1901
|
Abstract
Motor neurone disease (MND) is an adult-onset neurodegenerative disease which leads inexorably via weakness of limb, bulbar and respiratory muscles to death from respiratory failure three to five years later. Most MND is sporadic but approximately 10% is inherited. In exciting recent breakthroughs two new MND genes have been identified. Diagnosis is clinical and sometimes difficult--treatable mimics must be excluded before the diagnosis is ascribed. Riluzole prolongs life by only three to four months and is only available for the amyotrophic lateral sclerosis (ALS) form of MND. Management therefore properly focuses on symptom relief and the preservation of independence and quality of life. Malnutrition is a poor prognostic factor. In appropriate patients enteral feeding is recommended although its use has yet to be shown to improve survival. In ALS patients with respiratory failure and good or only moderately impaired bulbar function non-invasive positive pressure ventilation prolongs life and improves quality of life.
Collapse
Affiliation(s)
- Pamela J Shaw
- Academic Neurology Unit, The University of Sheffield Medical School and Royal Hallamshire Hospital, Sheffield
| | - Clare Wood-Allum
- Academic Neurology Unit, The University of Sheffield Medical School and Royal Hallamshire Hospital, Sheffield
| |
Collapse
|
1902
|
Musarò A. State of the art and the dark side of amyotrophic lateral sclerosis. World J Biol Chem 2010; 1:62-8. [PMID: 21540991 PMCID: PMC3083964 DOI: 10.4331/wjbc.v1.i5.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disorder that involves the degeneration of motor neurons, muscle atrophy, and paralysis. In a few familiar forms of ALS, mutations in the superoxide dismutase-1 (SOD1) gene have been held responsible for the degeneration of motor neurons. Nevertheless, after the discovery of the SOD1 mutations no consensus has emerged as to which cells, tissues and pathways are primarily implicated in the pathogenic events that lead to ALS. Ubiquitous overexpression of mutant SOD1 in transgenic animals recapitulates the pathological features of ALS. However, the toxicity of mutant SOD1 is not necessarily limited to the central nervous system. Views about ALS pathogenesis are now enriched by the recent discovery of mutations in a pair of DNA/RNA-binding proteins called TDP-43 and FUS/TLS as causes of familial and sporadic forms of ALS. Although the steps that lead to the pathological state are well defined, several fundamental issues are still controversial: are the motor neurons the first direct targets of ALS; and what is the contribution of non-neuronal cells, if any, to the pathogenesis of ALS? The state of the art of ALS pathogenesis and the open questions are discussed in this review.
Collapse
Affiliation(s)
- Antonio Musarò
- Antonio Musarò, Department of Histology and Medical Embryology, Institute Pasteur Cenci-Bolognetti, IIM, Sapienza University of Rome, Rome 00161, Italy
| |
Collapse
|
1903
|
Tudor EL, Galtrey CM, Perkinton MS, Lau KF, De Vos KJ, Mitchell JC, Ackerley S, Hortobágyi T, Vámos E, Leigh PN, Klasen C, McLoughlin DM, Shaw CE, Miller CCJ. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience 2010; 167:774-85. [PMID: 20188146 DOI: 10.1016/j.neuroscience.2010.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/12/2022]
Abstract
Cytoplasmic ubiquitin-positive inclusions containing TAR-DNA-binding protein-43 (TDP-43) within motor neurons are the hallmark pathology of sporadic amyotrophic lateral sclerosis (ALS). TDP-43 is a nuclear protein and the mechanisms by which it becomes mislocalized and aggregated in ALS are not properly understood. A mutation in the vesicle-associated membrane protein-associated protein-B (VAPB) involving a proline to serine substitution at position 56 (VAPBP56S) is the cause of familial ALS type-8. To gain insight into the molecular mechanisms by which VAPBP56S induces disease, we created transgenic mice that express either wild-type VAPB (VAPBwt) or VAPBP56S in the nervous system. Analyses of both sets of mice revealed no overt motor phenotype nor alterations in survival. However, VAPBP56S but not VAPBwt transgenic mice develop cytoplasmic TDP-43 accumulations within spinal cord motor neurons that were first detected at 18 months of age. Our results suggest a link between abnormal VAPBP56S function and TDP-43 mislocalization.
Collapse
Affiliation(s)
- E L Tudor
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1904
|
Tsai CP, Soong BW, Lin KP, Tu PH, Lin JL, Lee YC. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging 2010; 32:553.e13-21. [PMID: 20472325 DOI: 10.1016/j.neurobiolaging.2010.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 04/10/2010] [Indexed: 10/19/2022]
Abstract
The cause of familial amyotrophic lateral sclerosis (FALS) has been attributed to mutations in several genes. The authors analyzed these genes, including SOD1, FUS, VAPB, ANG, TDP-43, FIG4, and CHMP2B, in a cohort of 15 index patients of Han Chinese descent with adult-onset FALS. Seven different mutations in eight patients, including three in SOD1 (G85R, T137R, and G138E), two in exon 15 of FUS (H517D and R521H), and two in exon 6 of TARDBP (M337V and N378D) were identified. Among them, T137R SOD1, G138E SOD1, H517D FUS, and N378D TARDBP were novel. No mutation was found in VAPB, ANG, FIG4, or CHMP2B genes. Mutations in SOD1, FUS, and TARDBP account for 20%, 13.3%, and 20% of FALS, respectively. This study defined the distribution and frequency of mutations of FALS in a Taiwanese Han Chinese population, which not only broadens the spectrum of the mutations causing FALS, but also further highlights the importance of FUS and TARDBP in the pathogenesis of amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Ching-Paio Tsai
- Department of Neurology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
1905
|
Yoo S, van Niekerk EA, Merianda TT, Twiss JL. Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 2010; 223:19-27. [PMID: 19699200 PMCID: PMC2849851 DOI: 10.1016/j.expneurol.2009.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/05/2009] [Accepted: 08/08/2009] [Indexed: 12/12/2022]
Abstract
Locally generating new proteins in subcellular regions provide means to spatially and temporally modify protein content in polarized cells. Recent years have seen resurgence of the concept that axonal processes of neurons can locally synthesize proteins. Experiments from a number of groups have now shown that axonal protein synthesis helps to initiate growth, provides a means to respond to guidance cues, and generates retrograde signaling complexes. Additionally, there is increasing evidence that locally synthesized proteins provide functions beyond injury responses and growth in the mature peripheral nervous system. A key regulatory event in this translational regulation is moving the mRNA templates into the axonal compartment. Transport of mRNAs into axons is a highly regulated and specific process that requires interaction of RNA binding proteins with specific cis-elements or structures within the mRNAs. mRNAs are transported in ribonucleoprotein particles that interact with microtubule motor proteins for long-range axonal transport and likely use microfilaments for short-range movement in the axons. The mature axon is able to recruit mRNAs into translation with injury and possibly other stimuli, suggesting that mRNAs can be stored in a dormant state in the distal axon until needed. Axotomy triggers a shift in the populations of mRNAs localized to axons, indicating a dynamic regulation of the specificity of the axonal transport machinery. In this review, we discuss how axonal mRNA transport and localization are regulated to achieve specific changes in axonal RNA content in response to axonal stimuli.
