151
|
Hoces D, Miguens Blanco J, Hernández-López RA. A synthetic biology approach to engineering circuits in immune cells. Immunol Rev 2023; 320:120-137. [PMID: 37464881 DOI: 10.1111/imr.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
A synthetic circuit in a biological system involves the designed assembly of genetic elements, biomolecules, or cells to create a defined function. These circuits are central in synthetic biology, enabling the reprogramming of cellular behavior and the engineering of cells with customized responses. In cancer therapeutics, engineering T cells with circuits have the potential to overcome the challenges of current approaches, for example, by allowing specific recognition and killing of cancer cells. Recent advances also facilitate engineering integrated circuits for the controlled release of therapeutic molecules at specified locations, for example, in a solid tumor. In this review, we discuss recent strategies and applications of synthetic receptor circuits aimed at enhancing immune cell functions for cancer immunotherapy. We begin by introducing the concept of circuits in networks at the molecular and cellular scales and provide an analysis of the development and implementation of several synthetic circuits in T cells that have the goal to overcome current challenges in cancer immunotherapy. These include specific targeting of cancer cells, increased T-cell proliferation, and persistence in the tumor microenvironment. By harnessing the power of synthetic biology, and the characteristics of certain circuit architectures, it is now possible to engineer a new generation of immune cells that recognize cancer cells, while minimizing off-target toxicities. We specifically discuss T-cell circuits for antigen density sensing. These circuits allow targeting of solid tumors that share antigens with normal tissues. Additionally, we explore designs for synthetic circuits that could control T-cell differentiation or T-cell fate as well as the concept of synthetic multicellular circuits that leverage cellular communication and division of labor to achieve improved therapeutic efficacy. As our understanding of cell biology expands and novel tools for genome, protein, and cell engineering are developed, we anticipate further innovative approaches to emerge in the design and engineering of circuits in immune cells.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Jesús Miguens Blanco
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Rogelio A Hernández-López
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford, California, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
152
|
Bolandi Z, Hashemi SM, Abasi M, Musavi M, Aghamiri S, Miyanmahaleh N, Ghanbarian H. In vitro naive CD4 + T cell differentiation upon treatment with miR-29b-loaded exosomes from mesenchymal stem cells. Mol Biol Rep 2023; 50:9037-9046. [PMID: 37725284 DOI: 10.1007/s11033-023-08767-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Gene regulation by microRNA (miRNA) is central in T lymphocytes differentiation processes. Here, we investigate miRNA-29b (miR-29b) roles in the reprogramming of T cell differentiation, which can be a promising therapeutic avenue for various types of inflammatory disorders such as rheumatoid arthritis and multiple sclerosis. METHODS AND RESULTS Adipose Mesenchymal Stem Cell-derived exosomes (AMSC-Exo) enriched with miR-29b were delivered into naive CD4+ T (nCD4+) cells. The expression level of important transcription factors including RAR-related orphan receptor gamma (RORγt), GATA3 binding protein (GATA3), T-box transcription factor 21, and Forkhead box P3 was determined by quantitative Real-Time PCR. Moreover, flow cytometry and Enzyme-linked Immunosorbent Assay were respectively used to measure the frequency of T regulatory cells and the levels of cytokines production (Interleukin 17, Interleukin 4, Interferon-gamma, and transforming growth factor beta. This study indicates that the transfection of miR-29b mimics into T lymphocytes through AMSC-Exo can alter the CD4+ T cells' differentiation into other types of T cells. CONCLUSIONS In conclusion, AMSC-Exo-based delivery of miR-29b can be considered as a new fascinating avenue for T cell differentiation inhibition and the future treatment of several inflammatory disorders.
Collapse
Affiliation(s)
- Zohreh Bolandi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Musavi
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Miyanmahaleh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
153
|
Nandakumar KS, Fang Q, Wingbro Ågren I, Bejmo ZF. Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:15883. [PMID: 37958864 PMCID: PMC10648236 DOI: 10.3390/ijms242115883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Abnormal activation of multiple immune and non-immune cells and proinflammatory factors mediate the development of joint inflammation in genetically susceptible individuals. Although specific environmental factors like smoking and infections are associated with disease pathogenesis, until now, we did not know the autoantigens and arthritogenic factors that trigger the initiation of the clinical disease. Autoantibodies recognizing specific post-translationally modified and unmodified antigens are generated and in circulation before the onset of the joint disease, and could serve as diagnostic and prognostic markers. The characteristic features of autoantibodies change regarding sub-class, affinity, glycosylation pattern, and epitope spreading before the disease onset. Some of these antibodies were proven to be pathogenic using animal and cell-culture models. However, not all of them can induce disease in animals. This review discusses the aberrant activation of major immune and non-immune cells contributing to joint inflammation. Recent studies explored the protective effects of extracellular vesicles from mesenchymal stem cells and bacteria on joints by targeting specific cells and pathways. Current therapeutics in clinics target cells and inflammatory pathways to attenuate joint inflammation and protect the cartilage and bones from degradation, but none cure the disease. Hence, more basic research is needed to investigate the triggers and mechanisms involved in initiating the disease and relapses to prevent chronic inflammation from damaging joint architecture.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Isabella Wingbro Ågren
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| | - Zoe Fuwen Bejmo
- Department of Environmental and Biosciences, Halmstad University, 30118 Halmstad, Sweden; (I.W.Å.); (Z.F.B.)
| |
Collapse
|
154
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
155
|
Mohebali N, Weigel M, Hain T, Sütel M, Bull J, Kreikemeyer B, Breitrück A. Faecalibacterium prausnitzii, Bacteroides faecis and Roseburia intestinalis attenuate clinical symptoms of experimental colitis by regulating Treg/Th17 cell balance and intestinal barrier integrity. Biomed Pharmacother 2023; 167:115568. [PMID: 37793274 DOI: 10.1016/j.biopha.2023.115568] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Ulcerative colitis (UC) is a severe inflammatory bowel disease (IBD) characterized by multifactorial complex disorders triggered by environmental factors, genetic susceptibility, and also gut microbial dysbiosis. Faecalibacterium prausnitzii, Bacteroides faecis, and Roseburia intestinalis are underrepresented species in UC patients, leading to the hypothesis that therapeutic application of those bacteria could ameliorate clinical symptoms and disease severity. Acute colitis was induced in mice by 3.5% DSS, and the commensal bacterial species were administered by oral gavage simultaneously with DSS treatment for up to 7 days. The signs of colonic inflammation, the intestinal barrier integrity, the proportion of regulatory T cells (Tregs), and the expression of pro-inflammatory and anti-inflammatory cytokines were quantified. The concentrations of SCFAs in feces were measured using Gas-liquid chromatography. The gut microbiome was analyzed in all treatment groups at the endpoint of the experiment. Results were benchmarked against a contemporary mesalazine treatment regime. We show that commensal species alone and in combination reduced disease activity index scores, inhibited colon shortening, strengthened the colonic epithelial barrier, and positively modulated tight junction protein expression. The expression level of pro-inflammatory cytokines was significantly reduced. Immune modulation occurred via inhibition of the loss of CD4 +CD25 +Treg cells in the spleen. Our study proofed that therapeutic application of F. prausnitzii, B. faecis, and R. intestinalis significantly ameliorated DSS-induced colitis at the level of clinical symptoms, histological inflammation, and immune status. Our data suggest that these positive effects are mediated by immune-modulatory pathways and influence on Treg/Th17 balance.
Collapse
Affiliation(s)
- Nooshin Mohebali
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Mona Sütel
- IMD Institut für Medizinische Diagnostik, Berlin-Potsdam GbR, 12247 Berlin, Germany
| | - Jana Bull
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Bernd Kreikemeyer
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany.
| | - Anne Breitrück
- Molecular Bacteriology, Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| |
Collapse
|
156
|
Short S, Lewik G, Issa F. An Immune Atlas of T Cells in Transplant Rejection: Pathways and Therapeutic Opportunities. Transplantation 2023; 107:2341-2352. [PMID: 37026708 PMCID: PMC10593150 DOI: 10.1097/tp.0000000000004572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 04/08/2023]
Abstract
Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.
