151
|
Zhang X, Wang L, Xu X, Cai C, Guo W. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. BMC PLANT BIOLOGY 2014; 14:345. [PMID: 25492847 PMCID: PMC4270029 DOI: 10.1186/s12870-014-0345-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. RESULTS By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. CONCLUSIONS This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Liman Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Xiaoyang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| |
Collapse
|
152
|
Kiselevsky DB, Frolova OY, Solovyev AG, Dorokhov YL, Morozov SY, Samuilov VD. Plant cell death caused by fungal, bacterial, and viral elicitors: protective effect of mitochondria-targeted quinones. BIOCHEMISTRY. BIOKHIMIIA 2014; 79:1322-32. [PMID: 25716725 DOI: 10.1134/s0006297914120050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chitosan (partially deacetylated chitin), a component of fungal cell walls, caused epidermal cell (EC) death in the leaves of pea (Pisum sativum L.) and tobacco Nicotiana tabacum or Nicotiana benthamiana detected by destruction of cell nuclei. The mitochondria-targeted quinone SkQ1 prevented the destruction of EC nuclei induced by chitosan. Chitosan increased and SkQ1 suppressed the activity of protein kinases in N. benthamiana and P. sativum and eliminated the effect of chitosan. Chitosan induced the generation of reactive oxygen species (ROS) in the guard cells (GC) of pea plants. Treatment with chitosan or H2O2 did not cause destruction of GC nuclei; however, it resulted in disruption of the permeability barrier of the plasma membrane detected by propidium iodide fluorescence. Treatment with bacterial lipopolysaccharide but not peptidoglycan caused destruction of pea EC nuclei, which was prevented by SkQ1. Leaves of tobacco plants containing the N gene responsible for resistance to tobacco mosaic virus (TMV) were infiltrated with Agrobacterium tumefaciens cells. These cells contained a genetic construct with the gene of the helicase domain of TMV replicase (p50); its protein product p50 is a target for the N-gene product. As a result, the hypersensitive response (HR) was initiated. The HR manifested itself in the death of leaves and was suppressed by SkQ3. Treatment of tobacco epidermal peels with the A. tumefaciens cells for the p50 gene expression stimulated the destruction of EC nuclei, which was inhibited by SkQ1 or SkQ3. The p50-lacking A. tumefaciens cells did not induce the destruction of EC nuclei. The protective effect of mitochondria-targeted antioxidants SkQ1 and SkQ3 demonstrates the involvement of mitochondria and their ROS in programmed cell death caused by pathogen elicitors.
Collapse
Affiliation(s)
- D B Kiselevsky
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
153
|
Bjornson M, Benn G, Song X, Comai L, Franz AK, Dandekar AM, Drakakaki G, Dehesh K. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. PLANT PHYSIOLOGY 2014; 166:988-96. [PMID: 25157030 PMCID: PMC4213123 DOI: 10.1104/pp.114.245944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/19/2014] [Indexed: 05/20/2023]
Abstract
To survive environmental challenges, plants have evolved tightly regulated response networks, including a rapid and transient general stress response (GSR), followed by well-studied stress-specific responses. The mechanisms underpinning the GSR have remained elusive, but a functional cis-element, the rapid stress response element (RSRE), is known to confer transcription of GSR genes rapidly (5 min) and transiently (peaking 90-120 min after stress) in vivo. To investigate signal transduction events in the GSR, we used a 4xRSRE:LUCIFERASE reporter in Arabidopsis (Arabidopsis thaliana), employing complementary approaches of forward and chemical genetic screens, and identified components regulating peak time versus amplitude of RSRE activity. Specifically, we identified a mutant in CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) with reduced RSRE activation, verifying this transcription factor's role in activation of the RSRE-mediated GSR. Furthermore, we isolated a mutant in MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) KINASE KINASE1 (mekk1-5), which displays increased basal and an approximately 60-min earlier peak of wound-induced RSRE activation. The double mekk1/camta3 mutant positioned CAMTA3 downstream of MEKK1 and verified their distinct roles in GSR regulation. mekk1-5 displays programmed cell death and overaccumulates reactive oxygen species and salicylic acid, hallmarks of the hypersensitive response, suggesting that the hypersensitive response may play a role in the RSRE phenotype in this mutant. In addition, chemical inhibition studies suggest that the MAPK network is required for the rapid peak of the RSRE response, distinguishing the impact of chronic (mekk1-5) from transient (chemical inhibition) loss of MAPK signaling. Collectively, these results reveal underlying regulatory components of the plant GSR and further define their distinct roles in the regulation of this key biological process.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Geoffrey Benn
