulatory functions. Despite the beneficial effects of IFNB1 in experimental breast cancers, clinical translation has been disappointing, possibly due to induction of survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction of autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide evidence that IFNB1 mediates its antiproliferative effects independent of autophagy, while the proapoptotic function of IFNB1 was strongly enhanced in the absence of autophagy. This suggests that autophagy induced by IFNB1 promoted survival, which might contribute to tumor resistance against IFNB1 treatment. It may therefore be clinically relevant to reconcile a role for IFNB1 in the treatment of breast cancer with concomitant inhibition of autophagy.
Collapse
Affiliation(s)
- Malene Ambjørn
- Biotech Research and Innovation Centre (BRIC ), University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
1604
|
Lasagni L, Lazzeri E, Shankland SJ, Anders HJ, Romagnani P. Podocyte mitosis - a catastrophe. Curr Mol Med 2013; 13:13-23. [PMID: 23176147 PMCID: PMC3624791 DOI: 10.2174/1566524011307010013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022]
Abstract
Podocyte loss plays a key role in the progression of glomerular disorders towards glomerulosclerosis and chronic kidney disease. Podocytes form unique cytoplasmic extensions, foot processes, which attach to the outer surface of the glomerular basement membrane and interdigitate with neighboring podocytes to form the slit diaphragm. Maintaining these sophisticated structural elements requires an intricate actin cytoskeleton. Genetic, mechanic, and immunologic or toxic forms of podocyte injury can cause podocyte loss, which causes glomerular filtration barrier dysfunction, leading to proteinuria. Cell migration and cell division are two processes that require a rearrangement of the actin cytoskeleton; this rearrangement would disrupt the podocyte foot processes, therefore, podocytes have a limited capacity to divide or migrate. Indeed, all cells need to rearrange their actin cytoskeleton to assemble a correct mitotic spindle and to complete mitosis. Podocytes, even when being forced to bypass cell cycle checkpoints to initiate DNA synthesis and chromosome segregation, cannot complete cytokinesis efficiently and thus usually generate aneuploid podocytes. Such aneuploid podocytes rapidly detach and die, a process referred to as mitotic catastrophe. Thus, detached or dead podocytes cannot be adequately replaced by the proliferation of adjacent podocytes. However, even glomerular disorders with severe podocyte injury can undergo regression and remission, suggesting alternative mechanisms to compensate for podocyte loss, such as podocyte hypertrophy or podocyte regeneration from resident renal progenitor cells. Together, mitosis of the terminally differentiated podocyte rather accelerates podocyte loss and therefore glomerulosclerosis. Finding ways to enhance podocyte regeneration from other sources remains a challenge goal to improve the treatment of chronic kidney disease in the future.
Collapse
Affiliation(s)
- L Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Viale Pieraccini 6, 50139, Firenze, Italy.
| | | | | | | | | |
Collapse
|
1605
|
Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:783-92. [PMID: 24055889 DOI: 10.1016/j.bbalip.2013.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
Abstract
Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) "self-eating" is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests that Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, which is referred here as autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidates the roles and mechanisms of action of Cer in controlling autophagy paradox. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Wenhui Jiang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA.
| |
Collapse
|
1606
|
Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis 2013; 4:e804. [PMID: 24052072 PMCID: PMC3789182 DOI: 10.1038/cddis.2013.324] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/19/2022]
Abstract
Many natural compounds derived from plants or microbes show promising potential for anticancer treatment, but few have been found to target energy-relevant regulators. In this study, we report that neoalbaconol (NA), a novel small-molecular compound isolated from the fungus, Albatrellus confluens, could target 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibit its downstream phosphoinositide-3 kinase (PI3-K)/Akt-hexokinase 2 (HK2) pathway, which eventually resulted in energy depletion. By targeting PDK1, NA reduced the consumption of glucose and ATP generation, activated autophagy and caused apoptotic and necroptotic death of cancer cells through independent pathway. Necroptosis was remarkably induced, which was confirmed by several necroptosis-specific markers: the activation of autophagy, presence of necrotic morphology, increase of receptor-interacting protein 1 (RIP1)/RIP3 colocalization and interaction and rescued by necroptosis inhibitor necrostatin-1. The possibility that Akt overexpression reversed the NA-induced energy crisis confirmed the importance of the PDK1-Akt-energy pathway in NA-mediated cell death. Moreover, NA shows the capability to inhibit PI3-K/Akt signaling and suppress tumor growth in the nasopharyngeal carcinoma (NPC) nude mouse model. These results supported the feasibility of NA in anticancer treatments.
Collapse
|
1607
|
Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33:3894-907. [PMID: 24037533 DOI: 10.1038/onc.2013.352] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have raised high expectations for the treatment of multiple malignancies. PARP inhibitors, which can be used as monotherapies or in combination with DNA-damaging agents, are particularly efficient against tumors with defects in DNA repair mechanisms, in particular the homologous recombination pathway, for instance due to BRCA mutations. Thus, deficient DNA repair provides a framework for the success of PARP inhibitors in medical oncology. Here, we review encouraging results obtained in recent clinical trials investigating the safety and efficacy of PARP inhibitors as anticancer agents. We discuss emerging mechanisms of regulation of homologous recombination and how inhibition of DNA repair might be used in cancer therapy. We surmise that the identification of patients that are likely to benefit from PARP inhibition will improve the clinical use of PARP inhibitors in a defined target population. Thus, we will place special emphasis on biomarker discovery.
Collapse
|
1608
|
Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 2013; 4:e802. [PMID: 24030154 PMCID: PMC3789178 DOI: 10.1038/cddis.2013.320] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
Evasion of apoptosis, for example, by inhibitor of apoptosis (IAP) proteins, contributes to treatment resistance and poor outcome in acute myeloid leukemia (AML). Here we identify a novel synergistic interaction between the small-molecule second mitochondria-derived activator of caspases (Smac) mimetic BV6, which antagonizes X-linked IAP, cellular IAP (cIAP)1 and cIAP2, and the demethylating agents 5-azacytidine or 5-aza-2'-deoxycytidine (DAC) to induce cell death in AML cells, including apoptosis-resistant cells. Calculation of combination index (CI) confirms that this drug combination is highly synergistic (CI 0.02-0.4). In contrast, BV6 and DAC at equimolar concentrations do not cause synergistic toxicity against normal peripheral blood lymphocytes, pointing to some tumor cell selectivity. Molecular studies reveal that BV6 and DAC cooperate to trigger the activation of caspases, mitochondrial perturbations and DNA fragmentation, consistent with apoptotic cell death. However, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to protect against BV6/DAC-induced cell death and even significantly increases the percentage of Annexin-V/propidium iodide double-positive cells. Importantly, BV6/DAC-induced cell death in the presence of zVAD.fmk is significantly reduced by pharmacological inhibition of key components of necroptosis signaling, that is, receptor-interacting protein (RIP) 1 using necrostatin-1 or mixed lineage kinase domain-like protein (MLKL) using necrosulfonamide. This indicates a switch from BV6/DAC-induced cell death from apoptosis to necroptosis upon caspase inhibition. Thus, BV6 cooperates with demethylating agents to induce cell death in AML cells and circumvents apoptosis resistance via a switch to necroptosis as an alternative mode of cell death. The identification of a novel synergism of BV6 and demethylating agents has important implications for the development of new treatment strategies for AML.