Collapse
Affiliation(s)
- Sarah Short
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Guido Lewik
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
157
|
Hu Y, Guo H, He L, Wang Q, Li Y, Weng J, Zhang R. The Correlation Between IFNG Gene Methylation and Th1|Th2 Cell Balance in ROU and the Interventional Study of Jiaweidaochi Powder. Appl Biochem Biotechnol 2023; 195:6737-6751. [PMID: 36917437 DOI: 10.1007/s12010-023-04417-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
The pathogenesis of recurrent oral ulcers (ROU) is complex, with a long duration of illness and challenging to cure. According to traditional Chinese medicine (TCM),"heat accumulation in the heart-spleen" is one of the main causative factors. Jiaweidaochi powder (JWDCP) is based on the ancient Chinese medicine formula JWDCS, with the addition of Tongcao and gypsum and the removal of Mu Tong. It is generally used to treat "heat accumulation in the heart-spleen." Previous studies have demonstrated that it effectively reduces recurrence rates and is anti-inflammatory in modulating immunity. The ROU rats' model for JWDCP intervention treatment had been established, and histological tests revealed that JWDCP has a therapeutic effect on the pathological changes in the oral mucosa. In addition, the methylation levels of peripheral blood IFNG gene were detected by bisulfite sequencing PCR (BSP), and the methylation levels of the IFNG promoter region in the model group and each dose group were lower than those in the control group. However, no significant methylation differences were observed. Furthermore, the results of enzyme-linked immunosorbent assay (ELISA) and RNA quantitative polymerase chain reaction showed that JWDCP could reduce IFN-γ and IL-4 protein concentrations, with high GATA-3 mRNA production, T-bet mRNAproduction was upgraded, elevated IL-4 mRNA levels, and reduced IFN-γ mRNA levels after treatment (P < 0.001). The expression of transcription factor T-betmRNA and GATA-3 gene mRNA was accompanied by changes in IFN-γmRNA and IL-4mRNA, demonstrating that Th2 type differentiation in RAS suppresses the body's immunity and that the imbalance of transcription factor expression further leads to Th1/Th2 drift. JWDCP is likely to reduce the protein concentration by regulating the imbalance of transcription factors and enhancing antioxidant capacity, thus achieving therapeutic effects. Treatment of recurrent oral ulcer models is not sufficient to reset IFNG methylation levels, correlating with the refractoriness of ROU, further confirming the complexity of epigenetic mechanisms and that epigenetic alterations in specific mediators may persist locally.
Collapse
Affiliation(s)
- Yue Hu
- Department of Graduate School, Shanxi University of Chinese Medicine, Taiyuan, 030619, China
| | - Hongbo Guo
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Lu He
- Department of Traditional Chinese Medicine, Xingyi People's Hospital, Xingyi, 562400, China
| | - Qianqian Wang
- Department of Graduate School, Shanxi Medical University, Taiyuan, 030001, China
| | - Yanqing Li
- Department of Graduate School, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiankun Weng
- Department of Graduate School, Shanxi University of Chinese Medicine, Taiyuan, 030619, China
| | - Rong Zhang
- Department of Graduate School, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
158
|
Bhat SA, Elnaggar M, Hall TJ, McHugo GP, Reid C, MacHugh DE, Meade KG. Preferential differential gene expression within the WC1.1 + γδ T cell compartment in cattle naturally infected with Mycobacterium bovis. Front Immunol 2023; 14:1265038. [PMID: 37942326 PMCID: PMC10628470 DOI: 10.3389/fimmu.2023.1265038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. γδ T cell subsets are classified based on expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB disease may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 189 genes were significantly differentially expressed in the M. bovis-infected compared to the control groups for the WC1.1+ γδ T cell compartment (absolute log2 FC ≥ 1.5 and FDR P adj. ≤ 0.1). The majority of these DEGs (168) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factors (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM, and GZMH) and multiple killer cell immunoglobulin-like receptor (KIR) proteins indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis, and cytotoxicity of lymphocytes. In conclusion, γδ T cells have important inflammatory and regulatory functions in cattle, and we provide evidence for preferential differential activation of the WC1.1+ specific subset in cattle naturally infected with M. bovis.
Collapse
Affiliation(s)
- Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Mahmoud Elnaggar
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Thomas J. Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gillian P. McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Cian Reid
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
159
|
Alsalloum A, Shevchenko J, Fisher M, Philippova J, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Lopatnikova J, Vasily K, Volynets M, Zavjalov E, Solovjeva O, Akahori Y, Shiku H, Silkov A, Sennikov S. Exploring TCR-like CAR-Engineered Lymphocyte Cytotoxicity against MAGE-A4. Int J Mol Sci 2023; 24:15134. [PMID: 37894816 PMCID: PMC10606439 DOI: 10.3390/ijms242015134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells. Flow cytometry analysis revealed a significant surge in cells expressing activation markers CD69, CD107a, and FasL upon encountering tumor cells, indicating robust T-cell activation and cytotoxicity. Moreover, immune transcriptome profiling unveiled heightened expression of pivotal T-effector genes involved in immune response and cell proliferation regulation. Additionally, multiplex assays also revealed increased cytokine production and cytotoxicity driven by granzymes and soluble Fas ligand (sFasL), suggesting enhanced anti-tumor immune responses. Preliminary in vivo investigations revealed a significant deceleration in tumor growth, highlighting the therapeutic potential of these TCR-like CAR-T cells. Further investigations are warranted to validate these revelations fully and harness the complete potential of TCR-like CAR-T cells in overcoming cancer's resilient defenses.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Julia Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Lopatnikova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Kurilin Vasily
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Olga Solovjeva
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Ministry of Science and High Education of Russian Federation, 630090 Novosibirsk, Russia
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Alexander Silkov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.); (J.S.); (M.F.); (J.P.); (R.P.-Z.); (O.P.-Z.); (S.A.); (J.L.); (K.V.); (M.V.); (E.Z.); (O.S.); (A.S.)
- Department of Immunology, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
160
|
Pu S, Yang Z, Zhang X, Li M, Han N, Yang X, He J, Yu G, Meng X, Jia Q, Shao H. Fermented cordyceps powder alleviates silica-induced pulmonary inflammation and fibrosis in rats by regulating the Th immune response. Chin Med 2023; 18:131. [PMID: 37828528 PMCID: PMC10571334 DOI: 10.1186/s13020-023-00823-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Silicosis is an important occupational disease caused by inhalation of free silica and is characterized by persistent pulmonary inflammation, subsequent fibrosis and lung dysfunction. Until now, there has been no effective treatment for the disease due to the complexity of pathogenesis. Fermented cordyceps powder (FCP) has a similar effect to natural cordyceps in tonifying the lung and kidney. It has started to be used in the adjuvant treatment of silicosis. This work aimed to verify the protective effects of FCP against silicosis, and to explore the related mechanism. METHODS Wistar rats were randomly divided into four groups including the saline-instilled group, the silica-exposed group, the silica + FCP (300 mg/kg) group and the silica + FCP (600 mg/kg) group. Silicosis rat models were constructed by intratracheal instillation of silica (50 mg). Rats in the FCP intervention groups received the corresponding dose of FCP daily by intragastric gavage. Rats were sacrificed on days 7, 28 and 56 after treatment, then samples were collected for further analysis. RESULTS FCP intervention reduced the infiltration of inflammatory cells and the concentration of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) at days 7, 28, 56, and decreased the expression of collagen, α-smooth muscle actin (α-SMA) and fibronectin (FN) at days 28 and 56 in the lung of silicosis rats. FCP also decreased the immune response of Th1 and Th17 at days 7, 28, 56 and inhibited the enhancement of the Th2 response at day 56. CONCLUSIONS FCP intervention could alleviate silica-induced pulmonary inflammation and fibrosis, the protective effect may be achieved by reducing Th1 and Th17 immune responses and inhibiting the enhancement of the Th2 response.
Collapse
Affiliation(s)
- Shuangshuang Pu
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Zhifeng Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Xiaofeng Zhang
- Linyi County Center for Disease Control and Prevention, Linyi County, 91 Yongxing Street, Dezhou, 251500, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Na Han
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China
| | - Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Jin He
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Xiangjing Meng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China.
| | - Hua Shao
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Changqing District, Jinan, 250355, Shandong, China.
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Jinan, 250062, Shandong, China.
| |
Collapse
|
161
|
Zaini A, Dalit L, Sheikh AA, Zhang Y, Thiele D, Runting J, Rodrigues G, Ng J, Bramhall M, Scheer S, Hailes L, Groom JR, Good-Jacobson KL, Zaph C. Heterogeneous Tfh cell populations that develop during enteric helminth infection predict the quality of type 2 protective response. Mucosal Immunol 2023; 16:642-657. [PMID: 37392971 DOI: 10.1016/j.mucimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
T follicular helper (Tfh) cells are an important component of germinal center (GC)-mediated humoral immunity. Yet, how a chronic type 1 versus protective type 2 helminth infection modulates Tfh-GC responses remains poorly understood. Here, we employ the helminth Trichuris muris model and demonstrate that Tfh cell phenotypes and GC are differentially regulated in acute versus chronic infection. The latter failed to induce Tfh-GC B cell responses, with Tfh cells expressing Τ-bet and interferon-γ. In contrast, interleukin-4-producing Tfh cells dominate responses to an acute, resolving infection. Heightened expression and increased chromatin accessibility of T helper (Th)1- and Th2 cell-associated genes are observed in chronic and acute induced Tfh cells, respectively. Blockade of the Th1 cell response by T-cell-intrinsic T-bet deletion promoted Tfh cell expansion during chronic infection, pointing to a correlation between a robust Tfh cell response and protective immunity to parasites. Finally, blockade of Tfh-GC interactions impaired type 2 immunity, revealing the critical protective role of GC-dependent Th2-like Tfh cell responses during acute infection. Collectively, these results provide new insights into the protective roles of Tfh-GC responses and identify distinct transcriptional and epigenetic features of Tfh cells that emerge during resolving or chronic T. muris infection.