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Xingshun Song
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Luca Comai
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Annaliese K Franz
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Abhaya M Dandekar
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Georgia Drakakaki
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Katayoon Dehesh
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| |
Collapse
|
154
|
Meng Y, Ma N, Zhang Q, You Q, Li N, Ali Khan M, Liu X, Wu L, Su Z, Gao J. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:941-50. [PMID: 24942184 DOI: 10.1111/tpj.12594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress that affects the development and growth of most plants, and limits crop yield worldwide. Although the response of plants to drought has been well documented, much less is known about how plants respond to the water recovery process, namely rehydration. Here, we describe the spatio-temporal response of plant reproductive organs to rehydration using rose flowers as an experimental system. We found that rehydration triggered rapid and transient ethylene production in the gynoecia. This ethylene burst serves as a signal to ensure water recovery in flowers, and promotes flower opening by influencing the expression of a set of rehydration-responsive genes. An in-gel kinase assay suggested that the rehydration-induced ethylene burst resulted from transient accumulation of RhACS1/2 proteins in gynoecia. Meanwhile, RhMPK6, a rose homolog of Arabidopsis thaliana MPK6, is rapidly activated by rehydration within 0.5 h. Furthermore, RhMPK6 was able to phosphorylate RhACS1 but not RhACS2 in vitro. Application of the kinase inhibitor K252a suppressed RhACS1 accumulation and rehydration-induced ethylene production in gynoecia, and the protein phosphatase inhibitor okadaic acid had the opposite effect, confirming that accumulation of RhACS1 was phosphorylation-dependent. Finally, silencing of RhMPK6 significantly reduced ethylene production in gynoecia when flowers were subjected to rehydration. Taken together, our results suggest that temporal- and spatial-specific activation of an RhMPK6-RhACS1 cascade is responsible for rehydration-induced ethylene production in gynoecia, and that the resulting ethylene-mediated signaling pathway is a key factor in flower rehydration.
Collapse
Affiliation(s)
- Yonglu Meng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Klemptner RL, Sherwood JS, Tugizimana F, Dubery IA, Piater LA. Ergosterol, an orphan fungal microbe-associated molecular pattern (MAMP). MOLECULAR PLANT PATHOLOGY 2014; 15:747-61. [PMID: 24528492 PMCID: PMC6638689 DOI: 10.1111/mpp.12127] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fungal pathogens continue to pose a significant threat to crop production and food supply. The early stages of plant-fungus interactions are mostly mediated by microbe-associated molecular pattern (MAMP) molecules, perceived by plant pattern recognition receptors (PRRs). Currently, the identified fungal MAMP molecules include chitin, chitosan, β-glucans, elicitins and ergosterol. Although the molecular battles between host plants and infecting fungal phytopathogens have been studied extensively, many aspects still need to be investigated to obtain a holistic understanding of the intrinsic mechanisms, which is paramount in combating fungal plant diseases. Here, an overview is given of the most recent findings concerning an 'orphan' fungal MAMP molecule, ergosterol, and we present what is currently known from a synopsis of different genes, proteins and metabolites found to play key roles in induced immune responses in plant-fungus interactions. Clearly, integrative investigations are still needed to provide a comprehensive systems-based understanding of the dynamics associated with molecular mechanisms in plant-ergosterol interactions and associated host responses.
