1701
|
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 2002; 19:801-14. [PMID: 12032236 DOI: 10.1093/oxfordjournals.molbev.a004137] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Characterization of seven MADS-box genes, termed PPM1-PPM4 and PpMADS1-PpMADS3, from the moss model species Physcomitrella patens is reported. Phylogeny reconstructions and comparison of exon-intron structures revealed that the genes described here represent two different classes of homologous, yet distinct, MIKC-type MADS-box genes, termed MIKC(c)-type genes-"(c)" stands for "classic"-(PPM1, PPM2, PpMADS1) and MIKC(*)-type genes (PPM3, PPM4, PpMADS2, PpMADS3). The two gene classes deviate from each other in a characteristic way, especially in a sequence stretch termed intervening region. MIKC(c)-type genes are abundantly present in all land plants which have been investigated in this respect, and give rise to well-known gene types such as floral meristem and organ identity genes. In contrast, LAMB1 from the clubmoss Lycopodium annotinum was identified as the only other MIKC(*)-type gene published so far. Our findings strongly suggest that the most recent common ancestor of mosses and vascular plants contained at least one MIKC(c)-type and one MIKC(*)-type gene. Our studies thus reveal an ancient duplication of an MIKC-type gene that occurred before the separation of the lineages that led to extant mosses and vascular plants more than about 450 MYA. The identification of bona fide K-domains in both MIKC(*)-type and MIKC(c)-type proteins suggests that the K-domain is more ancient than is suggested by a recent alternative hypothesis. MIKC(*)-type genes may have escaped identification in ferns and seed plants so far. It seems more likely, however, that they represent a class of genes which has been lost in the lineage which led to extant ferns and seed plants. The high number of P. patens MADS-box genes and the presence of a K-box in the coding region and of some potential binding sites for MADS-domain proteins and other transcription factors in the putative promoter regions of these genes suggest that MADS-box genes in mosses are involved in complex gene regulatory networks similar to those in flowering plants.
Collapse
Affiliation(s)
- Katrin Henschel
- Department of Molecular Plant Genetics, Max Planck Institute for Breeding Research, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
1702
|
Maouyo D, Kim JY, Lee SD, Wu Y, Woo SK, Kwon HM. Mouse TonEBP-NFAT5: expression in early development and alternative splicing. Am J Physiol Renal Physiol 2002; 282:F802-9. [PMID: 11934689 DOI: 10.1152/ajprenal.00123.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tonicity-responsive enhancer binding protein (TonEBP)- nuclear factor of activated T cell family 5 is a DNA binding protein that plays a key role in the response of cells to hypertonicity. However, TonEBP is expressed and active in tissues that are in an isotonic milieu. To explore the biological role of TonEBP, we cloned mouse TonEBP that shares 92% of amino acids with the human counterpart. TonEBP is expressed in embryonic stem cells and throughout the stages of fetal development. Immunohistochemical analysis shows expression of TonEBP in most, if not all, developing tissues, including the brain, colon, heart, muscle, and eyes. Widespread alternative splicing in exons 2-4 was detected throughout development and in different adult tissues. As a result, four different polypeptides are produced with different lengths at the NH(2) terminus. Two of the isoforms differ in their ability to stimulate transcription. In conclusion, the presence of TonEBP mRNA during mouse embryogenesis suggests that TonEBP functions at all stages of mouse development, as well as in isotonic adult tissues.
Collapse
Affiliation(s)
- Djikolngar Maouyo
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
1703
|
Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 2002; 16:1139-49. [PMID: 12000796 PMCID: PMC186251 DOI: 10.1101/gad.222702] [Citation(s) in RCA: 444] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Accepted: 03/05/2002] [Indexed: 11/24/2022]
Abstract
In Arabidopsis, WRKY factors comprise a large gene family of plant-specific transcriptional regulators controlling several types of plant stress responses. To understand the regulatory role of WRKY proteins during such processes, we identified targets of the senescence- and defense-associated WRKY6 factor. WRKY6 was found to suppress its own promoter activity as well as that of a closely related WRKY family member, indicating negative autoregulation. On the other hand, WRKY6 positively influenced the senescence- and pathogen defense-associated PR1 promoter activity, most likely involving NPR1 function. One novel identified target gene, SIRK, encodes a receptor-like protein kinase, whose developmental expression is strongly induced specifically during leaf senescence. The transcriptional activation of SIRK is dependent on WRKY6 function. Senescing leaves of wrky6 knockout mutants showed a drastic reduction, and green leaves of WRKY6 overexpression lines showed clearly elevated SIRK transcript levels. Furthermore, the SIRK gene promoter was specifically activated by WRKY6 in vivo, functioning very likely through direct W-box interactions.
Collapse
Affiliation(s)
- Silke Robatzek
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, 50829 Köln, Germany
| | | |
Collapse
|
1704
|
Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:337-48. [PMID: 12000681 DOI: 10.1046/j.1365-313x.2002.01294.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The TCP domain is a plant-specific DNA binding domain found in proteins from a diverse array of species, including the cycloidea (cyc) and teosinte branched1 (tb1) gene products and the PCF1 and PCF2 proteins. To understand the role in transcriptional regulation of proteins with this domain, we have analysed the DNA binding and dimerization specificity of the TCP protein family using rice PCF proteins, and further evaluated potential targets for the TCP protein. The seven PCF members including five newly isolated proteins, were able to be grouped into two classes, I and II, based on sequence similarity in the TCP domain. Random binding site selection experiments and electrophoretic mobility shift assays (EMSAs) revealed the consensus DNA binding sequences of these two classes to be distinct but overlapping; GGNCCCAC for class I and GTGGNCCC for class II. The TB1 protein from maize, which belongs to class II, had the same specificity as the rice class II proteins, suggesting the conservation of binding specificity between TCP domains from different species. The yeast 2-hybrid assay and EMSA revealed that these proteins tend to form a homodimer or a heterodimer between members of the same class. We searched predicted 5' flanking sequences of Arabidopsis genes for the consensus binding sequences and found that the consensus sites are distributed in the genome at a considerably lower frequency. We further analysed eight promoters containing the class I consensus TCP sites. The transcriptional activities of six promoters were decreased by a mutation of the TCP binding site, which is consistent with the observation that the class I TCP site can confer transactivation function on a heterologous promoter. These results suggest that the two classes of TCP protein are distinct in DNA binding specificity and transcriptional regulation.