Collapse
Affiliation(s)
- Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
| | - Erna A. van Niekerk
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Tanuja T. Merianda
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
| | - Jeffery L. Twiss
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
1906
|
Abstract
Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy. The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathological heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD genetics and molecular pathology make the prospect of biologically driven, disease-specific therapies for FTLD seem closer than ever.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.
| | | |
Collapse
|
1907
|
Woulfe J, Gray DA, Mackenzie IRA. FUS-immunoreactive intranuclear inclusions in neurodegenerative disease. Brain Pathol 2010; 20:589-97. [PMID: 19832837 PMCID: PMC8094734 DOI: 10.1111/j.1750-3639.2009.00337.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/05/2009] [Indexed: 12/12/2022] Open
Abstract
Neuronal intranuclear inclusions (NIIs) are a histopathological hallmark of several neurodegenerative disorders. However, the role played by NIIs in neurodegenerative pathogenesis remains enigmatic. Defining their molecular composition represents an important step in understanding the pathophysiology of these disorders. Recently, a nuclear protein, "fused-in-sarcoma" (FUS) was identified as the pathological protein in two forms of frontotemporal lobar degeneration (FTLD-IF, formerly known as neuronal intermediate filament inclusion disease, and FTLD-UPS, formerly known as atypical FTLD-U), both of which are characterized by the presence of NII. The objective of the present study was to determine the range of neurodegenerative disorders characterized by FUS-positive NIIs. Immunostaining for FUS revealed intense reactivity of NIIs in FTLD-IF and FTLD-UPS as well as in Huntington's disease, spinocerebellar ataxias 1 and 3, and neuronal intranuclear inclusion body disease. In contrast, there was no FUS staining of NIIs in inherited forms of FTLD-TDP caused by GRN and VCP mutations, fragile-X-associated tremor ataxia syndrome, or oculopharyngeal muscular dystrophy. In a cell culture model of Huntington's disease, NIIs were intensely FUS-positive. NII-bearing cells displayed loss of the normal diffuse nuclear pattern of FUS staining. This suggests that sequestration of nuclear FUS by NIIs may interfere with its normal nuclear localization.
Collapse
Affiliation(s)
- John Woulfe
- Cancer Therapeutics Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
1908
|
DeJesus-Hernandez M, Kocerha J, Finch N, Crook R, Baker M, Desaro P, Johnston A, Rutherford N, Wojtas A, Kennelly K, Wszolek ZK, Graff-Radford N, Boylan K, Rademakers R. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 2010; 31:E1377-89. [PMID: 20232451 PMCID: PMC2922682 DOI: 10.1002/humu.21241] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402_P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS.
Collapse
Affiliation(s)
| | - Jannet Kocerha
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Richard Crook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela Desaro
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | | | - Kevin Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
1909
|
Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 2010; 9:1104-20. [PMID: 20020773 DOI: 10.1021/pr901076y] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 is a highly conserved and ubiquitously expressed member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins. Recently, TDP-43 was shown to be a major disease protein in the ubiquitinated inclusions characteristic of most cases of amyotrophic lateral sclerosis (ALS), tau-negative frontotemporal lobar degeneration (FTLD), and inclusion body myopathy. In these diseases, TDP-43 is redistributed from its predominantly nuclear location to ubiquitin-positive, cytoplasmic foci. The extent to which TDP-43 drives pathophysiology is unknown, but the identification of mutations in TDP-43 in familial forms of ALS and FTLD-U suggests an important role for this protein in pathogenesis. Little is known about TDP-43 function and only a few TDP-43 interacting proteins have been previously identified, which makes further insight into both the normal and pathological functions of TDP-43 difficult. Here we show, via a global proteomic approach, that TDP-43 has extensive interaction with proteins that regulate RNA metabolism. Some interactions with TDP-43 were found to be dependent on RNA-binding, whereas other interactions are RNA-independent. Disease-causing mutations in TDP-43 (A315T and M337V) do not alter its interaction profile. TDP-43 interacting proteins largely cluster into two distinct interaction networks, a nuclear/splicing cluster and a cytoplasmic/translation cluster, strongly suggesting that TDP-43 has multiple roles in RNA metabolism and functions in both the nucleus and the cytoplasm. Finally, we found numerous TDP-43 interactors that are known components of stress granules, and indeed, we find that TDP-43 is also recruited to stress granules.
Collapse
Affiliation(s)
- Brian D Freibaum
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | | | | | | |
Collapse
|
1910
|
Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010; 465:223-6. [PMID: 20428114 DOI: 10.1038/nature08971] [Citation(s) in RCA: 978] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 03/02/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) has its onset in middle age and is a progressive disorder characterized by degeneration of motor neurons of the primary motor cortex, brainstem and spinal cord. Most cases of ALS are sporadic, but about 10% are familial. Genes known to cause classic familial ALS (FALS) are superoxide dismutase 1 (SOD1), ANG encoding angiogenin, TARDP encoding transactive response (TAR) DNA-binding protein TDP-43 (ref. 4) and fused in sarcoma/translated in liposarcoma (FUS, also known as TLS). However, these genetic defects occur in only about 20-30% of cases of FALS, and most genes causing FALS are unknown. Here we show that there are mutations in the gene encoding optineurin (OPTN), earlier reported to be a causative gene of primary open-angle glaucoma (POAG), in patients with ALS. We found three types of mutation of OPTN: a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation and a heterozygous E478G missense mutation within its ubiquitin-binding domain. Analysis of cell transfection showed that the nonsense and missense mutations of OPTN abolished the inhibition of activation of nuclear factor kappa B (NF-kappaB), and the E478G mutation revealed a cytoplasmic distribution different from that of the wild type or a POAG mutation. A case with the E478G mutation showed OPTN-immunoreactive cytoplasmic inclusions. Furthermore, TDP-43- or SOD1-positive inclusions of sporadic and SOD1 cases of ALS were also noticeably immunolabelled by anti-OPTN antibodies. Our findings strongly suggest that OPTN is involved in the pathogenesis of ALS. They also indicate that NF-kappaB inhibitors could be used to treat ALS and that transgenic mice bearing various mutations of OPTN will be relevant in developing new drugs for this disorder.