Collapse
Affiliation(s)
- Robyn L Klemptner
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | | | | | | | | |
Collapse
|
156
|
Wang G, Lovato A, Polverari A, Wang M, Liang YH, Ma YC, Cheng ZM. Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC PLANT BIOLOGY 2014; 14:219. [PMID: 25158790 PMCID: PMC4243721 DOI: 10.1186/s12870-014-0219-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/04/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase kinase kinases (MAPKKKs; MAP3Ks) are important components of MAPK cascades, which are highly conserved signal transduction pathways in animals, yeast and plants, play important roles in plant growth and development. MAPKKKs have been investigated on their evolution and expression patterns in limited plants including Arabidopsis, rice and maize. RESULTS In this study, we performed a genome-wide survey and identified 45 MAPKKK genes in the grapevine genome. Chromosome location, phylogeny, gene structure and conserved protein motifs of MAPKKK family in grapevine have been analyzed to support the prediction of these genes. In the phylogenetic analysis, MAPKKK genes of grapevine have been classified into three subgroups as described for Arabidopsis, named MEKK, ZIK and RAF, also confirmed in grapevine by the analysis of conserved motifs and exon-intron organizations. By analyzing expression profiles of MAPKKK genes in grapevine microarray databases, we highlighted the modulation of different MAPKKKs in different organs and distinct developmental stages. Furthermore, we experimentally investigated the expression profiles of 45 grape MAPKKK genes in response to biotic (powdery mildew) and abiotic stress (drought), as well as to hormone (salicylic acid, ethylene) and hydrogen peroxide treatments, and identified several candidate MAPKKK genes that might play an important role in biotic and abiotic responses in grapevine, for further functional characterization. CONCLUSIONS This is the first comprehensive experimental survey of the grapevine MAPKKK gene family, which provides insights into their potential roles in regulating responses to biotic and abiotic stresses, and the evolutionary expansion of MAPKKKs is associated with the diverse requirement in transducing external and internal signals into intracellular actions in MAPK cascade in grapevine.
Collapse
Affiliation(s)
- Gang Wang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- />Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, Jiangsu 210014 China
| | - Arianna Lovato
- />Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Annalisa Polverari
- />Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Min Wang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Ying-Hai Liang
- />College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Yuan-Chun Ma
- />College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
| | - Zong-Ming Cheng
- />College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
157
|
Kamimura M, Han Y, Kito N, Che FS. Identification of interacting proteins for calcium-dependent protein kinase 8 by a novel screening system based on bimolecular fluorescence complementation. Biosci Biotechnol Biochem 2014; 78:438-47. [PMID: 25036830 DOI: 10.1080/09168451.2014.882757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein kinases are key regulators of cell function that constitute one of the largest and most functionally diverse gene families. We developed a novel assay system, based on the bimolecular fluorescence complementation (BiFC) technique in Escherichia coli, for detecting transient interactions such as those between kinases and their substrates. This system detected the interaction between OsMEK1 and its direct target OsMAP1. By contrast, BiFC fluorescence was not observed when OsMAP2 or OsMAP3, which are not substrates of OsMEK1, were used as prey proteins. We also screened for interacting proteins of calcium-dependent protein kinase 8 (OsCPK8), a regulator of plant immune responses, and identified three proteins as interacting molecules of OsCPK8. The interaction between OsCPK8 and two of these proteins (ARF-GEF and peptidyl prolyl isomerase) was confirmed in rice cells by means of BiFC technology. These results indicate that our new assay system has the potential to screen for protein kinase target molecules.
Collapse
Affiliation(s)
- Mayu Kamimura
- a Graduate School of Bio-Science , Nagahama Institute of Bio-Science and Technology , 1266 Tamura , Nagahama, Shiga , Japan
| | | | | | | |
Collapse
|
158
|
Yan S, Du X, Wu F, Li L, Li C, Meng Z. Proteomics insights into the basis of interspecific facilitation for maize (Zea mays) in faba bean (Vicia faba)/maize intercropping. J Proteomics 2014; 109:111-24. [PMID: 25009142 DOI: 10.1016/j.jprot.2014.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/29/2014] [Accepted: 06/27/2014] [Indexed: 11/15/2022]
Abstract
UNLABELLED Faba bean/maize intercropping significantly promotes maize productivity in phosphorus-deficient soils. This has been attributed to the below-ground interactions including rhizosphere effects and spatial effects. Nevertheless, the molecular mechanisms underlying these interactions have been scarcely investigated. Here, three types of pots were used to distinguish the influences of rhizosphere effects vs. spatial effects. Phosphorus and nitrogen uptake of shoots, biomass, total root length, and root classification were evaluated between the three treatments. Quantitative RT-PCR and proteomics analyses were conducted to investigate the putative components in the molecular basis of these interactions. Quantitative RT-PCR results indicated that rhizosphere effects promoted maize phosphorus status at molecular levels. 66 differentially accumulated protein spots were successfully identified through proteomics analyses. Most of the protein species were found to be involved in phosphorus, nitrogen, and allelochemical metabolism, signal transduction, or stress resistance. The results suggest that rhizosphere effects promoted phosphorus and nitrogen assimilation in maize roots and thus enhanced maize growth and nutrient uptake. The reprogramming of proteome profiles suggests that rhizosphere effects can also enhance maize tolerance through regulating the metabolism of allelochemicals and eliciting systemic acquired resistance via the stimulation of a mitogen-activated protein kinase signal pathway. BIOLOGICAL SIGNIFICANCE The results obtained contribute to a comprehensive understanding of the response of maize to the changes of rhizosphere condition influenced by the below-ground interactions in faba bean/maize intercropping at molecular levels. The identified protein species involved in nutrient metabolisms and stress resistance reveal the molecular basis underlying the major advantages of effective nutrient utilization and higher stress tolerance in legume/cereal intercropping systems. This work provides essential new insights into the putative components in the molecular basis of interspecific facilitation for maize in faba bean/maize intercropping.
