151
|
Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 2007; 28:501-5. [PMID: 17884186 DOI: 10.1016/j.tips.2007.09.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/23/2007] [Accepted: 09/07/2007] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs are among the most commonly used drugs. Despite efforts to produce non-steroidal anti-inflammatory drugs that do not cause gastrointestinal ulceration and bleeding, these adverse effects remain major limitations to their use. In recent years, physiological roles of hydrogen sulfide (H2S) have been recognized, and there is emerging evidence that this endogenous gaseous substance can modulate inflammatory processes. Indeed, H2S donors have been shown to reduce edema formation and leukocyte adherence to the vascular endothelium, and to inhibit pro-inflammatory cytokine synthesis. Moreover, H2S donors can increase the resistance of the gastric mucosa to injury and accelerate repair. Taken together, these observations and others suggest that anti-inflammatory drugs that are modified to release H2S will exhibit improved efficacy and reduced toxicity. Such compounds have now been synthesized and shown to be markedly improved in many respects over the parent anti-inflammatory drugs.
Collapse
Affiliation(s)
- John L Wallace
- Inflammation Research Network, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
152
|
Braga PC, Sambataro G, Dal Sasso M, Culici M, Alfieri M, Nappi G. Antioxidant Effect of Sulphurous Thermal Water on Human Neutrophil Bursts: Chemiluminescence Evaluation. Respiration 2007; 75:193-201. [PMID: 17804898 DOI: 10.1159/000107976] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/07/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The activities of the HS (sulfhydryl or thiolic) group in the cysteine of glutathione or various low-weight soluble molecules (thiolic drugs), such as N-acethylcysteine, mesna, thiopronine and dithiotreitol or stepronine and erdosteine (prodrugs), include its antioxidant activity in the airways during the release of reactive oxygen or nitrogen species (ROS, RNS) by polymorphonuclear neutrophils (PMNs) activated in response to exogenous or endogenous stimuli. OBJECTIVE In addition to being administered by means of thiolic molecules, the HS group can also be given by means of the inhalation of sulphurous thermal water. The aim of this study was to investigate the effect of sulphurous thermal water on the release of ROS and RNS during the bursts of human PMNs. METHODS The luminol-amplified chemiluminescence methodology was used to investigate the ROS and RNS released by PMNs stimulated with N-formyl-methionyl-leucyl-phenylalanine and phorbol-12-myristate-13-acetate, before and after incubation with sulphurous water. Effects on cell-free systems were also investigated. RESULTS The water significantly reduced the luminol-amplified chemiluminescence of N-formyl-methionyl-leucyl-phenylalanine- andphorbol-12-myristate-13-acetate-activated PMNs on average from 0.94 to 15.5 mug/ml of HS, even after the addition of L-arginine, a nitric oxide (NO) donor. Similar findings have also been obtained in a cell-free system, thus confirming the importance of the presence of the HS group (reductive activity). CONCLUSIONS The positive effects of the activity of sulphurous thermal waters has been partially based on the patients' subjective sense of wellbeing and partially on not always easy to quantify symptomatic (or general) clinical improvements. Our findings indicate that, in addition to their known mucolytic activity and trophic effects on respiratory mucosa, the HS groups present in the sulphurous thermal water of this spring also have antioxidant activity that contributes to the therapeutic effects of the water in upper and lower airway inflammatory diseases.
Collapse
Affiliation(s)
- Pier Carlo Braga
- Center of Respiratory Pharmacology, Department of Pharmacology, School of Medicine, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
153
|
Ferreri C, Panagiotaki M, Chatgilialoglu C. Trans Fatty Acids in Membranes: The Free Radical Path. Mol Biotechnol 2007; 37:19-25. [PMID: 17914159 DOI: 10.1007/s12033-007-0054-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
The double bond geometry of most of the naturally occurring unsaturated fatty acid residues is cis. Due to the relevance of fatty acids as structural components of cell membranes and as biologically active molecules, the change of the cis geometry means a change of the associated functions and activities. The finding that the cis to trans isomerization is effective in phospholipids by the intervention of radical species led to the discovery that there can indeed occur an endogenous formation of trans fatty acids, whose significance in biological systems started to be addressed with in vitro and in vivo studies. Studies of liposome models simulating the formation of isomerizing species and evaluating their ability to interact with the hydrophobic part of the membrane bilayer has contributed to the gain in knowledge of the fundamental features of the lipid isomerization in membranes. Further work is in progress for the identification of the real culprits of the in vivo lipid isomerization, and recent results are shown on oleic acid micelles, where *NO2 radicals are not able to induce double bond isomerization in comparison with amphiphilic thiol, such as 2-mercaptoethanol. H2S and sulfur-containing amino acid residues are two of the possible species involved in this process at a biological level. An update of the scenario of the geometrical isomerization in membranes by free radicals is provided, together with applications and perspectives in life sciences.