Collapse
Affiliation(s)
- Shunichi Kosugi
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | |
Collapse
|
1705
|
Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 2002; 19:587-96. [PMID: 11961093 DOI: 10.1093/oxfordjournals.molbev.a004118] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The class B floral homeotic genes from the higher eudicot model systems Arabidopsis and Antirrhinum are involved in specifying the identity of petals and stamens during flower development. These genes exist in two different types termed DEF- and GLO-like genes. The proteins encoded by the class B genes are stable and functional in the cell only as heterodimeric complexes of a DEF- and a GLO-like protein. In line with this, heterodimerization is obligate for DNA binding in vitro. The genes whose products have to heterodimerize to be stable and functional are each other's closest relatives within their genomes. This suggests that the respective genes originated by gene duplication, and that heterodimerization is of relative recent origin and evolved from homodimerization. To test this hypothesis we have investigated the dimerization behavior of putative B proteins from phylogenetic informative taxa, employing electrophoretic mobility shift assays and the yeast two-hybrid system. We find that an ancestral B protein from the gymnosperm Gnetum gnemon binds DNA in a sequence-specific manner as a homodimer. Of the two types of B proteins from the monocot Lilium regale, the GLO-like protein is still able to homodimerize, whereas the DEF-like protein binds to DNA only as a heterodimeric complex with the GLO-like protein. These data suggest that heterodimerization evolved in two steps after a gene duplication that gave rise to DEF- and GLO-like genes. Heterodimerization may have originated after the gymnosperm-angiosperm split about 300 MYA but before the monocot-eudicot split 140-200 MYA. Heterodimerization may have become obligate for both types of flowering plant B proteins in the eudicot lineage after the monocot-eudicot split.
Collapse
Affiliation(s)
- Kai-Uwe Winter
- Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1706
|
Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K. Functional annotation of a full-length Arabidopsis cDNA collection. Science 2002; 296:141-5. [PMID: 11910074 DOI: 10.1126/science.1071006] [Citation(s) in RCA: 462] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Full-length complementary DNAs (cDNAs) are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We isolated 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones. The 3'-end expressed sequence tags (ESTs) of 155,144 RAFL cDNAs were clustered into 14,668 nonredundant cDNA groups, about 60% of predicted genes. We also obtained 5' ESTs from 14,034 nonredundant cDNA groups and constructed a promoter database. The sequence database of the RAFL cDNAs is useful for promoter analysis and correct annotation of predicted transcription units and gene products. Furthermore, the full-length cDNAs are useful resources for analyses of the expression profiles, functions, and structures of plant proteins.
Collapse
Affiliation(s)
- Motoaki Seki
- Plant Mutation Exploration Team, Plant Functional Genomics Research Group, RIKEN Genomic Sciences Center (GSC), 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1707
|
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002; 296:92-100. [PMID: 11935018 DOI: 10.1126/science.1068275] [Citation(s) in RCA: 1863] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The genome of the japonica subspecies of rice, an important cereal and model monocot, was sequenced and assembled by whole-genome shotgun sequencing. The assembled sequence covers 93% of the 420-megabase genome. Gene predictions on the assembled sequence suggest that the genome contains 32,000 to 50,000 genes. Homologs of 98% of the known maize, wheat, and barley proteins are found in rice. Synteny and gene homology between rice and the other cereal genomes are extensive, whereas synteny with Arabidopsis is limited. Assignment of candidate rice orthologs to Arabidopsis genes is possible in many cases. The rice genome sequence provides a foundation for the improvement of cereals, our most important crops.
Collapse
Affiliation(s)
- Stephen A Goff
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1708
|
Riechmann JL. Transcriptional regulation: a genomic overview. THE ARABIDOPSIS BOOK 2002; 1:e0085. [PMID: 22303220 PMCID: PMC3243377 DOI: 10.1199/tab.0085] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription.
Collapse
Affiliation(s)
- José Luis Riechmann
- Mendel Biotechnology, 21375 Cabot Blvd., Hayward, CA 94545, USA
- California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
| |
Collapse
|
1709
|
Hao D, Yamasaki K, Sarai A, Ohme-Takagi M. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 2002; 41:4202-8. [PMID: 11914065 DOI: 10.1021/bi015979v] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arabidopsis ERF proteins such as DREB1, DREB2, and CBF1 bind to the dehydration-responsive element (DRE), which has the sequence TACCGACAT. Mutation analyses reveal that a central 5 bp CCGAC core of the DRE is the minimal sequence motif (designated as the DRE motif in this paper), to which the ERF domain fragment of CBF1 (CBF1-F) binds specifically with a binding K(d) at the nanomolar level. In contrast, the ERF domain fragment of the tobacco ERF2 (NtERF2-F) does not interact with the DRE motif, but restrictedly recognizes the sequence containing a minimal 6 bp GCCGCC motif (designated as the GCC motif in this paper). However, CBF1-F binds to the GCC motif with a binding activity similar to its binding activity for the DRE motif. These in vitro binding variations were further demonstrated through reporter cotransformation assays, suggesting that the DRE and GCC motifs are two similar sequence motifs sharing a common core region of CCGNC with a discriminating guanine base at the 5'-end of the GCC motif. Binding analyses with the mutated ERF domain show that such a unique binding of NtERF2-F to the GCC motif can be altered by the substitution of A14 with valine in beta-strand 2 of its ERF domain, the mutant NtERF2-F, ERFav, acquiring a binding to the DRE motif with a K(d) comparable to that for CBF1-F binding to the DRE motif. This demonstrates that A14 is an important determinant of the NtERF2-F binding specificity. A possible mechanism of the binding specificity determination is discussed.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence
- DNA Mutational Analysis
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Genes, Plant
- Genes, Reporter
- Kinetics
- Membrane Proteins/chemistry
- Membrane Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Neoplasm Proteins
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Amino Acid
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription, Genetic
- Valine/chemistry
Collapse
Affiliation(s)
- Dongyun Hao
- Gene Discovery Research Centre, National Institute of Advanced Industrial Science & Technology (AIST), Central 6, Tsukuba 305-8566, Japan
| | | | | | | |
Collapse
|
1710
|
Oñate-Sánchez L, Singh KB. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. PLANT PHYSIOLOGY 2002; 128:1313-22. [PMID: 11950980 PMCID: PMC154259 DOI: 10.1104/pp.010862] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Revised: 10/25/2001] [Accepted: 01/02/2002] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive element binding factors (ERF) proteins are plant-specific transcription factors, many of which have been linked to stress responses. We have identified four Arabidopsis ERF genes whose expression was specifically induced by avirulent and virulent strains of the bacterial pathogen Pseudomonas syringae pv tomato, with overlapping but distinct induction kinetics. However, a delay in ERF mRNA accumulation after infection with the virulent strain was observed when compared with the avirulent strain. The induction of ERF gene expression in most cases preceded the mRNA accumulation of a basic chitinase gene, a potential downstream target for one or more of these ERFs. The expression of the ERF genes was examined among different Arabidopsis tissues, in response to the signaling molecules ethylene, methyl jasmonate, and salicylic acid (SA), and in Arabidopsis mutants with decreased or enhanced susceptibility to pathogens, and significant differences were observed. For example, in seedlings, some of the ERF genes were not induced by SA in the wild-type but were SA responsive in the pad4-1 mutant, suggesting that PAD4-1, which acts upstream of SA accumulation, is also involved in repressing the SA-induced expression of specific ERF genes. The four ERF proteins were shown to contain transcriptional activation domains. These results suggest that transcriptional activation cascades involving ERF proteins may be important for plant defense to pathogen attack and that some ERF family members could be involved in the cross-talk between SA- and jasmonic acid-signaling pathways.
