151
|
Terashima J, Bownes M. Translating available food into the number of eggs laid by Drosophila melanogaster. Genetics 2005; 167:1711-9. [PMID: 15342510 PMCID: PMC1470999 DOI: 10.1534/genetics.103.024323] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila and other insects egg production is related to the nutrients available. Somehow the nutritional status of the environment is translated into hormonal signs that can be "read" by each individual egg chamber, influencing the decision to either develop into an egg or die. We have shown that BR-C is a control gene during oogenesis and that the differential expression of BR-C isoforms plays a key role in controlling whether the fate of the egg chamber is to develop or undergo apoptosis.
Collapse
Affiliation(s)
- Jun Terashima
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | | |
Collapse
|
152
|
Kilpatrick ZE, Cakouros D, Kumar S. Ecdysone-mediated up-regulation of the effector caspase DRICE is required for hormone-dependent apoptosis in Drosophila cells. J Biol Chem 2005; 280:11981-6. [PMID: 15657059 DOI: 10.1074/jbc.m413971200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila steroid hormone ecdysone mediates cell death during metamorphosis by regulating the transcription of a number of cell death genes. The apical caspase DRONC is known to be transcriptionally regulated by ecdysone during development. Here we demonstrate that ecdysone also regulates the transcription of DRICE, a major effector caspase and a downstream target for DRONC in the fly. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that drice up-regulation is essential for apoptosis induced by ecdysone. We also show that drice expression is specifically controlled by the ecdysone-regulated transcription factor BR-C. Combined with previous observations, our results indicate that transcriptional regulation of the components of the core apoptotic machinery plays a key role in hormone-regulated programmed cell death during Drosophila development.
Collapse
Affiliation(s)
- Zoé E Kilpatrick
- Hanson Institute, Institute of Medical and Veterinary Science, PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
153
|
Paul RK, Takeuchi H, Matsuo Y, Kubo T. Gene expression of ecdysteroid-regulated gene E74 of the honeybee in ovary and brain. INSECT MOLECULAR BIOLOGY 2005; 14:9-15. [PMID: 15663771 DOI: 10.1111/j.1365-2583.2004.00524.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To facilitate studies of hormonal control in the honeybee (Apis mellifera L.), a cDNA for a honeybee homologue of the ecdysteroid-regulated gene E74 (AmE74) was isolated and its expression was analysed. Northern blot analysis indicated strong expression in the adult queen abdomen, and no significant expression in the adult drone and worker abdomens. In situ hybridization demonstrated that this gene was expressed selectively in the ovary and gut in the queen abdomen. Furthermore, this gene was also expressed selectively in subsets of mushroom body interneurones in the brain of the adult worker bees. These findings suggest that AmE74 is involved in neural function as well as in reproduction in adult honeybees.
Collapse
Affiliation(s)
- R K Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
154
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
155
|
Miguel-Aliaga I, Thor S. Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development 2004; 131:6093-105. [PMID: 15537690 DOI: 10.1242/dev.01521] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, neurons often undergo apoptosis after differentiating and extending their axons. By contrast, in the developing nervous system of invertebrate embryos apoptosis typically occurs soon after cells are generated. Here, we show that the Drosophila dMP2 and MP1 pioneer neurons undergo segment-specific apoptosis at late embryonic stages, long after they have extended their axons and have performed their pioneering role in guiding follower axons. This segmental specificity is achieved by differential expression of the Hox gene Abdominal B, which in posterior segments prevents pioneer neuron death postmitotically and cell-autonomously by repressing the RHG-motif cell death activators reaper and grim. Our results identify the first clear case of a cell-autonomous and anti-apoptotic role for a Hox gene in vivo. In addition, they provide a novel mechanism linking Hox positional information to differences in neuronal architecture along the anteroposterior axis by the selective elimination of mature neurons.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
156
|
Cullen K, McCall K. Role of programmed cell death in patterning the Drosophila antennal arista. Dev Biol 2004; 275:82-92. [PMID: 15464574 DOI: 10.1016/j.ydbio.2004.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 07/22/2004] [Accepted: 07/30/2004] [Indexed: 11/18/2022]
Abstract
Programmed cell death is a critical process for the patterning and sculpting of organs during development. The Drosophila arista, a feather-like structure at the tip of the antenna, is composed of a central core and several lateral branches. A homozygous viable mutation in the thread gene, which encodes an inhibitor of apoptosis protein, produces a branchless arista. We have found that mutations in the proapoptotic gene hid lead to numerous extra branches, suggesting that the level of cell death determines the number of branches in the arista. Consistent with this idea, we have found that thread mutants show excessive cell death restricted to the antennal imaginal disc during the middle third instar larval stage. These findings point to a narrow window of development in which regulation of programmed cell death is essential to the proper formation of the arista.
Collapse
Affiliation(s)
- Kristen Cullen
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
157
|
Migrate, differentiate, proliferate, or die: pleiotropic functions of an apical "apoptotic caspase". Sci Signal 2004; 2004:pe49. [PMID: 15479862 DOI: 10.1126/stke.2542004pe49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Caspases, the cysteine proteases that cleave their substrates following an aspartate residue, primarily carry out two distinct functions: (i) activation of proinflammatory cytokines and (ii) execution of apoptosis. These two functions are considered to be unique to individual caspases; thus, some caspases act in apoptosis, whereas others have a role in inflammation. However, this dogma is now being challenged as nonapoptotic functions are ascribed to caspases that, until recently, were only known to function in cell death pathways. Recent work suggests that DRONC, the only initiator cell death caspase in Drosophila, may play a direct or indirect role in cell migration, sperm differentiation, and cell proliferation in addition to its function in cell death.
Collapse
|
158
|
Baehrecke EH, Dang N, Babaria K, Shneiderman B. Visualization and analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics 2004; 5:84. [PMID: 15222902 PMCID: PMC449701 DOI: 10.1186/1471-2105-5-84] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 06/28/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing complexity of genomic data presents several challenges for biologists. Limited computer monitor views of data complexity and the dynamic nature of data in the midst of discovery increase the challenge of integrating experimental results with information resources. The use of Gene Ontology enables researchers to summarize results of quantitative analyses in this framework, but the limitations of typical browser presentation restrict data access. RESULTS Here we describe extensions to the treemap design to visualize and query genome data. Treemaps are a space-filling visualization technique for hierarchical structures that show attributes of leaf nodes by size and color-coding. Treemaps enable users to rapidly compare sizes of nodes and sub-trees, and we use Gene Ontology categories, levels of RNA, and other quantitative attributes of DNA microarray experiments as examples. Our implementation of treemaps, Treemap 4.0, allows user-defined filtering to focus on the data of greatest interest, and these queried files can be exported for secondary analyses. Links to model system web pages from Treemap 4.0 enable users access to details about specific genes without leaving the query platform. CONCLUSIONS Treemaps allow users to view and query the data from an experiment on a single computer monitor screen. Treemap 4.0 can be used to visualize various genome data, and is particularly useful for revealing patterns and details within complex data sets.
