151
|
Anggono V, Clem RL, Huganir RL. PICK1 loss of function occludes homeostatic synaptic scaling. J Neurosci 2011; 31:2188-96. [PMID: 21307255 PMCID: PMC3071039 DOI: 10.1523/jneurosci.5633-10.2011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/21/2022] Open
Abstract
Homeostatic synaptic scaling calibrates neuronal excitability by adjusting synaptic strengths during prolonged changes in synaptic activity. The molecular mechanisms that regulate the trafficking of AMPA receptors (AMPARs) during synaptic scaling are largely unknown. Here, we show that chronic activity blockade reduces PICK1 protein level on a time scale that coincides with the accumulation of surface AMPARs. PICK1 loss of function alters the subunit composition and the abundance of GluA2-containing AMPARs. Due to aberrant trafficking of these receptors, the increase in synaptic strength in response to synaptic inactivity is occluded in neurons generated from PICK1 knock-out mouse. In agreement with electrophysiological recordings, no defect of AMPAR trafficking is observed in PICK1 knock-out neurons in response to elevated neuronal activity. Overall, our data reveal an important role of PICK1 in inactivity-induced synaptic scaling by regulating the subunit composition, abundance, and trafficking of GluA2-containing AMPARs.
Collapse
Affiliation(s)
- Victor Anggono
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Roger L. Clem
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Richard L. Huganir
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
152
|
Wang W, Petralia RS, Takamiya K, Xia J, Li YQ, Huganir RL, Tao YX, Yaster M. Preserved acute pain and impaired neuropathic pain in mice lacking protein interacting with C Kinase 1. Mol Pain 2011; 7:11. [PMID: 21291534 PMCID: PMC3038962 DOI: 10.1186/1744-8069-7-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/03/2011] [Indexed: 12/01/2022] Open
Abstract
Protein interacting with C Kinase 1 (PICK1), a PDZ domain-containing scaffolding protein, interacts with multiple different proteins in the mammalian nervous system and is believed to play important roles in diverse physiological and pathological conditions. In this study, we report that PICK1 is expressed in neurons of the dorsal root ganglion (DRG) and spinal cord dorsal horn, two major pain-related regions. PICK1 was present in approximately 29.7% of DRG neurons, most of which were small-less than 750 μm2 in cross-sectional area. Some of these PICK1-positive cells co-labeled with isolectin B4 or calcitonin-gene-related peptide. In the dorsal horn, PICK1 immunoreactivity was concentrated in the superficial dorsal horn, where it was prominent in the postsynaptic density, axons, and dendrites. Targeted disruption of PICK1 gene did not affect basal paw withdrawal responses to acute noxious thermal and mechanical stimuli or locomotor reflex activity, but it completely blocked the induction of peripheral nerve injury-induced mechanical and thermal pain hypersensitivities. PICK1 appears to be required for peripheral nerve injury-induced neuropathic pain development and to be a potential biochemical target for treating this disorder.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
153
|
He Y, Liwo A, Weinstein H, Scheraga HA. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics. J Mol Biol 2011; 405:298-314. [PMID: 21050858 PMCID: PMC3008210 DOI: 10.1016/j.jmb.2010.10.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
A key regulator of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor traffic, PICK1 is known to interact with over 40 other proteins, including receptors, transporters and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1 (PICK1-PDZ) to the homology-modeled, crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short canonical molecular dynamics simulations used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1 revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over.
Collapse
Affiliation(s)
- Yi He
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | - Adam Liwo
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
- Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk, Poland
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Harold A. Scheraga
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| |
Collapse
|
154
|
Jin W, Shen C, Jing L, Zha XM, Xia J. PICK1 regulates the trafficking of ASIC1a and acidotoxicity in a BAR domain lipid binding-dependent manner. Mol Brain 2010; 3:39. [PMID: 21176140 PMCID: PMC3018362 DOI: 10.1186/1756-6606-3-39] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022] Open
Abstract
Background Acid-sensing ion channel 1a (ASIC1a) is the major ASIC subunit determining acid-activated currents in brain neurons. Recent studies show that ASIC1a play critical roles in acid-induced cell toxicity. While these studies raise the importance of ASIC1a in diseases, mechanisms for ASIC1a trafficking are not well understood. Interestingly, ASIC1a interacts with PICK1 (protein interacting with C-kinase 1), an intracellular protein that regulates trafficking of several membrane proteins. However, whether PICK1 regulates ASIC1a surface expression remains unknown. Results Here, we show that PICK1 overexpression increases ASIC1a surface level. A BAR domain mutant of PICK1, which impairs its lipid binding capability, blocks this increase. Lipid binding of PICK1 is also required for PICK1-induced clustering of ASIC1a. Consistent with the effect on ASIC1a surface levels, PICK1 increases ASIC1a-mediated acidotoxicity and this effect requires both the PDZ and BAR domains of PICK1. Conclusions Taken together, our results indicate that PICK1 regulates trafficking and function of ASIC1a in a lipid binding-dependent manner.
Collapse
Affiliation(s)
- Wenying Jin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
155
|
Kramer LB, Shim J, Previtera ML, Isack NR, Lee MC, Firestein BL, Rongo C. UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons. PLoS One 2010; 5:e14291. [PMID: 21179194 PMCID: PMC3001443 DOI: 10.1371/journal.pone.0014291] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
The regulation of AMPA-type glutamate receptor (AMPAR) membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect--a decrease in spontaneous reversals in locomotion--consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical in regulating GLR-1 trafficking.
Collapse
Affiliation(s)
- Lawrence B Kramer
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | | | | | | | | | | | | |
Collapse
|
156
|
Citri A, Bhattacharyya S, Ma C, Morishita W, Fang S, Rizo J, Malenka RC. Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J Neurosci 2010; 30:16437-52. [PMID: 21147983 PMCID: PMC3004477 DOI: 10.1523/jneurosci.4478-10.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/28/2010] [Accepted: 10/02/2010] [Indexed: 12/23/2022] Open
Abstract
NMDA receptor (NMDAR)-dependent long-term depression (LTD) in the hippocampus is mediated primarily by the calcium-dependent removal of AMPA receptors (AMPARs) from the postsynaptic density. The AMPAR-binding, PDZ (PSD-95/Dlg/ZO1) and BAR (Bin/amphiphysin/Rvs) domain-containing protein PICK1 has been implicated in the regulation of AMPAR trafficking underlying several forms of synaptic plasticity. Using a strategy involving small hairpin RNA-mediated knockdown of PICK1 and its replacement with recombinant PICK1, we performed a detailed structure-function analysis of the role of PICK1 in hippocampal synaptic plasticity and the underlying NMDAR-induced AMPAR trafficking. We found that PICK1 is not necessary for maintenance of the basal synaptic complement of AMPARs or expression of either metabotropic glutamate receptor-dependent LTD or NMDAR-dependent LTP. Rather, PICK1 function is specific to NMDAR-dependent LTD and the underlying AMPAR trafficking. Furthermore, although PICK1 does not regulate the initial phase of NMDAR-induced AMPAR endocytosis, it is required for intracellular retention of internalized AMPARs. Detailed biophysical analysis of an N-terminal acidic motif indicated that it is involved in intramolecular electrostatic interactions that are disrupted by calcium. Mutations that interfered with the calcium-induced structural changes in PICK1 precluded LTD and the underlying NMDAR-induced intracellular retention of AMPARs. These findings support a model whereby calcium-induced modification of PICK1 structure is critical for its function in the retention of internalized AMPARs that underlies the expression of hippocampal NMDAR-dependent LTD.