Collapse
|
1911
|
Gagliardi S, Cova E, Davin A, Guareschi S, Abel K, Alvisi E, Laforenza U, Ghidoni R, Cashman JR, Ceroni M, Cereda C. SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiol Dis 2010; 39:198-203. [PMID: 20399857 DOI: 10.1016/j.nbd.2010.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 11/30/2022] Open
Abstract
The mutated Cu,Zn-superoxide dismutase gene (SOD1) (E.C. No. 1.15.1.1) is generally recognized as a pathological cause of 20% of the familial form of Amyotrophic Lateral Sclerosis (ALS). However, several pieces of evidence also show that wild-type SOD1, under conditions of cellular stress, is implicated in a significant fraction of sporadic ALS cases, which represent 90% of ALS patients. Herein, we describe an abnormally high level of SOD1 transcript in spinal cord, brain stem and lymphocytes of sporadic ALS patients. Protein expression studies show a similar or lower amount of SOD1 in affected brain areas and lymphocytes, respectively. No differences are found in brain regions (cerebellum and non-motor cerebral cortex) not involved in the ALS neurodegenerative processes. In this report, cell and disease specificity are shown since no mRNA SOD1 increase is observed in sporadic ALS fibroblasts or in lymphocytes of patients affected by Alzheimer's disease. These findings provide new insight and understanding of the pathologic causes of sporadic forms of ALS and allow a possible explanation for the molecular involvement of wild-type SOD1.
Collapse
Affiliation(s)
- Stella Gagliardi
- Laboratory of Experimental Neurobiology, IRCCS, Neurological Institute "C. Mondino", Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1912
|
Mitchell J, Paul P, Chen HJ, Morris A, Payling M, Falchi M, Habgood J, Panoutsou S, Winkler S, Tisato V, Hajitou A, Smith B, Vance C, Shaw C, Mazarakis ND, de Belleroche J. Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc Natl Acad Sci U S A 2010; 107:7556-61. [PMID: 20368421 PMCID: PMC2867752 DOI: 10.1073/pnas.0914128107] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report a unique mutation in the D-amino acid oxidase gene (R199W DAO) associated with classical adult onset familial amyotrophic lateral sclerosis (FALS) in a three generational FALS kindred, after candidate gene screening in a 14.52 cM region on chromosome 12q22-23 linked to disease. Neuronal cell lines expressing R199W DAO showed decreased viability and increased ubiquitinated aggregates compared with cells expressing the wild-type protein. Similarly, lentiviral-mediated expression of R199W DAO in primary motor neuron cultures caused increased TUNEL labeling. This effect was also observed when motor neurons were cocultured on transduced astrocytes expressing R199W, indicating that the motor neuron cell death induced by this mutation is mediated by both cell autonomous and noncell autonomous processes. DAO controls the level of D-serine, which accumulates in the spinal cord in cases of sporadic ALS and in a mouse model of ALS, indicating that this abnormality may represent a fundamental component of ALS pathogenesis.
Collapse
Affiliation(s)
- John Mitchell
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Praveen Paul
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Han-Jou Chen
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Alex Morris
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Miles Payling
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Mario Falchi
- Section of Genomic Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - James Habgood
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| | - Stefania Panoutsou
- Department of Gene Therapy, Division of Medicine, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom; and
| | - Sabine Winkler
- Department of Gene Therapy, Division of Medicine, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom; and
| | - Veronica Tisato
- Department of Gene Therapy, Division of Medicine, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom; and
| | - Amin Hajitou
- Department of Gene Therapy, Division of Medicine, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom; and
| | - Bradley Smith
- Department of Clinical Neuroscience, King's College London and Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Caroline Vance
- Department of Clinical Neuroscience, King's College London and Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Christopher Shaw
- Department of Clinical Neuroscience, King's College London and Institute of Psychiatry, London SE5 8AF, United Kingdom
| | - Nicholas D. Mazarakis
- Department of Gene Therapy, Division of Medicine, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1PG, United Kingdom; and
| | - Jacqueline de Belleroche
- Neurogenetics Group, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, and
| |
Collapse
|
1913
|
Kobayashi Z, Tsuchiya K, Arai T, Aoki M, Hasegawa M, Ishizu H, Akiyama H, Mizusawa H. Occurrence of basophilic inclusions and FUS-immunoreactive neuronal and glial inclusions in a case of familial amyotrophic lateral sclerosis. J Neurol Sci 2010; 293:6-11. [PMID: 20409561 DOI: 10.1016/j.jns.2010.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 12/13/2022]
Abstract
Basophilic inclusions (BIs) are the pathological feature in a subset of frontotemporal lobar degeneration (FTLD), sporadic amyotrophic lateral sclerosis (SALS) and familial ALS (FALS) cases. Mutations in the fused in sarcoma (FUS) gene have been recently identified as the cause of FALS type 6. FUS-immunoreactive (ir) inclusions are consistently found in cases of FTLD with BIs, but the association between ALS cases with BIs and FUS accumulation is still not well understood. In this study, we immunohistochemically analyzed the autopsied case of FALS with BIs using anti-FUS antibodies. The case was a 42-year-old woman who developed proximal weakness of the bilateral upper limbs, followed by weakness of other parts including the bulbar regions, and died at age 45. Since this case is a member of a family with FALS harboring the R521C mutation of the FUS gene, she may have carried the same FUS mutation. Histopathologically, neuronal loss was evident in the motor system and other areas including the cuneate nucleus of the medulla oblongata. BIs appeared in the brain stem, cerebellum and anterior horn of the lumbar cord. FUS-ir neuronal cytoplasmic inclusions, glial cytoplasmic inclusions and dystrophic neurites were more abundantly and widely occurring than BIs, especially in the cuneate nucleus and globus pallidus. These findings support the idea that both BIs and FUS-ir structures are pathological hallmarks of a subset of ALS cases.
Collapse
Affiliation(s)
- Zen Kobayashi
- Department of Psychogeriatrics, Tokyo Institute of Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1914
|
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 2010; 19:R46-64. [PMID: 20400460 PMCID: PMC3167692 DOI: 10.1093/hmg/ddq137] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative diseases with clinical and pathological overlap. Landmark discoveries of mutations in the transactive response DNA-binding protein (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) as causative of ALS and FTLD, combined with the abnormal aggregation of these proteins, have initiated a shifting paradigm for the underlying pathogenesis of multiple neurodegenerative diseases. TDP-43 and FUS/TLS are both RNA/DNA-binding proteins with striking structural and functional similarities. Their association with ALS and other neurodegenerative diseases is redirecting research efforts toward understanding the role of RNA processing regulation in neurodegeneration.
Collapse
Affiliation(s)
| | | | - Don W. Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-6070, USA
| |
Collapse
|
1915
|
Ricci C, Battistini S, Cozzi L, Benigni M, Origone P, Verriello L, Lunetta C, Cereda C, Milani P, Greco G, Patrosso MC, Causarano R, Caponnetto C, Giannini F, Corbo M, Penco S. Lack of association of PON polymorphisms with sporadic ALS in an Italian population. Neurobiol Aging 2010; 32:552.e7-13. [PMID: 20381198 DOI: 10.1016/j.neurobiolaging.2010.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/04/2010] [Accepted: 02/16/2010] [Indexed: 11/18/2022]
Abstract
Paraoxonase (PON) gene polymorphisms have been associated with susceptibility to sporadic amyotrophic lateral sclerosis (ALS). We have investigated the role of the previously associated single nucleotide polymorphisms rs854560, rs662, and rs6954345 in 350 ALS patients and 376 matched controls from Italy. No significant association was observed at genotype and haplotype level. Our data suggest that PON polymorphisms are not involved in ALS pathogenesis in an Italian population.