Collapse
|
1609
|
Abstract
Programmed cell death is a basic cellular process that is critical to maintain tissue homeostasis. Besides apoptosis, necroptosis has more recently been discovered as another form of regulated cell death. Necroptosis plays a pivotal role during normal development and has also been implicated in the pathogenesis of a variety of human diseases. The control of necroptosis by defined signal transduction pathways offers the opportunity to target this cellular process for therapeutic purposes. For example, in cancer necroptosis is often impaired during tumorigenesis and can be engaged by targeted pharmacological approaches. Further insights into the signaling networks involved in the regulation of necroptosis will likely have important implications for the exploitation of this form of programmed cell death for the diagnosis or treatment of many diseases.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics; Goethe-University; Frankfurt, Germany
| |
Collapse
|
1610
|
de Oliveira CB, Comunello LN, Maciel ÉS, Giubel SR, Bruno AN, Chiela ECF, Lenz G, Gnoatto SCB, Buffon A, Gosmann G. The inhibitory effects of phenolic and terpenoid compounds from Baccharis trimera in Siha cells: differences in their activity and mechanism of action. Molecules 2013; 18:11022-32. [PMID: 24022763 PMCID: PMC6270023 DOI: 10.3390/molecules180911022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
Baccharis trimera is used in folk medicine as a tea for digestive and liver diseases. It possesses anti-inflammatory and antioxidant properties that are related to the presence of phenolic compounds. The aim of this work was to investigate the anti-proliferative properties of phenolic (PHE) and terpenoid (SAP) compounds from B. trimera on human cervical cancer. The treatment of SiHa cells with PHE for 24 h suppressed colony formation in a dose-dependent manner, inhibited proliferation and inhibited cell motility. Although SAP inhibited the proliferation of SiHa cells in a dose-dependent manner, it increased colony formation and did not inhibit cell motility. PHE and SAP also promoted a significant increase in lactate dehydrogenase levels in the culture medium in a dose-dependent manner, indicating a loss of cell membrane integrity. Moreover, PHE promoted necrotic cell death, whereas SAP induced apoptosis. These compounds are new anticancer prototypes due their significant anticancer activity demonstrated herein.
Collapse
Affiliation(s)
- Cristiane B. de Oliveira
- Laboratório de Fitoquímica e Síntese Orgânica (LAFIS), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mails: (C.B.O.); (L.N.C.); (É.S.M.); (S.C.B.G.)
- Laboratório de Análises Bioquímicas e Citológicas (LABC), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mail:
| | - Lucimara N. Comunello
- Laboratório de Fitoquímica e Síntese Orgânica (LAFIS), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mails: (C.B.O.); (L.N.C.); (É.S.M.); (S.C.B.G.)
| | - Érica S. Maciel
- Laboratório de Fitoquímica e Síntese Orgânica (LAFIS), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mails: (C.B.O.); (L.N.C.); (É.S.M.); (S.C.B.G.)
| | - Scheron R. Giubel
- Instituto Federal de Educação, Ciência e Tecnologia, Porto Alegre 90030-041, RS, Brazil; E-Mails: (S.R.G.); (A.N.B.)
| | - Alessandra N. Bruno
- Instituto Federal de Educação, Ciência e Tecnologia, Porto Alegre 90030-041, RS, Brazil; E-Mails: (S.R.G.); (A.N.B.)
| | - Eduardo C. F. Chiela
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil; E-Mails: (E.C.F.C.); (G.L.)
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil; E-Mails: (E.C.F.C.); (G.L.)
| | - Simone C. B. Gnoatto
- Laboratório de Fitoquímica e Síntese Orgânica (LAFIS), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mails: (C.B.O.); (L.N.C.); (É.S.M.); (S.C.B.G.)
| | - Andréia Buffon
- Laboratório de Análises Bioquímicas e Citológicas (LABC), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mail:
| | - Grace Gosmann
- Laboratório de Fitoquímica e Síntese Orgânica (LAFIS), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, RS, Brazil; E-Mails: (C.B.O.); (L.N.C.); (É.S.M.); (S.C.B.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-51-3308-5516; Fax: +55-51-3308-5437
| |
Collapse
|
1611
|
Frías González SE, Angeles Anguiano E, Mendoza Herrera A, Escutia Calzada D, Ordaz Pichardo C. Cytotoxic, pro-apoptotic, pro-oxidant, and non-genotoxic activities of a novel copper(II) complex against human cervical cancer. Toxicology 2013; 314:155-65. [PMID: 24012731 DOI: 10.1016/j.tox.2013.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/08/2013] [Accepted: 08/28/2013] [Indexed: 12/19/2022]
Abstract
Cisplatin remains one of the most effective current chemotherapeutic agents; however, metal complexes synthesis has increased in order to produce new anti-neoplastic drugs with DNA binding and apoptotic activities in tumor cells and less toxicity for patients. In this study, we evaluated the cytotoxic activity of a novel copper(II) complex (LQM402) against cervical cancer cell lines and found that LQM402 exhibited selective cytotoxicity against HeLa and Ca Ski cells. FITC-annexin assay and DNA fragmentation indicated that apoptosis could be involved in HeLa cell death. Caspase 3/7 and cytochrome c analysis by immunoblotting suggest the intrinsic pathway. LQM402 is a lipid peroxidation inductor according to TBARS production. Additionally, the Ames and micronucleus tests demonstrated non-genotoxic activity for this compound in Salmonella typhimurium and CD1 mice, respectively. Therefore, LQM402 may be a promising and safe anti-cervical cancer compound.