Collapse
Affiliation(s)
- Ami Citri
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - Samarjit Bhattacharyya
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - Cong Ma
- Departments of Biochemistry and
- Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Wade Morishita
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - Scarlett Fang
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304, and
| | - Josep Rizo
- Departments of Biochemistry and
- Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Robert C. Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California 94304, and
| |
Collapse
|
157
|
Hu ZL, Huang C, Fu H, Jin Y, Wu WN, Xiong QJ, Xie N, Long LH, Chen JG, Wang F. Disruption of PICK1 attenuates the function of ASICs and PKC regulation of ASICs. Am J Physiol Cell Physiol 2010; 299:C1355-62. [DOI: 10.1152/ajpcell.00569.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid-sensing ion channels (ASICs) extensively exist in both central and peripheral neuronal systems and contribute to many physiological and pathological processes. The protein that interacts with C kinase 1 (PICK1) was cloned as one of the proteins interacting with protein kinase C (PKC) and colocalized with ASIC1 and ASIC2. Here, we used PICK1 knockout (PICK1-KO) C57/BL6 mice together with the whole cell patch clamp, calcium imaging, RT-PCR, Western blot, and immunocytochemistry techniques to explore the possible change in ASICs and the regulatory effects of PKC on ASICs. The results showed that PICK1 played a key role in regulation of ASIC functions. In PICK1-KO mouse cortical neurons, both the amplitude of ASIC currents and elevation of [Ca2+]i mediated by acid were decreased, which were attributable to the decreased expression of ASIC1a and ASIC2a proteins in the plasma membrane. PKC, a partner protein of PICK1, regulated ASIC functions via PICK1. The agonist and antagonist of PKC only altered ASIC currents and acid-induced increase in [Ca2+]i in wild-type, but not in KO mice. In conclusion, our data provided the direct evidence from PICK1-KO mice that a novel target protein, PICK1, would regulate ASIC function and membrane expression in the brain. In addition, PICK1 played the bridge role between PKC and ASICs.
Collapse
Affiliation(s)
- Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Chao Huang
- Department of Pharmacology, Tongji Medical College and
| | - Hui Fu
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - You Jin
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Wen-Ning Wu
- Department of Pharmacology, Tongji Medical College and
| | - Qiu-Ju Xiong
- Department of Pharmacology, Tongji Medical College and
| | - Na Xie
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College and
- Institutes of Biomedcine and Drug Discovery, Huazhong University of Science and Technology, Wuhan
- Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China
| |
Collapse
|
158
|
Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning. Proc Natl Acad Sci U S A 2010; 107:21784-9. [PMID: 21106762 DOI: 10.1073/pnas.1016103107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the mammalian central nervous system. Modulation of AMPAR trafficking supports several forms of synaptic plasticity thought to underlie learning and memory. Protein interacting with C kinase 1 (PICK1) is an AMPAR-binding protein shown to regulate both AMPAR trafficking and synaptic plasticity at many distinct synapses. However, studies examining the requirement for PICK1 in maintaining basal synaptic transmission and regulating synaptic plasticity at hippocampal Schaffer collateral-cornu ammonis 1 (SC-CA1) synapses have produced conflicting results. In addition, the effect of PICK1 manipulation on learning and memory has not been investigated. In the present study we analyzed the effect of genetic deletion of PICK1 on basal synaptic transmission and synaptic plasticity at hippocampal Schaffer collateral-CA1 synapses in adult and juvenile mice. Surprisingly, we find that loss of PICK1 has no significant effect on synaptic plasticity in juvenile mice but impairs some forms of long-term potentiation and multiple distinct forms of long-term depression in adult mice. Moreover, inhibitory avoidance learning is impaired only in adult KO mice. These results suggest that PICK1 is selectively required for hippocampal synaptic plasticity and learning in adult rodents.
Collapse
|
159
|
Nakagawa T. The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 2010; 42:161-84. [PMID: 21080238 PMCID: PMC2992128 DOI: 10.1007/s12035-010-8149-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
160
|
Kam AYF, Liao D, Loh HH, Law PY. Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits. J Neurosci 2010; 30:15304-16. [PMID: 21068335 PMCID: PMC3073525 DOI: 10.1523/jneurosci.4255-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 09/13/2010] [Indexed: 01/17/2023] Open
Abstract
Chronic morphine treatment resulting in the alteration of postsynaptic levels of AMPA receptors, thereby modulating synaptic strength, has been reported. However, the mechanism underlying such drug-induced synaptic modification has not been resolved. By monitoring the GluR1 trafficking in primary hippocampal neurons using the pHluorin-GluR1 imaging and biotinylation studies, we observed that prolonged morphine exposure significantly induced loss of synaptic and extrasynaptic GluR1 by internalization. The morphine-induced GluR1 endocytosis was independent of neural network activities or NMDA receptor activities, as neither blocking the sodium channels with tetrodotoxin nor NMDA receptors with dl-APV altered the effects of morphine. Instead, morphine-induced GluR1 endocytosis is attributed to a change in the phosphorylation state of the GluR1 at Ser(845) as morphine significantly decreased the dephosphorylation of GluR1 at this site. Such changes in Ser(845) phosphorylation required morphine-induced activation of calcineurin, based on the observations that a calcineurin inhibitor, FK506, completely abrogated the dephosphorylation, and morphine treatment led to an increase in calcineurin enzymatic activity, even in the presence of dl-APV. Importantly, pretreatment with FK506 and overexpression of the GluR1 mutants, S845D (phospho-mimic) or S845A (phospho-blocking) attenuated the morphine-induced GluR1 endocytosis. Therefore, the calcineurin-mediated GluR1-S845 dephosphorylation is critical for the morphine-induced changes in the postsynaptic AMPA receptor level. Together, these findings reveal a novel molecular mechanism for opioid-induced neuronal adaptation and/or synaptic impairment.
Collapse
Affiliation(s)
- Angel Y F Kam
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
161
|
GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci U S A 2010; 107:19038-43. [PMID: 20956289 DOI: 10.1073/pnas.1013494107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PSD-95/SAP90/DLG/ZO-1 (PDZ) domain-mediated protein-protein interactions play important roles in regulating AMPA receptor trafficking and neuronal plasticity. GRIP1 and GRIP2 are homologous multi-PDZ domain-containing proteins that bind to the C-termini of AMPA-R GluA2 and GluA3 subunits. Previous attempts to determine the cellular roles of GRIP1 and GRIP2 in neurons have been complicated by nonspecific reagents, and by the embryonic lethality of conventional GRIP1 KO mice. To circumvent these issues we developed a conditional targeted deletion strategy to knock out GRIP1 in postnatal neurons derived from GRIP2 KO mice. Loss of GRIP1 and 2 did not affect normal AMPA-R steady-state trafficking and endocytosis, but strikingly impaired activity-dependent AMPA-R recycling. This previously uncharacterized role for GRIP1 appears to be mediated by novel interactions with the cellular trafficking machinery via the exocyst protein complex. Indeed, disruption of GRIP1-exocyst binding caused a strikingly similar deficit in AMPA-R recycling. Together these findings reveal a previously unidentified role for AMPA-R-GRIP1-exocyst protein complexes in activity-dependent AMPA-R trafficking.