Collapse
|
154
|
Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M. Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 2007; 81:1322-1332. [PMID: 17289797 DOI: 10.1189/jlb.1006599] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide (H2S) is now considered an endogenous, gaseous mediator, which has been demonstrated to be involved in many inflammatory states. However, the mechanism of its proinflammatory function remains unknown. In the present study, we used IFN-gamma-primed human monocytic cell line U937 to investigate the effects of H2S in vitro on monocytes. We found that treatment with the H2S donor, sodium hydrosulfide, led to significant increases in the mRNA expression and protein production of TNF-alpha, IL-1beta, and IL-6 in U937 cells. H2S-triggered monocyte activation was confirmed further by the up-regulation of CD11b expression on the cell surface. We also observed that H2S could induce a rapid degradation of IkappaBalpha and subsequent activation of NF-kappaB p65, and this effect was attenuated by Bay 11-7082, a specific inhibitor of NF-kappaB. Furthermore, pretreatment of cells with Bay 11-7082 substantially inhibited the secretion of TNF-alpha, IL-1beta, and IL-6 induced by H2S. We also found that H2S stimulated the phosphorylation and activation of ERK1/2, but not of p38 MAPK and JNK, and pretreatment with PD98059, a selective MEK1 antagonist, could inhibit H2S-induced NF-kappaB activation markedly. Together, our findings suggest for the first time that H2S stimulates the activation of human monocytes with the generation of proinflammatory cytokines, and this response is, at least partially, through the ERK-NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Liang Zhi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | | | | | | | | |
Collapse
|
155
|
Lykakis IN, Ferreri C, Chatgilialoglu C. The Sulfhydryl Radical (HS./S.−): A Contender for the Isomerization of Double Bonds in Membrane Lipids. Angew Chem Int Ed Engl 2007; 46:1914-6. [PMID: 17450618 DOI: 10.1002/anie.200604525] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ioannis N Lykakis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | | | | |
Collapse
|
156
|
Lykakis I, Ferreri C, Chatgilialoglu C. The Sulfhydryl Radical (HS./S.−): A Contender for the Isomerization of Double Bonds in Membrane Lipids. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
157
|
Hu LF, Wong PTH, Moore PK, Bian JS. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 2007; 100:1121-8. [PMID: 17212697 DOI: 10.1111/j.1471-4159.2006.04283.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present study attempts to investigate the effect of H(2)S on lipopolysaccharide (LPS)-induced inflammation in both primary cultured microglia and immortalized murine BV-2 microglial cells. We found that exogenous application of sodium hydrosulfide (NaHS) (a H(2)S donor, 10-300 micro mol/L) attenuated LPS-stimulated nitric oxide (NO) in a concentration-dependent manner. Stimulating endogenous H(2)S production decreased LPS-stimulated NO production, whereas lowering endogenous H(2)S level increased basal NO production. Western blot analysis showed that both exogenous and endogenous H(2)S significantly attenuated the stimulatory effect of LPS on inducible nitric oxide synthase expression, which is mimicked by SB 203580, a specific p38 mitogen-activated protein kinase (MAPK) inhibitor. Exogenously applied NaHS significantly attenuated LPS-induced p38 MAPK phosphorylation in BV-2 microglial cells. Moreover, both NaHS (300 micro mol/L) and SB 203580 (1 micro mol/L) significantly attenuated LPS-induced tumor necrosis factor-alpha secretion, another inflammatory indicator. In addition, NaHS (10-300 micro mol/L) dose-dependently decreased LPS-stimulated NO production in primary cultured astrocytes, suggesting that the anti-neuroinflammatory effect of H(2)S is not specific to microglial cells alone. Taken together, H(2)S produced an anti-inflammatory effect in LPS-stimulated microglia and astrocytes, which may be due to inhibition of inducible nitric oxide synthase and p38 MAPK signaling pathways. These findings may have important implications in the treatment of neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Li-Fang Hu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
158
|
Münchberg U, Anwar A, Mecklenburg S, Jacob C. Polysulfides as biologically active ingredients of garlic. Org Biomol Chem 2007; 5:1505-18. [PMID: 17571177 DOI: 10.1039/b703832a] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Garlic has long been considered as a natural remedy against a range of human illnesses, including various bacterial, viral and fungal infections. This kind of antibiotic activity of garlic has mostly been associated with the thiosulfinate allicin. Even so, recent studies have pointed towards a significant biological activity of trisulfides and tetrasulfides found in various Allium species, including a wide range of antibiotic properties and the ability of polysulfides to cause the death of certain cancer cells. The chemistry underlying the biological activity of these polysulfides is currently emerging. It seems to include a combination of several distinct transformations, such as oxidation reactions, superoxide radical and peroxide generation, decomposition with release of highly electrophilic S(x) species, inhibition of metalloenzymes, disturbance of metal homeostasis and membrane integrity and interference with different cellular signalling pathways. Further research in this area is required to provide a better understanding of polysulfide reactions within a biochemical context. This knowledge may ultimately form the basis for the development of 'green' antibiotics, fungicides and possibly anticancer agents with dramatically reduced side effects in humans.