Collapse
Affiliation(s)
- Eric H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | - Niem Dang
- Department of Computer Science and Human-Computer Interaction Laboratory, University of Maryland, College Park, Maryland 20742, USA
| | - Ketan Babaria
- Department of Computer Science and Human-Computer Interaction Laboratory, University of Maryland, College Park, Maryland 20742, USA
| | - Ben Shneiderman
- Department of Computer Science and Human-Computer Interaction Laboratory, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
159
|
Cakouros D, Daish TJ, Kumar S. Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. ACTA ACUST UNITED AC 2004; 165:631-40. [PMID: 15173191 PMCID: PMC2172386 DOI: 10.1083/jcb.200311057] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steroid hormone ecdysone regulates moulting, cell death, and differentiation during insect development. Ecdysone mediates its biological effects by either direct activation of gene transcription after binding to its receptor EcR-Usp or via hierarchical transcriptional regulation of several primary transcription factors. In turn, these transcription factors regulate the expression of several downstream genes responsible for specific biological outcomes. DRONC, the Drosophila initiator caspase, is transcriptionally regulated by ecdysone during development. We demonstrate here that the dronc promoter directly binds EcR-Usp. We further show that mutation of the EcR-Usp binding element (EcRBE) reduces transcription of a reporter and abolishes transactivation by an EcR isoform. We demonstrate that EcRBE is required for temporal regulation of dronc expression in response to ecdysone in specific tissues. We also uncover the participation of a putative repressor whose function appears to be coupled with EcR-Usp. These results indicate that direct binding of EcR-Usp is crucial for controlling the timing of dronc expression in specific tissues.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Institute, Institute of Medical and Veterinary Science, Frome Rd., Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
160
|
Yin VP, Thummel CS. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc Natl Acad Sci U S A 2004; 101:8022-7. [PMID: 15150408 PMCID: PMC419550 DOI: 10.1073/pnas.0402647101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 11/18/2022] Open
Abstract
The steroid hormone ecdysone directs the massive destruction of obsolete larval tissues during Drosophila metamorphosis, providing a model system for defining the molecular mechanisms of steroid-regulated programmed cell death. Although earlier studies have identified an ecdysone triggered genetic cascade that immediately precedes larval tissue cell death, no death regulatory genes have been functionally linked to this death response. We show here that ecdysone-induced expression of the death activator genes reaper (rpr) and head involution defective (hid) is required for destruction of the larval midgut and salivary glands during metamorphosis, with hid playing a primary role in the salivary glands and rpr and hid acting in a redundant manner in the midguts. We also identify the Drosophila inhibitor of apoptosis 1 as a survival factor in the larval cell death pathway, delaying death until its inhibitory effect is overcome by rpr and hid. This study reveals functional interactions between rpr and hid in Drosophila cell death responses and provides evidence that the precise timing of larval tissue cell death during metamorphosis is achieved through a steroid-triggered shift in the balance between the Drosophila inhibitor of apoptosis 1 and the rpr and hid death activators.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
161
|
Poels J, Martinez A, Suner MM, De Loof A, Dunbar SJ, Vanden Broeck J. Functional and comparative analysis of two distinct ecdysteroid-responsive gene expression constructs in Drosophila S2 cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:451-458. [PMID: 15110866 DOI: 10.1016/j.ibmb.2004.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/25/2004] [Accepted: 02/26/2004] [Indexed: 05/24/2023]
Abstract
Inducible expression systems have proven to be of major interest when analysing the function of specific genes or when expressing cytotoxic proteins. In an effort to develop inducible switches allowing for flexible fine-tuning of gene expression levels in insect cells, we have compared the induction capacities of two Drosophila minimal promoters when linked to four consecutive ecdysone response elements. These minimal promoters, either containing a TATA-box or a downstream promoter element, drove the expression of a luciferase reporter gene. Potent induction capacities were observed with the insect moulting hormone, 20-hydroxyecdysone, and with ponasterone A, a plant ecdysteroid. The developed inducible switches further expand the repertoire of molecular tools for functional expression of proteins of interest in insect cells. In addition, the combination of an ecdysone switch with promoters that possess different structural elements can provide novel insights into ecdysteroid-induced transcription in an insect cell line.
Collapse
Affiliation(s)
- Jeroen Poels
- Laboratory for Developmental Physiology, Genomics and Proteomics, Zoological Institute, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
162
|
Sun G, Zhu J, Raikhel AS. The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Mol Cell Endocrinol 2004; 218:95-105. [PMID: 15130514 DOI: 10.1016/j.mce.2003.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
In the mosquito Aedes aegypti, blood feeding activates vitellogenesis that involves yolk protein precursor (YPP) genes in an insect metabolic tissue, the fat body. Vitellogenesis is regulated by the 20-hydroxyecdysone (20E) regulatory hierarchy, in which the Ets-domain protein E74 is a key transcriptional regulator. The mosquito AaE74 gene encodes two isoforms-AaE74A and AaE74B. Both AaE74 isoforms are 20E-inducible early gene products. AaE74B reaches its maximal expression at 10(-7)M of 20E, while AaE74A requires 10(-6)M of 20E, a concentration at which the YPP genes reach their maximal induction level. In transfection assay, AaE74B is capable of activating a reporter construct containing E74-response elements, while expression of AaE74A has no effect on the basal levels of the reporter. The AaE74B binding activity is present in the fat body nuclei only during active vitellogenesis. Taken together, our findings demonstrate that AaE74B isoform plays the role of a transcriptional activator during vitellogenesis.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
163
|
Abstract
Apoptosis is a conserved cell-death process displaying characteristic morphological and molecular changes including activation of caspase proteases. Recent work challenges the accepted roles of these proteases. New investigations in mice and the nematode Caenorhabditis elegans suggest that there could be caspase-independent pathways leading to cell death. In addition, another type of cell death displaying autophagic features might depend on caspases. Recent studies also indicate that caspase activation does not always lead to cell death and, instead, might be important for cell differentiation. Here, we review recent evidence for both the expanded roles of caspases and the existence of caspase-independent cell-death processes. We suggest that cellular context plays an important role in defining the consequences of caspase activation.
Collapse
Affiliation(s)
- Mary C Abraham
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
164
|
Affiliation(s)
- Sharad Kumar
- Hanson Institute, IMVS, PO Box 14, Rundle Mall, Adelaide 5000, Australia.