Collapse
|
162
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2714] [Impact Index Per Article: 180.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Spinal cord protein interacting with C kinase 1 is required for the maintenance of complete Freund's adjuvant-induced inflammatory pain but not for incision-induced post-operative pain. Pain 2010; 151:226-234. [PMID: 20696523 DOI: 10.1016/j.pain.2010.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/01/2010] [Accepted: 07/15/2010] [Indexed: 01/23/2023]
Abstract
Protein interacting with C kinase 1 (PICK1) is a PDZ-containing protein that binds to AMPA receptor (AMPAR) GluR2 subunit and protein kinase Cα (PKCα) in the central neurons. It functions as a targeting and transport protein, presents the activated form of PKCα to synaptic GluR2, and participates in synaptic AMPAR trafficking in the nervous system. Thus, PICK1 might be involved in many physiological and pathological processes triggered via the activation of AMPARs. We report herein that PICK1 knockout mice display impaired mechanical and thermal pain hypersensitivities during complete Freund's adjuvant (CFA)-induced inflammatory pain maintenance. Acute transient knockdown of spinal cord PICK1 through intrathecal injection of PICK1 antisense oligodeoxynucleotide had a similar effect. In contrast, knockout and knockdown of spinal cord PICK1 did not affect incision-induced guarding pain behaviors or mechanical or thermal pain hypersensitivities. We also found that PICK1 is highly expressed in dorsal horn, where it interacts with GluR2 and PKCα. Injection of CFA into a hind paw, but not a hind paw incision, increased PKCα-mediated GluR2 phosphorylation at Ser880 and GluR2 internalization in dorsal horn. These increases were absent when spinal cord PICK1 was deficient. Given that dorsal horn PKCα-mediated GluR2 phosphorylation at Ser880 and GluR2 internalization contribute to the maintenance of CFA-induced inflammatory pain, our findings suggest that spinal PICK1 may participate in the maintenance of persistent inflammatory pain, but not in incision-induced post-operative pain, through promoting PKCα-mediated GluR2 phosphorylation and internalization in dorsal horn neurons.
Collapse
|
164
|
Bach A, Stuhr-Hansen N, Thorsen TS, Bork N, Moreira IS, Frydenvang K, Padrah S, Christensen SB, Madsen KL, Weinstein H, Gether U, Strømgaard K. Structure-activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Org Biomol Chem 2010; 8:4281-8. [PMID: 20668766 DOI: 10.1039/c0ob00025f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, we described the first small-molecule inhibitor, (E)-ethyl 2-cyano-3-(3,4-dichlorophenyl)acryloylcarbamate (1), of the PDZ domain of protein interacting with Calpha-kinase 1 (PICK1), a potential drug target against brain ischemia, pain and cocaine addiction. Herein, we explore structure-activity relationships of 1 by introducing subtle modifications of the acryloylcarbamate scaffold and variations of the substituents on this scaffold. The configuration around the double bond of 1 and analogues was settled by a combination of X-ray crystallography, NMR and density functional theory calculations. Thereby, docking studies were used to correlate biological affinities with structural considerations for ligand-protein interactions. The most potent analogue obtained in this study showed an improvement in affinity compared to 1 and is currently a lead in further studies of PICK1 inhibition.
Collapse
Affiliation(s)
- Anders Bach
- Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Threonine 82 at the PDZ domain of PICK1 is critical for AMPA receptor interaction and localization. Neurochem Int 2010; 56:962-70. [DOI: 10.1016/j.neuint.2010.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 04/07/2010] [Accepted: 04/09/2010] [Indexed: 11/17/2022]
|
166
|
Plasma membrane insertion of the AMPA receptor GluA2 subunit is regulated by NSF binding and Q/R editing of the ion pore. Proc Natl Acad Sci U S A 2010; 107:11080-5. [PMID: 20534470 DOI: 10.1073/pnas.1006584107] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The delivery of AMPA receptors to the plasma membrane is a critical step both for the synaptic delivery of these receptors and for the regulation of synaptic transmission. To directly visualize fusion events of transport vesicles containing the AMPA receptor GluA2 subunit with the plasma membrane we used pHluorin-tagged GluA2 subunits and total internal reflection fluorescence microscopy. We demonstrate that the plasma membrane insertion of GluA2 requires the NSF binding site within its intracellular cytoplasmic domain and that RNA editing of the Q/R site in the ion channel region plays a key role in GluA2 plasma membrane insertion. Finally, we show that plasma membrane insertion of heteromeric GluA2/3 receptors follows the same rules as homomeric GluA2 receptors. These results demonstrate that the plasma membrane delivery of GluA2 containing AMPA receptors is regulated by its unique structural elements.
Collapse
|
167
|
Zhang B, Cao W, Zhang F, Zhang L, Niu R, Niu Y, Fu L, Hao X, Cao X. Protein interacting with C alpha kinase 1 (PICK1) is involved in promoting tumor growth and correlates with poor prognosis of human breast cancer. Cancer Sci 2010; 101:1536-42. [PMID: 20384629 PMCID: PMC11159445 DOI: 10.1111/j.1349-7006.2010.01566.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/12/2010] [Accepted: 02/25/2010] [Indexed: 12/12/2022] Open
Abstract
Protein interacting with C alpha kinase 1 (PICK1), which interacts with multiple different proteins in a variety of cellular contexts, is believed to play important roles in diverse pathological conditions including cancer. In this study, we attempted to investigate the correlation of PICK1 with clinicopathological features as well as prognosis of human breast cancer. In addition, we aimed at a better understanding of the biological function of PICK1 in breast cancer cell biology. As judged by semi- quantitative RT-PCR and western blotting, PICK1 was overexpressed in tumor cells as compared to adjacent normal epithelia in breast, lung, gastric, colorectal, and ovarian cancer. As judged by immunostaining breast cancer tissue microarrays, high levels of PICK1 expression correlated with shortened span of overall survival (OS). Protein interacting with C alpha kinase 1 (PICK1) expression seemed to be specifically associated with reduced OS in lymph node-positive, Her/neu-2 positive, and the basal-like type subgroups, respectively. Consistently, the expression of PICK1 correlated with histological grade, lymph node metastasis, Her-2/neu-positivity, and triple-negative basal-like breast cancer. Protein interacting with C alpha kinase 1 (PICK1) was not correlated with menopausal status, tumor size, or hormone receptor status. In a complementary study, transfection of MDA-MB-231 cells with PICK1 siRNA decreased cell proliferation and colony formation in vitro and inhibited tumorigenicity in nude mice. Our clinical and experimental evidence supports an oncogenic role of PICK1 in human breast cancer. In particular, our data suggest that PICK1 promotes tumor cell proliferation. Taken together, PICK1 may serve not only as a marker for poor prognosis, but also as a therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Bin Zhang
- National Key Laboratory of Breast Cancer Prevention and Treatment, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Clem RL, Anggono V, Huganir RL. PICK1 regulates incorporation of calcium-permeable AMPA receptors during cortical synaptic strengthening. J Neurosci 2010; 30:6360-6. [PMID: 20445062 PMCID: PMC2897179 DOI: 10.1523/jneurosci.6276-09.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/08/2010] [Accepted: 03/21/2010] [Indexed: 01/05/2023] Open
Abstract
While AMPA-type glutamate receptors (AMPARs) found at principal neuron excitatory synapses typically contain the GluR2 subunit, several forms of behavioral experience have been linked to the de novo synaptic insertion of calcium-permeable (CP) AMPARs, defined by their lack of GluR2. In particular, whisker experience drives synaptic potentiation as well as the incorporation of CP-AMPARs in the neocortex. Previous studies implicate PICK1 (protein interacting with C kinase-1) in activity-dependent internalization of GluR2, suggesting one potential mechanism leading to the subsequent accumulation of synaptic CP-AMPARs and increased synaptic strength. Here we test this hypothesis by using a whisker stimulation paradigm in PICK1 knock-out mice. We demonstrate that PICK1 facilitates the surface expression of CP-AMPARs and is indispensable for their experience-dependent synaptic insertion. However, the failure to incorporate CP-AMPARs in PICK1 knock-outs does not preclude sensory-induced enhancement of synaptic currents. Our results indicate that synaptic strengthening in the early postnatal cortex does not require PICK1 or the addition of GluR2-lacking AMPARs. Instead, PICK1 permits changes in AMPAR subunit composition to occur in conjunction with synaptic potentiation.