Collapse
Affiliation(s)
- Aidil Zaini
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Amania A Sheikh
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Yan Zhang
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Daniel Thiele
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Runting
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Grace Rodrigues
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Judy Ng
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Michael Bramhall
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Sebastian Scheer
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Lauren Hailes
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kim L Good-Jacobson
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| | - Colby Zaph
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| |
Collapse
|
162
|
Li S, Li Z, Wang X, Zhong J, Yu D, Chen H, Ma W, Liu L, Ye M, Shen R, Jiang C, Meng X, Cai J. HK3 stimulates immune cell infiltration to promote glioma deterioration. Cancer Cell Int 2023; 23:227. [PMID: 37779195 PMCID: PMC10543879 DOI: 10.1186/s12935-023-03039-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Glioma is the most common and lethal type of brain tumor, and it is characterized by unfavorable prognosis and high recurrence rates. The reprogramming of energy metabolism and an immunosuppressive tumor microenvironment (TME) are two hallmarks of tumors. Complex and dynamic interactions between neoplastic cells and the surrounding microenvironment can generate an immunosuppressive TME, which can accelerate the malignant progression of glioma. Therefore, it is crucial to explore associations between energy metabolism and the immunosuppressive TME and to identify new biomarkers for glioma prognosis. METHODS In our work, we analyzed the co-expression relationship between glycolytic genes and immune checkpoints based on the transcriptomic data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) and found the correlation between HK3 expression and glioma tumor immune status. To investigate the biological role of HK3 in glioma, we performed bioinformatics analysis and established a mouse glioblastoma (GBM) xenograft model. RESULTS Our study showed that HK3 significantly stimulated immune cell infiltration into the glioma TME. Tissue samples with higher HK3 expressive level showed increasing levels of immune cells infiltration, including M2 macrophages, neutrophils, and various subtypes of activated memory CD4+ T cells. Furthermore, HK3 expression was significantly increasing along with the elevated tumor grade, had a higher level in the mesenchymal subtype compared with those in other subtypes of GBM and could independently predict poor outcomes of GBM patients. CONCLUSION The present work mainly concentrated on the biological role of HK3 in glioma and offered a novel insight of HK3 regulating the activation of immune cells in the glioma microenvironment. These findings could provide a new theoretical evidence for understanding the metabolic molecular within the glioma microenvironment and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shupeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Liu
- Department of Clinical Medical Record, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghuang Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruofei Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
163
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
164
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
165
|
Avery D, Morandini L, Gabriec M, Sheakley L, Peralta M, Donahue HJ, Martin RK, Olivares-Navarrete R. Contribution of αβ T cells to macrophage polarization and MSC recruitment and proliferation on titanium implants. Acta Biomater 2023; 169:605-624. [PMID: 37532133 PMCID: PMC10528595 DOI: 10.1016/j.actbio.2023.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Physiochemical cues like topography and wettability can impact the inflammatory response and tissue integration after biomaterial implantation. T cells are essential for immunomodulation of innate immune cells and play an important role in the host response to biomaterial implantation. This study aimed to understand how CD4+ and CD8+ T cell subsets, members of the αβ T cell family, polarize in response to smooth, rough, or rough-hydrophilic titanium (Ti) implants and whether their presence modulates immune cell crosstalk and mesenchymal stem cell (MSC) recruitment following biomaterial implantation. Post-implantation in mice, we found that CD4+ and CD8+ T cell subsets polarized differentially in response to modified Ti surfaces. Additionally, mice lacking αβ T cells had significantly more pro-inflammatory macrophages, fewer anti-inflammatory macrophages, and reduced MSC recruitment in response to modified Ti post-implantation than αβ T cell -competent mice. Our results demonstrate that T cell activation plays a significant role during the inflammatory response to implanted biomaterials, contributing to macrophage polarization and MSC recruitment and proliferation, and the absence of αβ T cells compromises new bone formation at the implantation site. STATEMENT OF SIGNIFICANCE: T cells are essential for immunomodulation and play an important role in the host response to biomaterial implantation. Our results demonstrate that T cells actively participate during the inflammatory response to implanted biomaterials, controlling macrophage phenotype and recruitment of MSCs to the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Melissa Gabriec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthieu Peralta
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
166
|
Francis ME, Jansen EB, Yourkowski A, Selim A, Swan CL, MacPhee BK, Thivierge B, Buchanan R, Lavender KJ, Darbellay J, Rogers MB, Lew J, Gerdts V, Falzarano D, Skowronski DM, Sjaarda C, Kelvin AA. Previous infection with seasonal coronaviruses does not protect male Syrian hamsters from challenge with SARS-CoV-2. Nat Commun 2023; 14:5990. [PMID: 37752151 PMCID: PMC10522707 DOI: 10.1038/s41467-023-41761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
SARS-CoV-2 variants and seasonal coronaviruses continue to cause disease and coronaviruses in the animal reservoir pose a constant spillover threat. Importantly, understanding of how previous infection may influence future exposures, especially in the context of seasonal coronaviruses and SARS-CoV-2 variants, is still limited. Here we adopted a step-wise experimental approach to examine the primary immune response and subsequent immune recall toward antigenically distinct coronaviruses using male Syrian hamsters. Hamsters were initially inoculated with seasonal coronaviruses (HCoV-NL63, HCoV-229E, or HCoV-OC43), or SARS-CoV-2 pango B lineage virus, then challenged with SARS-CoV-2 pango B lineage virus, or SARS-CoV-2 variants Beta or Omicron. Although infection with seasonal coronaviruses offered little protection against SARS-CoV-2 challenge, HCoV-NL63-infected animals had an increase of the previously elicited HCoV-NL63-specific neutralizing antibodies during challenge with SARS-CoV-2. On the other hand, primary infection with HCoV-OC43 induced distinct T cell gene signatures. Gene expression profiling indicated interferon responses and germinal center reactions to be induced during more similar primary infection-challenge combinations while signatures of increased inflammation as well as suppression of the antiviral response were observed following antigenically distant viral challenges. This work characterizes and analyzes seasonal coronaviruses effect on SARS-CoV-2 secondary infection and the findings are important for pan-coronavirus vaccine design.
Collapse
Affiliation(s)
- Magen E Francis
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ethan B Jansen
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Yourkowski
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alaa Selim
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cynthia L Swan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brian K MacPhee
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brittany Thivierge
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jocelyne Lew
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada
| | - Danuta M Skowronski
- BC Centre for Disease Control, Immunization Programs and Vaccine Preventable Diseases Service, Vancouver, BC, Canada
- University of British Columbia, School of Population and Public Health, Vancouver, BC, Canada
| | - Calvin Sjaarda
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Centre, Kingston, ON, Canada
| | - Alyson A Kelvin
- Vaccine and Infectious Disease Organization VIDO, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
167
|
Zou Z, Yoshimura Y, Yamanishi Y, Oki S. Elucidating disease-associated mechanisms triggered by pollutants via the epigenetic landscape using large-scale ChIP-Seq data. Epigenetics Chromatin 2023; 16:34. [PMID: 37743474 PMCID: PMC10518938 DOI: 10.1186/s13072-023-00510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants. METHODS Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants. RESULTS The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms. CONCLUSIONS Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.
Collapse
Affiliation(s)
- Zhaonan Zou
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuka Yoshimura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamanishi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
168
|
Li H, Liu H, Liu Y, Wang X, Yu S, Huang H, Shen X, Zhang Q, Hong N, Jin W. Exploring the dynamics and influencing factors of CD4 T cell activation using single-cell RNA-seq. iScience 2023; 26:107588. [PMID: 37646019 PMCID: PMC10460988 DOI: 10.1016/j.isci.2023.107588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
T cell activation is a key event in adaptive immunity. However, the dynamics and influencing factors of T cell activation remain unclear. Here, we analyzed CD4 T cells that were stimulated with anti-CD3/CD28 under several conditions to explore the factors affecting T cell activation. We found a stimulated T subset (HSPhi T) highly expressing heat shock proteins, which was derived from stimulated naive T. We identified and characterized inert T, a stimulated T cell subset in transitional state from resting T to activated T. Interestingly, resting CXCR4low T responded to stimulation more efficiently than resting CXCR4hi T. Furthermore, stimulation of CD4 T in the presence of CD8 T resulted in more effector T and more homogeneous expressions of CD25, supporting that presence of CD8 T reduces the extreme response of T cells, which can be explained by regulation of CD4 T activation through CD8 T-initiated cytokine signaling and FAS/FASLG signaling.