Collapse
Affiliation(s)
- Luis Oñate-Sánchez
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Private Bag #5, Wembley, Western Australia 6913, Australia
| | | |
Collapse
|
1711
|
Abstract
Plants monitor informational light signals using three sensory photoreceptor families: the phototropins, cryptochromes and phytochromes. Recent advances suggest that the phytochromes act transcriptionally by targeting light signals directly to photoresponsive promoters through binding to a transcriptional regulator. By contrast, the cryptochromes appear to act post-translationally, by disrupting extant proteosome-mediated degradation of a key transcriptional activator through direct binding to a putative E3 ubiquitin ligase, thereby elevating levels of the activator and consequently of target gene expression.
Collapse
Affiliation(s)
- Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
1712
|
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. TRENDS IN PLANT SCIENCE 2002; 7:106-11. [PMID: 11906833 DOI: 10.1016/s1360-1385(01)02223-3] [Citation(s) in RCA: 1176] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate processes including pathogen defence, light and stress signalling, seed maturation and flower development. The Arabidopsis genome sequence contains 75 distinct members of the bZIP family, of which approximately 50 are not described in the literature. Using common domains, the AtbZIP family can be subdivided into ten groups. Here, we review the available data on bZIP functions in the context of subgroup membership and discuss the interacting proteins. This integration is essential for a complete functional characterization of bZIP transcription factors in plants, and to identify functional redundancies among AtbZIP factors.
Collapse
Affiliation(s)
- Marc Jakoby
- MPI for Plant Breeding Research, 50829, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
1713
|
Iwahara J, Iwahara M, Daughdrill GW, Ford J, Clubb RT. The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA. EMBO J 2002; 21:1197-209. [PMID: 11867548 PMCID: PMC125891 DOI: 10.1093/emboj/21.5.1197] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The AT-rich interaction domain (ARID) is a DNA-binding module found in many eukaryotic transcription factors. Using NMR spectroscopy, we have determined the first ever three-dimensional structure of an ARID--DNA complex (mol. wt 25.7 kDa) formed by Dead ringer from Drosophila melanogaster. ARIDs recognize DNA through a novel mechanism involving major groove immobilization of a large loop that connects the helices of a non-canonical helix-turn-helix motif, and through a concomitant structural rearrangement that produces stabilizing contacts from a beta-hairpin. Dead ringer's preference for AT-rich DNA originates from three positions within the ARID fold that form energetically significant contacts to an adenine-thymine base step. Amino acids that dictate binding specificity are not highly conserved, suggesting that ARIDs will bind to a range of nucleotide sequences. Extended ARIDs, found in several sequence-specific transcription factors, are distinguished by the presence of a C-terminal helix that may increase their intrinsic affinity for DNA. The prevalence of serine amino acids at all specificity determining positions suggests that ARIDs within SWI/SNF-related complexes will interact with DNA non-sequence specifically.
Collapse
Affiliation(s)
- Junji Iwahara
- Department of Chemistry and Biochemistry, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine and the Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | | | | | |
Collapse
|
1714
|
Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. THE PLANT CELL 2002; 14:559-74. [PMID: 11910004 PMCID: PMC150579 DOI: 10.1105/tpc.010410] [Citation(s) in RCA: 571] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Accepted: 12/07/2001] [Indexed: 05/17/2023]
Abstract
Numerous studies have shown that transcription factors are important in regulating plant responses to environmental stress. However, specific functions for most of the genes encoding transcription factors are unclear. In this study, we used mRNA profiles generated from microarray experiments to deduce the functions of genes encoding known and putative Arabidopsis transcription factors. The mRNA levels of 402 distinct transcription factor genes were examined at different developmental stages and under various stress conditions. Transcription factors potentially controlling downstream gene expression in stress signal transduction pathways were identified by observed activation and repression of the genes after certain stress treatments. The mRNA levels of a number of previously characterized transcription factor genes were changed significantly in connection with other regulatory pathways, suggesting their multifunctional nature. The expression of 74 transcription factor genes responsive to bacterial pathogen infection was reduced or abolished in mutants that have defects in salicylic acid, jasmonic acid, or ethylene signaling. This observation indicates that the regulation of these genes is mediated at least partly by these plant hormones and suggests that the transcription factor genes are involved in the regulation of additional downstream responses mediated by these hormones. Among the 43 transcription factor genes that are induced during senescence, 28 of them also are induced by stress treatment, suggesting extensive overlap responses to these stresses. Statistical analysis of the promoter regions of the genes responsive to cold stress indicated unambiguous enrichment of known conserved transcription factor binding sites for the responses. A highly conserved novel promoter motif was identified in genes responding to a broad set of pathogen infection treatments. This observation strongly suggests that the corresponding transcription factors play general and crucial roles in the coordinated regulation of these specific regulons. Although further validation is needed, these correlative results provide a vast amount of information that can guide hypothesis-driven research to elucidate the molecular mechanisms involved in transcriptional regulation and signaling networks in plants.
Collapse
Affiliation(s)
- Wenqiong Chen
- Torrey Mesa Research Institute, Syngenta Research and Technology, 3115 Merryfield Row, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1715
|
Abstract
If the last common ancestor of plants and animals was unicellular, comparison of the developmental mechanisms of plants and animals would show that development was independently invented in each lineage. And if this is the case, comparison of plant and animal developmental processes would give us a truly comparative study of development, which comparisons merely among animals, or merely among plants, do not-because in each of these lineages, the fundamental mechanisms are similar by descent. Evidence from studies of developmental mechanisms in both kingdoms, and data from genome-sequencing projects, indicate that development evolved independently in the lineages leading to plants and to animals.
Collapse
Affiliation(s)
- Elliot M Meyerowitz
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
1716
|
Immink RGH, Gadella TWJ, Ferrario S, Busscher M, Angenent GC. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 2002; 99:2416-21. [PMID: 11854533 PMCID: PMC122379 DOI: 10.1073/pnas.042677699] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over the last decade, the yeast two-hybrid system has become the tool to use for the identification of protein-protein interactions and recently, even complete interactomes were elucidated by this method. Nevertheless, it is an artificial system that is sensitive to errors resulting in the identification of false-positive and false-negative interactions. In this study, plant MADS box transcription factor interactions identified by yeast two-hybrid systems where studied in living plant cells by a technique based on fluorescence resonance energy transfer (FRET). Petunia MADS box proteins were fused to either cyan fluorescent protein or yellow fluorescent protein and transiently expressed in protoplasts followed by FRET-spectral imaging microscopy and FRET-fluorescence lifetime imaging microscopy to detect FRET and hence protein-protein interactions. All petunia MADS box heterodimers identified in yeast were confirmed in protoplasts. However, in contrast to the yeast two-hybrid results, homodimerization was demonstrated in plant cells for three petunia MADS box proteins. Heterodimers were identified between the ovule-specific MADS box protein FLORAL BINDING PROTEIN 11 and members of the petunia FLORAL BINDING PROTEIN 2 subfamily, which are also expressed in ovules, suggesting that these dimers play a role in ovule development. Furthermore, the role of dimerization in translocation of MADS box protein dimers to the nucleus is demonstrated, and the nuclear localization signal of MADS box proteins has been mapped to the N-terminal region of the MADS domain by means of mutant analyses.