Collapse
Affiliation(s)
- Roger L. Clem
- Department of Neuroscience and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Victor Anggono
- Department of Neuroscience and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Richard L. Huganir
- Department of Neuroscience and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
169
|
Shi Y, Yu J, Jia Y, Pan L, Shen C, Xia J, Zhang M. Redox-Regulated Lipid Membrane Binding of the PICK1 PDZ Domain. Biochemistry 2010; 49:4432-9. [DOI: 10.1021/bi100269t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yawei Shi
- Institute of Biotechnology, Shanxi University, Taiyuan, P. R. China
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Jiang Yu
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Yuan Jia
- Institute of Biotechnology, Shanxi University, Taiyuan, P. R. China
| | - Lifeng Pan
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Chong Shen
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Jun Xia
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Mingjie Zhang
- Department of Biochemistry, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
170
|
Xue L, Zhang F, Chen X, Lin J, Shi J. PDZ protein mediated activity-dependent LTP/LTD developmental switch at rat retinocollicular synapses. Am J Physiol Cell Physiol 2010; 298:C1572-82. [PMID: 20457829 DOI: 10.1152/ajpcell.00012.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The insertion of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors into the plasma membrane and removal via internalization are essential for regulating synaptic strength, which underlies the basic mechanism of learning and memory. The retinocollicular pathway undergoes synaptic refinement during development and shows a wide variety of long-term synaptic changes; however, still little is known about its underlying molecular regulation. Here we report a rapid developmental long-term potentiation (LTP)/long-term depression (LTD) switch and its intracellular mechanism at the rat retinocollicular pathway from postnatal day 5 (P5) to P14. Before P9, neurons always exhibited LTP, whereas LTD was observed only after P10. Blockade of GluR2/3-glutamate receptor-interacting protein (GRIP)/AMPA-receptor-binding protein (ABP)/protein interacting with C kinase 1 (PICK1) interactions with pep2-SVKI could sustain the LTP after P10. This suggests that the LTP/LTD switch relied on PDZ protein activities. Selective interruption of GluR2/3-PICK1 binding by pep2-EVKI blocked the long-lasting effects of both LTP and LTD, suggesting a role for PICK1 in the maintenance of long-term synaptic plasticity. Interestingly, synaptic expression of GRIP increased more than twofold from P7 to P11, whereas ABP and PICK1 expression levels remained stable. Blockade of spontaneous retinal input suppressed this increase and abolished the LTP/LTD switch. These results suggest that the increased GRIP synaptic expression may be a key regulatory factor in mediating the activity-dependent developmental LTP/LTD switch, whereas PICK1 may be required for both LTP and LTD to maintain their long-term effects.
Collapse
Affiliation(s)
- Lei Xue
- NINDS, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
171
|
Duncan RS, Goad DL, Grillo MA, Kaja S, Payne AJ, Koulen P. Control of intracellular calcium signaling as a neuroprotective strategy. Molecules 2010; 15:1168-95. [PMID: 20335972 PMCID: PMC2847496 DOI: 10.3390/molecules15031168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/05/2010] [Accepted: 03/02/2010] [Indexed: 12/13/2022] Open
Abstract
Both acute and chronic degenerative diseases of the nervous system reduce the viability and function of neurons through changes in intracellular calcium signaling. In particular, pathological increases in the intracellular calcium concentration promote such pathogenesis. Disease involvement of numerous regulators of intracellular calcium signaling located on the plasma membrane and intracellular organelles has been documented. Diverse groups of chemical compounds targeting ion channels, G-protein coupled receptors, pumps and enzymes have been identified as potential neuroprotectants. The present review summarizes the discovery, mechanisms and biological activity of neuroprotective molecules targeting proteins that control intracellular calcium signaling to preserve or restore structure and function of the nervous system. Disease relevance, clinical applications and new technologies for the identification of such molecules are being discussed.
Collapse
Affiliation(s)
- R Scott Duncan
- Vision Research Center and Department of Ophthalmology, School of Medicine, University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA.
| | | | | | | | | | | |
Collapse
|
172
|
Lourenço CF, Santos R, Barbosa RM, Gerhardt G, Cadenas E, Laranjinha J. In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus. Hippocampus 2010; 21:622-30. [DOI: 10.1002/hipo.20774] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2009] [Indexed: 11/07/2022]
|
173
|
Wang Y, Wu J, Wu Z, Lin Q, Yue Y, Fang L. Regulation of AMPA receptors in spinal nociception. Mol Pain 2010; 6:5. [PMID: 20092646 PMCID: PMC2823608 DOI: 10.1186/1744-8069-6-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/21/2010] [Indexed: 12/03/2022] Open
Abstract
The functional properties of α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptors in different brain regions, such as hippocampus and cerebellum, have been well studied in vitro and in vivo. The AMPA receptors present a unique characteristic in the mechanisms of subunit regulation during LTP (long-term potentiation) and LTD (long-term depression), which are involved in the trafficking, altered composition and phosphorylation of AMPA receptor subunits. Accumulated data have demonstrated that spinal AMPA receptors play a critical role in the mechanism of both acute and persistent pain. However, less is known about the biochemical regulation of AMPA receptor subunits in the spinal cord in response to painful stimuli. Recent studies have shown that some important regulatory processes, such as the trafficking of AMPA receptor subunit, subunit compositional changes, phosphorylation of AMPA receptor subunits, and their interaction with partner proteins may contribute to spinal nociceptive transmission. Of all these regulation processes, the phosphorylation of AMPA receptor subunits is the most important since it may trigger or affect other cellular processes. Therefore, these study results may suggest an effective strategy in developing novel analgesics targeting AMPA receptor subunit regulation that may be useful in treating persistent and chronic pain without unacceptable side effects in the clinics.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | | | | | | | | | | |
Collapse
|
174
|
Misra C, Restituito S, Ferreira J, Rameau GA, Fu J, Ziff EB. Regulation of synaptic structure and function by palmitoylated AMPA receptor binding protein. Mol Cell Neurosci 2010; 43:341-52. [PMID: 20083202 DOI: 10.1016/j.mcn.2010.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 01/03/2023] Open
Abstract
AMPA receptor binding protein (ABP) is a multi-PDZ domain scaffold that binds and stabilizes AMPA receptor (AMPAR) GluR2/3 subunits at synapses. A palmitoylated N-terminal splice variant (pABP-L) concentrates in spine heads, whereas a non-palmitoylated form (ABP-L) is intracellular. We show that postsynaptic Sindbis viral expression of pABP-L increased AMPAR mediated mEPSC amplitude and frequency and elevated surface levels of GluR1 and GluR2, suggesting an increase in AMPA receptors at individual synapses. Spines were enlarged and more numerous and nerve terminals contacting these cells displayed enlarged synaptophysin puncta. A non-palmitoylated pABP-L mutant (C11A) did not change spine density or size. Exogenous pABP-L and endogenous GRIP, a related scaffold, colocalized with NPRAP (delta-catenin), to which ABP and GRIP bind, and with cadherins, which bind NPRAP. Thus postsynaptic pABP-L induces pre and postsynaptic changes that are dependent on palmitoylation and likely achieved through ABP association with a multi-molecular cell surface signaling complex.