Collapse
Affiliation(s)
- Hui Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyi Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifei Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuefei Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiya Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwen Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangru Shen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ni Hong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Jin
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
169
|
Ramirez F, Zambrano A, Hennis R, Holland N, Lakshmanaswamy R, Chacon J. Sending a Message: Use of mRNA Vaccines to Target the Tumor Immune Microenvironment. Vaccines (Basel) 2023; 11:1465. [PMID: 37766141 PMCID: PMC10534833 DOI: 10.3390/vaccines11091465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While cancer immunotherapies have become central to treatment, challenges associated with the ability of tumors to evade the immune system remain significant obstacles. At the heart of this issue is the tumor immune microenvironment, the complex interplay of the tumor microenvironment and the immune response. Recent advances in mRNA cancer vaccines represent major progress towards overcoming some of the challenges posed by deleterious components of the tumor immune microenvironment. Indeed, major breakthroughs in mRNA vaccine technology, such as the use of replacement nucleotides and lipid nanoparticle delivery, led to the vital success of mRNA vaccine technology in fighting COVID-19. This has in turn generated massive additional interest and investment in the platform. In this review, we detail recent research in the nature of the tumor immune microenvironment and in mRNA cancer vaccines and discuss applications by which mRNA cancer vaccines, often in combination with various adjuvants, represent major areas of potential in overcoming tumor immune microenvironment-imposed obstacles. To this end, we also review current mRNA cancer vaccine clinical trials.
Collapse
Affiliation(s)
- Fabiola Ramirez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Angelica Zambrano
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Robert Hennis
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Nathan Holland
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| | - Rajkumar Lakshmanaswamy
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.R.); (A.Z.); (R.H.); (N.H.); (R.L.)
| |
Collapse
|
170
|
Yu S, Diao L, Lian R, Chen C, Huang C, Li X, Li Y, Zeng Y. Comparing the peri-implantation endometrial T-bet/GATA3 ratio between control fertile women and patients with recurrent miscarriage: establishment and application of a reference range. Hum Reprod 2023; 38:1680-1689. [PMID: 37353913 DOI: 10.1093/humrep/dead132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/29/2023] [Indexed: 06/25/2023] Open
Abstract
STUDY QUESTION Is the ratio of endometrial T-box expressed in T cell (T-bet) and GATA-binding protein 3 (GATA3) changed in patients with recurrent miscarriage (RM) compared to fertile controls? SUMMARY ANSWER Our study showed a significantly higher T-bet/GATA3 ratio in patients with RM compared with fertile controls. WHAT IS KNOWN ALREADY The endometrial T-bet (Th1 lineage-committed transcription factor)/GATA3 (Th2 lineage-committed transcription factor) ratio could represent the Th1/Th2 balance, which is particularly important for healthy pregnancy. However, a reliable reference range for the T-bet/GATA3 ratio during the peri-implantation period has not yet been established for use in clinical practice. STUDY DESIGN, SIZE, DURATION This was a retrospective study carried out in a private fertility center. The control group included 120 women in couples undergoing IVF treatment for male infertility, who had experienced a live-birth baby following the first IVF cycle. The study group included 93 women diagnosed with RM that experienced at least two consecutive clinically spontaneous miscarriages before gestational week 12. The ratio of T-bet/GATA3 was calculated in the control group and RM group. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrium samples were collected at mid-luteal phase of the menstrual cycle prior to IVF treatment or pregnancy. The percentage of T-bet+ and GATA3+ cells in total endometrial cells was analyzed using immunohistochemical staining and quantitative analysis. MAIN RESULTS AND THE ROLE OF CHANCE Using the 95th percentile to define the upper limits of the endometrial T-bet/GATA3 ratio during the mid-luteal phase, the reference range of control fertile women was ≤0.22. Compared with the control group, the RM group exhibited a significantly higher T-bet/GATA3 ratio (P = 0.02), and 19.4% (18/93) women with RM exhibited a T-bet/GATA3 ratio above the reference range in the mid-luteal phase. LIMITATIONS, REASONS FOR CAUTION All patients were recruited from a single center. The stability and clinical value of the endometrial T-bet/GATA3 ratio require further investigation. WIDER IMPLICATIONS OF THE FINDINGS The present study suggests that an abnormal endometrial T-bet/GATA3 ratio may be one of the risk factors of RM. Further studies are needed to follow up the pregnancy outcomes in patients with RM with normal and abnormal endometrial T-bet/GATA3 ratio according to the reference range. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Shenzhen Fundamental Research Program (JCYJ20180228164631121, JCYJ20190813161203606, JCYJ20220530172817039). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Xinyuan Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Shenzhen Jinxin Medical Technology Innovation Center, Co., Ltd., Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
171
|
Tahamoli-Roudsari A, Rahmani F, Afshar S, Hajilooi M, Solgi G. Expression patterns of T cells-specific long noncoding RNAs in systemic lupus erythematosus patients carrying HLA risk/nonrisk alleles. Lupus 2023; 32:1188-1198. [PMID: 37610356 DOI: 10.1177/09612033231196626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) play key roles in the regulation of gene expression and subsequently in the pathogenesis of several autoimmune diseases. This study aimed to explore the peripheral expression levels of T-cells-specific LncRNAs and transcription factors in systemic lupus erythematosus (SLE) patients carrying either human leukocyte antigens (HLA) risk or non-risk alleles. METHODS Genotypes of HLA-DRB1 and HLA-DQB1 loci for 106 SLE patients were determined by PCR-SSP. In the next step, patients were stratified based on the presence of HLA-DRB1*03 and/or DRB1*16 allele groups (HLA risk alleles positive or HLA-RPos) or carrying other DRB1 allele groups (HLA-RNeg). Then, transcript levels of LncRNAs (IFNG-AS1, RMRP, Th2LCR, and DQ786243) and mRNAs for transcription factors (Foxp3, Gata3, and Tbx21) were measured using qRT-PCR and compared between two subgroups of patients. RESULTS Totally, 47 cases were classified as HLA-RPos and 59 cases as HLA-RNeg patients. The HLA-RPos patients showed decreased transcript levels of DQ786243 (p = .001) and elevated expression of IFNG-AS1 (p = .06) and T-bet mRNA (p = .03) compared to the HLA-RNeg group. We observed significantly lower expression of Th2LCR (p < .0001) and DQ786243 (p = .001) and higher expression of Tbx21 (p = .009) and Foxp3 (p = .02) in DR3-positive versus DR3-negative patients. Likewise, decreased transcript levels of DQ786243 (p = .02) and RMRP (p = .003) were observed in DR16-positive versus DR16-negative patients. ROC curve analysis revealed the potential of DQ786243 and RMRP as biomarkers in SLE disease based on the carriage of HLA risk alleles. CONCLUSIONS Our results indicate that the contribution of multiple T cell subsets in SLE disease progression as judged by expression analysis of LncRNAs and transcription factors can be inspired by the inheritance of HLA risk/nonrisk alleles is SLE patients.
Collapse
Affiliation(s)
- Ahmad Tahamoli-Roudsari
- School of Medicine, Department of Internal Diseases Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Rahmani
- School of Medicine, Department of Immunology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- School of Medicine, Department of Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hajilooi
- School of Medicine, Department of Immunology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- School of Medicine, Department of Immunology, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
172
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
173
|
Wang N, Scott TA, Kupz A, Shreenivas MM, Peres NG, Hocking DM, Yang C, Jebeli L, Beattie L, Groom JR, Pierce TP, Wakim LM, Bedoui S, Strugnell RA. Vaccine-induced inflammation and inflammatory monocytes promote CD4+ T cell-dependent immunity against murine salmonellosis. PLoS Pathog 2023; 19:e1011666. [PMID: 37733817 PMCID: PMC10547166 DOI: 10.1371/journal.ppat.1011666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/03/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Prior infection can generate protective immunity against subsequent infection, although the efficacy of such immunity can vary considerably. Live-attenuated vaccines (LAVs) are one of the most effective methods for mimicking this natural process, and analysis of their efficacy has proven instrumental in the identification of protective immune mechanisms. Here, we address the question of what makes a LAV efficacious by characterising immune responses to a LAV, termed TAS2010, which is highly protective (80-90%) against lethal murine salmonellosis, in comparison with a moderately protective (40-50%) LAV, BRD509. Mice vaccinated with TAS2010 developed immunity systemically and were protected against gut-associated virulent infection in a CD4+ T cell-dependent manner. TAS2010-vaccinated mice showed increased activation of Th1 responses compared with their BRD509-vaccinated counterparts, leading to increased Th1 memory populations in both lymphoid and non-lymphoid organs. The optimal development of Th1-driven immunity was closely correlated with the activation of CD11b+Ly6GnegLy6Chi inflammatory monocytes (IMs), the activation of which can be modulated proportionally by bacterial load in vivo. Upon vaccination with the LAV, IMs expressed T cell chemoattractant CXCL9 that attracted CD4+ T cells to the foci of infection, where IMs also served as a potent source of antigen presentation and Th1-promoting cytokine IL-12. The expression of MHC-II in IMs was rapidly upregulated following vaccination and then maintained at an elevated level in immune mice, suggesting IMs may have a role in sustained antigen stimulation. Our findings present a longitudinal analysis of CD4+ T cell development post-vaccination with an intracellular bacterial LAV, and highlight the benefit of inflammation in the development of Th1 immunity. Future studies focusing on the induction of IMs may reveal key strategies for improving vaccine-induced T cell immunity.