Collapse
Affiliation(s)
- Shuo Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Nanchong Academy of Agricultural sciences, Nanchong, Sichuan, 637000, China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Long Li
- Key Laboratory of Plant and Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100094, China
| | - Chengyun Li
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
159
|
Xu J, Yang KY, Yoo SJ, Liu Y, Ren D, Zhang S. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco. PLANT, CELL & ENVIRONMENT 2014; 37:1614-25. [PMID: 24392654 DOI: 10.1111/pce.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | | | | | | | | | | |
Collapse
|
160
|
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol 2014; 40:657-75. [PMID: 24973116 DOI: 10.1007/s10886-014-0468-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.
Collapse
Affiliation(s)
- Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
161
|
Liu L, Filkov V, Groover A. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees. PHYSIOLOGIA PLANTARUM 2014; 151:156-63. [PMID: 24117954 DOI: 10.1111/ppl.12113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/23/2013] [Accepted: 09/22/2013] [Indexed: 05/12/2023]
Abstract
The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications.
Collapse
Affiliation(s)
- Lijun Liu
- US Forest Service, Pacific Southwest Research Station, Davis, CA, USA
| | | | | |
Collapse
|
162
|
Guan Y, Lu J, Xu J, McClure B, Zhang S. Two Mitogen-Activated Protein Kinases, MPK3 and MPK6, Are Required for Funicular Guidance of Pollen Tubes in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:528-533. [PMID: 24717717 PMCID: PMC4044831 DOI: 10.1104/pp.113.231274] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Double fertilization in flowering plants requires the delivery of two immotile sperm cells to the female gametes by a pollen tube, which perceives guidance cues, modifies its tip growth direction, and eventually enters the micropyle of the ovule. In spite of the recent progress, so far, little is known about the signaling events in pollen tubes in response to the guidance cues. Here, we show that MPK3 and MPK6, two Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinases, mediate the guidance response in pollen tubes. Genetic analysis revealed that mpk3 mpk6 double mutant pollen has reduced transmission. However, direct observation of mpk3 mpk6 mutant pollen phenotype was hampered by the embryo lethality of double homozygous mpk3-/- mpk6-/- plants. Utilizing a fluorescent reporter-tagged complementation method, we showed that the mpk3 mpk6 mutant pollen had normal pollen tube growth but impaired pollen tube guidance. In vivo pollination assays revealed that the mpk3 mpk6 mutant pollen tubes were defective in the funicular guidance phase. By contrast, semi-in vitro guidance assay showed that the micropylar guidance of the double mutant pollen tube was normal. Our results provide direct evidence to support that the funicular guidance phase of the pollen tube requires an in vivo signaling mechanism distinct from the micropyle guidance. Moreover, our finding opened up the possibility that the MPK3/MPK6 signaling pathway may link common signaling networks in plant stress response and pollen-pistil interaction.
Collapse
Affiliation(s)
- Yuefeng Guan
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); andShanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
| | - Jianping Lu
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); andShanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
| | - Juan Xu
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); andShanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
| | - Bruce McClure
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); andShanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, Missouri 65211 (Y.G., B.M., S.Z.);College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China (J.L., J.X.); andShanghai Center for Plant Stress Biology, Shanghai 201602, China (Y.G.)