Collapse
Affiliation(s)
- Richard G H Immink
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
1717
|
Lohrmann J, Harter K. Plant two-component signaling systems and the role of response regulators. PLANT PHYSIOLOGY 2002; 128:363-9. [PMID: 11842140 PMCID: PMC1540209 DOI: 10.1104/pp.010907] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Jens Lohrmann
- Universität Freiburg, Institut für Biologie II/Botanik, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | |
Collapse
|
1718
|
Lorković ZJ, Barta A. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana. Nucleic Acids Res 2002; 30:623-35. [PMID: 11809873 PMCID: PMC100298 DOI: 10.1093/nar/30.3.623] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Revised: 10/18/2001] [Accepted: 11/27/2001] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression at the post-transcriptional level is mainly achieved by proteins containing well-defined sequence motifs involved in RNA binding. The most widely spread motifs are the RNA recognition motif (RRM) and the K homology (KH) domain. In this article, we survey the complete Arabidopsis thaliana genome for proteins containing RRM and KH RNA-binding domains. The Arabidopsis genome encodes 196 RRM-containing proteins, a more complex set than found in Caenorhabditis elegans and Drosophila melanogaster. In addition, the Arabidopsis genome contains 26 KH domain proteins. Most of the Arabidopsis RRM-containing proteins can be classified into structural and/or functional groups, based on similarity with either known metazoan or Arabidopsis proteins. Approximately 50% of Arabidopsis RRM-containing proteins do not have obvious homologues in metazoa, and for most of those that are predicted to be orthologues of metazoan proteins, no experimental data exist to confirm this. Additionally, the function of most Arabidopsis RRM proteins and of all KH proteins is unknown. Based on the data presented here, it is evident that among all eukaryotes, only those RNA-binding proteins that are involved in the most essential processes of post-transcriptional gene regulation are preserved in structure and, most probably, in function. However, the higher complexity of RNA-binding proteins in Arabidopsis, as evident in groups of SR splicing factors and poly(A)-binding proteins, may account for the observed differences in mRNA maturation between plants and metazoa. This survey provides a first systematic analysis of plant RNA-binding proteins, which may serve as a basis for functional characterisation of this important protein group in plants.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Institute of Medical Biochemistry, Vienna University, Dr. Bohrgasse 9/3, 1030 Vienna, Austria.
| | | |
Collapse
|
1719
|
Hofer J, Ellis N. Conservation and diversification of gene function in plant development. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:56-61. [PMID: 11788309 DOI: 10.1016/s1369-5266(01)00228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis genome sequence has given us an inventory of the genes needed to specify a flowering plant. Plants are highly diverse in appearance and the mechanisms whereby this diversity has arisen need explanation. A fundamental question is to what extent diversity arises from remodelling of gene function or relocation of gene pathways, rather than from the gain or loss of genes. Similar types of genetic rewiring may be responsible for both intra- and inter-specific differences in developmental processes. Recent advances in the understanding of shoot, flower and leaf development provide insights to this question.
Collapse
Affiliation(s)
- Julie Hofer
- Crop Genetics Department, John Innes Centre, Colney Lane, NR4 7UH, Norwich, UK.
| | | |
Collapse
|
1720
|
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 2002; 290:998-1009. [PMID: 11798174 DOI: 10.1006/bbrc.2001.6299] [Citation(s) in RCA: 1091] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DRE/CRT is a cis-acting element that is involved in gene expression responsive to drought and low-temperature stress in higher plants. DREB1A/CBF3 and DREB2A are transcription factors that specifically bind to DRE/CRT in Arabidopsis. We precisely analyzed the DNA-binding specificity of DREBs. Both DREBs specifically bound to six nucleotides (A/GCCGAC) of DRE. However, these proteins had different binding specificities to the second or third nucleotides of DRE. Gel mobility shift assay using mutant DREB proteins showed that the two amino acids, valine and glutamic acid conserved in the ERF/AP2 domains, especially valine, have important roles in DNA-binding specificity. In the Arabidopsis genome, 145 DREB/ERF-related proteins are encoded. These proteins were classified into five groups-AP-2 subfamily, RAV subfamily, DREB subfamily, ERF subfamily, and others. The DREB subfamily included three novel DREB1A- and six DREB2A-related proteins. We analyzed expression of novel genes for these proteins and discuss their roles in stress-responsive gene expression.
Collapse
Affiliation(s)
- Yoh Sakuma
- Biological Resources Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | | | | | | | | | | |
Collapse
|
1721
|
Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci U S A 2002; 99:1064-9. [PMID: 11805344 PMCID: PMC117430 DOI: 10.1073/pnas.022516199] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multitude of forms observed in flowering plants is largely because of their ability to establish new axes of growth during postembryonic development. This process is initiated by the formation of secondary meristems that develop into vegetative or reproductive branches. In the blind and torosa mutants of tomato, initiation of lateral meristems is blocked during shoot and inflorescence development, leading to a strong reduction in the number of lateral axes. In this study, it is shown that blind and torosa are allelic. The Blind gene has been isolated by positional cloning, and it was found that the mutant phenotype is caused by a loss of function of an R2R3 class Myb gene. RNA interference-induced blind phenocopies confirmed the identity of the isolated gene. Double mutant analysis shows that Blind acts in a novel pathway different from the one to which the previously identified Lateral suppressor gene belongs. The findings reported add a new class of transcription factors to the group of genes controlling lateral meristem initiation and reveal a previously uncharacterized function of R2R3 Myb genes.
Collapse
Affiliation(s)
- Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
1722
|
Gampala SSL, Finkelstein RR, Sun SSM, Rock CD. ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. J Biol Chem 2002; 277:1689-94. [PMID: 11704678 DOI: 10.1074/jbc.m109980200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abscisic acid (ABA) regulates seed maturation, germination, and adaptation of vegetative tissues to environmental stresses. The mechanisms of ABA action and the specificity conferred by signaling components in overlapping pathways are not completely understood. The ABI5 gene (ABA insensitive 5) of Arabidopsis encodes a basic leucine zipper factor required for ABA response in the seed and vegetative tissues. Using transient gene expression in rice protoplasts, we provide evidence for the functional interactions of ABI5 with ABA signaling effectors VP1 (viviparous 1) and ABI1 (ABA insensitive 1). Co-transformation experiments with ABI5 cDNA constructs resulted in specific transactivation of the ABA-inducible wheat Em, Arabidopsis AtEm6, bean beta-Phaseolin, and barley HVA1 and HVA22 promoters. Furthermore, ABI5 interacted synergistically with ABA and co-expressed VP1, indicating that ABI5 is involved in ABA-regulated transcription mediated by VP1. ABI5-mediated transactivation was inhibited by overexpression of abi1-1, the dominant-negative allele of the protein phosphatase ABI1, and by 1-butanol, a competitive inhibitor of phospholipase D involved in ABA signaling. Lanthanum, a trivalent ion that acts as an agonist of ABA signaling, potentiated ABI5 transactivation. These results demonstrate that ABI5 is a key target of a conserved ABA signaling pathway in plants.