| | | |
Collapse
|
165
|
Zhou X, Zhou B, Truman JW, Riddiford LM. Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells. J Exp Biol 2004; 207:1151-61. [PMID: 14978057 DOI: 10.1242/jeb.00855] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SUMMARY
Insect molting is triggered by ecdysteroids, which are produced in the prothoracic glands (PG). The broad (br) gene is one of the`early genes' directly regulated by ecdysteroids. Ectopic expression of the BR-Z3 isoform in early second instar Drosophila larvae (L2) before the rise of the ecdysteroid titer prevented molting to the third instar, but the larvae subsequently formed L2 prepupae after prolonged feeding. When these larvae were fed on diet containing 20-hydroxyecdysone (20E), they formed pharate third instar larvae. The critical weight for normal L3 pupariation of w1118 larvae was found to be 0.8 mg and that for L2 pupariation was 0.45 mg. We also defined a threshold weight for metamorphosis of 0.3 mg, above which L2 larvae will metamorphose when provided with 20E. BR-Z3 apparently works through the PG cells of the ring gland but not the putative neurosecretory cells that drive ecdysone secretion, because ectopic expression of BR-Z3 specifically in the ring gland caused 53% of the larvae to become permanent first instar larvae. Driving other BR isoforms in the ring gland prevented larval molting or pupariation to varying degrees. These molting defects were rescued by feeding 20E. Overexpression of each of the BR isoforms caused degeneration of the PG cells but on different time courses,indicating that BR is a signal for the degeneration of the PG cells that normally occurs during the pupal–adult transition.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | | | |
Collapse
|
166
|
Cakouros D, Daish TJ, Mills K, Kumar S. An arginine-histone methyltransferase, CARMER, coordinates ecdysone-mediated apoptosis in Drosophila cells. J Biol Chem 2004; 279:18467-71. [PMID: 14976192 DOI: 10.1074/jbc.m400972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Developmentally programmed cell death is regulated by a balance between pro- and anti-death signaling. During Drosophila metamorphosis, the removal of larval tissues is dependent on the steroid hormone ecdysone, which controls the levels of pro- and anti-death molecules. Ecdysone binds to its heterodimeric receptor ecdysone receptor/ultraspiracle to mediate transcription of primary response genes. Here we show that CARMER, an arginine-histone methyltransferase, is critical in coordinating ecdysone-induced expression of Drosophila cell death genes. Ablation of CARMER blocks ecdysone-induced cell death in Drosophila cells, but not apoptosis induced by cell stress. We demonstrate that CARMER associates with the ecdysone receptor complex and modulates the ecdysone-induced transcription of a number of apoptotic genes. Thus, the chromatin-modifying protein, CARMER, modulates cell death by controlling the hormone-dependent expression of the core cell death machinery.
Collapse
|
167
|
Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, Jindra M. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci U S A 2003; 100:15607-12. [PMID: 14668449 PMCID: PMC307615 DOI: 10.1073/pnas.2136837100] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Broad-Complex (BR-C) is required for differentiation of adult structures as well as for the programmed death of obsolete larval organs during metamorphosis of the fruit fly Drosophila melanogaster. Whether BR-C has a similar role in other holometabolous insects could not be proven without a loss-of-function genetic test, performed in a non-drosophilid species. Here we use a recombinant Sindbis virus as a tool to silence BR-C expression in the silkmoth Bombyx mori. The virus expressing a BR-C antisense RNA fragment reduced endogenous BR-C mRNA levels in infected tissues (adult wing and leg primordia) via RNA interference (RNAi). The RNAi knock-down of BR-C resulted in the failure of animals to complete the larval-pupal transition or in later morphogenetic defects, including differentiation of adult compound eyes, legs, and wings from their larval progenitors. BR-C RNAi also perturbed the programmed cell death of larval silk glands. These developmental defects correspond to loss-of-function phenotypes of BR-C Drosophila mutants in both the morphogenetic and degenerative aspects, suggesting that the critical role of BR-C in metamorphosis is evolutionarily conserved. We also demonstrate that the Sindbis virus is a useful vehicle for silencing of developmental genes in new insect models.
Collapse
Affiliation(s)
- Mirka Uhlirova
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology, the Czech Academy of Sciences, Ceske Budejovice, 37005 Czech Republic
| | | | | | | | | | | |
Collapse
|
168
|
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol 2003; 5:R1. [PMID: 14709173 PMCID: PMC395733 DOI: 10.1186/gb-2003-5-1-r1] [Citation(s) in RCA: 2658] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 11/14/2003] [Accepted: 11/21/2003] [Indexed: 12/15/2022] Open
Abstract
A computational method for whole-genome prediction of microRNA target genes is presented. Application of this method to the Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known microRNAs. Background The recent discoveries of microRNA (miRNA) genes and characterization of the first few target genes regulated by miRNAs in Caenorhabditis elegans and Drosophila melanogaster have set the stage for elucidation of a novel network of regulatory control. We present a computational method for whole-genome prediction of miRNA target genes. The method is validated using known examples. For each miRNA, target genes are selected on the basis of three properties: sequence complementarity using a position-weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Application to the D. melanogaster, Drosophila pseudoobscura and Anopheles gambiae genomes identifies several hundred target genes potentially regulated by one or more known miRNAs. Results These potential targets are rich in genes that are expressed at specific developmental stages and that are involved in cell fate specification, morphogenesis and the coordination of developmental processes, as well as genes that are active in the mature nervous system. High-ranking target genes are enriched in transcription factors two-fold and include genes already known to be under translational regulation. Our results reaffirm the thesis that miRNAs have an important role in establishing the complex spatial and temporal patterns of gene activity necessary for the orderly progression of development and suggest additional roles in the function of the mature organism. In addition the results point the way to directed experiments to determine miRNA functions. Conclusions The emerging combinatorics of miRNA target sites in the 3' untranslated regions of messenger RNAs are reminiscent of transcriptional regulation in promoter regions of DNA, with both one-to-many and many-to-one relationships between regulator and target. Typically, more than one miRNA regulates one message, indicative of cooperative translational control. Conversely, one miRNA may have several target genes, reflecting target multiplicity. As a guide to focused experiments, we provide detailed online information about likely target genes and binding sites in their untranslated regions, organized by miRNA or by gene and ranked by likelihood of match. The target prediction algorithm is freely available and can be applied to whole genome sequences using identified miRNA sequences.
Collapse
Affiliation(s)
- Anton J Enright
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Bino John
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Ulrike Gaul
- Laboratory of Developmental Neurogenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Debora S Marks
- Columbia Genome Center, Russ Berrie Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| |
Collapse
|
169
|
Abstract
Self-digestion of cytoplasmic components is the hallmark of autophagic programmed cell death. This auto-degradation appears to be distinct from what occurs in apoptotic cells that are engulfed and digested by phagocytes. Although much is known about apoptosis, far less is known about the mechanisms that regulate autophagic cell death. Here we show that autophagic cell death is regulated by steroid activation of caspases in Drosophila salivary glands. Salivary glands exhibit some morphological changes that are similar to apoptotic cells, including fragmentation of the cytoplasm, but do not appear to use phagocytes in their degradation. Changes in the levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin and nuclear Lamins precede salivary gland destruction, and coincide with increased levels of active Caspase 3 and a cleaved form of nuclear Lamin. Mutations in the steroid-regulated genes beta FTZ-F1, E93, BR-C and E74A that prevent salivary gland cell death possess altered levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin, nuclear Lamins and active Caspase 3. Inhibition of caspases, by expression of either the caspase inhibitor p35 or a dominant-negative form of the initiator caspase Dronc, is sufficient to inhibit salivary gland cell death, and prevent changes in nuclear Lamins and alpha-Tubulin, but not to prevent the reorganization of filamentous Actin. These studies suggest that aspects of the cytoskeleton may be required for changes in dying salivary glands. Furthermore, caspases are not only used during apoptosis, but also function in the regulation of autophagic cell death.