| |
Collapse
|
163
|
Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet 2014; 10:e1004384. [PMID: 24830428 PMCID: PMC4022456 DOI: 10.1371/journal.pgen.1004384] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/01/2014] [Indexed: 01/28/2023] Open
Abstract
Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in Arabidopsis thaliana. When overexpressed using LAT52, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 in vivo. Epistasis interaction analysis confirmed that MPK6 belongs to the same genetic pathway of WRKY34 and WRKY2. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants. Pollen development, or male gametogenesis, is a process by which a haploid uninucleate microspore undergoes cell division and specification to form a mature pollen grain containing two sperm cells. The highly defined cell linage makes pollen development an ideal model to understand the regulation of plant cellular development. Pollen development has multiple phases and involves dynamic changes in gene expression, which highlights the importance of transcription factors and their regulatory pathway(s). In this report, we demonstrate that WRKY34 and WRKY2, two closely related WRKY transcription factors in Arabidopsis, play important roles in pollen development. WRKY34 is phosphorylated by MPK3/MPK6, two functionally redundant mitogen-activated protein kinases (MAPKs or MPKs), at early stages in pollen development. Utilizing a combination of genetic, biochemical, and cytological tools, we determined that this MAPK-WRKY signaling module functions at the early stage of pollen development. Loss of function of this pathway reduces pollen viability, and the surviving pollen has poor germination and reduced pollen tube growth, all of which reduce the transmission rate of the mutant pollen. This study discovers a novel stage-specific signaling pathway in pollen development.
Collapse
Affiliation(s)
- Yuefeng Guan
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Reshma Khanna
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Erica LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
164
|
|
165
|
Zhou J, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ. RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:595-607. [PMID: 24323505 PMCID: PMC3904713 DOI: 10.1093/jxb/ert404] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
H2O2 and mitogen-activated protein kinase (MAPK) cascades play important functions in plant stress responses, but their roles in acclimation response remain unclear. This study examined the functions of H2O2 and MPK1/2 in acclimation-induced cross-tolerance in tomato plants. Mild cold, paraquat, and drought as acclimation stimuli enhanced tolerance to more severe subsequent chilling, photooxidative, and drought stresses. Acclimation-induced cross-tolerance was associated with increased transcript levels of RBOH1 and stress- and defence-related genes, elevated apoplastic H2O2 accumulation, increased activity of NADPH oxidase and antioxidant enzymes, reduced glutathione redox state, and activation of MPK1/2 in tomato. Virus-induced gene silencing of RBOH1, MPK1, and MPK2 or MPK1/2 all compromised acclimation-induced cross-tolerance and associated stress responses. Taken together, these results strongly suggest that acclimation-induced cross-tolerance is largely attributed to RBOH1-dependent H2O2 production at the apoplast, which may subsequently activate MPK1/2 to induce stress responses.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China
| |
Collapse
|
166
|
Yu Y, Guo G, Lv D, Hu Y, Li J, Li X, Yan Y. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC PLANT BIOLOGY 2014; 14:20. [PMID: 24410729 PMCID: PMC3923396 DOI: 10.1186/1471-2229-14-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 01/09/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. RESULTS A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0-12 hours after imbibition [HAI]), a plateau phase (12-24 HAI), and a further water uptake phase (24-48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co-expression network with a k-core algorithm to determine which play pivotal roles in germination. Twenty-three meaningful genes were found, and quantitative RT-PCR analysis validated the expression patterns of 12 significant genes. CONCLUSIONS Wheat seed germination comprises three distinct phases and includes complicated regulation networks involving a large number of genes. These genes belong to many functional groups, and their co-regulations guarantee regular germination. Our results provide new insight into metabolic changes during seed germination and interactions between some significant genes.