Collapse
Affiliation(s)
- Srinivas S L Gampala
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
1723
|
Phillips TJ, Belknap JK, Hitzemann RJ, Buck KJ, Cunningham CL, Crabbe JC. Harnessing the mouse to unravel the genetics of human disease. GENES, BRAIN, AND BEHAVIOR 2002; 1:14-26. [PMID: 12886946 DOI: 10.1046/j.1601-1848.2001.00011.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Complex traits, i.e. those with multiple genetic and environmental determinants, represent the greatest challenge for genetic analysis, largely due to the difficulty of isolating the effects of any one gene amid the noise of other genetic and environmental influences. Methods exist for detecting and mapping the Quantitative Trait Loci (QTLs) that influence complex traits. However, once mapped, gene identification commonly involves reduction of focus to single candidate genes or isolated chromosomal regions. To reach the next level in unraveling the genetics of human disease will require moving beyond the focus on one gene at a time, to explorations of pleiotropism, epistasis and environment-dependency of genetic effects. Genetic interactions and unique environmental features must be as carefully scrutinized as are single gene effects. No one genetic approach is likely to possess all the necessary features for comprehensive analysis of a complex disease. Rather, the entire arsenal of behavioral genomic and other approaches will be needed, such as random mutagenesis, QTL analyses, transgenic and knockout models, viral mediated gene transfer, pharmacological analyses, gene expression assays, antisense approaches and importantly, revitalization of classical genetic methods. In our view, classical breeding designs are currently underutilized, and will shorten the distance to the target of understanding the complex genetic and environmental interactions associated with disease. We assert that unique combinations of classical approaches with current behavioral and molecular genomic approaches will more rapidly advance the field.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | |
Collapse
|
1724
|
Crawford NM, Forde BG. Molecular and developmental biology of inorganic nitrogen nutrition. THE ARABIDOPSIS BOOK 2002; 1:e0011. [PMID: 22303192 PMCID: PMC3243300 DOI: 10.1199/tab.0011] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Nigel M. Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0116
- Corresponding Author, phone/fx: 858/534-1637;
| | - Brian G. Forde
- Department of Biological Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
1725
|
Prakash AP, Kumar PP. PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:141-151. [PMID: 11851917 DOI: 10.1046/j.0960-7412.2001.01206.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Direct regeneration of shoot buds in vitro is an important technique in plant genetic manipulation. We describe the isolation and functional characterization of a novel MADS box cDNA (PkMADS1) from Paulownia kawakamii leaf explants undergoing adventitious shoot regeneration. mRNA gel blot analysis confirmed the expression of PkMADS1 in the shoot-forming cultures, but no signal was observed in the callus-forming cultures. PkMADS1 transcripts were also detected in shoot apices, but not in root apices, initial leaf explants or the flower. In situ hybridization revealed that its expression was restricted to developing shoot primordia in the excised leaf cultures, suggesting a role for this gene in adventitious shoot formation. Transgenic Paulownia plants over-expressing the PkMADS1 gene showed some changes in phenotype, such as axillary shoot formation. In the antisense transformants, shoots were stunted and had altered phyllotaxy, and, in some lines, the shoot apical meristem appeared to have been used up early during shoot development. Leaf explants from the antisense transgenic plants showed a tenfold decrease in shoot regeneration compared with explants from sense transformants or wild-type. Our results show that PkMADS1 is a regulator of shoot morphogenesis.
Collapse
Affiliation(s)
- A Pavan Prakash
- Plant Morphogenesis Laboratory, Department of Biological Sciences, The National University of Singapore, 10 Science Drive 4, Singapore 117543
| | | |
Collapse
|
1726
|
Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 2002; 16:138-49. [PMID: 11782451 PMCID: PMC155310 DOI: 10.1101/gad.212702] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Accepted: 11/05/2001] [Indexed: 01/28/2023]
Abstract
Seeds of the Arabidopsis thaliana transparent testa 1 mutant (tt1) appear yellow, due to the lack of condensed tannin pigments in the seed coat. The TT1 gene was isolated by reverse genetics using an En-1 transposon mutagenized A. thaliana population. TT1 gene expression was detected in developing ovules and young seeds only, and the gene was shown to encode a nuclear protein. Mutant seeds displayed altered morphology of the seed endothelium in which brown tannin pigments accumulate in wild-type plants, indicating that TT1 is involved in the differentiation of this cell layer. When overexpressed in transgenic A. thaliana plants, TT1 caused aberrant development and organ morphology. The protein contains a novel combination of two TFIIIA-type zinc finger motifs. Closely related motifs were detected in a number of putative proteins deduced from plant genomic and EST sequences. The new protein domain containing this type of zinc finger motifs was designated WIP, according to three strictly conserved amino acid residues. Our data indicate the existence of a small gene family in A. thaliana which is defined by the occurrence of the WIP domain. WIP genes may play important roles in regulating developmental processes, including the control of endothelium differentiation.
Collapse
Affiliation(s)
- Martin Sagasser
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, D-50829 Köln, Germany
| | | | | | | |
Collapse
|
1727
|
Tamai H, Iwabuchi M, Meshi T. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors. PLANT & CELL PHYSIOLOGY 2002; 43:99-107. [PMID: 11828027 DOI: 10.1093/pcp/pcf011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Pro-rich regions, found in a subset of plant bZIP transcription factors, including G-box-binding factors (GBFs) of Arabidopsis thaliana, are thought to be deeply involved in transcriptional regulation. However, the molecular mechanisms of the Pro-rich region-mediated transcriptional regulation are still largely unknown. Here we report evidence showing that two closely related Arabidopsis proteins, designated GPRI1 and GPRI2, containing a GARP DNA-binding domain, are likely partners of one or more GBFs. The results of yeast two-hybrid assays and in vitro binding assays indicated that GPRI1 can interact with the Pro-rich regions of GBF1 and GBF3. GPRI2 interacted with the Pro-rich region of GBF1. GPRI1 and GPRI2 transactivated transcription in yeast. In GPRI1 the region responsible for this activation was mapped in the N-terminal third of the protein. Transient assays showed that in Arabidopsis cells not only the N-terminal but also the C-terminal regions of GPRI1 can function as a separable activation domain. GPRI1 and GPRI2 may function in some promoters in concert with a GBF through interaction with its Pro-rich region to enhance the transcriptional level of the corresponding genes.