Collapse
Affiliation(s)
- Susana E Frías González
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía-IPN, Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticoman, D.F. 07320, Mexico
| | | | | | | | | |
Collapse
|
1612
|
Jeong CH, Chun KS, Kundu J, Park B. Phosphorylation of Smac by Akt promotes the caspase-3 activation during etoposide-induced apoptosis in HeLa cells. Mol Carcinog 2013; 54:83-92. [DOI: 10.1002/mc.22075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Chul-Ho Jeong
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| | - Juthika Kundu
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| | - Byoungduck Park
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| |
Collapse
|
1613
|
Liapis H, Romagnani P, Anders HJ. New insights into the pathology of podocyte loss: mitotic catastrophe. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1364-1374. [PMID: 24007883 DOI: 10.1016/j.ajpath.2013.06.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 12/24/2022]
Abstract
Podocytes represent an essential component of the kidney's glomerular filtration barrier. They stay attached to the glomerular basement membrane via integrin interactions that support the capillary wall to withstand the pulsating filtration pressure. Podocyte structure is maintained by a dynamic actin cytoskeleton. Terminal differentiation is coupled with permanent exit from the cell cycle and arrest in a postmitotic state. Postmitotic podocytes do not have an infinite life span; in fact, physiologic loss in the urine is documented. Proteinuria and other injuries accelerate podocyte loss or induce death. Mature podocytes are unable to replicate and maintain their actin cytoskeleton simultaneously. By the end of mitosis, cytoskeletal actin forms part of the contractile ring, rendering a round shape to podocytes. Therefore, when podocyte mitosis is attempted, it may lead to aberrant mitosis (ie, mitotic catastrophe). Mitotic catastrophe implies that mitotic podocytes eventually detach or die; this is a previously unrecognized form of podocyte loss and a compensatory mechanism for podocyte hypertrophy that relies on post-G1-phase cell cycle arrest. In contrast, local podocyte progenitors (parietal epithelial cells) exhibit a simple actin cytoskeleton structure and can easily undergo mitosis, supporting podocyte regeneration. In this review we provide an appraisal of the in situ pathology of mitotic catastrophe compared with other proposed types of podocyte death and put experimental and renal biopsy data in a unified perspective.
Collapse
Affiliation(s)
- Helen Liapis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Internal Medicine (Renal), Washington University School of Medicine, St. Louis, Missouri.
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of de Novo Therapies (DENOTHE), Florence, Italy; Pediatric Nephrology Unit, Meyer Children's Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrology Center, Medical Hospital and Health Center IV, University of Munich Clinical Center-LMU, Campus Innenstadt, Munich, Germany
| |
Collapse
|
1614
|
Comparative transcriptome profiling of an SV40-transformed human fibroblast (MRC5CVI) and its untransformed counterpart (MRC-5) in response to UVB irradiation. PLoS One 2013; 8:e73311. [PMID: 24019915 PMCID: PMC3760899 DOI: 10.1371/journal.pone.0073311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations.
Collapse
|
1615
|
Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends Cell Biol 2013; 24:83-9. [PMID: 24007977 DOI: 10.1016/j.tcb.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Collapse
|
1616
|
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595. [PMID: 24319634 PMCID: PMC3850274 DOI: 10.4161/onci.25595] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U848; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- National Institute of Health; Rome, Italy
| | - Eric Tartour
- INSERM, U970; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
1617
|
Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart — A critical review from definition and classification of cell death. Int J Cardiol 2013; 167:2373-86. [DOI: 10.1016/j.ijcard.2013.01.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/13/2012] [Accepted: 01/13/2013] [Indexed: 12/19/2022]
|
1618
|
Cummins NW, Badley AD. Anti-apoptotic mechanisms of HIV: lessons and novel approaches to curing HIV. Cell Mol Life Sci 2013; 70:3355-63. [PMID: 23275944 PMCID: PMC3753464 DOI: 10.1007/s00018-012-1239-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/18/2012] [Accepted: 12/10/2012] [Indexed: 12/17/2022]
Abstract
Past efforts at curing infection with the human immunodeficiency virus (HIV) have been blocked by the resistance of some infected cells to viral cytopathic effects and the associated development of a latent viral reservoir. Furthermore, current efforts to clear the viral reservoir by means of reactivating latent virus are hampered by the lack of cell death in the newly productively infected cells. The purpose of this review is to describe the many anti-apoptotic mechanisms of HIV, as well as the current limitations in the field. Only by understanding how infected cells avoid HIV-induced cell death can an effective strategy to kill infected cells be developed.
Collapse
Affiliation(s)
- Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
1619
|
Korsnes MS, Espenes A, Hermansen LC, Loader JI, Miles CO. Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin. Toxicol In Vitro 2013; 27:1962-9. [DOI: 10.1016/j.tiv.2013.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
|
1620
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
1621
|
Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 2013; 37:114-40. [PMID: 23994436 DOI: 10.1016/j.preteyeres.2013.08.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 02/08/2023]
Abstract
Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss.
Collapse
Affiliation(s)
- Yusuke Murakami
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
1622
|
Mulay SR, Thomasova D, Ryu M, Kulkarni OP, Migliorini A, Bruns H, Gröbmayr R, Lazzeri E, Lasagni L, Liapis H, Romagnani P, Anders HJ. Podocyte loss involves MDM2-driven mitotic catastrophe. J Pathol 2013; 230:322-35. [PMID: 23749457 DOI: 10.1002/path.4193] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 12/28/2022]
Abstract
Podocyte apoptosis as a pathway of podocyte loss is often suspected but rarely detected. To study podocyte apoptosis versus inflammatory forms of podocyte death in vivo, we targeted murine double minute (MDM)-2 for three reasons. First, MDM2 inhibits p53-dependent apoptosis; second, MDM2 facilitates NF-κB signalling; and third, podocytes show strong MDM2 expression. We hypothesized that blocking MDM2 during glomerular injury may trigger p53-mediated podocyte apoptosis, proteinuria, and glomerulosclerosis. Unexpectedly, MDM2 blockade in early adriamycin nephropathy of Balb/c mice had the opposite effect and reduced intra-renal cytokine and chemokine expression, glomerular macrophage and T-cell counts, and plasma creatinine and blood urea nitrogen levels. In cultured podocytes exposed to adriamycin, MDM2 blockade did not trigger podocyte death but induced G2/M arrest to prevent aberrant nuclear divisions and detachment of dying aneuploid podocytes, a feature of mitotic catastrophe in vitro and in vivo. Consistent with these observations, 12 of 164 consecutive human renal biopsies revealed features of podocyte mitotic catastrophe but only in glomerular disorders with proteinuria. Furthermore, delayed MDM2 blockade reduced plasma creatinine levels, blood urea nitrogen, tubular atrophy, interstitial leukocyte numbers, and cytokine expression as well as interstitial fibrosis. Together, MDM2-mediated mitotic catastrophe is a previously unrecognized variant of podocyte loss where MDM2 forces podocytes to complete the cell cycle, which in the absence of cytokinesis leads to podocyte aneuploidy, mitotic catastrophe, and loss by detachment. MDM2 blockade with nutlin-3a could be a novel therapeutic strategy to prevent renal inflammation, podocyte loss, glomerulosclerosis, proteinuria, and progressive kidney disease.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1623