Collapse
Affiliation(s)
- Ute Münchberg
- Division of Bioorganic Chemistry, School of Pharmacy, Building B 2.1, Universität des Saarlandes, PO Box 151150, D-66041, Saarbrücken, Germany
| | | | | | | |
Collapse
|
159
|
Moroz LL, Kohn AB. On the comparative biology of Nitric Oxide (NO) synthetic pathways: Parallel evolution of NO-mediated signaling. Nitric Oxide 2007. [DOI: 10.1016/s1872-2423(07)01001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
160
|
Jacob C, Knight I, Winyard PG. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 2006; 387:1385-97. [PMID: 17081111 DOI: 10.1515/bc.2006.174] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The last decade has witnessed an increased interest in cysteine modifications such as sulfenic and sulfinic acids, thiyl radicals, sulfenyl-amides and thiosulfinates, which come together to enable redox sensing, activation, catalysis, switching and cellular signalling. While glutathionylation, sulfenyl-amide formation and disulfide activation are examples of relatively simple redox responses, the sulfinic acid switch in peroxiredoxin enzymes is part of a complex signalling system that involves sulfenic and sulfinic acids and interacts with kinases and sulfiredoxin. Although the in vivo evaluation of sulfur species is still complicated by a lack of appropriate analytical techniques, research into biological sulfur species has gained considerable momentum and promises further excitement in the future.
Collapse
Affiliation(s)
- Claus Jacob
- School of Pharmacy, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
161
|
Jacob C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep 2006; 23:851-63. [PMID: 17119635 DOI: 10.1039/b609523m] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of sulfur-containing natural products from plants, fungi, bacteria and animals have recently been investigated to determine their therapeutic potential. Preliminary in vitro and in vivo studies of compounds such as ergothioneine, ovothiols, allicin, leinamycin, varacin, lenthionine and diallyltetrasulfide have provided evidence for antioxidant, antibacterial, antimicrobial, antifungal and anticancer properties. The biological activity of these compounds is the result of specific chemical properties which converge in chemotypes such as thiols, disulfides, sulfenic and sulfinic acids,thiosulfinates, sulfoxides, sulfones and polysulfides. Redox-activity, catalysis, metal binding, enzyme inhibition and radical generation allow reactive sulfur species to interact with oxidative stressors, to affect the function of redox-sensitive cysteine proteins and to disrupt the integrity of DNA and cellular membranes. In some cases, the biological activity of sulfur-containing plant products depends on initial enzymatic activation, which allows thiosulfinates and isothiocyanates to be generated with high target selectivity. Not surprisingly, research into the biochemical and pharmacological properties of the lesser known sulfur chemotypes is rapidly gathering momentum.
Collapse
Affiliation(s)
- Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Universität des Saarlandes, Postfach 151150, D-66041, Saarbrücken, Germany.
| |
Collapse
|
162
|
Wattenberg LW. Inhibition of carcinogenesis by minor anutrient constituents of the diet. Cell Signal 1990; 24:1229-40. [PMID: 2236085 DOI: 10.1016/j.cellsig.2012.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 11/16/2022]
Abstract
A continuing study of chemopreventive agents has focused on several categories of naturally occurring compounds that inhibit carcinogen activation and are effective in preventing carcinogen-induced neoplasia when administered at short time-intervals before carcinogen challenge. The inhibitory compounds are: aromatic isothiocyanates found in cruciferous vegetables, monoterpenes present in citrus fruits and caraway-seed oil, and organosulphur compounds occurring in Allium species. Preliminary work indicates that glucobrassicin and indoles existing in cruciferous vegetables also have these attributes. Almost all carcinogens that are consumed in food require metabolic activation. Thus, inhibition of carcinogen activation reactions could be effective against this type of exposure. In addition, three naturally occurring compounds, i.e. phenethyl isothiocyanate, D-limonene and dipropyl sulphide inhibit activation of the tobacco-specific carcinogen NNK, and accordingly may have the capacity to diminish carcinogenic response to exposures to tobacco. The property of cruciferous vegetables, orange oil, benzyl isothiocyanate, and D-limonene, to act as both blocking and suppressing agents has been discussed. Two possible mechanisms for this multi-phase activity were presented. The first is that these inhibitory substances activate a complex integrated defence mechanism against toxic compounds which entails both blocking and suppressing components. The blocking component is the initial line of defence, and the suppressing component constitutes a 'fail-safe' backup to assure that if any of the toxic material attacks cellular constituents, its effects will be nullified. The second possible mechanism considered is that the inhibitors, because of high reactivity, have multiple biological effects that are separate and not part of a single, coordinated response. Inhibitors that have both blocking and suppressing effects could be particularly useful as chemopreventive agents. A simple interim classification of foods in terms of their potential impact on the occurrences of cancer has been proposed.
Collapse
Affiliation(s)
- L W Wattenberg
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455
| |
Collapse
|