Collapse
Affiliation(s)
- Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy A. Scott
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Andreas Kupz
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Newton G. Peres
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna M. Hocking
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chenying Yang
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas P. Pierce
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria, Australia
| | - Linda M. Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
174
|
Gao H, Li K, Ai K, Geng M, Cao Y, Wang D, Yang J, Wei X. Interleukin-12 induces IFN-γ secretion and STAT signaling implying its potential regulation of Th1 cell response in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108974. [PMID: 37482205 DOI: 10.1016/j.fsi.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
175
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
176
|
Wang XX, Zou HY, Cao YN, Zhang XM, Sun M, Tu PF, Liu KC, Zhang Y. Radix Panacis quinquefolii Extract Ameliorates Inflammatory Bowel Disease through Inhibiting Inflammation. Chin J Integr Med 2023; 29:825-831. [PMID: 36527537 DOI: 10.1007/s11655-022-3543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the anti-inflammatory activity of Radix Panacis quinguefolii root extract (RPQE) and its therapeutic effects on inflammatory bowel disease (IBD). METHODS The 72-hour post-fertilization zebrafish was used to generate the local and systematic inflammation models through tail-amputation and lipopolysaccharide (LPS)-induction (100 µ g/mL), respectively. The Tg(zlyz:EGFP) zebrafish was induced with 75 µ g/mL 2,4,6-trinitrobenzene sulfonic acid (TNBS) for establishing the IBD model. The tail-amputated, LPS-, and TNBS-induced models were subjected to RPQE (ethanol fraction, 10-20 µ g/mL) administration for 12 and 24 h, respectively. Anti-inflammatory activity of RPQE was evaluated by detecting migration and aggregation of leukocytes and expression of inflammation-related genes. Meanwhile, TNBS-induced fish were immersed in 0.2% (W/V) calcein for 1.5 h and RPQE for 12 h before photographing to analyze the intestinal efflux efficiency (IEE). Moreover, the expression of inflammation-related genes in these fish was detected by quantitative polymerase chain reaction. RESULTS Subject to RPQE administration, the migration and aggregation of leukocytes were significantly alleviated in 3 zebrafish models (P<0.01). Herein, RPQE ameliorated TNBS-induced IBD with respect to a significantly reduced number of leukocytes, improved IEE, and inhibited gene expression of pro-inflammatory factors (P<0.05 or P<0.01). CONCLUSION RPQE exhibited therapeutic effects on IBD by inhibiting inflammation.
Collapse
Affiliation(s)
- Xi-Xin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Hong-Yuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- Kyiv National University of Technologies and Design, Kyiv, 01011, Ukraine
| | - Yong-Na Cao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuan-Ming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Meng Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines and Biomimetic Medicines, School of Pharmacy, Peking University, Beijing, 100191, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
177
|
Zhao B, Sun L, Yuan Q, Hao Z, An F, Zhang W, Zhu X, Wang B. BAP31 Knockout in Macrophages Affects CD4 +T Cell Activation through Upregulation of MHC Class II Molecule. Int J Mol Sci 2023; 24:13476. [PMID: 37686286 PMCID: PMC10487781 DOI: 10.3390/ijms241713476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; (B.Z.); (L.S.); (Q.Y.); (Z.H.); (F.A.); (W.Z.); (X.Z.)
| |
Collapse
|
178
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
179
|
Lee JY, Lee JH, Lim HJ, Kim E, Kim DK, Choi JK. Aminooxy acetic acid suppresses Th17-mediated psoriasis-like skin inflammation by inhibiting serine metabolism. Front Pharmacol 2023; 14:1215861. [PMID: 37649889 PMCID: PMC10464615 DOI: 10.3389/fphar.2023.1215861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease characterized by an external red rash that is caused by abnormal proliferation and differentiation of keratinocytes and immune T cells. This study aimed to elucidate the role of aminooxy acetic acid (AOA) in alleviating psoriasis from the perspective of immunology and metabolomics. Therefore, contributing to the development of new drugs as candidates for psoriasis treatment. Methods: To investigate the symptom-alleviating effects and the related mechanisms of AOA on the treatment of psoriasis, we used a 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin mouse model and interleukin (IL)-17-stimulated human keratinocytes. Results: The results showed that AOA ameliorated psoriasis-related symptoms and decreased inflammation-associated antimicrobial peptides and T-helper 17 (Th17)-associated cytokines in a mouse model of psoriasis. Furthermore, AOA inhibited the activation of mechanistic target of rapamycin (mTOR) by suppressing serine metabolism-related genes. Importantly, mTOR inhibition ameliorated psoriatic disease by affecting the differentiation of various T cells and normalizing the Th17/regulatory T (Treg) cell balance. In addition, IL-17-stimulated human keratinocytes showed the same results as in the in vivo experiments. Conclusion: Taken together, these results suggest that targeting the serine metabolism pathway in the treatment of psoriasis is a novel strategy, and that AOA could be utilized as a novel biologic to treat psoriasis.
Collapse
Affiliation(s)
- Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Hyo Jung Lim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Eonho Kim
- Department of Physical Education, Dongguk University, Seoul, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| |
Collapse
|
180
|
Chen XD, Xie J, Wei Y, Yu JF, Cao Y, Xiao L, Wu XJ, Mao CJ, Kang RM, Ye YG. Immune modulation of Th1/Th2/Treg/Th17/Th9/Th21 cells in rabbits infected with Eimeria stiedai. Front Cell Infect Microbiol 2023; 13:1230689. [PMID: 37593762 PMCID: PMC10431940 DOI: 10.3389/fcimb.2023.1230689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Despite long-term integrated control programs for Eimeria stiedai infection in China, hepatic coccidiosis in rabbits persists. Th1, Th2, Th17, Treg, Th9, and Th21 cells are involved in immune responses during pathogen infection. It is unclear whether Th cell subsets are also involved in E. stiedai infection. Their roles in the immunopathology of this infection remain unknown. Therefore, monitoring these T-cell subsets' immune responses during primary infection of E. stiedai at both transcriptional (mRNA) and protein (cytokines) levels is essential. Methods In experimentally infected New Zealand white rabbits, mRNA expression levels of their transcript-TBX2 (Th1), GATA3 (Th2), RORC (Th17), Foxp3 (Treg), SPI1 (Th9), and BCL6 (Th21)-were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR), whereas Th1 (IFN-g and TNF-a), Th2 (IL4), Th17 (IL17A and IL6), Treg (IL10 and TGF-b1), Th9 (IL9), and Th21 (IL21) cytokines were measured using enzyme-linked immunosorbent assays (ELISAs). Results We found that levels of TBX2, GATA3, RORC, SPI1, and BCL6 in the livers of infected rabbits were elevated on days 5 and 15 post-infection (PI). The concentrations of their distinctive cytokines IFN-g and TNF-a for Th1, IL4 for Th2, IL17A for Th17, IL9 for Th9, IL21 for Th21, and IL10 for Treg IL10 were also significantly increased on days 5 and 15 PI, respectively (p < 0.05). On day 23 PI, GATA3 with its cytokine IL4, RORC with IL17A, Foxp3 with IL10 and TGF-b1, and SPI1 with IL9 were significantly decreased, but TBX2 with IFN-g and IL6 remained elevated. Discussion Our findings are the first evidence of Th1/Th2/Treg/Th17/Th9/Th21 changes in E. stiedai-infected rabbits and provide insights into immune regulation mechanisms and possible vaccine development.