|
De Saint-Hubert M, Bauwens M, Deckers N, Drummen M, Douma K, Granton P, Hendrikx G, Kusters D, Bucerius J, Reutelingsperger CPM, Mottaghy FM. In Vivo Molecular Imaging of Apoptosisand Necrosis in Atherosclerotic PlaquesUsing MicroSPECT-CT and MicroPET-CT Imaging. Mol Imaging Biol 2013; 16:246-54. [DOI: 10.1007/s11307-013-0677-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
1624
|
Cheun-Arom T, Chanvorachote P, Sirimangkalakitti N, Chuanasa T, Saito N, Abe I, Suwanborirux K. Replacement of a quinone by a 5-O-acetylhydroquinone abolishes the accidental necrosis inducing effect while preserving the apoptosis-inducing effect of renieramycin M on lung cancer cells. JOURNAL OF NATURAL PRODUCTS 2013; 76:1468-1474. [PMID: 23876104 DOI: 10.1021/np400277m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Renieramycin M (1), a bistetrahydroisoquinolinequinone alkaloid isolated from the marine sponge Xestospongia sp., has been reported to possess promising anticancer effects. However, its accidental necrosis inducing effect has limited further development due to concerns of unwanted toxicity. The presence of two quinone moieties in its structure was demonstrated to induce accidental necrosis and increase reactive oxygen species (ROS) levels. Therefore, one quinone of 1 was modified to produce the 5-O-acetylated hydroquinone derivative (2), and 2 dramatically reduced the accidental necrosis inducing effect while preserving the apoptosis-inducing effect of parent 1 on lung cancer H23 cells. Addition of the antioxidant N-acetylcysteine suppressed the accidental necrosis mediated by 1, suggesting that its accidental necrosis inducing effect was ROS-dependent. The fluorescent probe dihydroethidium revealed that the accidental necrosis mediated by 1 was due to its ability to generate intracellular superoxide anions. Interestingly, the remaining quinone in 2 was required for its cytotoxicity, as the 5,8,15,18-O-tetraacetylated bishydroquinone derivative (3) exhibited weak cytotoxicity compared to 1 and 2. The present study demonstrates a simple way to eliminate the undesired accidental necrosis inducing effect of substances that may be developed as improved anticancer drug candidates.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Center of Bioactive Natural Products from Marine Organisms and Endophytic Fungi, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University , Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
1625
|
Chimenti MS, Tucci P, Candi E, Perricone R, Melino G, Willis AE. Metabolic profiling of human CD4+ cells following treatment with methotrexate and anti-TNF-α infliximab. Cell Cycle 2013; 12:3025-36. [PMID: 23974102 PMCID: PMC3875677 DOI: 10.4161/cc.26067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology; Department of Internal Medicine; University of Rome Tor Vergata; Rome, Italy
| | | | | | | | | | | |
Collapse
|
1626
|
Lainey E, Wolfromm A, Sukkurwala AQ, Micol JB, Fenaux P, Galluzzi L, Kepp O, Kroemer G. EGFR inhibitors exacerbate differentiation and cell cycle arrest induced by retinoic acid and vitamin D3 in acute myeloid leukemia cells. Cell Cycle 2013; 12:2978-91. [PMID: 23974111 DOI: 10.4161/cc.26016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-hydroxycholecalciferol, VD). Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38(MAPK)) and SRC family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38(MAPK) or SFKs with specific pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.
Collapse
Affiliation(s)
- Elodie Lainey
- INSERM; U848; Villejuif, France; Gustave Roussy; Villejuif, France; Université Paris Sud/Paris XI; Le Kremlin Bicêtre, France; Hôpital Robert Debré; AP-HP; Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
1627
|
Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ 2013; 20:1532-45. [PMID: 23933817 DOI: 10.1038/cdd.2013.105] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/10/2013] [Accepted: 07/08/2013] [Indexed: 11/08/2022] Open
Abstract
Monopolar spindle 1 (MPS1), a mitotic kinase that is overexpressed in several human cancers, contributes to the alignment of chromosomes to the metaphase plate as well as to the execution of the spindle assembly checkpoint (SAC). Here, we report the identification and functional characterization of three novel inhibitors of MPS1 of two independent structural classes, N-(4-{2-[(2-cyanophenyl)amino][1,2,4]triazolo[1,5-a]pyridin-6-yl}phenyl)-2-phenylacetamide (Mps-BAY1) (a triazolopyridine), N-cyclopropyl-4-{8-[(2-methylpropyl)amino]-6-(quinolin-5-yl)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2a) and N-cyclopropyl-4-{8-(isobutylamino)imidazo[1,2-a]pyrazin-3-yl}benzamide (Mps-BAY2b) (two imidazopyrazines). By selectively inactivating MPS1, these small inhibitors can arrest the proliferation of cancer cells, causing their polyploidization and/or their demise. Cancer cells treated with Mps-BAY1 or Mps-BAY2a manifested multiple signs of mitotic perturbation including inefficient chromosomal congression during metaphase, unscheduled SAC inactivation and severe anaphase defects. Videomicroscopic cell fate profiling of histone 2B-green fluorescent protein-expressing cells revealed the capacity of MPS1 inhibitors to subvert the correct timing of mitosis as they induce a premature anaphase entry in the context of misaligned metaphase plates. Hence, in the presence of MPS1 inhibitors, cells either divided in a bipolar (but often asymmetric) manner or entered one or more rounds of abortive mitoses, generating gross aneuploidy and polyploidy, respectively. In both cases, cells ultimately succumbed to the mitotic catastrophe-induced activation of the mitochondrial pathway of apoptosis. Of note, low doses of MPS1 inhibitors and paclitaxel (a microtubular poison) synergized at increasing the frequency of chromosome misalignments and missegregations in the context of SAC inactivation. This resulted in massive polyploidization followed by the activation of mitotic catastrophe. A synergistic interaction between paclitaxel and MPS1 inhibitors could also be demonstrated in vivo, as the combination of these agents efficiently reduced the growth of tumor xenografts and exerted superior antineoplastic effects compared with either compound employed alone. Altogether, these results suggest that MPS1 inhibitors may exert robust anticancer activity, either as standalone therapeutic interventions or combined with microtubule-targeting chemicals.
Collapse
|
1628
|
Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2013; 40:31-40. [PMID: 23993415 DOI: 10.1016/j.ctrv.2013.07.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/20/2013] [Accepted: 07/29/2013] [Indexed: 12/21/2022]
Abstract
Androgen/androgen receptor (AR) signaling plays pivotal roles in the prostate development and homeostasis as well as in the progression of prostate cancer (PCa). Androgen deprivation therapy (ADT) with anti-androgens remains as the main treatment for later stage PCa, and it has been shown to effectively suppress PCa growth during the first 12-24 months. However, ADT eventually fails and tumors may re-grow and progress into the castration resistant stage. Recent reports revealed that AR might play complicated and even opposite roles in PCa progression that might depend on cell types and tumor stages. Importantly, AR may influence PCa progression via differential modulation of various cell deaths including apoptosis, anoikis, entosis, necrosis, and autophagic cell deaths. Targeting AR may induce PCa cell apoptosis, autophagic cell deaths and programmed necrosis, yet targeting AR may suppress cell deaths via anoikis and entosis that may potentially lead to increased metastasis. These differential functions of AR in various types of PCa cell death might challenge the current ADT with anti-androgens treatment. Further detailed dissection of molecular mechanisms by which AR modulates different PCa cell deaths will help us to develop a better therapy to battle PCa.