Collapse
Affiliation(s)
- Damali N Martin
- Center for Biosystems Research, University of Maryland Biotechnology Institute, and Department of Cell Biology, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
170
|
Daish TJ, Cakouros D, Kumar S. Distinct promoter regions regulate spatial and temporal expression of the Drosophila caspase dronc. Cell Death Differ 2003; 10:1348-56. [PMID: 12970673 DOI: 10.1038/sj.cdd.4401312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DRONC is an apical Drosophila caspase essential for programmed cell death during fly development. During metamorphosis, dronc gene expression is regulated by the steroid hormone ecdysone, which also regulates the levels of a number of other critical cell death proteins. As DRONC protein levels are important in determining caspase activation and initiation of cell death, we have analyzed the regulation of the dronc promoter using transgenic flies expressing a LacZ reporter gene under the control of the dronc promoter. Our results indicate that dronc expression is highly dynamic during Drosophila development, and is controlled both spatially and temporally. We demonstrate that while a 2.3 kb dronc promoter region contains most of the information required for correct gene expression, a 1.1 kb promoter region is expressed in some tissues and not others. We further demonstrate that during larval-pupal metamorphosis, two ecdysone-induced transcription factors, Broad-Complex and E93, are required for correct dronc expression. Our data suggest that the dronc promoter is regulated in a highly complex manner, and provides an ideal system to explore the temporal and spatial regulation of gene expression driven by nuclear hormone receptors.
Collapse
Affiliation(s)
- T J Daish
- Hanson Institute, IMVS, Adelaide 5000, Australia
| | | | | |
Collapse
|
171
|
Abstract
Autophagic programmed cell death occurs during the development of diverse animal groups, but the mechanisms that control this genetically regulated form of cell killing are poorly understood. Genetic studies of bulk protein degradation in yeast have provided important advances in our understanding of autophagy, and recent investigations of Drosophila autophagic cell death suggest that some of these mechanisms may be conserved. In Drosophila, several steroid-regulated genes that encode transcription regulators are required for autophagic cell death. These transcription regulators appear to activate a large number of genes that play a more direct role in cell killing, including genes that function in apoptosis such as caspases. While caspase function is required for autophagic cell death during Drosophila development, genes encoding proteins that are similar to the yeast autophagy regulators are also induced in dying salivary glands. Furthermore, numerous noncaspase proteases, cytoplasmic organizing factors, signaling molecules, and unknown factors are expressed in interesting patterns during autophagic cell death. This article reviews the current knowledge of the regulation of autophagic programmed cell death during development of Drosophila.
Collapse
Affiliation(s)
- E H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| |
Collapse
|
172
|
Abstract
During insect metamorphosis, each tissue displays a unique physiological and morphological response to the steroid hormone 20-hydroxyecdysone (ecdysone). We assayed gene expression in five tissues during metamorphosis onset. Larval-specific tissues display major changes in genome-wide expression profiles, whereas tissues that survive into adulthood display few changes. In one larval tissue, the salivary gland, we used a computational approach to identify a regulatory motif and a cognate transcription factor involved in regulating a set of coexpressed genes. During the metamorphosis of another tissue, the midgut, genes encoding factors from the hedgehog, Notch, EGF, dpp, and wingless pathways are activated by the ecdysone regulatory network. Mutation of the ecdysone receptor abolishes their induction. Cell cycle genes are also activated during the initiation of midgut metamorphosis, and they are also dependent on ecdysone signaling. These results establish multiple new connections between the ecdysone regulatory network and other well-studied regulatory networks.
Collapse
Affiliation(s)
- Tong-Ruei Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
173
|
Abstract
Programmed cell death or apoptosis is crucial to normal development and tissue homeostasis in multicellular organisms. In many cases malfunctioning of apoptotic pathways has disastrous consequences for the organism, like in the case of cancer, AIDS or neurodegenerative diseases, which all are associated with the inappropriate regulation of programmed cell death. In Drosophila, patterns of programmed cell death have been studied, and it is known that the induction of apoptosis requires the products of three closely linked genes, reaper (rpr), head involution defective (hid) and grim. Although it has been shown that rpr, hid and grim induce apoptosis through similar mechanisms, it is clear that they are not functionally equivalent, since their transcripts are differentially expressed in response to different signals. In this study, I dissected the temporal and spatial expression of the apoptosis promoting gene rpr by generating a series of reporter lines, which recapitulate various aspects of the endogenous rpr expression. Understanding the regulatory logic of reaper transcription will help to advance our knowledge of apoptosis regulation in Drosophila and in other organisms.
Collapse
Affiliation(s)
- Ingrid Lohmann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstrasse 37-39, D-72076 Tübingen, Germany.
| |
Collapse
|
174
|
Ward RE, Reid P, Bashirullah A, D'Avino PP, Thummel CS. GFP in living animals reveals dynamic developmental responses to ecdysone during Drosophila metamorphosis. Dev Biol 2003; 256:389-402. [PMID: 12679111 DOI: 10.1016/s0012-1606(02)00100-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies of Drosophila metamorphosis have been hampered by our inability to visualize many of the remarkable changes that occur within the puparium. To circumvent this problem, we have expressed GFP in specific tissues of living prepupae and pupae and compiled images of these animals into time-lapse movies. These studies reveal, for the first time, the dynamics and coordination of morphogenetic movements that could only be inferred from earlier studies of dissected staged animals. We also identify responses that have not been described previously. These include an unexpected variation in some wild-type animals, where one of the first pairs of legs elongates in the wrong position relative to the second pair of legs and then relocates to its appropriate location. At later stages, the antennal imaginal discs migrate from a lateral position in the head to their final location at the anterior end, as leg and mouth structures are refined and the wings begin to fold. The larval salivary glands translocate toward the dorsal aspect of the animal and undergo massive cell death following head eversion, in synchrony with death of the abdominal muscles. These death responses fail to occur in rbp(5) mutants of the Broad-Complex (BR-C), and imaginal disc elongation and eversion is abolished in br(5) mutants of the BR-C. Leg malformations associated with the crol(3) mutation can be seen to arise from defects in imaginal disc morphogenesis during prepupal stages. This approach provides a new tool for characterizing the dynamic morphological changes that occur during metamorphosis in both wild-type and mutant animals.
Collapse
Affiliation(s)
- Robert E Ward
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, 15 North 2030 East Rm 5100, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | | | | | | | |
Collapse
|
175
|
Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJM, Marra MA. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003; 13:358-63. [PMID: 12593804 DOI: 10.1016/s0960-9822(03)00082-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Programmed cell death (PCD), important in normal animal physiology and disease, can be divided into at least two morphological subtypes, including type I, or apoptosis, and type II, or autophagic cell death. While many molecules involved in apoptosis have been discovered and studied intensively during the past decade, autophagic cell death is not well characterized molecularly. Here we report the first comprehensive identification of molecules associated with autophagic cell death during normal metazoan development in vivo. During Drosophila metamorphosis, the larval salivary glands undergo autophagic cell death regulated by a hormonally induced transcriptional cascade. To identify and analyze the genes expressed, we examined wild-type patterns of gene expression in three predeath stages of Drosophila salivary glands using serial analysis of gene expression (SAGE) [7]. 1244 transcripts, including genes involved in autophagy, defense response, cytoskeleton remodeling, noncaspase proteolysis, and apoptosis, were expressed differentially prior to salivary gland death. Mutant expression analysis indicated that several of these genes were regulated by E93, a gene required for salivary gland cell death. Our analyses strongly support both the emerging notion that there is overlap with respect to the molecules involved in autophagic cell death and apoptosis, and that there are important differences.