Collapse
Affiliation(s)
- Charu Misra
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
175
|
Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proc Natl Acad Sci U S A 2009; 107:413-8. [PMID: 20018661 DOI: 10.1073/pnas.0902225107] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins containing PSD-95/Discs-large/ZO-1 homology (PDZ) domains play key roles in the assembly and regulation of cellular signaling pathways and represent putative targets for new pharmacotherapeutics. Here we describe the first small-molecule inhibitor (FSC231) of the PDZ domain in protein interacting with C kinase 1 (PICK1) identified by a screening of approximately 44,000 compounds in a fluorescent polarization assay. The inhibitor bound the PICK1 PDZ domain with an affinity similar to that observed for endogenous peptide ligands (K(i) approximately 10.1 microM). Mutational analysis, together with computational docking of the compound in simulations starting from the PDZ domain structure, identified the binding mode of FSC231. The specificity of FSC231 for the PICK1 PDZ domain was supported by the lack of binding to PDZ domains of postsynaptic density protein 95 (PSD-95) and glutamate receptor interacting protein 1 (GRIP1). Pretreatment of cultured hippocampal neurons with FSC231 inhibited coimmunopreciptation of the AMPA receptor GluR2 subunit with PICK1. In agreement with inhibiting the role of PICK1 in GluR2 trafficking, FSC231 accelerated recycling of pHluorin-tagged GluR2 in hippocampal neurons after internalization in response to NMDA receptor activation. FSC231 blocked the expression of both long-term depression and long-term potentiation in hippocampal CA1 neurons from acute slices, consistent with inhibition of the bidirectional function of PICK1 in synaptic plasticity. Given the proposed role of the PICK1/AMPA receptor interaction in neuropathic pain, excitotoxicity, and cocaine addiction, FSC231 might serve as a lead in the future development of new therapeutics against these conditions.
Collapse
|
176
|
Selak S, Paternain AV, Aller IM, Picó E, Rivera R, Lerma J. A Role for SNAP25 in Internalization of Kainate Receptors and Synaptic Plasticity. Neuron 2009; 63:357-71. [DOI: 10.1016/j.neuron.2009.07.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/22/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
177
|
Zha XM, Costa V, Harding AMS, Reznikov L, Benson CJ, Welsh MJ. ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J Neurosci 2009; 29:8438-46. [PMID: 19571134 PMCID: PMC2734339 DOI: 10.1523/jneurosci.1284-09.2009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/24/2009] [Accepted: 05/13/2009] [Indexed: 11/21/2022] Open
Abstract
Acid-sensing ion channel-1a (ASIC1a) mediates H(+)-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not coimmunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca(2+)](i) by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2(-/-) neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Howard Hughes Medical Institute
- Departments of Internal Medicine and
| | - Vivian Costa
- Neuroscience Program, and
- Departments of Internal Medicine and
| | | | - Leah Reznikov
- Howard Hughes Medical Institute
- Departments of Internal Medicine and
| | | | - Michael J. Welsh
- Howard Hughes Medical Institute
- Neuroscience Program, and
- Departments of Internal Medicine and
- Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
178
|
Bakshi K, Gennaro S, Chan CY, Kosciuk M, Liu J, Stucky A, Trenkner E, Friedman E, Nagele RG, Wang HY. Prenatal cocaine reduces AMPA receptor synaptic expression through hyperphosphorylation of the synaptic anchoring protein GRIP. J Neurosci 2009; 29:6308-19. [PMID: 19439608 PMCID: PMC2727739 DOI: 10.1523/jneurosci.5485-08.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/03/2009] [Accepted: 04/01/2009] [Indexed: 02/05/2023] Open
Abstract
Prenatal cocaine exposure produces sustained neurobehavioral and brain synaptic changes closely resembling those of animals with defective AMPA receptors (AMPARs). We hypothesized that prenatal cocaine exposure attenuates AMPAR signaling by interfering with AMPAR synaptic targeting. AMPAR function is governed by receptor cycling on and off the synaptic membrane through its interaction with glutamate receptor-interacting protein (GRIP), a PDZ domain protein that is regulated by reversible phosphorylation. Our results show that prenatal cocaine exposure markedly reduces AMPAR synaptic targeting and attenuates AMPAR-mediated synaptic long-term depression in the frontal cortex of 21-d-old rats. This cocaine effect is the result of reduced GRIP-AMPAR interaction caused by persistent phosphorylation of GRIP by protein kinase C (PKC) and Src tyrosine kinase. These data support the restoration of AMPAR activation via suppressing excessive PKC-mediated GRIP phosphorylation as a novel therapeutic approach to treat the neurobehavioral consequences of prenatal cocaine.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
- College of Staten Island, Institute for Basic Research Center for Developmental Neuroscience, The City University of New York, New York, New York 10314
| | - Serena Gennaro
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Neurological, Psychiatric, and Anesthesiological Sciences, University of Messina, 1-98122 Messina, Italy
| | - Christopher Y. Chan
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
| | - Mary Kosciuk
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey–School of Osteopathic Medicine, Stratford, New Jersey 08084, and
| | - JingJing Liu
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
| | - Andres Stucky
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
| | - Ekkehart Trenkner
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
- College of Staten Island, Institute for Basic Research Center for Developmental Neuroscience, The City University of New York, New York, New York 10314
| | - Eitan Friedman
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
| | - Robert G. Nagele
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey–School of Osteopathic Medicine, Stratford, New Jersey 08084, and
| | - Hoau-Yan Wang
- Departments of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031
- Department of Biology and Neuroscience, Graduate School of The City University of New York, New York, New York 10061
| |
Collapse
|
179
|
Pierre K, Chatton JY, Parent A, Repond C, Gardoni F, Di Luca M, Pellerin L. Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process. Eur J Neurosci 2009; 29:1951-63. [PMID: 19453627 DOI: 10.1111/j.1460-9568.2009.06756.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MCT2 is the major neuronal monocarboxylate transporter (MCT) that allows the supply of alternative energy substrates such as lactate to neurons. Recent evidence obtained by electron microscopy has demonstrated that MCT2, like alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA) receptors, is localized in dendritic spines of glutamatergic synapses. Using immunofluorescence, we show in this study that MCT2 colocalizes extensively with GluR2/3 subunits of AMPA receptors in neurons from various mouse brain regions as well as in cultured neurons. It also colocalizes with GluR2/3-interacting proteins, such as C-kinase-interacting protein 1, glutamate receptor-interacting protein 1 and clathrin adaptor protein. Coimmunoprecipitation of MCT2 with GluR2/3 and C-kinase-interacting protein 1 suggests their close interaction within spines. Parallel changes in the localization of both MCT2 and GluR2/3 subunits at and beneath the plasma membrane upon various stimulation paradigms were unraveled using an original immunocytochemical and transfection approach combined with three-dimensional image reconstruction. Cell culture incubation with AMPA or insulin triggered a marked intracellular accumulation of both MCT2 and GluR2/3, whereas both tumor necrosis factor alpha and glycine (with glutamate) increased their cell surface immunolabeling. Similar results were obtained using Western blots performed on membrane or cytoplasm-enriched cell fractions. Finally, an enhanced lactate flux into neurons was demonstrated after MCT2 translocation on the cell surface. These observations provide unequivocal evidence that MCT2 is linked to AMPA receptor GluR2/3 subunits and undergoes a similar translocation process in neurons upon activation. MCT2 emerges as a novel component of the synaptic machinery putatively linking neuroenergetics to synaptic transmission.