Collapse
Affiliation(s)
- Claudia Ricci
- Department of Neuroscience-Neurology Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1916
|
Corrado L, Carlomagno Y, Falasco L, Mellone S, Godi M, Cova E, Cereda C, Testa L, Mazzini L, D'Alfonso S. A novel peripherin gene (PRPH) mutation identified in one sporadic amyotrophic lateral sclerosis patient. Neurobiol Aging 2010; 32:552.e1-6. [PMID: 20363051 DOI: 10.1016/j.neurobiolaging.2010.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/07/2010] [Accepted: 02/16/2010] [Indexed: 01/12/2023]
Abstract
Motor neurons in amyotrophic lateral sclerosis (ALS) are characterized by the presence of inclusion bodies composed of intermediate filament (IF) proteins. Peripherin protein is as components of these inclusions and rare mutations in peripherin gene (PRPH) were identified in sporadic ALS cases. The aim of this study was to further define the spectrum of PRPH mutations in a cohort of 122 Italian ALS patients. We screened the coding sequence, the exon/intron boundaries, and the 5'-3' un-translated regions (UTRs) in 122 ALS patients. Eighteen sequence variations were detected. Seven variants were not identified in a panel of at least 245 matched controls, including 2 missense variations, namely p.R133P and p.D141Y, each identified in one heterozygous patient. p.R133P was newly identified whereas p.D141Y was previously described in one homozygous sporadic ALS patient. These 2 variants were predicted to have a deleterious effect on protein structure or function. This work contributes to determine the role of PRPH gene variants in ALS. Further studies are necessary to define the mechanisms through which the mutant peripherin could cause ALS phenotype.
Collapse
Affiliation(s)
- Lucia Corrado
- Department Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, Novara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1917
|
Gendron TF, Josephs KA, Petrucelli L. Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol Appl Neurobiol 2010; 36:97-112. [PMID: 20202122 PMCID: PMC3052765 DOI: 10.1111/j.1365-2990.2010.01060.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the identification of phosphorylated and truncated transactive response DNA-binding protein 43 (TDP-43) as a primary component of ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions, and the discovery that mutations in the TDP-43 gene cause ALS, much effort has been directed towards establishing how TDP-43 contributes to the development of neurodegeneration. Although few in vivo models are presently available, findings thus far strongly support the involvement of abnormally modified TDP-43 in promoting TDP-43 aggregation and cellular mislocalization. Therefore, TDP-43-mediated neurotoxicity is likely to result from a combination of toxic gains of function conferred by TDP-43 inclusions as well as from the loss of normal TDP-43 function. Nonetheless, the exact neurotoxic TDP-43 species remain unclear, as do the mechanism(s) by which they cause neuronal death. Moreover, little is currently known about the roles of TDP-43, both in the nucleus and the cytoplasm, making it difficult to truly appreciate the detrimental consequences of aberrant TDP-43 function. This review will summarize what is currently understood regarding normal TDP-43 function and the involvement of TDP-43 in neurodegeneration, and will also highlight some of the many remaining questions in need of further investigation.
Collapse
Affiliation(s)
- T F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
1918
|
Abstract
In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and alpha-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology.
Collapse
Affiliation(s)
- Alice S Chen-Plotkin
- Department of Neurology, University of Pennsylvania School of Medicine, 3600 Spruce Street, Philadelphia, PA 19104-4283, USA
| | | | | |
Collapse
|
1919
|
Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 2010; 1802:396-405. [DOI: 10.1016/j.bbadis.2009.12.009] [Citation(s) in RCA: 1796] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
|
1920
|
Abstract
The interest and research into disease-related biomarkers has greatly accelerated over the last 10 years. The potential clinical benefits for disease-specific biomarkers include a more rapid and accurate disease diagnosis, and potential reduction in size and duration of clinical drug trials, which would speed up drug development. The application of biomarkers into the clinical arena of motor neuron disease should both determine if a drug hits its proposed target and whether the drug alters the course of disease. This article will highlight the progress made in discovering suitable biomarker candidates from a variety of sources, including imaging, neurophysiology and proteomics. For biomarkers to have clinical utility, specific criteria must be satisfied. While there has been tremendous effort to discover biomarkers, very few have been translated to the clinic. The bottlenecks in the biomarker pipeline will be highlighted as well as lessons that can be learned from other disciplines, such as oncology.
Collapse
Affiliation(s)
- Jeban Ganesalingam
- Department of Clinical Neurosciences, Institute of Psychiatry, Kings College London, UK
| | - Robert Bowser
- Department of Pathology & Center of ALS Research, University of Pittsburgh School of Medicine, BST S-420, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
1921
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
1922
|
Murray LM, Talbot K, Gillingwater TH. Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathol Appl Neurobiol 2010; 36:133-56. [DOI: 10.1111/j.1365-2990.2010.01061.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
1923
|
RNA processing pathways in amyotrophic lateral sclerosis. Neurogenetics 2010; 11:275-90. [PMID: 20349096 DOI: 10.1007/s10048-010-0239-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/24/2010] [Indexed: 12/12/2022]
Abstract
RNA processing is a tightly regulated, highly complex pathway which includes RNA transcription, pre-mRNA splicing, editing, transportation, translation, and degradation of RNA. Over the past few years, several RNA processing genes have been shown to be mutated or genetically associated with amyotrophic lateral sclerosis (ALS), including the RNA-binding proteins TDP-43 and FUS/TLS. These findings suggest that RNA processing may represent a common pathogenic mechanism involved in development of ALS. In this review, we will discuss six ALS-related, RNA processing genes including their discovery, function, and commonalities.
Collapse
|
1924
|
Zhou H, Huang C, Chen H, Wang D, Landel CP, Xia PY, Bowser R, Liu YJ, Xia XG. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 2010; 6:e1000887. [PMID: 20361056 PMCID: PMC2845661 DOI: 10.1371/journal.pgen.1000887] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/25/2010] [Indexed: 12/12/2022] Open
Abstract
TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongxia Zhou
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Cao Huang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han Chen
- Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Dian Wang
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carlisle P. Landel
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Pedro Yuxing Xia
- Lower Merion High School, Ardmore, Pennsylvania, United States of America
| | - Robert Bowser
- Department of Pathology, Center of ALS Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yong-Jian Liu
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xu Gang Xia
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
1925
|
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140:918-34. [PMID: 20303880 PMCID: PMC2873093 DOI: 10.1016/j.cell.2010.02.016] [Citation(s) in RCA: 2686] [Impact Index Per Article: 179.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/25/2010] [Accepted: 02/05/2010] [Indexed: 02/08/2023]
Abstract
Inflammation is associated with many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. In this Review, we discuss inducers, sensors, transducers, and effectors of neuroinflammation that contribute to neuronal dysfunction and death. Although inducers of inflammation may be generated in a disease-specific manner, there is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators. A major unanswered question is whether pharmacological inhibition of inflammation pathways will be able to safely reverse or slow the course of disease.