Collapse
|
1629
|
p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ 2013; 20:1415-24. [PMID: 23912709 DOI: 10.1038/cdd.2013.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023] Open
Abstract
p73, a member of the p53 tumor suppressor family, is involved in neurogenesis, sensory pathways, immunity, inflammation, and tumorigenesis. How p73 is able to participate in such a broad spectrum of different biological processes is still largely unknown. Here, we report a novel role of p73 in regulating lipid metabolism by direct transactivation of the promoter of autophagy-related protein 5 (ATG5), a gene whose product is required for autophagosome formation. Following nutrient deprivation, the livers of p73-deficient mice demonstrate a massive accumulation of lipid droplets, together with a low level of autophagy, suggesting that triglyceride hydrolysis into fatty acids is blocked owing to deficient autophagy (macrolipophagy). Compared with wild-type mice, mice functionally deficient in all the p73 isoforms exhibit decreased ATG5 expression and lower levels of autophagy in multiple organs. We further show that the TAp73α is the critical p73 isoform responsible for inducing ATG5 expression in a p53-independent manner and demonstrate that ATG5 gene transfer can correct autophagy and macrolipophagy defects in p73-deficient hepatocytes. These data strongly suggest that the p73-ATG5 axis represents a novel, key pathway for regulating lipid metabolism through autophagy. The identification of p73 as a major regulator of autophagy suggests that it may have an important role in preventing or delaying disease and aging by maintaining a homeostatic control.
Collapse
|
1630
|
Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, Galluzzi L, Kroemer G, Zitvogel L. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 2013; 24:311-8. [DOI: 10.1016/j.cytogfr.2013.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
1631
|
Rusyn I, Bataller R. Reply to: "The autophagic response to alcohol toxicity: the missing layer". J Hepatol 2013; 59:399-400. [PMID: 23624250 PMCID: PMC3984836 DOI: 10.1016/j.jhep.2013.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 04/18/2013] [Indexed: 12/04/2022]
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of
North Carolina at Chapel Hill, NC 27599, USA
| | - Ramon Bataller
- Department of Medicine, University of North Carolina at Chapel Hill,
NC 27599, USA,Department of Nutrition, University of North Carolina at Chapel
Hill, NC 27599, USA,Corresponding author: Ramon Bataller, MD, 2209
McGavran-Greenberg, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599, USA, Phone: +1 919 966 4812,
| |
Collapse
|
1632
|
Kim AD, Kang KA, Kim HS, Kim DH, Choi YH, Lee SJ, Kim HS, Hyun JW. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis 2013; 4:e750. [PMID: 23907464 PMCID: PMC3763435 DOI: 10.1038/cddis.2013.273] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/26/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023]
Abstract
Compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol) is an active metabolite of ginsenosides and induces apoptosis in various types of cancer cells. This study investigated the role of autophagy in compound K-induced cell death of human HCT-116 colon cancer cells. Compound K activated an autophagy pathway characterized by the accumulation of vesicles, the increased positive acridine orange-stained cells, the accumulation of LC3-II, and the elevation of autophagic flux. Whereas blockade of compound K-induced autophagy by 3-methyladenein and bafilomycin A1 significantly increased cell viability. In addition, compound K augmented the time-dependent expression of the autophagy-related proteins Atg5, Atg6, and Atg7. However, knockdown of Atg5, Atg6, and Atg7 markedly inhibited the detrimental impact of compound K on LC3-II accumulation and cell vitality. Compound K-provoked autophagy was also linked to the generation of intracellular reactive oxygen species (ROS); both of these processes were mitigated by the pre-treatment of cells with the antioxidant N-acetylcysteine. Moreover, compound K activated the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas downregulation of JNK by its specific inhibitor SP600125 or by small interfering RNA against JNK attenuated autophagy-mediated cell death in response to compound K. Compound K also provoked apoptosis, as evidenced by an increased number of apoptotic bodies and sub-G1 hypodiploid cells, enhanced activation of caspase-3 and caspase-9, and modulation of Bcl-2 and Bcl-2-associated X protein expression. Notably, compound K-stimulated autophagy as well as apoptosis was induced by disrupting the interaction between Atg6 and Bcl-2. Taken together, these results indicate that the induction of autophagy and apoptosis by compound K is mediated through ROS generation and JNK activation in human colon cancer cells.
Collapse
Affiliation(s)
- A D Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Korea
| | - K A Kang
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Korea
| | - H S Kim
- Department of Neuroscience, College of Medicine, Ewha Womans University, Seoul, Korea
| | - D H Kim
- Department of Microbial Chemistry, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Y H Choi
- Department of Biochemistry, College of Oriental Medicine and Research Institute of Oriental Medicine, Dongeui University, Pusan, Korea
| | - S J Lee
- Department of Chemistry, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - H S Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - J W Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju, Korea
| |
Collapse
|
1633
|
Lane DJR, Huang MLH, Ting S, Sivagurunathan S, Richardson DR. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochem J 2013; 453:321-36. [PMID: 23849057 DOI: 10.1042/bj20130079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
FRDA (Friedreich's ataxia) is a debilitating mitochondrial disorder leading to neural and cardiac degeneration, which is caused by a mutation in the frataxin gene that leads to decreased frataxin expression. The most common cause of death in FRDA patients is heart failure, although it is not known how the deficiency in frataxin potentiates the observed cardiomyopathy. The major proposed biochemical mechanisms for disease pathogenesis and the origins of heart failure in FRDA involve metabolic perturbations caused by decreased frataxin expression. Additionally, recent data suggest that low frataxin expression in heart muscle of conditional frataxin knockout mice activates an integrated stress response that contributes to and/or exacerbates cardiac hypertrophy and the loss of cardiomyocytes. The elucidation of these potential mechanisms will lead to a more comprehensive understanding of the pathogenesis of FRDA, and will contribute to the development of better treatments and therapeutics.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building, D06, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
1634
|
Vacchelli E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238. [PMID: 24083080 PMCID: PMC3782517 DOI: 10.4161/onci.25238] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) have long been known for their ability to initiate innate immune responses upon exposure to conserved microbial components such as lipopolysaccharide (LPS) and double-stranded RNA. More recently, this family of pattern recognition receptors has been attributed a critical role in the elicitation of anticancer immune responses, raising interest in the development of immunochemotherapeutic regimens based on natural or synthetic TLR agonists. In spite of such an intense wave of preclinical and clinical investigation, only three TLR agonists are currently licensed by FDA for use in cancer patients: bacillus Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis that operates as a mixed TLR2/TLR4 agonist; monophosphoryl lipid A (MPL), a derivative of Salmonella minnesota that functions as a potent agonist of TLR4; and imiquimod, a synthetic imidazoquinoline that activates TLR7. One year ago, in the August and September issues of OncoImmunology, we described the main biological features of TLRs and discussed the progress of clinical studies evaluating the safety and therapeutic potential of TLR agonists in cancer patients. Here, we summarize the latest developments in this exciting area of research, focusing on preclinical studies that have been published during the last 13 mo and clinical trials launched in the same period to investigate the antineoplastic activity of TLR agonists.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U848; Villejuif, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre; Paris, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platform; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Institut Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|
1635
|
Senovilla L, Galluzzi L, Zitvogel L, Kroemer G. Immunosurveillance as a regulator of tissue homeostasis. Trends Immunol 2013; 34:471-81. [PMID: 23891238 DOI: 10.1016/j.it.2013.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/19/2013] [Accepted: 06/28/2013] [Indexed: 12/19/2022]
Abstract
The immune system is intimately involved in the pathophysiology of several human disorders. Thus, excessive or chronic inflammation initiated by numerous insults exacerbates tissue damage and - at least in some settings - promotes oncogenesis. Nevertheless, immunosurveillance, the process whereby the immune system eliminates damaged, senescent and (pre-)malignant cells, appears to exert major homeostatic functions. Accumulating evidence indicates that defects in the molecular and cellular circuitries that underpin immune responses accelerate the course of chronic diseases, including hepatic cirrhosis and cancer. Along similar lines, the re-establishment of tissue homeostasis upon acute pathological insults such as ischemia appears to be delayed when normal immunological functions are naturally or experimentally compromised. Here, we propose that immunosurveillance is a key regulator of tissue homeostasis.