Collapse
Affiliation(s)
- Karin Pierre
- Département de Physiologie, Université de Lausanne, 7 Rue du Bugnon, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
180
|
Newpher TM, Ehlers MD. Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 2009; 19:218-27. [PMID: 19328694 DOI: 10.1016/j.tcb.2009.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Changes in the molecular composition and signaling properties of excitatory glutamatergic synapses onto dendritic spines mediate learning-related plasticity in the mammalian brain. This molecular adaptation serves as the most celebrated cell biological model for learning and memory. Within their micron-sized dimensions, dendritic spines restrict the diffusion of signaling molecules and spatially confine the activation of signal transduction pathways. Much of this local regulation occurs by spatial compartmentalization of glutamate receptors. Here, we review recently identified cell biological mechanisms regulating glutamate receptor mobility within individual dendritic spines. We discuss the emerging functions of glutamate receptors residing within sub-spine microdomains and propose a model for distinct signaling platforms with specialized functions in synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
181
|
Ghasemzadeh MB, Vasudevan P, Mueller CR, Seubert C, Mantsch JR. Region-specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res 2009; 1267:89-102. [PMID: 19368820 DOI: 10.1016/j.brainres.2009.01.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/23/2008] [Accepted: 01/03/2009] [Indexed: 12/29/2022]
Abstract
A role for glutamatergic signaling in the nucleus accumbens (NA) in both the expression and extinction of cocaine seeking has been suggested. The effects of extinction following cocaine self-administration on the expression and synaptosomal distribution of GluR1 and NMDAR1 glutamate receptor subunits in the NA shell and core and the dorsolateral striatum were examined. Rats self-administered cocaine or had access to saline for 14 days followed by a period of extinction training, home-cage exposure, or placement in the self-administration chambers with levers retracted in the absence of discrete cues. Self-administration followed by home-cage exposure reduced GluR1 expression in the NA shell and NMDAR1 expression in the dorsolateral striatum without affecting expression in the NA core. These effects were not observed following extinction. Extinction training increased synaptosomal GluR1 in the NA shell and core and NMDAR1 in the dorsolateral striatum while decreasing synaptosomal NMDAR1 in the shell. Extinction but not home-cage exposure was associated with altered expression and synaptosomal content of the scaffolding proteins PICK1 and PSD95.Following extinction, synaptosomal PICK1 decreased in the dorsolateral striatum while total PICK1 expression was increased in the shell. The synaptosomal PSD95 was decreased in the NA shell, while total PSD95 expression was increased in the core. These data suggest that extinguished cocaine seeking is associated with changes in GluR1 and NMDAR1 expression and subcellular distribution that are region-specific and consist of both a reversal of cocaine-induced adaptations and emergent extinction-related alterations that include receptor subunit redistribution and may involve alterations in scaffolding proteins.
Collapse
Affiliation(s)
- M Behnam Ghasemzadeh
- Department of Biomedical Sciences, Integrative Neuroscience Research Center, Marquette University, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
182
|
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
183
|
Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 2009; 119:802-12. [PMID: 19258705 DOI: 10.1172/jci36230] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 01/07/2009] [Indexed: 01/04/2023] Open
Abstract
Protein interacting with C kinase 1 (PICK1) is a peripheral membrane protein involved in protein trafficking, a function that has been well characterized in neurons. Here, we report that male mice deficient in PICK1 are infertile and have a phenotype resembling the human disease globozoospermia. The primary defect in the testes of Pick1-knockout mice was fragmentation of acrosomes in the early stages of spermiogenesis. This fragmentation was followed by defects in nuclear elongation and mitochondrial sheath formation, leading to round-headed sperm, reduced sperm count, and severely impaired sperm motility. We found that PICK1 interacted with Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC) and the primary catalytic subunit of protein kinase 2 (CK2alpha'), proteins whose deficiencies lead to globozoospermia in mice. PICK1 was highly expressed in round spermatids and localized to Golgi-derived proacrosomal granules. GOPC colocalized with PICK1 in the Golgi region and facilitated formation of PICK1-positive clusters. Furthermore, there was an increase in apoptosis in the seminiferous tubules of Pick1-/- mice, a phenotype also seen in CK2alpha'-deficient mice. Our results suggest that PICK1 is involved in vesicle trafficking from the Golgi apparatus to the acrosome and cooperates with other proteins such as GOPC and CK2alpha' in acrosome biogenesis.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Ghasemzadeh M, Mueller C, Vasudevan P. Behavioral sensitization to cocaine is associated with increased glutamate receptor trafficking to the postsynaptic density after extended withdrawal period. Neuroscience 2009; 159:414-26. [DOI: 10.1016/j.neuroscience.2008.10.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/11/2008] [Accepted: 10/15/2008] [Indexed: 01/17/2023]
|
185
|
Clathrin adaptor AP-1 complex excludes multiple postsynaptic receptors from axons in C. elegans. Proc Natl Acad Sci U S A 2009; 106:1632-7. [PMID: 19164532 DOI: 10.1073/pnas.0812078106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons are highly polarized cells with morphologically and molecularly distinct axonal and dendritic compartments. It is not well understood how postsynaptic receptors are selectively enriched in dendrites in vivo. We investigated the molecular mechanisms of dendritically polarized localization of a glutamate receptor, an acetylcholine receptor, and a ROR-type receptor tyrosine kinase in the interneuron RIA in C. elegans. We found that the clathrin adaptor AP-1 complex mu1 subunit UNC-101 functions cell autonomously to maintain the correct localization of these receptors in a dynamin-dependent manner. In unc-101 mutants, instead of being dendritically enriched, all 3 receptors are evenly distributed in the axonal and dendritic compartments. Surprisingly, UNC-101 predominantly localizes to the axonal compartment, suggesting a possible transcytosis model for the dendritic targeting of neurotransmitter receptors.
Collapse
|
186
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
187
|
Bakiri Y, Burzomato V, Frugier G, Hamilton NB, Káradóttir R, Attwell D. Glutamatergic signaling in the brain's white matter. Neuroscience 2009; 158:266-74. [PMID: 18314276 DOI: 10.1016/j.neuroscience.2008.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/05/2008] [Indexed: 11/22/2022]
Abstract
Glutamatergic signaling has been exceptionally well characterized in the brain's gray matter, where it underlies fast information processing, learning and memory, and also generates the neuronal damage that occurs in pathological conditions such as stroke. The role of glutamatergic signaling in the white matter, an area until recently thought to be devoid of synapses, is less well understood. Here we review what is known, and highlight what is not known, of glutamatergic signaling in the white matter. We focus on how glutamate is released, the location and properties of the receptors it acts on, the interacting molecules that may regulate trafficking or signaling of the receptors, the possible functional roles of glutamate in the white matter, and its pathological effects including the possibility of treating white matter disorders with glutamate receptor blockers.
Collapse
Affiliation(s)
- Y Bakiri
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
188
|
Santos S, Carvalho A, Caldeira M, Duarte C. Regulation of AMPA receptors and synaptic plasticity. Neuroscience 2009; 158:105-25. [DOI: 10.1016/j.neuroscience.2008.02.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/02/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
189
|
Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K. Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron 2008; 60:1095-111. [PMID: 19109914 PMCID: PMC3310905 DOI: 10.1016/j.neuron.2008.10.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 08/26/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
There are two major forms of long-term depression (LTD) of synaptic transmission in the central nervous system that require activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). In synapses in the perirhinal cortex, we have directly compared the Ca(2+) signaling mechanisms involved in NMDAR-LTD and mGluR-LTD. While both forms of LTD involve Ca(2+) release from intracellular stores, the Ca(2+) sensors involved are different; NMDAR-LTD involves calmodulin, while mGluR-LTD involves the neuronal Ca(2+) sensor (NCS) protein NCS-1. In addition, there is a specific requirement for IP3 and PKC, as well as protein interacting with C kinase (PICK-1) in mGluR-LTD. NCS-1 binds directly to PICK1 via its BAR domain in a Ca(2+)-dependent manner. Furthermore, the NCS-1-PICK1 association is stimulated by activation of mGluRs, but not NMDARs, and introduction of a PICK1 BAR domain fusion protein specifically blocks mGluR-LTD. Thus, NCS-1 plays a distinct role in mGluR-LTD.