Collapse
Affiliation(s)
- Christopher K. Glass
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093, USA
- Department of Medicine University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaoru Saijo
- Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, CA 92093, USA
| | - Beate Winner
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
1926
|
Suzuki N, Aoki M, Warita H, Kato M, Mizuno H, Shimakura N, Akiyama T, Furuya H, Hokonohara T, Iwaki A, Togashi S, Konno H, Itoyama Y. FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusion. J Hum Genet 2010; 55:252-4. [PMID: 20224596 DOI: 10.1038/jhg.2010.16] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in the fused in sarcoma (FUS, also known as translated in liposarcoma) gene have been recently discovered to be associated with familial amyotrophic lateral sclerosis (FALS) in African, European and American populations. In a Japanese family with FALS, we found the R521C FUS mutation, which has been reported to be found in various ethnic backgrounds. The family history revealed 23 patients with FALS among 46 family members, suggesting a 100% penetrance rate. They developed muscle weakness at an average age of 35.3 years, followed by dysarthria, dysphagia, spasticity and muscle atrophy. The average age of death was 37.2 years. Neuropathological examination of the index case revealed remarkable atrophy of the brainstem tegmentum characterized by cytoplasmic basophilic inclusion bodies in the neurons of the brainstem. We screened 40 FALS families in Japan and found 4 mutations (S513P, K510E, R514S, H517P) in exon 14 and 15 of FUS. Even in Asian races, FALS with FUS mutations may have the common characteristics of early onset, rapid progress and high penetrance rate, although in patients with the S513P mutation it was late-onset. Degeneration in multiple systems and cytoplasmic basophilic inclusion bodies were found in the autopsied cases.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1927
|
RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 2010; 33:249-58. [PMID: 20227117 DOI: 10.1016/j.tins.2010.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 12/11/2022]
Abstract
The pathogenic mechanisms of degenerative diseases of the nervous system are not well understood. Recent evidence suggests that proteins with a role in RNA synthesis, processing, function and degradation play a role in the mechanism of degenerative disorders affecting the motor neuron. However, most of these proteins also affect cellular processes other than RNA processing. Furthermore, many of the familial diseases are inherited dominantly, suggesting a gain-of-function as their pathogenic mechanism. This newly gained function could be unrelated to their normal role in the cell. Therefore, here we review some of the recent data linking RNA metabolism and motor neuron disorders, but also critically assess their relevance for our understanding of the mechanism of neurodegeneration.
Collapse
|
1928
|
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra and intracellular accumulation of misfolded proteins, the hallmarks of many neurodegenerative proteinopathies. Major basic processes include abnormal protein dynamics due to deficiency of the ubiquitin-proteosome-autophagy system, oxidative stress and free radical formation, mitochondrial dysfunction, impaired bioenergetics, dysfunction of neurotrophins, 'neuroinflammatory' processes and (secondary) disruptions of neuronal Golgi apparatus and axonal transport. These interrelated mechanisms lead to programmed cell death is a long run over many years. Neurodegenerative disorders are classified according to known genetic mechanisms or to major components of protein deposits, but recent studies showed both overlap and intraindividual diversities between different phenotypes. Synergistic mechanisms between pathological proteins suggest common pathogenic mechanisms. Animal models and other studies have provided insight into the basic neurodegeneration and cell death programs, offering new ways for future prevention/treatment strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse, Vienna, Austria.
| |
Collapse
|
1929
|
Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, Nukina N, Iwaki T, Fukumaki Y, Kira JI. Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 2010; 119:355-64. [PMID: 19967541 DOI: 10.1007/s00401-009-0621-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/26/2009] [Accepted: 11/26/2009] [Indexed: 12/12/2022]
Abstract
Mutations in the fused in sarcoma gene (FUS) were recently found in patients with familial amyotrophic lateral sclerosis (ALS). The present study aimed to clarify unique features of familial ALS caused by FUS mutation in the Japanese population. We carried out clinical, neuropathological, and genetic studies on a large Japanese pedigree with familial ALS. In six successive generations of this family, 16 individuals of both sexes were affected by progressive muscle atrophy and weakness, indicating an autosomal dominant trait. Neurological examination of six patients revealed an age at onset of 48.2+/-8.1 years in fourth generation patients, while it was 31 and 20 years in fifth and sixth generation patients, respectively. Motor paralysis progressed rapidly in these patients, culminating in respiratory failure within 1 year. The missense mutation c.1561 C>T (p.R521C) was found in exon 15 of FUS in the four patients examined. Neuropathological study of one autopsied case with the FUS mutation revealed multiple system degeneration in addition to upper and lower motor neuron involvement: the globus pallidus, thalamus, substantia nigra, cerebellum, inferior olivary nucleus, solitary nucleus, intermediolateral horn, Clarke's column, Onuf's nucleus, central tegmental tract, medial lemniscus, medial longitudinal fasciculus, superior cerebellar peduncle, posterior column, and spinocerebellar tract were all degenerated. Argyrophilic and basophilic neuronal or glial cytoplasmic inclusions immunoreactive for FUS, GRP78/BiP, p62, and ubiquitin were detected in affected lesions. The FUS R521C mutation in this Japanese family caused familial ALS with pathological features of multiple system degeneration and neuronal basophilic inclusions.
Collapse
|
1930
|
Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 2010; 48:629-41. [PMID: 19969067 DOI: 10.1016/j.freeradbiomed.2009.11.018] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/16/2009] [Accepted: 11/29/2009] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by death of motor neurons leading to muscle wasting, paralysis, and death, usually within 2-3 years of symptom onset. The causes of ALS are not completely understood, and the neurodegenerative processes involved in disease progression are diverse and complex. There is substantial evidence implicating oxidative stress as a central mechanism by which motor neuron death occurs, including elevated markers of oxidative damage in ALS patient spinal cord and cerebrospinal fluid and mutations in the antioxidant enzyme superoxide dismutase 1 (SOD1) causing approximately 20% of familial ALS cases. However, the precise mechanism(s) by which mutant SOD1 leads to motor neuron degeneration has not been defined with certainty, and the ultimate trigger for increased oxidative stress in non-SOD1 cases remains unclear. Although some antioxidants have shown potential beneficial effects in animal models, human clinical trials of antioxidant therapies have so far been disappointing. Here, the evidence implicating oxidative stress in ALS pathogenesis is reviewed, along with how oxidative damage triggers or exacerbates other neurodegenerative processes, and we review the trials of a variety of antioxidants as potential therapies for ALS.