Collapse
Affiliation(s)
- Yonglong Yu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Guangfang Guo
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Dongwen Lv
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan KS 66506, USA
| | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
167
|
Heil M, Land WG. Danger signals - damaged-self recognition across the tree of life. FRONTIERS IN PLANT SCIENCE 2014; 5:578. [PMID: 25400647 PMCID: PMC4215617 DOI: 10.3389/fpls.2014.00578] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/07/2014] [Indexed: 05/15/2023]
Abstract
Multicellular organisms suffer injury and serve as hosts for microorganisms. Therefore, they require mechanisms to detect injury and to distinguish the self from the non-self and the harmless non-self (microbial mutualists and commensals) from the detrimental non-self (pathogens). Danger signals are "damage-associated molecular patterns" (DAMPs) that are released from the disrupted host tissue or exposed on stressed cells. Seemingly ubiquitous DAMPs are extracellular ATP or extracellular DNA, fragmented cell walls or extracellular matrices, and many other types of delocalized molecules and fragments of macromolecules that are released when pre-existing precursors come into contact with enzymes from which they are separated in the intact cell. Any kind of these DAMPs enable damaged-self recognition, inform the host on tissue disruption, initiate processes aimed at restoring homeostasis, such as sealing the wound, and prepare the adjacent tissues for the perception of invaders. In mammals, antigen-processing and -presenting cells such as dendritic cells mature to immunostimulatory cells after the perception of DAMPs, prime naïve T-cells and elicit a specific adaptive T-/B-cell immune response. We discuss molecules that serve as DAMPs in multiple organisms and their perception by pattern recognition receptors (PRRs). Ca(2+)-fluxes, membrane depolarization, the liberation of reactive oxygen species and mitogen-activated protein kinase (MAPK) signaling cascades are the ubiquitous molecular mechanisms that act downstream of the PRRs in organisms across the tree of life. Damaged-self recognition contains both homologous and analogous elements and is likely to have evolved in all eukaryotic kingdoms, because all organisms found the same solutions for the same problem: damage must be recognized without depending on enemy-derived molecules and responses to the non-self must be directed specifically against detrimental invaders.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-IrapuatoIrapuato, México
- *Correspondence: Martin Heil, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato- León, Irapuato, Guanajuato, Mexico e-mail:
| | - Walter G. Land
- Molecular ImmunoRheumatology, INSERM UMR S1109, Laboratory of Excellence Transplantex, Faculty of Medicine, University of StrasbourgStrasbourg, France
| |
Collapse
|
168
|
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 232:1-44. [PMID: 24984833 DOI: 10.1007/978-3-319-06746-9_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | | | | | | | | | | |
Collapse
|
169
|
Hann CT, Bequette CJ, Dombrowski JE, Stratmann JW. Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns. FRONTIERS IN PLANT SCIENCE 2014; 5:550. [PMID: 25360141 PMCID: PMC4197774 DOI: 10.3389/fpls.2014.00550] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/25/2014] [Indexed: 05/15/2023]
Abstract
Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Molecular mechanisms that explain how methanol affects plant defenses are poorly understood. Here we show that exogenously supplied methanol alone has weak effects on defense signaling in three dicot species, however, it profoundly alters signaling responses to danger- and microbe-associated molecular patterns (DAMPs, MAMPs) such as the alarm hormone systemin, the bacterial flagellum-derived flg22 peptide, and the fungal cell wall-derived oligosaccharide chitosan. In the presence of methanol the kinetics and amplitudes of DAMP/MAMP-induced MAP kinase (MAPK) activity and oxidative burst are altered in tobacco and tomato suspension-cultured cells, in Arabidopsis seedlings and tomato leaf tissue. As a possible consequence of altered DAMP/MAMP signaling, methanol suppressed the expression of the defense genes PR-1 and PI-1 in tomato. In cell cultures of the grass tall fescue (Festuca arundinacea, Poaceae, Monocots), methanol alone activates MAPKs and increases chitosan-induced MAPK activity, and in the darnel grass Lolium temulentum (Poaceae), it alters wound-induced MAPK signaling. We propose that methanol can be recognized by plants as a sign of the damaged self. In dicots, methanol functions as a DAMP-like alarm signal with little elicitor activity on its own, whereas it appears to function as an elicitor-active DAMP in monocot grasses. Ethanol had been implicated in plant stress responses, although the source of ethanol in plants is not well established. We found that it has a similar effect as methanol on responses to MAMPs and DAMPs.
Collapse
Affiliation(s)
- Claire T. Hann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - Carlton J. Bequette
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
| | - James E. Dombrowski
- National Forage Seed Production Research Center, United States Department of Agriculture – Agricultural Research ServiceCorvallis, OR, USA
| | - Johannes W. Stratmann
- Department of Biological Sciences, University of South CarolinaColumbia, SC, USA
- *Correspondence: Johannes W. Stratmann, Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
170
|
Shi Z, Zhang Y, Maximova SN, Guiltinan MJ. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC PLANT BIOLOGY 2013; 13:204. [PMID: 24314063 PMCID: PMC3878973 DOI: 10.1186/1471-2229-13-204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 11/27/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. RESULTS We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. CONCLUSIONS We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.