Collapse
Affiliation(s)
- Laura Senovilla
- INSERM, U848, F-94805 Villejuif, France; INSERM, U1015, F-94805 Villejuif, France; Gustave Roussy, F-94805 Villejuif, France
| | | | | | | |
Collapse
|
1636
|
Apaf1 apoptotic function critically limits Sonic hedgehog signaling during craniofacial development. Cell Death Differ 2013; 20:1510-20. [PMID: 23892366 DOI: 10.1038/cdd.2013.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
Apaf1 is an evolutionarily conserved component of the apoptosome. In mammals, the apoptosome assembles when cytochrome c is released from mitochondria, binding Apaf1 in an ATP-dependent manner and activating caspase 9 to execute apoptosis. Here we identify and characterize a novel mouse mutant, yautja, and find it results from a leucine-to-proline substitution in the winged-helix domain of Apaf1. We show that this allele of Apaf1 is unique, as the yautja mutant Apaf1 protein is stable, yet does not possess apoptotic function in cell culture or in vivo assays. Mutant embryos die perinatally with defects in craniofacial and nervous system development, as well as reduced levels of apoptosis. We further investigated the defects in craniofacial development in the yautja mutation and found altered Sonic hedgehog (Shh) signaling between the prechordal plate and the frontonasal ectoderm, leading to increased mesenchymal proliferation in the face and delayed or absent ossification of the skull base. Taken together, our data highlight the time-sensitive link between Shh signaling and the regulation of apoptosis function in craniofacial development to sculpt the face. We propose that decreased apoptosis in the developing nervous system allows Shh-producing cells to persist and direct a lateral outgrowth of the upper jaw, resulting in the craniofacial defects we see. Finally, the novel yautja Apaf1 allele offers the first in vivo understanding of a stable Apaf1 protein that lacks a function, which should make a useful tool with which to explore the regulation of programmed cell death in mammals.
Collapse
|
1637
|
Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, Vandenabeele P, Bertrand MJM. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ 2013; 20:1381-92. [PMID: 23892367 DOI: 10.1038/cdd.2013.94] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/15/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022] Open
Abstract
Receptor-interacting protein kinase (RIPK) 1 and RIPK3 have emerged as essential kinases mediating a regulated form of necrosis, known as necroptosis, that can be induced by tumor necrosis factor (TNF) signaling. As a consequence, inhibiting RIPK1 kinase activity and repressing RIPK3 expression levels have become commonly used approaches to estimate the contribution of necroptosis to specific phenotypes. Here, we report that RIPK1 kinase activity and RIPK3 also contribute to TNF-induced apoptosis in conditions of cellular inhibitor of apoptosis 1 and 2 (cIAP1/2) depletion or TGF-β-activated kinase 1 (TAK1) kinase inhibition, implying that inhibition of RIPK1 kinase activity or depletion of RIPK3 under cell death conditions is not always a prerequisite to conclude on the involvement of necroptosis. Moreover, we found that, contrary to cIAP1/2 depletion, TAK1 kinase inhibition induces assembly of the cytosolic RIPK1/Fas-associated protein with death domain/caspase-8 apoptotic TNF receptor 1 (TNFR1) complex IIb without affecting the RIPK1 ubiquitylation status at the level of TNFR1 complex I. These results indicate that the recruitment of TAK1 to the ubiquitin (Ub) chains, and not the Ub chains per se, regulates the contribution of RIPK1 to the apoptotic death trigger. In line with this, we found that cylindromatosis repression only provided protection to TNF-mediated RIPK1-dependent apoptosis in condition of reduced RIPK1 ubiquitylation obtained by cIAP1/2 depletion but not upon TAK1 kinase inhibition, again arguing for a role of TAK1 in preventing RIPK1-dependent apoptosis downstream of RIPK1 ubiquitylation. Importantly, we found that this function of TAK1 was independent of its known role in canonical nuclear factor-κB (NF-κB) activation. Our study therefore reports a new function of TAK1 in regulating an early NF-κB-independent cell death checkpoint in the TNFR1 apoptotic pathway. In both TNF-induced RIPK1 kinase-dependent apoptotic models, we found that RIPK3 contributes to full caspase-8 activation independently of its kinase activity or intact RHIM domain. In contrast, RIPK3 participates in caspase-8 activation by acting downstream of the cytosolic death complex assembly, possibly via reactive oxygen species generation.
Collapse
Affiliation(s)
- Y Dondelinger
- Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, Zwijnaarde-Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1638
|
Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 2013; 305:F1064-73. [PMID: 23884141 DOI: 10.1152/ajprenal.00178.2013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) can repair acute kidney injury (AKI), but with limited effect. We test the hypothesis that CXCR4 overexpression improves the repair ability of BMSCs and that this is related to increased homing of BMSCs and increased release of cytokines. Hypoxia/reoxygenation-pretreated renal tubular epithelial cells (HR-RTECs) were used. BMSCs, null-BMSCs, and CXCR4-BMSCs were cocultured with HR-RTECs. The number of migrating BMSCs was counted. Proliferating cell nuclear antigen (PCNA) expression, cell death, and expressions of cleaved caspase-3 and Bcl-2 in cocultured HR-RTECs were measured. Cytokeratin 18 (CK18) expression and cytokine secretions of the BMSCs cultured with HR-RTEC supernatant were detected. BMSC homing, renal function, proliferation, and cell death of tubular cells were assayed in the AKI mouse model. CXCR4-BMSCs showed a remarkable expression of CXCR4. Stromal cell-derived factor-1 in the HR-RTEC supernatant was increased. Migration of BMSCs was CXCR4-dependent. Proportions of CK18(+) cells in BMSCs, null-BMSCs, and CXCR4-BMSCs showed no difference. However, CXCR4 overexpression in BMSCs stimulated secretion of bone morphogenetic protein-7, hepatocyte growth factor, and interleukin 10. The neutralizing anti-CXCR4 antibody AMD3100 abolished this. In cocultured HR-RTECs the proportions of PCNA(+) cells and Bcl-2 expression were enhanced; however, the proportion of annexin V(+) cells and expression of cleaved caspase-3 were reduced. The in vivo study showed increased homing of CXCR4-BMSCs in kidneys, which was associated with improved renal function, reduced acute tubular necrosis scoring, accelerated mitogenic response of tubular cells, and reduced tubular cell death. The enhanced homing and paracrine actions of BMSCs with CXCR4 overexpression suggest beneficial effects of such cells in BMSC-based therapy for AKI.