Collapse
Affiliation(s)
- Siân C Barber
- Academic Neurology Unit and Sheffield Care & Research Centre for Motor Neuron Disorders, Department of Neuroscience, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
1931
|
Battistini S, Ricci C, Giannini F, Calzavara S, Greco G, Del Corona A, Mancuso M, Battistini N, Siciliano G, Carrera P. G41SSOD1mutation: A common ancestor for six ALS Italian families with an aggressive phenotype. ACTA ACUST UNITED AC 2010; 11:210-5. [DOI: 10.3109/17482960902995592] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
1932
|
Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C, Onofrio RC, Ziaugra L, Cibulskis K, Laine E, Barretina J, Winckler W, Fisher DE, Getz G, Meyerson M, Jaffe DB, Gabriel SB, Lander ES, Dummer R, Gnirke A, Nusbaum C, Garraway LA. Integrative analysis of the melanoma transcriptome. Genome Res 2010; 20:413-27. [PMID: 20179022 DOI: 10.1101/gr.103697.109] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massively parallel sequencing of cDNA (RNA-seq) together with analyses of high-resolution chromosomal copy number data, we identified 11 novel melanoma gene fusions produced by underlying genomic rearrangements, as well as 12 novel readthrough transcripts. We mapped these chimeric transcripts to base-pair resolution and traced them to their genomic origins using matched chromosomal copy number information. We also used these data to discover and validate base-pair mutations that accumulated in these melanomas, revealing a surprisingly high rate of somatic mutation and lending support to the notion that point mutations constitute the major driver of melanoma progression. Taken together, these results may indicate new avenues for target discovery in melanoma, while also providing a template for large-scale transcriptome studies across many tumor types.
Collapse
Affiliation(s)
- Michael F Berger
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1933
|
Abstract
Ninety-four percent of human genes are discontinuous, such that segments expressed as mRNA are contained within exons and separated by intervening segments, called introns. Following transcription, genes are expressed as precursor mRNAs (pre-mRNAs), which are spliced co-transcriptionally, and the flanking exons are joined together to form a continuous mRNA. One advantage of this architecture is that it allows alternative splicing by differential use of exons to generate multiple mRNAs from individual genes. Regulatory elements located within introns and exons guide the splicing complex, the spliceosome, and auxiliary RNA binding proteins to the correct sites for intron removal and exon joining. Misregulation of splicing and alternative splicing can result from mutations in cis-regulatory elements within the affected gene or from mutations that affect the activities of trans-acting factors that are components of the splicing machinery. Mutations that affect splicing can cause disease directly or contribute to the susceptibility or severity of disease. An understanding of the role of splicing in disease expands potential opportunities for therapeutic intervention by either directly addressing the cause or by providing novel approaches to circumvent disease processes.
Collapse
Affiliation(s)
- Amanda J Ward
- Departments of Molecular and Cellular Biology and Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
1934
|
Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 2010; 30:639-49. [PMID: 20071528 DOI: 10.1523/jneurosci.4988-09.2010] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene encoding TDP-43-the major protein component of neuronal aggregates characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin-positive inclusion bodies-have been linked to familial forms of both disorders. Aggregates of TDP-43 in cortical and spinal motorneurons in ALS, or in neurons of the frontal and temporal cortices in FTLD, are closely linked to neuron loss and atrophy in these areas. However, the mechanism by which TDP-43 mutations lead to neurodegeneration is unclear. To investigate the pathogenic role of TDP-43 mutations, we established a model of TDP-43 proteinopathies by expressing fluorescently tagged wild-type and mutant TDP-43 in primary rat cortical neurons. Expression of mutant TDP-43 was toxic to neurons, and mutant-specific toxicity was associated with increased cytoplasmic mislocalization of TDP-43. Inclusion bodies were not necessary for the toxicity and did not affect the risk of cell death. Cellular survival was unaffected by the total amount of exogenous TDP-43 in the nucleus, but the amount of cytoplasmic TDP-43 was a strong and independent predictor of neuronal death. These results suggest that mutant TDP-43 is mislocalized to the cytoplasm, where it exhibits a toxic gain-of-function and induces cell death.
Collapse
|
1935
|
Geser F, Lee VMY, Trojanowski JQ. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 2010; 30:103-12. [PMID: 20102519 DOI: 10.1111/j.1440-1789.2009.01091.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is now established that pathological transactive response DNA-binding protein with a Mr of 43 kD (TDP-43) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin-positive inclusions (now known as FTLD-TDP). In fact, the discovery of pathological TDP-43 solidified the idea that these disorders are multi-system diseases and this led to the concept of a TDP-43 proteinopathy as a spectrum of disorders comprised of different clinical and pathological entities extending from ALS to ALS with cognitive impairment/dementia and FTLD-TDP without or with motor neuron disease (FTLD-MND). These align along a broad disease continuum sharing similar pathogenetic mechanisms linked to pathological TDP-43. We here review salient findings in the development of a concept of TDP-43 proteinopathy as a novel group of neurodegenerative diseases similar in concept to alpha-synucleinopathies and tauopathies.
Collapse
Affiliation(s)
- Felix Geser
- The Institute on Aging, Center for Neurodegenerative Disease Research and the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Pennsylvania 19104-4283, USA
| | | | | |
Collapse
|
1936
|
Becanovic K, Pouladi MA, Lim RS, Kuhn A, Pavlidis P, Luthi-Carter R, Hayden MR, Leavitt BR. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum Mol Genet 2010; 19:1438-52. [PMID: 20089533 DOI: 10.1093/hmg/ddq018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel: Affymetrix and Illumina. The data from these two powerful platforms were integrated to create a combined rank list, thereby revealing the identity of additional genes that proved to be differentially expressed between YAC128 and control mice. Using this approach, we identified 13 genes to be differentially expressed between YAC128 and controls which were validated by quantitative real-time PCR in independent cohorts of animals. In addition, we analyzed additional time points relevant to disease pathology: 3, 6 and 9 months of age. Here we present data showing the evolution of changes in the expression of selected genes: Wt1, Pcdh20 and Actn2 RNA levels change as early as 3 months of age, whereas Gsg1l, Sfmbt2, Acy3, Polr2a and Ppp1r9a RNA expression levels are affected later, at 12 and 24 months of age. We also analyzed the expression of these 13 genes in human HD and control brain, thereby revealing changes in SLC45A3, PCDH20, ACTN2, DDAH1 and PPP1R9A RNA expression. Further study of these genes may unravel novel pathways contributing to HD pathogenesis. DDBJ/EMBL/GenBank accession no: GSE19677.
Collapse
Affiliation(s)
- Kristina Becanovic
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | |
Collapse
|
1937
|
Kolb SJ, Sutton S, Schoenberg DR. RNA processing defects associated with diseases of the motor neuron. Muscle Nerve 2010; 41:5-17. [PMID: 19697368 DOI: 10.1002/mus.21428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid progress in the discovery of motor neuron disease genes in amyotrophic lateral sclerosis, the spinal muscular atrophies, hereditary motor neuropathies, and lethal congenital contracture syndromes is providing new perspectives and insights into the molecular pathogenesis of the motor neuron. Motor neuron disease genes are often expressed throughout the body with essential functions in all cells. A survey of these functions indicates that motor neurons are uniquely sensitive to perturbations in RNA processing pathways dependent on the interaction of specific RNAs with specific RNA-binding proteins, which presumably result in aberrant formation and function of ribonucleoprotein complexes. This review provides a summary of currently recognized RNA processing defects linked to human motor neuron diseases.