Collapse
Affiliation(s)
- Hiroki Tamai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | | | | |
Collapse
|
1728
|
Creelman RA, Mulpuri R. The oxylipin pathway in Arabidopsis. THE ARABIDOPSIS BOOK 2002; 1:e0012. [PMID: 22303193 PMCID: PMC3243350 DOI: 10.1199/tab.0012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.
Collapse
Affiliation(s)
- Robert A. Creelman
- Mendel Biotechnology, Incorporated, 21375 Cabot Blvd., Hayward, CA 94545
- Corresponding author,
, phone: 510-259-6109, fax: 510-264-0254
| | - Rao Mulpuri
- Paradigm Genetics, Inc., 108 Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|
1729
|
Abstract
The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.
Collapse
Affiliation(s)
- E A Kellogg
- University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA.
| |
Collapse
|
1730
|
Assaad FF. Of weeds and men: what genomes teach us about plant cell biology. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:478-487. [PMID: 11641062 DOI: 10.1016/s1369-5266(00)00204-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has generally been assumed that fundamental cellular processes are conserved at the molecular level. Genome comparisons, however, suggest that the molecular mechanisms underlying programmed cell death, defense, adaptation and development may differ considerably between the plant and animal kingdoms. Phylogenetic analyses have revealed a great deal of novelty in the plant genes that are implicated in conserved processes such as transcription, cytoskeletal dynamics and vesicle trafficking. The Arabidopsis genome highlights the highly dynamic and regulated nature of the plant cell, which is fine-tuned to light, water, nutrient availability, temperature, touch and wind.
Collapse
Affiliation(s)
- F F Assaad
- Genetics and Microbiology Institute, Ludwig Maximillian University of Münich, Maria Ward Str. 1a, 80638, Münich, Germany.
| |
Collapse
|
1731
|
Abstract
In sugarcane (Saccharum sp) as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret). In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST) Project (SUCEST) database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2) family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.
Collapse
|
1732
|
Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 2001; 294:1519-21. [PMID: 11691951 DOI: 10.1126/science.1065201] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytokinins are a class of phytohormones involved in various physiological events of plants. The Arabidopsis sensor histidine kinase CRE1 was recently reported to be a cytokinin receptor. We used a steroid-inducible system to show that the transcription factor-type response regulator ARR1 directs transcriptional activation of the ARR6 gene, which responds to cytokinins without de novo protein synthesis. This fact, together with characteristics of ARR1-overexpressing plants and arr1 mutant plants, indicates that the phosphorelay to ARR1, probably from CRE1, constitutes an intracellular signal transduction occurring immediately after cytokinin perception.
Collapse
Affiliation(s)
- H Sakai
- Laboratory of Molecular Biology, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
1733
|
Maeo K, Hayashi S, Kojima-Suzuki H, Morikami A, Nakamura K. Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. Biosci Biotechnol Biochem 2001; 65:2428-36. [PMID: 11791715 DOI: 10.1271/bbb.65.2428] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.
Collapse
Affiliation(s)
- K Maeo
- Department of Cellular Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Japan.
| | | | | | | | | |
Collapse
|
1734
|
Nishitani C, Demura T, Fukuda H. Primary phloem-specific expression of a Zinnia elegans homeobox gene. PLANT & CELL PHYSIOLOGY 2001; 42:1210-1218. [PMID: 11726705 DOI: 10.1093/pcp/pce156] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some plant homeobox genes are expressed specifically in vascular cells and are assumed to function in the differentiation of specific types of vascular cells. However, homeobox genes exhibiting primary phloem-specific expression have not been reported. To elucidate the molecular mechanisms of vascular development, we undertook to isolate from Zinnia elegans primary phloem-specific homeobox genes that may function in phloem development. An HD-Zip type homeobox gene, ZeHB3, was isolated. This gene encodes a class I HD-Zip protein, and constitutes a gene subfamily with the Daucus carota gene CHB6, and Arabidopsis thaliana genes Athb-5, Athb-6, and Athb-16. In situ hybridization of 1-, 14- and 50-day-old plants demonstrated that ZeHB3 mRNA accumulation is restricted to a few cells destined to differentiate into phloem cells and to the immature phloem cells surrounding the sieve elements and companion cells. ZeHB3 protein was also localized to immature phloem cells. These findings clearly indicate that ZeHB3 is a novel homeobox gene that marks, and may function in, the early stages of phloem differentiation.
Collapse
Affiliation(s)
- C Nishitani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan.
| | | | | |
Collapse
|
1735
|
Strathmann A, Kuhlmann M, Heinekamp T, Dröge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:397-408. [PMID: 11737777 DOI: 10.1046/j.1365-313x.2001.01164.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The tobacco (Nicotiana tabacum) protein BZI-1 is closely related to the plant bZIP transcription factors CPRF2, G/HBF-1 and OHP1. Using the C-terminal part of BZI-1, which includes the bZIP domain, as a bait in a yeast two-hybrid screen, three BZI-1 interacting bZIP transcription factors, referred to as BZI-2, BZI-3/TBZF and BZI-4, were isolated. The observed interactions are due to the leucine zipper dimerisation domain and have been found to be specific, in so far as other bZIP transcription factors do not interact with BZI-1. The formation of heterodimers is favoured to homodimerisation. Furthermore, physical protein-protein interaction was confirmed by in vitro binding studies. Expression analysis reveals that BZI-2 mRNA is predominantly located in the stems and parts of the flower. BZI-3/TBZF expression has been observed predominantly in flowers and, to a lesser extent, in the vegetative parts of the plant. In particular, BZI-4 is transcribed specifically in the stamen, the petals and the pistils of the tobacco flower. Since BZI-1 is expressed ubiquitously in tobacco plants, co-localisation with BZI-2, BZI-3/TBZF or BZI-4 might influence BZI-1 heterodimerisation and consequently target gene selection. Analysis of transgenic plants displaying changes in BZI-1 protein level revealed that BZI-1 regulates BZI-4 expression. Moreover, a reduction in functional BZI-1 protein resulted in flowers having a reduced size; in particular, the stamen and the petals are affected. Consequently, BZI-1 homo- or heterodimers are involved in the control of the size of the organs of flowers. Based on these data, we discuss a model postulating BZI transcription factor heterodimerisation as a mechanism determining target gene selection and regulating processes involved in plant development.