Collapse
Affiliation(s)
- Xiao-Di Chen
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Jing Xie
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong Wei
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ji-Feng Yu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ye Cao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Lu Xiao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xue-Jing Wu
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Cong-Jian Mao
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Run-Min Kang
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yong-Gang Ye
- Key Laboratory of Animal Genetic and Breeding of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
181
|
Zhang G, Li Y, Wei G. Multi-omic analysis reveals dynamic changes of three-dimensional chromatin architecture during T cell differentiation. Commun Biol 2023; 6:773. [PMID: 37488215 PMCID: PMC10366224 DOI: 10.1038/s42003-023-05141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Cell differentiation results in widespread changes in transcriptional programs as well as multi-level remodeling of three-dimensional genome architecture. Nonetheless, few synthetically investigate the chromatin higher-order landscapes in different T helper (Th) cells. Using RNA-Seq, ATAC-Seq and Hi-C assays, we characterize dynamic changes in chromatin organization at different levels during Naive CD4+ T cells differentiation into T helper 17 (Th17) and T helper 1 (Th1) cells. Upon differentiation, we observe decreased short-range and increased extra-long-range chromatin interactions. Although there is no apparent global switch in the A/B compartments, Th cells display the weaker compartmentalization. A portion of topologically associated domains are rearranged. Furthermore, we identify cell-type specific enhancer-promoter loops, many of which are associated with functional genes in Th cells, such as Rorc facilitating Th17 differentiation and Hif1a responding to intracellular oxygen levels in Th1. Taken together, these results uncover the general patterns of chromatin reorganization and epigenetic landscapes of gene regulation during T helper cell differentiation.
Collapse
Affiliation(s)
- Ge Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
182
|
Ford SL, Buus TB, Nastasi C, Geisler C, Bonefeld CM, Ødum N, Woetmann A. In vitro differentiated human CD4 + T cells produce hepatocyte growth factor. Front Immunol 2023; 14:1210836. [PMID: 37520551 PMCID: PMC10374024 DOI: 10.3389/fimmu.2023.1210836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023] Open
Abstract
Differentiation of naive CD4+ T cells into effector T cells is a dynamic process in which the cells are polarized into T helper (Th) subsets. The subsets largely consist of four fundamental categories: Th1, Th2, Th17, and regulatory T cells. We show that human memory CD4+ T cells can produce hepatocyte growth factor (HGF), a pleiotropic cytokine which can affect several tissue types through signaling by its receptor, c-Met. In vitro differentiation of T cells into Th-like subsets revealed that HGF producing T cells increase under Th1 conditions. Enrichment of HGF producing cells was possible by targeting cells with surface CD30 expression, a marker discovered through single-cell RNA-sequencing. Furthermore, pharmacological inhibition of PI3K or mTOR was found to inhibit HGF mRNA and protein, while an Akt inhibitor was found to increase these levels. The findings suggest that HGF producing T cells could play a role in disease where Th1 are present.
Collapse
Affiliation(s)
- Shayne Lavondua Ford
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- Immunopharmacology Unit, Department of Oncology, Mario Negri Pharmacological Research Institute (Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)), Milan, Italy
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
183
|
Bonetti L, Horkova V, Longworth J, Guerra L, Kurniawan H, Franchina DG, Soriano-Baguet L, Grusdat M, Spath S, Koncina E, Ewen A, Binsfeld C, Verschueren C, Gérardy JJ, Kobayashi T, Dostert C, Farinelle S, Härm J, Chen Y, Harris IS, Lang PA, Vasiliou V, Waisman A, Letellier E, Becher B, Mittelbronn M, Brenner D. A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547932. [PMID: 37489135 PMCID: PMC10363291 DOI: 10.1101/2023.07.06.547932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.
Collapse
Affiliation(s)
- Lynn Bonetti
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G. Franchina
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sabine Spath
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
- Center for Fundamental Immunology, Benaroya Research Institute; Seattle, WA 98101, USA
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Janika Härm
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isaac S. Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty Heinrich Heine University Düsseldorf, Germany
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research, University of Zurich, 8057 Zurich, Switzerland
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, L-3555, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Luxembourg, L-1526, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
184
|
Dinda B, Dinda M, Dinda S, De UC. An overview of anti-SARS-CoV-2 and anti-inflammatory potential of baicalein and its metabolite baicalin: Insights into molecular mechanisms. Eur J Med Chem 2023; 258:115629. [PMID: 37437351 DOI: 10.1016/j.ejmech.2023.115629] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The current Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly contagious infection that breaks the healthcare systems of several countries worldwide. Till to date, no effective antiviral drugs against COVID-19 infection have reached the market, and some repurposed drugs and vaccines are prescribed for the treatment and prevention of this disease. The currently prescribed COVID-19 vaccines are less effective against the newly emergent variants of concern of SARS-CoV-2 due to several mutations in viral spike protein and obviously there is an urgency to develop new antiviral drugs against this disease. In this review article, we systematically discussed the anti-SARS-CoV-2 and anti-inflammatory efficacy of two flavonoids, baicalein and its 7-O-glucuronide, baicalin, isolated from Scutellaria baicalensis, Oroxylum indicum, and other plants as well as their pharmacokinetics and oral bioavailability, for development of safe and effective drugs for COVID-19 treatment. Both baicalein and baicalin target the activities of viral S-, 3CL-, PL-, RdRp- and nsp13-proteins, and host mitochondrial OXPHOS for suppression of viral infection. Moreover, these compounds prevent sepsis-related inflammation and organ injury by modulation of host innate immune responses. Several nanoformulated and inclusion complexes of baicalein and baicalin have been reported to increase oral bioavailability, but their safety and efficacy in SARS-CoV-2-infected transgenic animals are not yet evaluated. Future studies on these compounds are required for use in clinical trials of COVID-19 patients.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India.
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Subhajit Dinda
- Department of Chemistry, Government Degree College, Kamalpur, Dhalai, Tripura, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, India
| |
Collapse
|
185
|
Largent AD, Lambert K, Chiang K, Shumlak N, Liggitt D, Oukka M, Torgerson TR, Buckner JH, Allenspach EJ, Rawlings DJ, Jackson SW. Dysregulated IFN-γ signals promote autoimmunity in STAT1 gain-of-function syndrome. Sci Transl Med 2023; 15:eade7028. [PMID: 37406138 PMCID: PMC11645977 DOI: 10.1126/scitranslmed.ade7028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Heterozygous signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations promote a clinical syndrome of immune dysregulation characterized by recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals exhibited dysregulated CD4+ T cell and B cell activation, including expansion of TH1-skewed CXCR3+ populations that correlated with serum autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals downstream of the type 1 and type 2 interferon (IFN) receptors. However, in contrast to the prevailing type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking the type 1 IFN receptor were only partially protected from STAT1-driven systemic inflammation, whereas loss of type 2 IFN (IFN-γ) signals abrogated autoimmunity. Last, germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF syndrome.
Collapse
Affiliation(s)
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Natali Shumlak
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Present address: Division of Medical Genetics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Mohammed Oukka
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | | | | | - Eric J. Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - David J. Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Shaun W. Jackson
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA 98195, USA
| |
Collapse
|
186
|
Morin SM, Gregory KJ, Medeiros B, Terefe T, Hoshyar R, Alhusseiny A, Chen S, Schwartz RC, Jerry DJ, Vandenberg LN, Schneider SS. Benzophenone-3 exposure alters composition of tumor infiltrating immune cells and increases lung seeding of 4T1 breast cancer cells. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100080. [PMID: 37593105 PMCID: PMC10434833 DOI: 10.1016/j.adcanc.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie M. Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Brenda Medeiros
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Tigist Terefe
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Reyhane Hoshyar
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ahmed Alhusseiny
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA, 01199, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Richard C. Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - D. Joseph Jerry
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA, 01199, USA
| |
Collapse
|
187
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
188
|
Zhang S, Zhao L, Guo M, Liu P, Li S, Xie W, Tian AL, Pol JG, Chen H, Pan H, Mao M, Li Y, Zitvogel L, Jin Y, Kepp O, Kroemer G. Anticancer effects of ikarugamycin and astemizole identified in a screen for stimulators of cellular immune responses. J Immunother Cancer 2023; 11:e006785. [PMID: 37419511 PMCID: PMC10347457 DOI: 10.1136/jitc-2023-006785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Most immunotherapies approved for clinical use rely on the use of recombinant proteins and cell-based approaches, rendering their manufacturing expensive and logistics onerous. The identification of novel small molecule immunotherapeutic agents might overcome such limitations. METHOD For immunopharmacological screening campaigns, we built an artificial miniature immune system in which dendritic cells (DCs) derived from immature precursors present MHC (major histocompatibility complex) class I-restricted antigen to a T-cell hybridoma that then secretes interleukin-2 (IL-2). RESULTS The screening of three drug libraries relevant to known signaling pathways, FDA (Food and Drug Administration)-approved drugs and neuroendocrine factors yielded two major hits, astemizole and ikarugamycin. Mechanistically, ikarugamycin turned out to act on DCs to inhibit hexokinase 2, hence stimulating their antigen presenting potential. In contrast, astemizole acts as a histamine H1 receptor (H1R1) antagonist to activate T cells in a non-specific, DC-independent fashion. Astemizole induced the production of IL-2 and interferon-γ (IFN-γ) by CD4+ and CD8+ T cells both in vitro and in vivo. Both ikarugamycin and astemizole improved the anticancer activity of the immunogenic chemotherapeutic agent oxaliplatin in a T cell-dependent fashion. Of note, astemizole enhanced the CD8+/Foxp3+ ratio in the tumor immune infiltrate as well as IFN-γ production by local CD8+ T lymphocytes. In patients with cancer, high H1R1 expression correlated with low infiltration by TH1 cells, as well as with signs of T-cell exhaustion. The combination of astemizole and oxaliplatin was able to cure the majority of mice bearing orthotopic non-small cell lung cancers (NSCLC), then inducing a state of protective long-term immune memory. The NSCLC-eradicating effect of astemizole plus oxaliplatin was lost on depletion of either CD4+ or CD8+ T cells, as well as on neutralization of IFN-γ. CONCLUSIONS These findings underscore the potential utility of this screening system for the identification of immunostimulatory drugs with anticancer effects.