Collapse
Affiliation(s)
- Stephen J Kolb
- Department of Neurology, Ohio State University Medical Center, Hamilton Hall, Room 337B, 1645 Neil Avenue, Columbus, Ohio 43210-1228, USA
| | | | | |
Collapse
|
1938
|
Weintraub S, Mesulam M. With or without FUS, it is the anatomy that dictates the dementia phenotype. Brain 2010; 132:2906-8. [PMID: 19861505 DOI: 10.1093/brain/awp286] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Centre, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
1939
|
Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. ACTA ACUST UNITED AC 2010; 187:761-72. [PMID: 19951898 PMCID: PMC2806318 DOI: 10.1083/jcb.200908164] [Citation(s) in RCA: 809] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective degeneration and death of one or more classes of neurons is the defining feature of human neurodegenerative disease. Although traditionally viewed as diseases mainly affecting the most vulnerable neurons, in most instances of inherited disease the causative genes are widely—usually ubiquitously—expressed. Focusing on amyotrophic lateral sclerosis (ALS), especially disease caused by dominant mutations in Cu/Zn superoxide dismutase (SOD1), we review here the evidence that it is the convergence of damage developed within multiple cell types, including within neighboring nonneuronal supporting cells, which is crucial to neuronal dysfunction. Damage to a specific set of key partner cells as well as to vulnerable neurons may account for the selective susceptibility of neuronal subtypes in many human neurodegenerative diseases, including Huntington's disease (HD), Parkinson's disease (PD), prion disease, the spinal cerebellar ataxias (SCAs), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Hristelina Ilieva
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
1940
|
Abstract
RNA transcription by all the three RNA polymerases (RNAPs) is tightly controlled, and loss of regulation can lead to, for example, cellular transformation and cancer. While most transcription factors act specifically with one polymerase, a small number have been shown to affect more than one polymerase to coordinate overall levels of transcription in cells. Here we show that TLS (translocated in liposarcoma), a protein originally identified as the product of a chromosomal translocation and which associates with both RNAP II and the spliceosome, also represses transcription by RNAP III. TLS was found to repress transcription from all three classes of RNAP III promoters in vitro and to associate with RNAP III genes in vivo, perhaps via a direct interaction with the pan-specific transcription factor TATA-binding protein (TBP). Depletion of TLS by small interfering RNA (siRNA) in HeLa cells resulted in increased steady-state levels of RNAP III transcripts as well as increased RNAP III and TBP occupancy at RNAP III-transcribed genes. Conversely, overexpression of TLS decreased accumulation of RNAP III transcripts. These unexpected findings indicate that TLS regulates both RNAPs II and III and supports the possibility that cross-regulation between RNA polymerases is important in maintaining normal cell growth.
Collapse
|
1941
|
Perry JJP, Shin DS, Tainer JA. Amyotrophic lateral sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 685:9-20. [PMID: 20687491 DOI: 10.1007/978-1-4419-6448-9_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurological disorder that results in loss of motor neurons, leading to a rapidly progressive form of muscle paralysis that is fatal. There is no available cure and current therapies only provide minimal benefit at best. The disease is predominantly sporadic and until very recently only the Cu,Zn superoxide dismutase (Cu,ZnSOD), which is involved in a small number of sporadic cases and a larger component of familial ones, have been analyzed in any detail. Here we describe the clinical aspects of ALS and highlight the genetics and molecular mechanisms behind the disease. We discuss the current understanding and controversies of how mutations in Cu,ZnSOD may cause the disease. We also focus on the recent discovery that mutations in either TDP-43 or FUS/TLS, which are both involved in DNA/RNA synthesis, are likely the cause behind many cases of ALS that are not linked to Cu,ZnSOD.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
1942
|
Ludolph AC, Bendotti C, Blaugrund E, Chio A, Greensmith L, Loeffler JP, Mead R, Niessen HG, Petri S, Pradat PF, Robberecht W, Ruegg M, Schwalenstöcker B, Stiller D, van den Berg L, Vieira F, von Horsten S. Guidelines for preclinical animal research in ALS/MND: A consensus meeting. AMYOTROPHIC LATERAL SCLEROSIS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY RESEARCH GROUP ON MOTOR NEURON DISEASES 2010; 11:38-45. [PMID: 20184514 DOI: 10.3109/17482960903545334] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of therapeutics for ALS/MND is largely based on work in experimental animals carrying human SOD mutations. However, translation of apparent therapeutic successes from in vivo to the human disease has proven difficult and a considerable amount of financial resources has been apparently wasted. Standard operating procedures (SOPs) for preclinical animal research in ALS/MND are urgently required. Such SOPs will help to establish SOPs for translational research for other neurological diseases within the next few years. To identify the challenges and to improve the research methodology, the European ALS/MND group held a meeting in 2006 and published guidelines in 2007 (1). A second international conference to improve the guidelines was held in 2009. These second and improved guidelines are dedicated to the memory of Sean F. Scott.
Collapse
|
1943
|
Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction in amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:45-51. [PMID: 19715760 PMCID: PMC2790551 DOI: 10.1016/j.bbadis.2009.08.012] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 12/12/2022]
Abstract
The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging "dying-back" axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology.
Collapse
Affiliation(s)
- Ping Shi
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - David M. Kwinter
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Xiaoyan Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| | - Haining Zhu
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40506
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
1944
|
Abstract
The fruit fly, Drosophila melanogaster, has a long and rich history as an important model organism for biologists. In particular, study of the fruit fly has been essential to much of our fundamental understanding of the development and function of the nervous system. In recent years, studies using fruit flies have provided important insights into the pathogenesis of neurodegenerative and neuromuscular diseases. Fly models of spinal muscular atrophy, spinobulbar muscular atrophy,myotonic dystrophy, dystrophinopathies and other inherited neuromuscular diseases recapitulate many of the key pathologic features of the human disease. The ability to perform genetic screens holds promise for uncovering the molecular mechanisms of disease, and indeed, for identifying novel therapeutic targets. This review will summarize recent progress in developing fly models of neuromuscular diseases and will emphasize the contribution that Drosophila has made to our understanding of these diseases.