Collapse
Affiliation(s)
- Nanmei Liu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
1639
|
Itoh T, Tsuzuki R, Tanaka T, Ninomiya M, Yamaguchi Y, Takenaka H, Ando M, Tsukamasa Y, Koketsu M. Reduced scytonemin isolated from Nostoc commune induces autophagic cell death in human T-lymphoid cell line Jurkat cells. Food Chem Toxicol 2013; 60:76-82. [PMID: 23876822 DOI: 10.1016/j.fct.2013.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
Abstract
Nostoc commune is a terrestrial benthic blue-green alga that often forms an extended mucilaginous layer on the soil, accumulates on stones and mud in aquatic environments. Reduced-scytonemin (R-scy), isolated from N. commune Vaucher, has been shown to suppress the human T-lymphoid Jurkat cell growth. To reveal the mechanisms underlying the R-scy-mediated inhibition of Jurkat cell growth, we examined cell morphology, DNA fragmentation, and microtubule-associated protein light chain 3 (LC3) modification in these cells. We observed multiple vacuoles as well as the conversion of LC3-I to LC3-II in R-scy-treated cells. These results suggest that the R-scy induced Jurkat cell growth inhibition is attributable to the induction of type II programmed cell death (PCD II; autophagic cell death or autophagy). We further examined the mechanisms underlying R-scy-induced PCDII. The cells treated with R-scy produced large amounts of reactive oxygen species (ROS), leading to the induction of mitochondrial dysfunction. However, the elimination of R-scy-induced ROS by treatment with N-acetyl-L-cysteine (NAC) markedly opposed R-scy-induced PCDII. Based on these results, we conclude that ROS formation plays a critical role in R-scy-induced PCDII.
Collapse
Affiliation(s)
- Tomohiro Itoh
- Laboratory of Aquatic Food Science, Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1640
|
Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2013; 110:12024-9. [PMID: 23818611 PMCID: PMC3718149 DOI: 10.1073/pnas.1305538110] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.
Collapse
Affiliation(s)
| | - Jan Hinrich Bräsen
- Institute for Pathology, Christian-Albrechts-University, 24105 Kiel, Germany
- Pathology Hamburg-West, Institute for Diagnostic Histopathology and Cytopathology, 22767 Hamburg, Germany
| | - Maurice Darding
- Cell Death and Inflammation Laboratory, Centre for Cell Death, Cancer and Inflammation, University College London Cancer Institute, London WC1E 6BT, United Kingdom
| | | | - Ana B. Sanz
- El Instituto de Investigación Sanitaria de la Fundacion Jimenez Diaz, Redinren, Fundación Renal Íñigo Álvarez de Toledo, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Ricardo Weinlich
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678; and
| | - Alberto Ortiz
- El Instituto de Investigación Sanitaria de la Fundacion Jimenez Diaz, Redinren, Fundación Renal Íñigo Álvarez de Toledo, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Henning Walczak
- Cell Death and Inflammation Laboratory, Centre for Cell Death, Cancer and Inflammation, University College London Cancer Institute, London WC1E 6BT, United Kingdom
| | - Joel M. Weinberg
- Division for Nephrology, University of Michigan Medical Center, Ann Arbor, MI 48109-5676
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678; and
| | | | | |
Collapse
|
1641
|
Spaggiari S, Kepp O, Rello-Varona S, Chaba K, Adjemian S, Pype J, Galluzzi L, Lemaire M, Kroemer G. Antiapoptotic activity of argon and xenon. Cell Cycle 2013; 12:2636-42. [PMID: 23907115 PMCID: PMC3865053 DOI: 10.4161/cc.25650] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.
Collapse
|
1642
|
Baxter RC. Insulin-like growth factor binding protein-3 (IGFBP-3): Novel ligands mediate unexpected functions. J Cell Commun Signal 2013; 7:179-89. [PMID: 23700234 DOI: 10.1007/s12079-013-0203-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In addition to its important role in the regulation of somatic growth by acting as the major circulating transport protein for the insulin-like growth factors (IGFs), IGF binding protein-3 (IGFBP-3) has a variety of intracellular ligands that point to its function within major signaling pathways. The discovery of its interaction with the retinoid X receptor has led to the elucidation of roles in regulating the function of several nuclear hormone receptors including retinoic acid receptor-α, Nur77 and vitamin D receptor. Its interaction with the nuclear hormone receptor peroxisome proliferator-activated receptor-γ is believed to be involved in regulating adipocyte differentiation, which is also modulated by IGFBP-3 through an interaction with TGFβ/Smad signaling. IGFBP-3 can induce apoptosis alone or in conjunction with other agents, and in different systems can activate caspases -8 and -9. At least two unrelated proteins (LRP1 and TMEM219) have been designated as receptors for IGFBP-3, the latter with a demonstrated role in inducing caspase-8-dependent apoptosis. In contrast, IGFBP-3 also has demonstrated roles in survival-related functions, including the repair of DNA double-strand breaks through interaction with the epidermal growth factor receptor and DNA-dependent protein kinase, and the induction of autophagy through interaction with GRP78. The ability of IGFBP-3 to modulate the balance between pro-apoptotic and pro-survival sphingolipids by regulating sphingosine kinase 1 and sphingomyelinases may be integral to its role at the crossroads between cell death and survival in response to a variety of stimuli. The pleiotropic nature of IGFBP-3 activity supports the idea that IGFBP-3 itself, or pathways with which it interacts, should be investigated as targets of therapy for a variety of diseases.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Level 8, Kolling Building, St Leonards, NSW, 2065, Australia,
| |
Collapse
|
1643
|
Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ 2013; 21:79-91. [PMID: 23852373 DOI: 10.1038/cdd.2013.75] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022] Open
Abstract
The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy.
Collapse
|
1644
|
Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. BIOCHEMISTRY (MOSCOW) 2013; 77:1436-51. [PMID: 23379520 DOI: 10.1134/s0006297912130032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Endonucleases are the main instruments of obligatory DNA degradation in apoptosis. Many endonucleases have marked processive action; initially they split DNA in chromatin into very large domains, and then they perform in it internucleosomal fragmentation of DNA followed by its hydrolysis to small fragments (oligonucleotides). During apoptosis, DNA of chromatin is attacked by many nucleases that are different in activity, specificity, and order of action. The activity of every endonuclease is regulated in the cell through its own regulatory mechanism (metal ions and other effectors, possibly also S-adenosylmethionine). Apoptosis is impossible without endonucleases as far as it leads to accumulation of unnecessary (defective) DNA, disorders in cell differentiation, embryogenesis, the organism's development, and is accompanied by various severe diseases. The interpretation of the structure and functions of endonucleases and of the nature and action of their modulating effectors is important not only for elucidation of mechanisms of apoptosis, but also for regulation and control of programmed cell death, cell differentiation, and development of organisms.