Collapse
Affiliation(s)
- Shuai Zhang
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Liwei Zhao
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Liu
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Sijing Li
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Wei Xie
- Cell death and Inflammation Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ai-Ling Tian
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Jonathan G Pol
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Hui Chen
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Hui Pan
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Misha Mao
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
- Surgical Oncology Department, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Laurence Zitvogel
- INSERM U1015, Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villjuif, France
- ClinicObiome, Gustave-Roussy, Villejuif, France
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
189
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
190
|
Qu Y, Li D, Xiong H, Shi D. Transcriptional regulation on effector T cells in the pathogenesis of psoriasis. Eur J Med Res 2023; 28:182. [PMID: 37270497 PMCID: PMC10239166 DOI: 10.1186/s40001-023-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Psoriasis is one of the most common inflammatory diseases, characterized by scaly erythematous plaques on the skin. The accumulated evidence on immunopathology of psoriasis suggests that inflammatory reaction is primarily mediated by T helper (Th) cells. The differentiation of Th cells plays important roles in psoriatic progression and it is regulated by transcription factors such as T-bet, GATA3, RORγt, and FOXP3, which can convert naïve CD4+ T cells, respectively, into Th1, Th2, Th17 and Treg subsets. Through the activation of the JAK/STAT and Notch signaling pathways, together with their downstream effector molecules including TNF-α, IFN-γ, IL-17, TGF-β, these subsets of Th cells are then deeply involved in the pathogenesis of psoriasis. As a result, keratinocytes are abnormally proliferated and abundant inflammatory immune cells are infiltrated in psoriatic lesions. We hypothesize that modulation of the expression of transcription factors for each Th subset could be a new therapeutic target for psoriasis. In this review, we will focus on the recent literature concerning the transcriptional regulation of Th cells in psoriasis.
Collapse
Affiliation(s)
- Yuying Qu
- College of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China.
| | - Dongmei Shi
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, 272067, Shandong, China.
| |
Collapse
|
191
|
Dutta A, Hung CY, Chen TC, Hsiao SH, Chang CS, Lin YC, Lin CY, Huang CT. An IL-17-EGFR-TRAF4 axis contributes to the alleviation of lung inflammation in severe influenza. Commun Biol 2023; 6:600. [PMID: 37270623 DOI: 10.1038/s42003-023-04982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive inflammation is a postulated cause of severe disease and death in respiratory virus infections. In response to severe influenza virus infection, adoptively transferred naïve hemagglutinin-specific CD4+ T cells from CD4+ TCR-transgenic 6.5 mice drive an IFN-γ-producing Th1 response in wild-type mice. It helps in virus clearance but also causes collateral damage and disease aggravation. The donor 6.5 mice have all the CD4+ T cells with TCR specificity toward influenza hemagglutinin. Still, the infected 6.5 mice do not suffer from robust inflammation and grave outcome. The initial Th1 response wanes with time, and a prominent Th17 response of recent thymic emigrants alleviates inflammation and bestows protection in 6.5 mice. Our results suggest that viral neuraminidase-activated TGF-β of the Th1 cells guides the Th17 evolution, and IL-17 signaling through the non-canonical IL-17 receptor EGFR activates the scaffold protein TRAF4 more than TRAF6 during alleviation of lung inflammation in severe influenza.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Department of Pathology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hematology and Oncology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hepatogastroenterology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan.
- Division of Infectious Diseases, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan.
| |
Collapse
|
192
|
Vuyyuru SK, Shackelton LM, Hanzel J, Ma C, Jairath V, Feagan BG. Targeting IL-23 for IBD: Rationale and Progress to Date. Drugs 2023:10.1007/s40265-023-01882-9. [PMID: 37266801 DOI: 10.1007/s40265-023-01882-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, comprises multiple complex immune-mediated disorders. Early diagnosis and prompt disease control may prevent long-term complications and hospitalization. The therapeutic options have expanded in the last two decades, with the development of biologics and small molecules targeting specific pathways implicated in inflammatory bowel disease pathogenesis. The interleukin (IL)-23/Th-17 axis is one such example. Targeting IL-12/23 is effective for the treatment of both moderate-to-severe Crohn's disease and ulcerative colitis, and ustekinumab (an IL-12/23p40 antagonist) is approved for both indications. In patients with psoriasis, improved clinical outcomes were observed with agents that more selectively targeted IL-23 (IL-23p19 antagonists) compared with those that target both IL-12 and IL-23. Many specific IL-23p19 antagonists are currently being investigated in Crohn's disease and ulcerative colitis, and risankizumab has been recently approved for moderate-to-severely active Crohn's disease. In this review, we summarize the mechanisms of action and the evidence from clinical trials supporting the efficacy and safety of IL-23p19 antagonists for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Sudheer K Vuyyuru
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada
- Alimentiv Inc., London, ON, Canada
| | | | - Jurij Hanzel
- Alimentiv Inc., London, ON, Canada
- Department of Gastroenterology, UMC Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher Ma
- Alimentiv Inc., London, ON, Canada
- Division of Gastroenterology and Hepatology, Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Vipul Jairath
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada
- Alimentiv Inc., London, ON, Canada
| | - Brian G Feagan
- Department of Medicine, Division of Gastroenterology, Western University, London, ON, Canada.
- Alimentiv Inc., London, ON, Canada.
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.
| |
Collapse
|
193
|
Faget DV, Luo X, Inkman MJ, Ren Q, Su X, Ding K, Waters MR, Raut GK, Pandey G, Dodhiawala PB, Ramalho-Oliveira R, Ye J, Cole T, Murali B, Zheleznyak A, Shokeen M, Weiss KR, Monahan JB, DeSelm CJ, Lee AV, Oesterreich S, Weilbaecher KN, Zhang J, DeNardo DG, Stewart SA. p38MAPKα Stromal Reprogramming Sensitizes Metastatic Breast Cancer to Immunotherapy. Cancer Discov 2023; 13:1454-1477. [PMID: 36883955 PMCID: PMC10238649 DOI: 10.1158/2159-8290.cd-22-0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing. Thus, we combined p38i and an OX40 agonist that synergistically reduced metastatic growth and increased overall survival. Intriguingly, patients with a p38i metastatic stromal signature had better overall survival that was further improved by the presence of an increased mutational load, leading us to ask if our approach would be effective in antigenic breast cancer. The combination of p38i, anti-OX40, and cytotoxic T-cell engagement cured mice of metastatic disease and produced long-term immunologic memory. Our findings demonstrate that a detailed understanding of the stromal compartment can be used to design effective antimetastatic therapies. SIGNIFICANCE Immunotherapy is rarely effective in breast cancer. We dissected the metastatic tumor stroma, which revealed a novel therapeutic approach that targets the stromal p38MAPK pathway and creates an opportunity to unleash an immunologic response. Our work underscores the importance of understanding the tumor stromal compartment in therapeutic design. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Douglas V. Faget
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Xianmin Luo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Matthew J. Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Qihao Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Xinming Su
- Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Kai Ding
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Integrative Systems Biology Graduate Program, University of Pittsburgh, Pittsburgh, PA
| | - Michael R. Waters
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Ganesh Kumar Raut
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Gaurav Pandey
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Paarth B. Dodhiawala
- Department of Medicine, Washington University School of Medicine, St Louis, MO
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN
- ICCE Institute, Washington University School of Medicine, St Louis, MO
| | - Renata Ramalho-Oliveira
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Jiayu Ye
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Thomas Cole
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Bhavna Murali
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
| | - Alexander Zheleznyak
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Monica Shokeen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO
| | - Kurt R. Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Carl J. DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
| | - Adrian V. Lee
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology & Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Steffi Oesterreich
- Womens Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology & Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | - Katherine N. Weilbaecher
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
- Department of Medicine, Washington University School of Medicine, St Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
- Institute for Informatics (I), Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Sheila A. Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO
- Department of Medicine, Washington University School of Medicine, St Louis, MO
- ICCE Institute, Washington University School of Medicine, St Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
194
|
Qin L, Song Y, Zhang F, Wang R, Zhou L, Jin S, Chen C, Li C, Wang M, Jiang B, Sun G, Ma C, Gong Y, Li P. CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation. Cell Death Differ 2023; 30:1488-1502. [PMID: 37024604 PMCID: PMC10244459 DOI: 10.1038/s41418-023-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.