Collapse
Affiliation(s)
- Jihoon Jo
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Seok Heon
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Myung Jong Kim
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gi Hoon Son
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
| | - Yunkyung Park
- Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeremy M. Henley
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Jamie L. Weiss
- Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Graham L. Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Faculty of Medicine and Dentistry, University of Bristol, Bristol BS1 3NY, UK
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
190
|
Laezza F, Wilding TJ, Sequeira S, Craig AM, Huettner JE. The BTB/kelch protein, KRIP6, modulates the interaction of PICK1 with GluR6 kainate receptors. Neuropharmacology 2008; 55:1131-9. [PMID: 18692513 PMCID: PMC2685165 DOI: 10.1016/j.neuropharm.2008.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/21/2008] [Accepted: 07/07/2008] [Indexed: 11/18/2022]
Abstract
Neuronal proteins of the BTB/kelch and PDZ domain families interact with different regions of the cytoplasmic C-terminal domain of the GluR6 kainate receptor subunit. The BTB/kelch protein KRIP6 binds within a 58 amino acid segment of GluR6 proximal to the plasma membrane. In contrast, PDZ domain proteins, such as PICK1 and PSD95, interact with the last 4 residues of the GluR6 C-terminus. KRIP6 reduces peak currents mediated by recombinant GluR6 receptors and by native kainate receptors in neurons, whereas PICK1 stabilizes kainate receptors at synapses. Thus, protein-protein interactions at the C-terminal domain of GluR6 are important for regulating kainate receptor physiology. Here, we show by co-clustering and co-immunoprecipitation that KRIP6 interacts with PICK1 in heterologous cells. In addition, we demonstrate a novel modulation of GluR6 receptors by PICK1 resulting in increased peak current and relative desensitization of GluR6-mediated currents, phenotypes opposite to those produced by KRIP6. Importantly, these effects cancel out when KRIP6 and PICK1 are co-expressed together with GluR6. KRIP6 and PICK1 strongly co-cluster and co-immunoprecipitate regardless of the presence of GluR6. Immunofluorescence analysis reveals that GluR6 can either join the KRIP6-PICK1 clusters or remain separate; however, co-expression of KRIP6 reduces the fraction of PICK1 that co-immunoprecipitates with GluR6. Taken together, these results indicate that, in addition to a previously demonstrated direct interaction with the GluR6 C-terminal domain, KRIP6 regulates kainate receptors by inhibiting PICK1 modulation via competition or a mutual blocking effect.
Collapse
Affiliation(s)
- Fernanda Laezza
- Department of Cell Biology and Physiology, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
191
|
Haglerød C, Kapic A, Boulland JL, Hussain S, Holen T, Skare O, Laake P, Ottersen OP, Haug FMS, Davanger S. Protein interacting with C kinase 1 (PICK1) and GluR2 are associated with presynaptic plasma membrane and vesicles in hippocampal excitatory synapses. Neuroscience 2008; 158:242-52. [PMID: 19071197 DOI: 10.1016/j.neuroscience.2008.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 11/19/2008] [Accepted: 11/24/2008] [Indexed: 11/19/2022]
Abstract
AMPA receptors have been identified in different populations of presynaptic terminals and found to be involved in the modulation of neurotransmitter release. The mechanisms that govern the expression of presynaptic AMPA receptors are not known. One possibility is that pre- and postsynaptic AMPA receptors are regulated according to the same principles. To address this hypothesis we investigated whether protein interacting with C kinase 1 (PICK1), known to interact with AMPA receptors postsynaptically, also is expressed presynaptically, together with AMPA receptors. Subfractionation and high-resolution immunogold analyses of the rat hippocampus revealed that GluR2 and PICK1 are enriched postsynaptically, but also in presynaptic membrane compartments, including the active zone and vesicular membranes. PICK1 and GluR2 are associated with the same vesicles, which are immunopositive also for synaptophysin and vesicle-associated membrane protein 2. Based on what is known about the function of PICK1 postsynaptically, the present data suggest that PICK1 is involved in the regulation of presynaptic AMPA receptor trafficking and in determining the size of the AMPA receptor pool that modulates presynaptic glutamate release.
Collapse
Affiliation(s)
- C Haglerød
- Institute of Basic Medical Sciences, Department of Anatomy, and Centre for Molecular Biology and Neuroscience, University of Oslo, P.O. Box 1105 Blindern, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Zhou W, Zhang L, Guoxiang X, Mojsilovic-Petrovic J, Takamaya K, Sattler R, Huganir R, Kalb R. GluR1 controls dendrite growth through its binding partner, SAP97. J Neurosci 2008; 28:10220-33. [PMID: 18842882 PMCID: PMC2699678 DOI: 10.1523/jneurosci.3434-08.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 08/11/2008] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent dendrite elaboration influences the pattern of interneuronal connectivity and network function. In the present study, we examined the mechanism by which the GluR1 subunit of AMPA receptors controls dendrite morphogenesis. GluR1 binds to SAP97, a scaffolding protein that is a component of the postsynaptic density, via its C-terminal 7 aa. We find that elimination of this interaction in vitro or in vivo (by deleting the C-terminal 7 aa of GluR1, GluR1Delta7) does not influence trafficking, processing, or cell surface GluR1 expression but does prevent translocation of SAP97 from the cytosol to membranes. GluR1 and SAP97 together at the plasma membrane promotes dendrite branching in an activity-dependent manner, although this does not require physical association. Our findings suggest that the C-terminal 7 aa of GluR1 are essential for bringing SAP97 to the plasma membrane, where it acts to translate the activity of AMPA receptors into dendrite growth.
Collapse
Affiliation(s)
- Weiguo Zhou
- Department of Pediatrics, Division of Neurology, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lei Zhang
- Department of Pediatrics, Division of Neurology, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Xiong Guoxiang
- Department of Pediatrics, Division of Neurology, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jelena Mojsilovic-Petrovic
- Department of Pediatrics, Division of Neurology, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Kogo Takamaya
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Rita Sattler
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland 21205, and
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287
| | - Richard Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Robert Kalb
- Department of Pediatrics, Division of Neurology, Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
193
|
Abstract
The 5-HT(1A) receptor (5-HT(1A)R) is the most extensively characterized serotonin (5-HT) receptor mainly because of its involvement in the mode of action of antidepressants. The 5-HT(1A)R is confined to the somatodendritic domain of central neurons, where it mediates serotonin-evoked hyperpolarization. Our previous studies underlined the role of the short 5-HT(1A)R C-terminal domain in receptor targeting to dendrites. We used this 17 aa region as bait in a yeast two-hybrid screen, and identified, for the first time, an intracellular protein interacting with the 5-HT(1A)R. This protein is homologous to the yeast Yif1p, previously implicated in vesicular trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus, but not yet characterized in mammals. We confirmed 5-HT(1A)R-Yif1B interaction by glutathione S-transferase pull-down experiments using rat brain extracts and transfected cell lines. Yif1B is highly expressed in the brain, and specifically in raphe 5-HT(1A)R-expressing neurons. Colocalization of Yif1B and 5-HT(1A)R was observed in small vesicles involved in transient intracellular trafficking. Last, inhibition of endogenous expression of Yif1B in primary neuron cultures by small interfering RNA specifically prevented the addressing of 5-HT(1A)R to distal portions of the dendrites, without affecting other receptors, such as sst2A, P2X(2), and 5-HT(3A) receptors. Together, our results provide strong evidence that Yif1B is a member of the ER/Golgi trafficking machinery, which plays a key role in specific targeting of 5-HT(1A)R to the neuronal dendrites. This finding opens up new pathways for the study of 5-HT(1A)R regulation by partner proteins and for the development of novel antidepressant drugs.
Collapse
|
194
|
Iida T, Egusa H, Saeki M, Yatani H, Kamisaki Y. PICK1 binds to calcineurin B and modulates the NFAT activity in PC12 cells. Biochem Biophys Res Commun 2008; 375:655-9. [PMID: 18755154 DOI: 10.1016/j.bbrc.2008.08.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 12/30/2022]
Abstract
In the central nervous system, calcineurin has been implicated in a number of Ca2+-sensitive pathways, including the regulation of neurotransmitter release and modulation of synaptic plasticity. PDZ domain-containing proteins also play an important role in the targeting and clustering of synaptic proteins. Using a yeast two-hybrid screen, we herein identified the PDZ domain-containing protein PICK1 as a specific interactor of calcineurin B. The interaction of calcineurin B and PICK1 was confirmed by GST pull-down assay in HEK293 cells and immunoprecipitation using rat brain lysate. Calcineurin B contains the consensus C-terminal peptide sequence required for interacting with the PDZ domain. The deletion of this sequence was sufficient to abolish the interaction between calcineurin B and PICK1. In addition, the knockdown of PICK1 by RNA interference inhibited the calcineurin-dependent activation of NFAT in PC12 cells. These results suggest that PICK1 may be a positive regulator of calcineurin in the central nervous system.