Collapse
Affiliation(s)
- Sharon M Gorski
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4E6, Canada. sgorski@
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Lee CY, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baehrecke EH. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol 2003; 13:350-7. [PMID: 12593803 DOI: 10.1016/s0960-9822(03)00085-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Apoptosis and autophagy are two forms of programmed cell death that play important roles in the removal of unneeded and abnormal cells during animal development. While these two forms of programmed cell death are morphologically distinct, recent studies indicate that apoptotic and autophagic cell death utilize some common regulatory mechanisms. To identify genes that are associated with apoptotic and autophagic cell death, we monitored changes in gene transcription by using microarrays representing nearly the entire Drosophila genome. Analyses of steroid-triggered autophagic cell death identified 932 gene transcripts that changed 5-fold or greater in RNA level. In contrast, radiation-activated apoptosis resulted in 34 gene transcripts that exhibited a similar magnitude of change. Analyses of these data enabled us to identify genes that are common and unique to steroid- and radiation-induced cell death. Mutants that prevent autophagic cell death exhibit altered levels of gene transcription, including genes encoding caspases, non-caspase proteases, and proteins that are similar to yeast autophagy proteins. This study also identifies numerous novel genes as candidate cell death regulators and suggests new links between apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute and Department of Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
177
|
Olson MR, Holley CL, Yoo SJ, Huh JR, Hay BA, Kornbluth S. Reaper is regulated by IAP-mediated ubiquitination. J Biol Chem 2003; 278:4028-34. [PMID: 12446669 DOI: 10.1074/jbc.m209734200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance.
Collapse
Affiliation(s)
- Michael R Olson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
178
|
Chen L, O'Keefe SL, Hodgetts RB. Control of Dopa decarboxylase gene expression by the Broad-Complex during metamorphosis in Drosophila. Mech Dev 2002; 119:145-56. [PMID: 12464428 DOI: 10.1016/s0925-4773(02)00346-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The induction of the Dopa decarboxylase gene (Ddc) in the epidermis of Drosophila at pupariation is a receptor-mediated response to the steroid molting hormone, ecdysone. Activity is also dependent on the Broad-Complex (BR-C), an early ecdysone response gene that functions during metamorphosis. BR-C encodes a family of zinc-finger protein isoforms, BR-C(Z1-Z4). Genetic experiments have shown that the Z2 isoform is required for epidermal Ddc to reach maximum expression at pupariation. In this paper, we report that BR-C regulates Ddc expression at two different developmental stages through two different cis-acting regions. At pupariation, BR-C acts synergistically with the ecdysone receptor to up-regulate Ddc. DNase I foot printing has identified four binding sites of the predominant Z2 isoform within a distal regulatory element that is required for maximal Ddc activity. The sites share a conserved core sequence with a set of BR-C sites that had been mapped previously to within the first Ddc intron. Using variously deleted Ddc genomic regions to drive reporter gene expression in transgenic organisms, we show that the intronic binding sites are required for Ddc expression at eclosion. At both pupariation and eclosion, BR-C releases Ddc from an active silencing mechanism, operating through two distinct cis-acting regions of the Ddc genomic domain at these stages. Transgenes, bearing a Ddc fragment from which one of the cis-acting silencers has been deleted, exhibit beta-galactosidase reporter activity in the epidermal cells prior to the appearance of endogenous DDC. Our finding that BR-C is required for Ddc activation at eclosion is the first evidence to suggest that this important regulator of the early metamorphic events, also regulates target gene expression at the end of metamorphosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | | |
Collapse
|
179
|
Lee CY, Simon CR, Woodard CT, Baehrecke EH. Genetic mechanism for the stage- and tissue-specific regulation of steroid triggered programmed cell death in Drosophila. Dev Biol 2002; 252:138-48. [PMID: 12453466 DOI: 10.1006/dbio.2002.0838] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones trigger a wide variety of cell-specific responses during animal development, but the mechanisms by which these systemic signals specify either cell division, differentiation, morphogenesis or death remain uncertain. Here, we analyze the function of the steroid-regulated genes betaFTZ-F1, BR-C, E74A, and E93 during salivary gland programmed cell death. While mutations in the betaFTZ-F1, BR-C, E74A, and E93 genes prevent destruction of salivary glands, only betaFTZ-F1 is required for DNA fragmentation. Analyses of BR-C, E74A, and E93 loss-of-function mutants indicate that these genes regulate stage-specific transcription of the rpr, hid, ark, dronc, and crq cell death genes. Ectopic expression of betaFTZ-F1 is sufficient to trigger premature cell death of larval salivary glands and ectopic transcription of the rpr, dronc, and crq cell death genes that normally precedes salivary gland cell death. The E93 gene is necessary for ectopic salivary gland cell destruction, and ectopic rpr, dronc, and crq transcription, that is induced by expression of betaFTZ-F1. Together, these observations indicate that betaFTZ-F1 regulates the timing of hormone-induced cell responses, while E93 functions to specify programmed cell death.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, 20742, USA
| | | | | | | |
Collapse
|
180
|
Xu Y, Fang F, Chu Y, Jones D, Jones G. Activation of transcription through the ligand-binding pocket of the orphan nuclear receptor ultraspiracle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6026-36. [PMID: 12473098 DOI: 10.1046/j.1432-1033.2002.03293.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The invertebrate nuclear receptor, ultraspiracle (USP), an ortholog of the vertebrate RXR, is typically modelled as an orphan receptor that functions without a ligand-binding activity. The identification of a ligand that can transcriptionally activate USP would provide heuristic leads to the structure of potentially high affinity activating compounds, with which to detect unknown regulatory pathways in which this nuclear receptor participates. We show here that the application of the sesquiterpenoid methyl epoxyfarnesoate (juvenile hormone III) to Sf9 cells induces transcription from a transfected heterologous core promoter, through a 5'-placed DR12 enhancer to which the receptor ultraspiracle (USP) binds. Isolated, recombinant USP from Drosophila melanogaster specifically binds methyl epoxyfarnesoate, whereupon the receptor homodimerizes and changes tertiary conformation, including the movement of the ligand-binding domain alpha-helix 12. Ligand-binding pocket point mutants of USP that do not bind methyl epoxyfarnesoate act as dominant negative suppressors of methyl epoxyfarnesoate-activation of the reporter promoter, and addition of wild-type USP rescues this activation. These data establish a paradigm in which the USP ligand-binding pocket can productively bind ligand with a functional outcome of enhanced promoter activity, the first such demonstration for an invertebrate orphan nuclear receptor. USP thus establishes the precedent that invertebrate orphan receptors are viable targets for development of agonists and antagonists with which to discern and manipulate transcriptional pathways dependent on USP or other orphan receptors. The demonstration here of these functional capacities of USP in a transcriptional activation pathway has significant implications for current paradigms of USP action that do not include for USP a ligand-binding activity.