Collapse
Affiliation(s)
- Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/ Meyer 6-181C, Baltimore, MD 21287, , Phone: (410) 955-1223, Fax: (410) 502-6737
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, MS 343, D-4026, 262 Danny Thomas Place, Memphis, TN 38105-3678, , Phone: (901) 595-6047, Fax: (901) 595-2032
| |
Collapse
|
1945
|
Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010; 119:1-4. [PMID: 19924424 PMCID: PMC2799633 DOI: 10.1007/s00401-009-0612-2] [Citation(s) in RCA: 715] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 01/12/2023]
|
1946
|
C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging 2009; 32:548.e1-4. [PMID: 20018407 DOI: 10.1016/j.neurobiolaging.2009.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/05/2009] [Accepted: 11/26/2009] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), the major form of motor neuron disease in the adult occurs as a sporadic disease in more than 95% of all cases. Analysis of familial forms is considered as a key to understand the pathophysiology of the disease. It is expected that mutations responsible for familial forms are also found in sporadic ALS. During the past years, several loci and genes have been identified in which disease associated mutations have been discovered. We report here on the screening of 596 sporadic ALS patients, 41 familial ALS cases and other motor neuron disease patients from Germany for mutations in the FUS/TLS gene. Sequencing of the last two exons in all patients revealed the C1561T transversion, which leads to the amino acid substitution at R521C, in one familial and one sporadic ALS patient. In addition three patients with a synonymous mutation at codon 522 were identified. None of these variants were present in the control population. Our results indicate that mutations in FUS/TLS are not a major cause of sporadic ALS in the German population.
Collapse
|
1947
|
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009; 326:1549-54. [PMID: 20007902 PMCID: PMC2796560 DOI: 10.1126/science.1181046] [Citation(s) in RCA: 587] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons, denervation of target muscles, muscle atrophy, and paralysis. Understanding ALS pathogenesis may require a fuller understanding of the bidirectional signaling between motor neurons and skeletal muscle fibers at neuromuscular synapses. Here, we show that a key regulator of this signaling is miR-206, a skeletal muscle-specific microRNA that is dramatically induced in a mouse model of ALS. Mice that are genetically deficient in miR-206 form normal neuromuscular synapses during development, but deficiency of miR-206 in the ALS mouse model accelerates disease progression. miR-206 is required for efficient regeneration of neuromuscular synapses after acute nerve injury, which probably accounts for its salutary effects in ALS. miR-206 mediates these effects at least in part through histone deacetylase 4 and fibroblast growth factor signaling pathways. Thus, miR-206 slows ALS progression by sensing motor neuron injury and promoting the compensatory regeneration of neuromuscular synapses.
Collapse
Affiliation(s)
- Andrew H. Williams
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Gregorio Valdez
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Viviana Moresi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Xiaoxia Qi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - John McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jeffrey L. Elliott
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
1948
|
Wain LV, Pedroso I, Landers JE, Breen G, Shaw CE, Leigh PN, Brown RH, Tobin MD, Al-Chalabi A. The role of copy number variation in susceptibility to amyotrophic lateral sclerosis: genome-wide association study and comparison with published loci. PLoS One 2009; 4:e8175. [PMID: 19997636 PMCID: PMC2780722 DOI: 10.1371/journal.pone.0008175] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/12/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty. METHODOLOGY AND PRINCIPAL FINDINGS In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability. CONCLUSIONS AND SIGNIFICANCE Interpretation of CNV association findings must take into account the effects of filtering and combining CNV calls when based on early genome-wide genotyping platforms and modest study sizes.
Collapse
Affiliation(s)
- Louise V. Wain
- Departments of Health Sciences and Genetics, University of Leicester, Leicester, United Kingdom
| | - Inti Pedroso
- MRC Centre for Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, London, United Kingdom
| | - John E. Landers
- Day Neuromuscular Research Laboratory, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Gerome Breen
- MRC Centre for Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, King's College London, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, London, United Kingdom
| | - Christopher E. Shaw
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - P. Nigel Leigh
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Robert H. Brown
- Day Neuromuscular Research Laboratory, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Martin D. Tobin
- Departments of Health Sciences and Genetics, University of Leicester, Leicester, United Kingdom
| | - Ammar Al-Chalabi
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| |
Collapse
|
1949
|
Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, Bourgouin P, Rochefort D, Bel Hadj S, Durham HD, Vande Velde C, Rouleau GA, Drapeau P. Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 2009; 19:671-83. [PMID: 19959528 DOI: 10.1093/hmg/ddp534] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TDP-43 has been found in inclusion bodies of multiple neurological disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson's disease and Alzheimer's disease. Mutations in the TDP-43 encoding gene, TARDBP, have been subsequently reported in sporadic and familial ALS patients. In order to investigate the pathogenic nature of these mutants, the effects of three consistently reported TARDBP mutations (A315T, G348C and A382T) were tested in cell lines, primary cultured motor neurons and living zebrafish embryos. Each of the three mutants and wild-type (WT) human TDP-43 localized to nuclei when expressed in COS1 and Neuro2A cells by transient transfection. However, when expressed in motor neurons from dissociated spinal cord cultures these mutant TARDBP alleles, but less so for WT TARDBP, were neurotoxic, concomitant with perinuclear localization and aggregation of TDP-43. Finally, overexpression of mutant, but less so of WT, human TARDBP caused a motor phenotype in zebrafish (Danio rerio) embryos consisting of shorter motor neuronal axons, premature and excessive branching as well as swimming deficits. Interestingly, knock-down of zebrafisfh tardbp led to a similar phenotype, which was rescued by co-expressing WT but not mutant human TARDBP. Together these approaches showed that TARDBP mutations cause motor neuron defects and toxicity, suggesting that both a toxic gain of function as well as a novel loss of function may be involved in the molecular mechanism by which mutant TDP-43 contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Edor Kabashi
- Centre of Excellence in Neuromics, Department of Medicine, Université de Montré al,Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1950
|
Guipponi M, Li QX, Hyde L, Beissbarth T, Smyth GK, Masters CL, Scott HS. SAGE analysis of genes differentially expressed in presymptomatic TgSOD1G93A transgenic mice identified cellular processes involved in early stage of ALS pathology. J Mol Neurosci 2009; 41:172-82. [PMID: 19953340 DOI: 10.1007/s12031-009-9317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/16/2009] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons of the spinal cord and motor cortex degenerate, resulting in progressive paralysis. Transgenic mice expressing human mutant Cu/Zn superoxide dismutase-1 (SOD1) present a pathology that is very similar to that seen in human ALS patients. Using serial analysis of gene expression, we investigated the effects of mutant human SOD1 protein on global gene expression in the spinal cord and lower brain stem of presymptomatic TgSOD1(G93A) transgenic mice. One hundred twenty transcripts were found to be significantly dysregulated in the presence of mutant SOD1 protein, 79 being down-regulated and 41 up-regulated. Quantitative RT-PCR was used to confirm the differential expression of nine of these genes. Immunohistochemistry analysis on spinal cord sections revealed that dysregulation of these mutant SOD1-induced molecular pathways are concomitant to the appearance of discrete signs of neuropathology including neuronal loss, elevated gliosis, and ubiquitin-positive deposits. Altogether, our data showed that early signs of neuropathology in the SOD1 mutant mice are accompanied by altered expression of genes involved in various biological processes including apoptosis, oxidative stress, ATP biosynthesis, myelination, and axonal transport.
Collapse
Affiliation(s)
- Michel Guipponi
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia.
| | | | | | | | | | | | | |
Collapse
|