Collapse
Affiliation(s)
- N I Aleksandrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
1645
|
Giovinazzi S, Bellapu D, Morozov VM, Ishov AM. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy. Cell Cycle 2013; 12:2598-607. [PMID: 23907120 DOI: 10.4161/cc.25591] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.
Collapse
Affiliation(s)
- Serena Giovinazzi
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | |
Collapse
|
1646
|
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 2013; 14:32. [PMID: 23834359 PMCID: PMC3710246 DOI: 10.1186/1471-2121-14-32] [Citation(s) in RCA: 903] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/17/2013] [Indexed: 12/15/2022] Open
Abstract
Background Apoptosis is a form of programmed cell death that is regulated by the Bcl-2 family and caspase family of proteins. The caspase cascade responsible for executing cell death following cytochrome c release is well described; however the distinct roles of caspases-9, -3 and -7 during this process are not completely defined. Results Here we demonstrate several unique functions for each of these caspases during cell death. Specific inhibition of caspase-9 allows for efficient release of cytochrome c, but blocks changes in mitochondrial morphology and ROS production. We show that caspase-9 can cleave Bid into tBid at amino acid 59 and that this cleavage of Bid is required for ROS production following serum withdrawal. We also demonstrate that caspase-3-deficient MEFs are less sensitive to intrinsic cell death stimulation, yet have higher ROS production. In contrast, caspase-7-deficient MEFs are not resistance to intrinsic cell death, but remain attached to the ECM. Conclusions Taken together, these data suggest that caspase-9 is required for mitochondrial morphological changes and ROS production by cleaving and activating Bid into tBid. After activation by caspase-9, caspase-3 inhibits ROS production and is required for efficient execution of apoptosis, while effector caspase-7 is required for apoptotic cell detachment.
Collapse
Affiliation(s)
- Matthew Brentnall
- Departments of Hematology and Medical Oncology and Cell Biology, Winship Cancer Institute of Emory University, 1365 Clifton Road NE Bldg:C, Rm:4012, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
1647
|
Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, Yang Z, Wu SQ, Chen L, Han J. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 2013; 23:994-1006. [PMID: 23835476 PMCID: PMC3731568 DOI: 10.1038/cr.2013.91] [Citation(s) in RCA: 468] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/07/2013] [Accepted: 05/27/2013] [Indexed: 11/09/2022] Open
Abstract
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Collapse
Affiliation(s)
- Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1648
|
Calvo-Castro L, Syed DN, Chamcheu JC, Vilela FMP, Pérez AM, Vaillant F, Rojas M, Mukhtar H. Protective effect of tropical highland blackberry juice (Rubus adenotrichos Schltdl.) against UVB-mediated damage in human epidermal keratinocytes and in a reconstituted skin equivalent model. Photochem Photobiol 2013; 89:1199-207. [PMID: 23711186 DOI: 10.1111/php.12104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/17/2013] [Indexed: 01/12/2023]
Abstract
Solar ultraviolet (UV) radiation, particularly its UVB (280-320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm(-2))-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage.
Collapse
Affiliation(s)
- Laura Calvo-Castro
- Centro de Investigación en Biotecnología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica; Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | | | | | | | |
Collapse
|
1649
|
Linkermann A, De Zen F, Weinberg J, Kunzendorf U, Krautwald S. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant 2013; 27:3412-9. [PMID: 22942173 DOI: 10.1093/ndt/gfs373] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Programmed cell death (PCD) had been widely used synonymously to caspase-mediated apoptosis until caspase-independent cell death was described. Identification of necrosis as a regulated process in ischaemic conditions has recently changed our understanding of PCD. At least three pathways of programmed necrosis (PN) have been identified. First, receptor-interacting protein kinase 3 (RIP3)-dependent necroptosis causes organ failure following stroke, myocardial infarction and renal ischaemia/reperfusion injury. Necroptosis can be mediated either by a large intracellular caspase-8-containing signalling complex called the ripoptosome or by the RIP1-/RIP3-containing necroptosome and is controlled by a caspase-8/FLICE inhibitory protein(long) heterodimer at least in the latter case. Second, mitochondrial permeability transition mediates apoptotic or necrotic stimuli and depends on the mitochondrial protein cyclophilin D. The third PN pathway involves the poly(ADP-ribose) polymerase-calpain axis that contributes to acute kidney injury (AKI). Preclinical interference with the PN pathways therefore raises expectations for the future treatment of ischaemic conditions. In this brief review, we aim to summarize the clinically relevant PCD pathways and to transfer the basic science data to settings of AKI. We conclude that pathologists were quite right to refer to ischaemic kidney injury as 'acute tubular necrosis'.
Collapse
|
1650
|
Linkermann A, Heller JO, Prókai A, Weinberg JM, De Zen F, Himmerkus N, Szabó AJ, Bräsen JH, Kunzendorf U, Krautwald S. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol 2013; 24:1545-57. [PMID: 23833261 DOI: 10.1681/asn.2012121169] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of contrast-induced AKI (CIAKI) is incompletely understood due to the lack of an appropriate in vivo model that demonstrates reduced kidney function before administration of radiocontrast media (RCM). Here, we examine the effects of CIAKI in vitro and introduce a murine ischemia/reperfusion injury (IRI)-based approach that allows induction of CIAKI by a single intravenous application of standard RCM after injury for in vivo studies. Whereas murine renal tubular cells and freshly isolated renal tubules rapidly absorbed RCM, plasma membrane integrity and cell viability remained preserved in vitro and ex vivo, indicating that RCM do not induce apoptosis or regulated necrosis of renal tubular cells. In vivo, the IRI-based CIAKI model exhibited typical features of clinical CIAKI, including RCM-induced osmotic nephrosis and increased serum levels of urea and creatinine that were not altered by inhibition of apoptosis. Direct evaluation of renal morphology by intravital microscopy revealed dilation of renal tubules and peritubular capillaries within 20 minutes of RCM application in uninjured mice and similar, but less dramatic, responses after IRI pretreatment. Necrostatin-1 (Nec-1), a specific inhibitor of the receptor-interacting protein 1 (RIP1) kinase domain, prevented osmotic nephrosis and CIAKI, whereas an inactive Nec-1 derivate (Nec-1i) or the pan-caspase inhibitor zVAD did not. In addition, Nec-1 prevented RCM-induced dilation of peritubular capillaries, suggesting a novel role unrelated to cell death for the RIP1 kinase domain in the regulation of microvascular hemodynamics and pathophysiology of CIAKI.
Collapse
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|