Collapse
Affiliation(s)
- Yong Xu
- Molecular and Cellular Biology Section, Department of Biology, and Graduate Center for Toxicology, Chandler Medical Center, University of Kentucky Lexington, USA
| | | | | | | | | |
Collapse
|
181
|
Lee CY, Cooksey BAK, Baehrecke EH. Steroid regulation of midgut cell death during Drosophila development. Dev Biol 2002; 250:101-11. [PMID: 12297099 DOI: 10.1006/dbio.2002.0784] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones trigger dynamic tissue changes during animal development by activating cell proliferation, cell differentiation, and cell death. Here we characterize steroid regulation of changes in midgut structure during the onset of Drosophila metamorphosis. Following an increase in the steroid 20-hydroxyecdysone (ecdysone) at the end of larval development, future adult midgut epithelium is formed, and the larval midgut is rapidly destroyed. Mutations in the steroid-regulated genes BR-C and E93 differentially impact larval midgut cell death but do not affect the formation of adult midgut epithelia. In contrast, mutations in the ecdysone-regulated E74A and E74B genes do not appear to perturb midgut development during metamorphosis. Larval midgut cells possess vacuoles that contain cellular organelles, indicating that these cells die by autophagy. While mutations in the BR-C, E74, and E93 genes do not impact DNA degradation during this cell death, mutations in BR-C inhibit destruction of larval midgut structures, including the proventriculus and gastric caeca, and E93 mutants exhibit decreased formation of autophagic vacuoles. Dying midguts express the rpr, hid, ark, dronc, and crq cell death genes, suggesting that the core cell death machinery is involved in larval midgut cell death. The transcription of rpr, hid, and crq are altered in BR-C mutants, and E93 mutants possess altered transcription of the caspase dronc, providing a mechanism for the disruption of midgut cell death in these mutant animals. These studies indicate that ecdysone triggers a two-step hierarchy composed of steroid-induced regulatory genes and apoptosis genes that, in turn, regulate the autophagic death of midgut cells during development.
Collapse
Affiliation(s)
- Cheng-Yu Lee
- Center for Biosystems Research, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
182
|
Orgogozo V, Schweisguth F, Bellaïche Y. Binary cell death decision regulated by unequal partitioning of Numb at mitosis. Development 2002; 129:4677-84. [PMID: 12361960 DOI: 10.1242/dev.129.20.4677] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An important issue in Metazoan development is to understand the mechanisms that lead to stereotyped patterns of programmed cell death. In particular, cells programmed to die may arise from asymmetric cell divisions. The mechanisms underlying such binary cell death decisions are unknown. We describe here a Drosophila sensory organ lineage that generates a single multidentritic neuron in the embryo. This lineage involves two asymmetric divisions. Following each division, one of the two daughter cells expresses the pro-apoptotic genes reaper and grim and subsequently dies. The protein Numb appears to be specifically inherited by the daughter cell that does not die. Numb is necessary and sufficient to prevent apoptosis in this lineage. Conversely, activated Notch is sufficient to trigger death in this lineage. These results show that binary cell death decision can be regulated by the unequal segregation of Numb at mitosis. Our study also indicates that regulation of programmed cell death modulates the final pattern of sensory organs in a segment-specific manner.
Collapse
Affiliation(s)
- Virginie Orgogozo
- Ecole Normale Supérieure, CNRS UMR 8542, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
183
|
Kuchárová-Mahmood S, Raska I, Mechler BM, Farkas R. Temporal regulation of Drosophila salivary gland degeneration by the Broad-Complex transcription factors. J Struct Biol 2002; 140:67-78. [PMID: 12490155 DOI: 10.1016/s1047-8477(02)00572-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The destruction of obsolete larval tissues at the onset of insect metamorphosis is a complex process triggered by the steroid hormone ecdysone. Among the genes required for the implementation of salivary gland (SG) degeneration the reduced bristles on palpus (rbp) gene of the Broad-Complex (BR-C) locus plays a critical role. This gene encodes the BR-C Z1 transcription factor and its expression is directly regulated by ecdysone through the ecdysone receptor (EcR/Usp). The BR-C locus encodes four major protein isoforms, including BR-C Z1, Z2, Z3, and Z4. With the exceptions of mutations in BR-C Z1 all mutations affecting the other BR-C isoforms produce pupal lethality. To gain insight into the function of the different BR-C isoforms on the process of SG degeneration, we used transgenes expressing each of the four major BR-C isoform proteins. This study revealed that, depending upon the period of expression relative to the major peak of ecdysone production, BR-C Z1, Z2, and Z4 first inhibited and then stimulated the process of SG degeneration. In contrast, BR-C Z3 exerted all time points an inhibition on SG degeneration.
Collapse
Affiliation(s)
- Silvia Kuchárová-Mahmood
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, 83306 Bratislava, Slovakia
| | | | | | | |
Collapse
|
184
|
Abstract
The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.
Collapse
Affiliation(s)
- Eric H Baehrecke
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA.
| |
Collapse
|
185
|
|
186
|
Lohmann I, McGinnis N, Bodmer M, McGinnis W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 2002; 110:457-66. [PMID: 12202035 DOI: 10.1016/s0092-8674(02)00871-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hox proteins control morphological diversity along the anterior-posterior body axis of animals, but the cellular processes they directly regulate are poorly understood. We show that during early Drosophila development, the Hox protein Deformed (Dfd) maintains the boundary between the maxillary and mandibular head lobes by activating localized apoptosis. Dfd accomplishes this by directly activating the cell death promoting gene reaper (rpr). One other Hox gene, Abdominal-B (Abd-B), also regulates segment boundaries through the regional activation of apoptosis. Thus, one mechanism used by Drosophila Hox genes to modulate segmental morphology is to regulate programmed cell death, which literally sculpts segments into distinct shapes. This and other emerging evidence suggests that Hox proteins may often regulate the maintenance of segment boundaries.
Collapse
Affiliation(s)
- Ingrid Lohmann
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
187
|
Richardson H, Kumar S. Death to flies: Drosophila as a model system to study programmed cell death. J Immunol Methods 2002; 265:21-38. [PMID: 12072176 DOI: 10.1016/s0022-1759(02)00068-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Programmed cell death (PCD) is essential for the removal of unwanted cells and is critical for both restricting cell numbers and for tissue patterning during development. Components of the cell death machinery are remarkably conserved through evolution, from worms to mammals. Central to the PCD process is the family of cysteine proteases, known as caspases, which are activated by death-inducing signals. Comparisons between C. elegans and mammalian PCD have shown that there is additional complexity in the regulation of PCD in mammals. The fruitfly, Drosophila melanogaster, is proving an ideal genetically tractable model organism, of intermediary complexity between C. elegans and mammals, in which to study the intricacies of PCD. Here, we review the literature on PCD during Drosophila development, highlighting the methods used in these studies.