Collapse
Affiliation(s)
- Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chaojia Chen
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunhong Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
195
|
Maraschio A, Wulhfard K, Monsellato L. Case study of clinical improvement of atopic dermatitis in a patient treated with herbal-based parapharmaceuticals. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:504-511. [PMID: 37043584 DOI: 10.1515/jcim-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Atopic dermatitis (AD) is a chronic inflammatory skin disorder that has the immunoallergological characteristics of atopy and is characterised by itchy dermatitis with a recurrent-relapsing course and skin hyperreactivity. Official therapy involves topical anti-inflammatory and antimicrobial drugs for the skin but, as it is a recurrent and relapsing disease, the use of systemic anti-inflammatory and immunosuppressive drugs is eventually necessary to control the disease and prevent clinical exacerbation. However, systemic treatment may have a major impact on the patient, induce adverse reactions and not resolve the disease. The aim of the study is to establish whether the use of plant extracts may play a role in improving the quality of life of AD patients. CASE PRESENTATION We describe the clinical case of a 27-year old Caucasian woman with dry, lichenified, slightly reddened and scaly skin lesions (EASI score 1.6), with anamnesis of atopy and multiple allergies, who was treated with an alternative therapeutic strategy to her previous ones, with three herbal-based parapharmaceuticals (Ribes nigrum L. buds, Piper longum L. fruits, Perilla frutescens L. Britton leaves and seeds in LUXFITOAL; Arctium lappa L. radix, Helychrisum italicum (Roth.) G. Don. flos, Viola tricolor L. herba cum floribus in LUXDERM; Trigonella foenum grecum seed extract, Hypericum perforatum extract in LUXTRIGONELLA cream). Two weeks after taking the drops and applying the cream the dry, lichenified skin lesions were no longer present and an eudermic state of the skin is restored (EASI score 0). Furthermore, six months after the beginning of the therapy, the good condition of the skin was maintained. The patient has never had such a long lapse of time without dermatitis reappearing on the anatomical sites observed at the first follow-up. After nine months, the patient was treated again for a dermatitis that had developed at another anatomical site, spreading frontally at the border between the lower margin of the neck and the upper margin of the thorax and at the chin (EASI value 3.2), achieving a marked improvement and a return of the eudermic state after two days (EASI value 0). CONCLUSIONS The patient was satisfied with the "clean hands" with no inflammation, with the resolution of the dermatitis in the other body sites and stated that the therapy has improved her perceived quality of life. These botanicals may be effective and play a role in improving the quality of life of a person with AD.
Collapse
|
196
|
Bélanger S, Haupt S, Faliti CE, Getzler A, Choi J, Diao H, Karunadharma PP, Bild NA, Pipkin ME, Crotty S. The Chromatin Regulator Mll1 Supports T Follicular Helper Cell Differentiation by Controlling Expression of Bcl6, LEF-1, and TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1752-1760. [PMID: 37074193 PMCID: PMC10334568 DOI: 10.4049/jimmunol.2200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023]
Abstract
T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.
Collapse
Affiliation(s)
- Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Biomedical Sciences (BMS) Graduate Program. School of Medicine, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Caterina E. Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Adam Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 03083, Republic of Korea
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Nicholas A. Bild
- Genomics Core, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 9203,7USA
| |
Collapse
|
197
|
Lazarevic I, Soldati S, Mapunda JA, Rudolph H, Rosito M, de Oliveira AC, Enzmann G, Nishihara H, Ishikawa H, Tenenbaum T, Schroten H, Engelhardt B. The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2023; 20:39. [PMID: 37264368 DOI: 10.1186/s12987-023-00441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
The choroid plexus (ChP) has been suggested as an alternative central nervous system (CNS) entry site for CCR6+ Th17 cells during the initiation of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). To advance our understanding of the importance of the ChP in orchestrating CNS immune cell entry during neuroinflammation, we here directly compared the accumulation of CD45+ immune cell subsets in the ChP, the brain and spinal cord at different stages of EAE by flow cytometry. We found that the ChP harbors high numbers of CD45int resident innate but also of CD45hi adaptive immune cell subsets including CCR6+ Th17 cells. With the exception to tissue-resident myeloid cells and B cells, numbers of CD45+ immune cells and specifically of CD4+ T cells increased in the ChP prior to EAE onset and remained elevated while declining in brain and spinal cord during chronic disease. Increased numbers of ChP immune cells preceded their increase in the cerebrospinal fluid (CSF). Th17 but also other CD4+ effector T-cell subsets could migrate from the basolateral to the apical side of the blood-cerebrospinal fluid barrier (BCSFB) in vitro, however, diapedesis of effector Th cells including that of Th17 cells did not require interaction of CCR6 with BCSFB derived CCL20. Our data underscore the important role of the ChP as CNS immune cell entry site in the context of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Josephine A Mapunda
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Henriette Rudolph
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | | | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, 755-8505, Japan
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tobias Tenenbaum
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Sana Clinic Lichtenberg, Charité, Berlin, Germany
| | - Horst Schroten
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
198
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
199
|
Kuczyńska M, Gabig-Cimińska M, Moskot M. Molecular treatment trajectories within psoriatic T lymphocytes: a mini review. Front Immunol 2023; 14:1170273. [PMID: 37251381 PMCID: PMC10213638 DOI: 10.3389/fimmu.2023.1170273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Multiple biological processes in mammalian cells are implicated in psoriasis (Ps) development and progression, as well as in the pathogenic mechanisms associated with this chronic immune-mediated inflammatory disease (IMID). These refer to molecular cascades contributing to the pathological topical and systemic reactions in Ps, where local skin-resident cells derived from peripheral blood and skin-infiltrating cells originating from the circulatory system, in particular T lymphocytes (T cells), are key actors. The interplay between molecular components of T cell signalling transduction and their involvement in cellular cascades (i.e. throughout Ca2+/CaN/NFAT, MAPK/JNK, PI3K/Akt/mTOR, JAK/STAT pathways) has been of concern in the last few years; this is still less characterised than expected, even though some evidence has accumulated to date identifying them as potential objects in the management of Ps. Innovative therapeutic strategies for the use of compounds such as synthetic Small Molecule Drugs (SMDs) and their various combinations proved to be promising tools for the treatment of Ps via incomplete blocking, also known as modulation of disease-associated molecular tracks. Despite recent drug development having mainly centred on biological therapies for Ps, yet displaying serious limitations, SMDs acting on specific pathway factor isoforms or single effectors within T cell, could represent a valid innovation in real-world treatment patterns in patients with Ps. Of note, due to the intricate crosstalk between intracellular pathways, the use of selective agents targeting proper tracks is, in our opinion, a challenge for modern science regarding the prevention of disease at its onset and also in the prediction of patient response to Ps treatment.
Collapse
Affiliation(s)
| | | | - Marta Moskot
- Department of Medical Biology and Genetics, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
200
|
Cui K, Chen Z, Cao Y, Liu S, Ren G, Hu G, Fang D, Wei D, Liu C, Zhu J, Wu C, Zhao K. Restraint of IFN-γ expression through a distal silencer CNS-28 for tissue homeostasis. Immunity 2023; 56:944-958.e6. [PMID: 37040761 PMCID: PMC10175192 DOI: 10.1016/j.immuni.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Interferon-γ (IFN-γ) is a key cytokine in response to viral or intracellular bacterial infection in mammals. While a number of enhancers are described to promote IFN-γ responses, to the best of our knowledge, no silencers for the Ifng gene have been identified. By examining H3K4me1 histone modification in naive CD4+ T cells within Ifng locus, we identified a silencer (CNS-28) that restrains Ifng expression. Mechanistically, CNS-28 maintains Ifng silence by diminishing enhancer-promoter interactions within Ifng locus in a GATA3-dependent but T-bet-independent manner. Functionally, CNS-28 restrains Ifng transcription in NK cells, CD4+ cells, and CD8+ T cells during both innate and adaptive immune responses. Moreover, CNS-28 deficiency resulted in repressed type 2 responses due to elevated IFN-γ expression, shifting Th1 and Th2 paradigm. Thus, CNS-28 activity ensures immune cell quiescence by cooperating with other regulatory cis elements within the Ifng gene locus to minimize autoimmunity.
Collapse
Affiliation(s)
- Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, DIR, NHLBI, NIH, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|