Collapse
Affiliation(s)
- A Strathmann
- Albrecht-von-Haller-Insitut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
1736
|
Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. PLANT PHYSIOLOGY 2001. [PMID: 11706173 DOI: 10.1104/pp.010548] [Citation(s) in RCA: 309] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Many plants increase in freezing tolerance in response to low, nonfreezing temperatures, a phenomenon known as cold acclimation. Cold acclimation in Arabidopsis involves rapid cold-induced expression of the C-repeat/dehydration-responsive element binding factor (CBF) transcriptional activators followed by expression of CBF-targeted genes that increase freezing tolerance. Here, we present evidence for a CBF cold-response pathway in Brassica napus. We show that B. napus encodes CBF-like genes and that transcripts for these genes accumulate rapidly in response to low temperature followed closely by expression of the cold-regulated Bn115 gene, an ortholog of the Arabidopsis CBF-targeted COR15a gene. Moreover, we show that constitutive overexpression of the Arabidopsis CBF genes in transgenic B. napus plants induces expression of orthologs of Arabidopsis CBF-targeted genes and increases the freezing tolerance of both nonacclimated and cold-acclimated plants. Transcripts encoding CBF-like proteins were also found to accumulate rapidly in response to low temperature in wheat (Triticum aestivum L. cv Norstar) and rye (Secale cereale L. cv Puma), which cold acclimate, as well as in tomato (Lycopersicon esculentum var. Bonny Best, Castle Mart, Micro-Tom, and D Huang), a freezing-sensitive plant that does not cold acclimate. An alignment of the CBF proteins from Arabidopsis, B. napus, wheat, rye, and tomato revealed the presence of conserved amino acid sequences, PKK/RPAGRxKFxETRHP and DSAWR, that bracket the AP2/EREBP DNA binding domains of the proteins and distinguish them from other members of the AP2/EREBP protein family. We conclude that components of the CBF cold-response pathway are highly conserved in flowering plants and not limited to those that cold acclimate.
Collapse
Affiliation(s)
- K R Jaglo
- Department of Crop and Soil Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
1737
|
Nagano Y, Furuhashi H, Inaba T, Sasaki Y. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucleic Acids Res 2001; 29:4097-105. [PMID: 11600698 PMCID: PMC60209 DOI: 10.1093/nar/29.20.4097] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Revised: 08/21/2001] [Accepted: 08/21/2001] [Indexed: 11/13/2022] Open
Abstract
Complementary DNA encoding a DNA-binding protein, designated PLATZ1 (plant AT-rich sequence- and zinc-binding protein 1), was isolated from peas. The amino acid sequence of the protein is similar to those of other uncharacterized proteins predicted from the genome sequences of higher plants. However, no paralogous sequences have been found outside the plant kingdom. Multiple alignments among these paralogous proteins show that several cysteine and histidine residues are invariant, suggesting that these proteins are a novel class of zinc-dependent DNA-binding proteins with two distantly located regions, C-x(2)-H-x(11)-C-x(2)-C-x((4-5))-C-x(2)-C-x((3-7))-H-x(2)-H and C-x(2)-C-x((10-11))-C-x(3)-C. In an electrophoretic mobility shift assay, the zinc chelator 1,10-o-phenanthroline inhibited DNA binding, and two distant zinc-binding regions were required for DNA binding. A protein blot with (65)ZnCl(2) showed that both regions are required for zinc-binding activity. The PLATZ1 protein non-specifically binds to A/T-rich sequences, including the upstream region of the pea GTPase pra2 and plastocyanin petE genes. Expression of the PLATZ1 repressed those of the reporter constructs containing the coding sequence of luciferase gene driven by the cauliflower mosaic virus (CaMV) 35S90 promoter fused to the tandem repeat of the A/T-rich sequences. These results indicate that PLATZ1 is a novel class of plant-specific zinc-dependent DNA-binding protein responsible for A/T-rich sequence-mediated transcriptional repression.
Collapse
Affiliation(s)
- Y Nagano
- Graduate School of Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
1738
|
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:447-56. [PMID: 11597504 DOI: 10.1016/s1369-5266(00)00199-0] [Citation(s) in RCA: 1359] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MYB factors represent a family of proteins that include the conserved MYB DNA-binding domain. In contrast to animals, plants contain a MYB-protein subfamily that is characterised by the R2R3-type MYB domain. 'Classical' MYB factors, which are related to c-Myb, seem to be involved in the control of the cell cycle in animals, plants and other higher eukaryotes. Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana. R2R3-type MYB genes control many aspects of plant secondary metabolism, as well as the identity and fate of plant cells.
Collapse
Affiliation(s)
- R Stracke
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | | | | |
Collapse
|
1739
|
Ballesteros ML, Bolle C, Lois LM, Moore JM, Vielle-Calzada JP, Grossniklaus U, Chua NH. LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev 2001; 15:2613-25. [PMID: 11581165 PMCID: PMC312796 DOI: 10.1101/gad.915001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The photoreceptor phytochrome (phy) A has a well-defined role in regulating gene expression in response to specific light signals. Here, we describe a new Arabidopsis mutant, laf1 (long after far-red light 1) that has an elongated hypocotyl specifically under far-red light. Gene expression studies showed that laf1 has reduced responsiveness to continuous far-red light but retains wild-type responses to other light wavelengths. As far-red light is only perceived by phyA, our results suggest that LAF1 is specifically involved in phyA signal transduction. Further analyses revealed that laf1 is affected in a subset of phyA-dependent responses and the phenotype is more severe at low far-red fluence rates. LAF1 encodes a nuclear protein with strong homology with the R2R3-MYB family of DNA-binding proteins. Experiments using yeast cells identified a transactivation domain in the C-terminal portion of the protein. LAF1 is constitutively targeted to the nucleus by signals in its N-terminal portion, and the full-length protein accumulates in distinct nuclear speckles. This accumulation in speckles is abolished by a point mutation in a lysine residue (K258R), which might serve as a modification site by a small ubiquitin-like protein (SUMO).
Collapse
Affiliation(s)
- M L Ballesteros
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | | | | | |
Collapse
|
1740
|
Thompson RD. Cues for plant cell differentiation and development. Semin Cell Dev Biol 2001; 12:343-4. [PMID: 11535040 DOI: 10.1006/scdb.2001.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- R D Thompson
- Max-Planck-Institut für Züchtungsforschung, Carl-Von-Linne Weg 10, D-50829 Köln, Germany.
| |
Collapse
|
1741
|
Abstract
BACKGROUND Asymmetric development of plant lateral organs initiates by partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. A recent model proposes that a meristem-born signal, acting in a concentration-dependent manner, differentially activates PHABULOSA-like genes, which in turn suppress abaxial-promoting factors. As yet, no abaxial factors have been identified that when compromised give rise to adaxialized organs. RESULTS Single mutants in either of the closely related genes KANADI1 (KAN1) or KANADI2 (KAN2) have little or no effect on plant morphology. However, in kan1 kan2 double mutant plants, there is a replacement of abaxial cell types by adaxial ones in most lateral organs. The alterations in polarity establishment are associated with expansion in the expression domain of the PHB-like genes and reduction in the expression of the previously described abaxial-promoting YABBY genes. Ectopic expression of either of the KANADI genes throughout leaf primordia results in dramatic transformation of adaxial cell types into abaxial ones, failure of lateral blade expansion, and vascular tissue formation. CONCLUSION The phenotypes of KANADI loss- and gain-of-function alleles suggest that fine regulation of these genes is at the core of polarity establishment. As such, they are likely to be targets of the PHB-mediated meristem-born signaling that patterns lateral organ primordia. PHB-like genes and the abaxial-promoting KANADI and YABBY genes appear to be expressed throughout primordia anlagen before becoming confined to their corresponding domains as primordia arise. This suggests that the establishment of polarity in plant lateral organs occurs via mutual repression interactions between ab/ad factors after primordium emergence, consistent with the results of classical dissection experiments.