Collapse
Affiliation(s)
- Tsutomu Iida
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
195
|
Madsen KL, Eriksen J, Milan-Lobo L, Han DS, Niv MY, Ammendrup-Johnsen I, Henriksen U, Bhatia VK, Stamou D, Sitte HH, McMahon HT, Weinstein H, Gether U. Membrane localization is critical for activation of the PICK1 BAR domain. Traffic 2008; 9:1327-43. [PMID: 18466293 PMCID: PMC3622726 DOI: 10.1111/j.1600-0854.2008.00761.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PSD-95/Discs-large/ZO-1 homology (PDZ) domain protein, protein interacting with C kinase 1 (PICK1) contains a C-terminal Bin/amphiphysin/Rvs (BAR) domain mediating recognition of curved membranes; however, the molecular mechanisms controlling the activity of this domain are poorly understood. In agreement with negative regulation of the BAR domain by the N-terminal PDZ domain, PICK1 distributed evenly in the cytoplasm, whereas truncation of the PDZ domain caused BAR domain-dependent redistribution to clusters colocalizing with markers of recycling endosomal compartments. A similar clustering was observed both upon truncation of a short putative alpha-helical segment in the linker between the PDZ and the BAR domains and upon coexpression of PICK1 with a transmembrane PDZ ligand, including the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit, the GluR2 C-terminus transferred to the single transmembrane protein Tac or the dopamine transporter C-terminus transferred to Tac. In contrast, transfer of the GluR2 C-terminus to cyan fluorescent protein, a cytosolic protein, did not elicit BAR domain-dependent clustering. Instead, localizing PICK1 to the membrane by introducing an N-terminal myristoylation site produced BAR domain-dependent, but ligand-independent, PICK1 clustering. The data support that in the absence of PDZ ligand, the PICK1 BAR domain is inhibited through a PDZ domain-dependent and linker-dependent mechanism. Moreover, they suggest that unmasking of the BAR domain's membrane-binding capacity is not a consequence of ligand binding to the PDZ domain per se but results from, and coincides with, recruitment of PICK1 to a membrane compartment.
Collapse
Affiliation(s)
- Kenneth L. Madsen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Group and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jacob Eriksen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Group and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Laura Milan-Lobo
- Center for Molecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Daniel S. Han
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Masha Y. Niv
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ina Ammendrup-Johnsen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Group and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ulla Henriksen
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Group and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Vikram K. Bhatia
- Bio-nanotechnology Laboratory, Nanoscience Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dimitrios Stamou
- Bio-nanotechnology Laboratory, Nanoscience Center, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Harald H. Sitte
- Center for Molecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Harvey T. McMahon
- Laboratory of Molecular Biology, MRC, Hills Road, Cambridge CB2 2QH, UK
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ulrik Gether
- Department of Neuroscience and Pharmacology, Molecular Neuropharmacology Group and Center for Pharmacogenomics, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
196
|
Suh YH, Pelkey KA, Lavezzari G, Roche PA, Huganir RL, McBain CJ, Roche KW. Corequirement of PICK1 binding and PKC phosphorylation for stable surface expression of the metabotropic glutamate receptor mGluR7. Neuron 2008; 58:736-48. [PMID: 18549785 PMCID: PMC2587410 DOI: 10.1016/j.neuron.2008.03.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 02/14/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
The presynaptic metabotropic glutamate receptor (mGluR) mGluR7 modulates excitatory neurotransmission by regulating neurotransmitter release and plays a critical role in certain forms of synaptic plasticity. Although the dynamic regulation of mGluR7 surface expression governs a form of metaplasticity in the hippocampus, little is known about the molecular mechanisms regulating mGluR7 trafficking. We now show that mGluR7 surface expression is stabilized by both PKC phosphorylation and by receptor binding to the PDZ domain-containing protein PICK1. Phosphorylation of mGluR7 on serine 862 (S862) inhibits CaM binding, thereby increasing mGluR7 surface expression and receptor binding to PICK1. Furthermore, in mice lacking PICK1, PKC-dependent increases in mGluR7 phosphorylation and surface expression are diminished, and mGluR7-dependent plasticity at mossy fiber-interneuron hippocampal synapses is impaired. These data support a model in which PICK1 binding and PKC phosphorylation act together to stabilize mGluR7 on the cell surface in vivo.
Collapse
Affiliation(s)
- Young Ho Suh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Pelkey
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent, Drive, Bethesda, MD 20892, USA
| | - Gabriela Lavezzari
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul A. Roche
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L. Huganir
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chris J. McBain
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent, Drive, Bethesda, MD 20892, USA
| | - Katherine W. Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
197
|
Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58:472-97. [PMID: 18498731 PMCID: PMC2572138 DOI: 10.1016/j.neuron.2008.04.030] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 01/08/2023]
Abstract
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
198
|
Hikida T, Mustafa AK, Maeda K, Fujii K, Barrow RK, Saleh M, Huganir RL, Snyder SH, Hashimoto K, Sawa A. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63:997-1000. [PMID: 18191108 PMCID: PMC2715963 DOI: 10.1016/j.biopsych.2007.09.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 09/25/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND D-serine is an endogenous coagonist of the N-methyl-D-aspartate subtype glutamate receptor. Genetic association studies have implicated genes coding for enzymes associated with D-serine metabolism in schizophrenia and bipolar disorder. METHODS Protein expression of serine racemase (SR) and its binding partner, protein interacting with C-kinase (PICK1), were examined by Western blotting in brains from wildtype and PICK1 knockout mice. Levels of D-serine in wildtype and PICK1 mice were also examined by an established high-pressure liquid chromatography protocol. RESULTS Expression of SR and PICK1 proteins was developmentally regulated. Although no change was observed in the level of SR protein, levels of D-serine were selectively decreased in the forebrain of neonatal PICK1 knockout mice, compared with those in wildtype mice. CONCLUSIONS PICK1 may be involved in the regulation of brain D-serine levels and SR in a spatially and temporally specific manner.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
|
200
|
Payne HL. The role of transmembrane AMPA receptor regulatory proteins (TARPs) in neurotransmission and receptor trafficking (Review). Mol Membr Biol 2008; 25:353-62. [PMID: 18446621 DOI: 10.1080/09687680801986480] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AMPA receptors (AMPAR) mediate the majority of fast excitatory neurotransmission in the central nervous system (CNS). Transmembrane AMPAR regulatory proteins (TARPs) have been identified as a novel family of proteins which act as auxiliary subunits of AMPARs to modulate AMPAR trafficking and function. The trafficking of AMPARs to regulate the number of receptors at the synapse plays a key role in various forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Expression of the prototypical TARP, stargazin/TARPgamma2, is ablated in the stargazer mutant mouse, an animal model of absence epilepsy and cerebellar ataxia. Studies on the stargazer mutant mouse have revealed that failure to express TARPgamma2 has widespread effects on the balance of expression of both excitatory (AMPAR) and inhibitory receptors (GABA(A) receptors, GABAR). The understanding of TARP function has implications for the future development of AMPAR potentiators, which have been shown to have therapeutic potential in both psychological and neurological disorders such as schizophrenia, depression and Parkinson's disease.
Collapse
Affiliation(s)
- Helen L Payne
- Centre for Integrative Neurosciences, School of Biological and Biomedical Sciences, Durham University, Durham, UK.
| |
Collapse
|