Collapse
Affiliation(s)
- Helena Richardson
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St., Melbourne, Victoria, 8006, Australia.
| | | |
Collapse
|
188
|
Cakouros D, Daish T, Martin D, Baehrecke EH, Kumar S. Ecdysone-induced expression of the caspase DRONC during hormone-dependent programmed cell death in Drosophila is regulated by Broad-Complex. J Cell Biol 2002; 157:985-95. [PMID: 12045184 PMCID: PMC2174053 DOI: 10.1083/jcb.200201034] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The steroid hormone ecdysone regulates both cell differentiation and cell death during insect metamorphosis, by hierarchical transcriptional regulation of a number of genes, including the Broad-Complex (BR-C), the zinc finger family of transcription factors. These genes in turn regulate the transcription of a number of downstream genes. DRONC, a key apical caspase in Drosophila, is the only known caspase that is transcriptionally regulated by ecdysone during development. We demonstrate that dronc gene expression is ablated or reduced in BR-C mutant flies. Using RNA interference in an ecdysone-responsive Drosophila cell line, we show that DRONC is essential for ecdysone-mediated cell death, and that dronc upregulation in these cells is controlled by BR-C. Finally, we show that the dronc promoter has BR-C interaction sites, and that it can be transactivated by a specific isoform of BR-C. These results indicate that BR-C plays a key role in ecdysone-mediated caspase regulation.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | | | | | | | | |
Collapse
|
189
|
Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat Cell Biol 2002; 4:432-8. [PMID: 12021769 DOI: 10.1038/ncb795] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell death in higher organisms is negatively regulated by Inhibitor of Apoptosis Proteins (IAPs), which contain a ubiquitin ligase motif, but how ubiquitin-mediated protein degradation is regulated during apoptosis is poorly understood. Here, we report that Drosophila melanogaster IAP1 (DIAP1) auto-ubiquitination and degradation is actively regulated by Reaper (Rpr) and UBCD1. We show that Rpr, but not Hid (head involution defective), promotes significant DIAP1 degradation. Rpr-mediated DIAP1 degradation requires an intact DIAP1 RING domain. Among the mutations affecting ubiquitination, we found ubcD1, which suppresses rpr-induced apoptosis. UBCD1 and Rpr specifically bind to DIAP1 and stimulate DIAP1 auto-ubiquitination in vitro. Our results identify a novel function of Rpr in stimulating DIAP1 auto-ubiquitination through UBCD1, thereby promoting its degradation.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Howard Hughes Medical Institute, Strang Laboratory of Cancer Research, The Rockefeller University Box 252, 1230 York Ave. New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
190
|
Gorski S, Marra M. Programmed cell death takes flight: genetic and genomic approaches to gene discovery in Drosophila. Physiol Genomics 2002; 9:59-69. [PMID: 12006672 DOI: 10.1152/physiolgenomics.00114.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Programmed cell death (PCD) is an essential and wide-spread physiological process that results in the elimination of cells. Genes required to carry out this process have been identified, and many of these remain the subjects of intense investigation. Here, we describe PCD, its functions, and some of the consequences when it goes awry. We review PCD in the model system, the fruit fly, Drosophila melanogaster, with a particular emphasis on cell death gene discovery resulting from both genetics and genomics-based approaches.
Collapse
Affiliation(s)
- S Gorski
- Genome Sequence Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6.
| | | |
Collapse
|
191
|
Lehmann M, Jiang C, Ip YT, Thummel CS. AP-1, but not NF-kappa B, is required for efficient steroid-triggered cell death in Drosophila. Cell Death Differ 2002; 9:581-90. [PMID: 11973616 DOI: 10.1038/sj.cdd.4401003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Revised: 10/10/2001] [Accepted: 11/13/2001] [Indexed: 11/09/2022] Open
Abstract
Extensive studies in vertebrate cells have assigned a central role to Rel/NF-kappa B and AP-1 family members in the control of apoptosis. We ask here whether parallel pathways might function in Drosophila by determining if Rel/NF-kappa B or AP-1 family members contribute to the steroid-triggered death of larval salivary glands during Drosophila metamorphosis. We show that two of the three Drosophila Rel/NF-kappa B genes are expressed in doomed salivary glands and that one family member, Dif, is induced in a stage-specific manner immediately before the onset of programmed cell death. Similarly, Djun is expressed for many hours before salivary gland cell death while Dfos is induced in a stage-specific manner, immediately before this tissue is destroyed. We show that null mutations in the three Drosophila Rel/NF-kappa B family members, either alone or in combination, have no apparent effect on this death response. In contrast, Dfos is required for the proper timing of larval salivary gland cell death as well as the proper induction of key death genes. This study demonstrates a role for AP-1 in the stage-specific steroid-triggered programmed cell death of larval tissues during Drosophila metamorphosis.
Collapse
Affiliation(s)
- M Lehmann
- Howard Hughes Medical Institute, Department of Human Genetics, 15 North 2030 East Room 5100, University of Utah, Utah, UT 84112-5331, USA
| | | | | | | |
Collapse
|
192
|
Sun G, Zhu J, Li C, Tu Z, Raikhel AS. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Mol Cell Endocrinol 2002; 190:147-57. [PMID: 11997188 DOI: 10.1016/s0303-7207(01)00726-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the anautogenous mosquito, Aedes aegypti, vitellogenesis is under the strict control of 20-hydroxyecdysone (20E), which is produced via a blood meal-activated hormonal cascade. Several genes of the ecdysteroid-regulatory hierarchy are conserved between vitellogenesis in mosquitoes and metamorphosis in Drosophila. We report characterization of two isoforms of the mosquito early E74 gene (AaE74), which have a common C-terminal Ets DNA-binding domain and unique N-termini. They exhibited a high level of identity to Drosophila E74 isoforms A and B and showed structural features typical for Ets transcription factors. Both mosquito E74 isoforms bound to an E74 consensus motif C/AGGAA. In the fat body and ovary, the transcript of AaE74 isoform homologous to Drosophila E74B was induced by a blood meal exhibiting its highest level coinciding with the peak of vitellogenesis. In contrast, the transcript of AaE74 isoform homologous to Drosophila E74A was activated at the termination of vitellogenesis. These findings suggest that AaE74A and AaE74B isoforms play different roles in regulation of vitellogenesis in mosquitoes.
Collapse
Affiliation(s)
- Guoqiang Sun
- Program in Genetics and Department of Entomology, Michigan State University, S-138 Plant Biology Building, East Lansing 48824, USA
| | | | | | | | | |
Collapse
|
193
|
Peterson C, Carney GE, Taylor BJ, White K. reaper is required for neuroblast apoptosis during Drosophila development. Development 2002; 129:1467-76. [PMID: 11880355 DOI: 10.1242/dev.129.6.1467] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Developmentally regulated apoptosis in Drosophila requires the activity of the reaper (rpr), grim and head involution defective (hid) genes. The expression of these genes is differentially regulated, suggesting that there are distinct requirements for their proapoptotic activity in response to diverse developmental and environmental inputs. To examine this hypothesis, a mutation that removes the rpr gene was generated. In flies that lack rpr function, most developmental apoptosis was unaffected. However, the central nervous systems of rpr null flies were very enlarged. This was due to the inappropriate survival of both larval neurons and neuroblasts. Importantly, neuroblasts rescued from apoptosis remained functional, continuing to proliferate and generating many extra neurons. Males mutant for rpr exhibited behavioral defects resulting in sterility. Although both the ecdysone hormone receptor complex and p53 directly regulate rpr transcription, rpr was found to play a limited role in inducing apoptosis in response to either of these signals.