Collapse
Affiliation(s)
- Y Eshed
- Section of Plant Biology, Division of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
1742
|
Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 2001; 98:9437-42. [PMID: 11481498 PMCID: PMC55439 DOI: 10.1073/pnas.161300998] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytochrome family of sensory photoreceptors directs adaptational changes in gene expression in response to environmental light signals. Using oligonucleotide microarrays to measure expression profiles in wild-type and phytochrome A (phyA) null-mutant Arabidopsis seedlings, we have shown that 10% of the genes represented on the array are regulated by phyA in response to a continuous far-red light signal. Strikingly, 44% of the genes responding to the signal within 1 h are predicted to encode multiple classes of transcriptional regulators. Together with previous data, this observation suggests that phyA may regulate seedling photomorphogenesis by direct targeting of light signals to the promoters of genes encoding a master set of diverse transcriptional regulators, responsible in turn for orchestrating the expression of multiple downstream target genes in various branches of a phyA-regulated transcriptional network.
Collapse
Affiliation(s)
- J M Tepperman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
1743
|
Abstract
Over the past decade, the ABC model of flower development has been widely promulgated. However, correct flower-organ development requires not only the ABC genes but also the SEPALLATA genes. When the SEPALLATA genes are expressed together with the ABC genes, both vegetative and cauline leaves are converted to floral organs. Most of the ABC genes and all three SEPALLATA genes encode MADS transcription factors, which bind to DNA as dimers. Here, amendments to the ABC model are considered that incorporate both the SEPALLATA genes and the ability of MADS proteins to form higher-order complexes.
Collapse
Affiliation(s)
- T Jack
- Dept Biological Sciences, Dartmouth College, 03755, Hanover, NH, USA.
| |
Collapse
|
1744
|
Slabas AR, Simon JW, Brown AP. Biosynthesis and regulation of fatty acids and triglycerides in oil seed rape. Current status and future trends. EUR J LIPID SCI TECH 2001. [DOI: 10.1002/1438-9312(200107)103:7<455::aid-ejlt455>3.0.co;2-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
1745
|
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organ polarity in Arabidopsis. Nature 2001; 411:706-9. [PMID: 11395775 DOI: 10.1038/35079629] [Citation(s) in RCA: 396] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leaves and floral organs are polarized along their adaxial-abaxial (dorsal-ventral) axis. In Arabidopsis, this difference is particularly obvious in the first two rosette leaves, which possess trichomes (leaf hairs) on their adaxial surface but not their abaxial surface. Mutant alleles of KANADI (KAN) were identified in a screen for mutants that produce abaxial trichomes on these first two leaves. kan mutations were originally identified as enhancers of the mutant floral phenotype of crabs claw (crc), a gene that specifies abaxial identity in carpels. Here we show that KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP family of putative transcription factors. The expression pattern of KAN messenger RNA and the effect of ectopically expressing KAN under the regulation of the cauliflower mosaic virus (CAMV) 35S promoter indicate that KAN may also specify peripheral identity in the developing embryo.
Collapse
Affiliation(s)
- R A Kerstetter
- University of Pennsylvania, Department of Biology, Plant Science Institute, Philadelphia 19104-6018, USA
| | | | | | | | | |
Collapse
|
1746
|
Szathmáry E, Jordán F, Pál C. Molecular biology and evolution. Can genes explain biological complexity? Science 2001; 292:1315-6. [PMID: 11360989 DOI: 10.1126/science.1060852] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- E Szathmáry
- Collegium Budapest (Institute for Advanced Study), 2 Szentháromság u., H-1014 Budapest, Hungary.
| | | | | |
Collapse
|
1747
|
Lee MM, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 2001; 128:1539-46. [PMID: 11290293 DOI: 10.1242/dev.128.9.1539] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.
Collapse
Affiliation(s)
- M M Lee
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
1748
|
Ratcliffe OJ, Nadzan GC, Reuber TL, Riechmann JL. Regulation of flowering in Arabidopsis by an FLC homologue. PLANT PHYSIOLOGY 2001; 126:122-32. [PMID: 11351076 PMCID: PMC102287 DOI: 10.1104/pp.126.1.122] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Revised: 01/19/2001] [Accepted: 02/07/2001] [Indexed: 05/17/2023]
Abstract
The Arabidopsis FLC gene encodes a MADS domain protein that acts as a repressor of flowering. Late-flowering vernalization-responsive ecotypes and mutants have high steady-state levels of FLC transcript, which decrease during the promotion of flowering by vernalization. Therefore, FLC has a central role in regulating the response to vernalization. We have isolated an Arabidopsis gene, MAF1, which encodes a protein that is closely related to FLC. Overexpression studies demonstrate that MAF1 produces comparable effects to FLC, and likely has a similar function in the regulation of flowering. In contrast to FLC, however, MAF1 expression shows a less clear correlation with the vernalization response. In addition, MAF1 overexpression does not influence FLC transcript levels. Thus, MAF1 likely acts downstream or independently of FLC transcription. We further report identification of a cluster of four additional FLC-like genes in the Arabidopsis genome.
Collapse
Affiliation(s)
- O J Ratcliffe
- Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, California 94545, USA
| | | | | | | |
Collapse
|
1749
|
Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K. A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 26:217-27. [PMID: 11389762 DOI: 10.1046/j.1365-313x.2001.01015.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Within the complex signalling network from pathogen-derived elicitor perception to defense-related gene activation, some immediate-early responding genes may have pivotal roles in downstream transcriptional regulation. We have identified the parsley (Petroselinum crispum) ELI17 gene as a particularly fast-responding gene possessing a new type of W box-containing, elicitor-responsive promoter element, E17. Highly selective E17-mediated reporter gene expression at pathogen infection sites in transgenic Arabidopsis thaliana plants demonstrated the potential of this promoter element for designing new strategies in resistance breeding as well as for further analysis of the early components of defense-related gene activation mechanisms. The protein encoded by the ELI17 gene exhibits various structural characteristics of established transcription factors and is designated as a CMPG protein according to the first four strictly conserved amino acids defining a newly emerging class of plant-specific proteins.
Collapse
Affiliation(s)
- C Kirsch
- Max-Planck-Institut für Züchtungsforschung, Abteilung Biochemie, Carl-von-Linne-Weg 10, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
1750
|
Abstract
The function of MADS-box genes in flower and fruit development has been uncovered at a rapid pace over the past decade. Evolutionary biologists can now analyse the expression pattern of MADS-box genes during the development of different plant species, and study the homology of body parts and the evolution of body plans. These studies have shown that floral development is conserved among divergent species, and indicate that the basic mechanism of floral patterning might have evolved in an ancient flowering plant.
Collapse
Affiliation(s)
- M Ng
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|