Collapse
Affiliation(s)
- Christian Peterson
- CBRC, Massachusetts General Hospital/Harvard Medical School, Building 149, 13 Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
194
|
Zhao X, Mita K, Shimada T, Okano K, Quan GX, Kanke E, Kawasaki H. Isolation and expression of an ecdysteroid-inducible neutral endopeptidase 24.11-like gene in wing discs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:1213-1219. [PMID: 11583934 DOI: 10.1016/s0965-1748(01)00069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the process of comparison of two cDNA libraries (W0, W2), we isolated a clone from the wing discs of Bombyx mori encoding a putative neutral endopeptidase 24.11-like gene. The predicted open reading frame encoded 772 amino acid residues, having about 53% identity with Drosophila GH07643, 36% with rat NEP, and 34% with rat ECE. This is the first NEP gene isolated in invertebrate. A 3.6-kb transcript was found to accumulate in the wing disc according to the increase of ecdysteroid titer during metamorphosis. Accumulation of the transcript was induced in wing discs with 20-hydroxyecdysone about 20h after incubation, which was inhibited by cycloheximide. This gene is ecdysone-inducible, appears to encode a functional protein, and may function during wing metamorphosis.
Collapse
Affiliation(s)
- X Zhao
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, 321-8505, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
195
|
Renault N, King-Jones K, Lehmann M. Downregulation of the tissue-specific transcription factor Fork head by Broad-Complex mediates a stage-specific hormone response. Development 2001; 128:3729-37. [PMID: 11585799 DOI: 10.1242/dev.128.19.3729] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila development is coordinated by pulses of the steroid hormone 20-hydroxyecdysone (20E). During metamorphosis, the 20E-inducible Broad-Complex (BR-C) gene plays a key role in the genetic hierarchies that transduce the hormone signal, being required for the destruction of larval tissues and numerous aspects of adult development. Most of the known BR-C target genes, including the salivary gland secretion protein (Sgs) genes, are terminal differentiation genes that are thought to be directly regulated by BR-C-encoded transcription factors. Here, we show that repression of Sgs expression is indirectly controlled by the BR-C through transcriptional down-regulation of fork head, a tissue-specific gene that plays a central role in salivary gland development and is required for Sgs expression. Our results demonstrate that integration of a tissue-specific regulatory gene into a 20E-controlled genetic hierarchy provides a mechanism for hormonal repression. Furthermore, they suggest that the BR-C is placed at a different position within the 20E-controlled hierarchies than previously assumed, and that at least part of its pleiotropic functions are mediated by tissue-specific regulators.
Collapse
Affiliation(s)
- N Renault
- Institut für Genetik der Freien Universität Berlin, Arnimallee 7, D-14195 Berlin, Germany
| | | | | |
Collapse
|
196
|
Abstract
Programmed cell death is a critical part of normal development, removing obsolete tissues or cells and sculpting body parts to assume their appropriate form and function. Most programmed cell death occurs by apoptosis of individual cells or autophagy of groups of cells. Although these pathways have distinct morphological characteristics, they also have a number of features in common, suggesting some overlap in their regulation. A recent paper by Lee and Baehrecke provides further support for this proposal.(1) These authors present, for the first time, a genetic analysis of autophagy, using the steroid-triggered metamorphosis of Drosophila as a model system. They demonstrate a remarkable degree of overlap between the control of apoptosis and autophagy as well as a key role for the steroid-inducible gene E93 in directing the autophagic death response. This paper also shows that E93 can direct cell death independently from the known death-inducer genes, defining a novel death pathway in Drosophila.
Collapse
Affiliation(s)
- C S Thummel
- Howard Hughes Medical Institute, Department of Human Genetics, 15 North 2030 East Room 5100, University of Utah, UT 84112-5331, USA.
| |
Collapse
|
197
|
Zee MC, Weeks JC. Developmental change in the steroid hormone signal for cell-autonomous, segment-specific programmed cell death of a motoneuron. Dev Biol 2001; 235:45-61. [PMID: 11412026 DOI: 10.1006/dbio.2001.0273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During metamorphosis of the hawkmoth, Manduca sexta, accessory planta retractor (APR) motoneurons undergo a segment-specific pattern of programmed cell death (PCD): e.g., APRs from abdominal segment six [APR(6)s] die at pupation in direct response to the prepupal rise in 20-hydroxyecdysone (20E), whereas APR(4)s survive through the pupal stage and die at eclosion (adult emergence). The hypothesis that the death of APR(4)s is triggered by the decline in 20E at eclosion was supported by findings that injection of 20E into developing pupae to delay the fall in 20E delayed APR(4) death. Furthermore, abdomen isolation to advance the fall in 20E caused precocious APR(4) death. In other experiments, APR(4)s were placed in primary cell culture 4 days before eclosion in medium containing 1 microg/ml 20E. A switch to hormone-free medium induced PCD in a significant proportion of APR(4)s, compared to APR(4)s that remained in 20E. Process fragmentation was a reliable early indicator of PCD. These results show that a decline in 20E triggers cell-autonomous PCD of APR(4)s, in contrast to the rise in 20E that triggers cell-autonomous PCD of APR(6)s. Thus, the PCD of homologous motoneurons in different body segments at different developmental times is triggered by different steroid hormone signals.
Collapse
Affiliation(s)
- M C Zee
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA
| | | |
Collapse
|
198
|
Abstract
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.
Collapse
Affiliation(s)
- C Y Lee
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, Maryland 20742, USA
| | | |
Collapse
|
199
|
Hsu T, Schulz RA. Sequence and functional properties of Ets genes in the model organism Drosophila. Oncogene 2000; 19:6409-16. [PMID: 11175357 DOI: 10.1038/sj.onc.1204033] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Detailed molecular and genetic studies, coupled with the recent sequencing of the fly genome, have identified eight Ets-related genes in the model organism Drosophila. All show homology to genes in vertebrate species. Functional analyses of some of the Drosophila ets genes have revealed their essential roles in developmental processes such as metamorphosis, oogenesis, neurogenesis, myogenesis, and eye development. Such studies have yielded important insights into our understanding of the genetic control of hormonally-regulated gene expression, programmed cell death, and signal transduction during cell fate determination and differentiation. The developmental roles of E74 (ELF1), pointed (Ets 1), yan (TEL), and D-elg (GABPalpha) will be reviewed in this article. The context of their participation in signal transduction and gene regulation will also be discussed. The information should be of significant value to the study of related processes in higher organisms due to the growing evidence for the cross species conservation of developmental mechanisms.
Collapse
Affiliation(s)
- T Hsu
- Center for Molecular and Structural Biology, Hollings Cancer Center, and Department of Cell Biology and Anatomy, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, South Carolina, SC 29425, USA
| | | |
Collapse
|
200
|
Abstract
During insect metamorphosis, the steroid hormone ecdysone activates programmed cell death of larval tissues and the further development of adult tissues. Recent studies suggest that the E93 gene is both necessary and sufficient to target tissues for ecdysone-induced apoptosis.
Collapse
Affiliation(s)
- M Buszczak
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|