Collapse
Affiliation(s)
- Zi Shi
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yufan Zhang
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
- 422 Life Sciences Building, University Park, PA 16802, USA
| |
Collapse
|
171
|
Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA. Current understanding on ethylene signaling in plants: the influence of nutrient availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:128-38. [PMID: 24095919 DOI: 10.1016/j.plaphy.2013.09.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/12/2013] [Indexed: 05/18/2023]
Abstract
The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | |
Collapse
|
172
|
Chen YJ, Perera V, Christiansen MW, Holme IB, Gregersen PL, Grant MR, Collinge DB, Lyngkjær MF. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. PLANT MOLECULAR BIOLOGY 2013; 83:577-90. [PMID: 23896755 DOI: 10.1007/s11103-013-0109-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/11/2013] [Indexed: 05/23/2023]
Abstract
Barley HvNAC6 is a member of the plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factor family and we have shown previously that it acts as a positive regulator of basal resistance in barley against the biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we use a transgenic approach to constitutively silence HvNAC6 expression, using RNA interference (RNAi), to investigate the in vivo functions of HvNAC6 in basal resistance responses in barley in relation to the phytohormone ABA. The HvNAC6 RNAi plants displayed reduced HvNAC6 transcript levels and were more susceptible to Bgh than wild-type plants. Application of exogenous ABA increased basal resistance against Bgh in wild-type plants, but not in HvNAC6 RNAi plants, suggesting that ABA is a positive regulator of basal resistance which depends on HvNAC6. Silencing of HvNAC6 expression altered the light/dark rhythm of ABA levels which were, however, not influenced by Bgh inoculation. The expression of the two ABA biosynthetic genes HvNCED1 and HvNCED2 was compromised, and transcript levels of the ABA conjugating HvBG7 enzyme were elevated in the HvNAC6 RNAi lines, but this effect was not clearly associated with transgene-mediated resistance. Together, these data support a function of HvNAC6 as a regulator of ABA-mediated defence responses for maintenance of effective basal resistance against Bgh.
Collapse
Affiliation(s)
- Yan-Jun Chen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y. Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. Int J Mol Sci 2013; 14:21983-96. [PMID: 24201128 PMCID: PMC3856046 DOI: 10.3390/ijms141121983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022] Open
Abstract
Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs) play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS) method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA)-induced and hydrogen peroxide (H2O2)-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian-Min Yan
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yun-Zhou Li
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen-Cai Zhang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiao-Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Liang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-29-8708-2179
| |
Collapse
|
174
|
Ferro E, Trabalzini L. The yeast two-hybrid and related methods as powerful tools to study plant cell signalling. PLANT MOLECULAR BIOLOGY 2013; 83:287-301. [PMID: 23794143 DOI: 10.1007/s11103-013-0094-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 06/15/2013] [Indexed: 05/25/2023]
Abstract
One basic property of proteins is their ability to specifically target and form non-covalent complexes with other proteins. Such protein-protein interactions play key roles in all biological processes, extending from the formation of cellular macromolecular structures and enzymatic complexes to the regulation of signal transduction pathways. Identifying and characterizing protein interactions and entire interaction networks (interactomes) is therefore prerequisite to understand these processes on a molecular and biophysical level. Since its original description in 1989, the yeast two-hybrid system has been extensively used to identify protein-protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. In these years the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches. Several groups studying molecular mechanisms that underlie plant cell signal transduction pathways have successfully used the yeast two-hybrid system or related methods. In this review we provide a brief description of the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas, within the plant cell signalling field, where hybrid-based interaction assays have been particularly informative.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Fiorentina, 1, 53100, Siena, Italy,
| | | |
Collapse
|
175
|
Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 2013; 12:5025-47. [PMID: 24083463 DOI: 10.1021/pr400628j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
176
|
Diaz-Vivancos P, Barba-Espín G, Hernández JA. Elucidating hormonal/ROS networks during seed germination: insights and perspectives. PLANT CELL REPORTS 2013; 32:1491-502. [PMID: 23812175 DOI: 10.1007/s00299-013-1473-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 05/04/2023]
Abstract
While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using "-omics" technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might eventually be used in breeding programs to improve crop yields.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia, 30100, Spain
| | | | | |
Collapse
|
177
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 2013; 32:40-52. [PMID: 24091291 DOI: 10.1016/j.biotechadv.2013.09.006] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.
Collapse
Affiliation(s)
- Agyemang Danquah
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Axel de Zelicourt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Jean Colcombet
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Heribert Hirt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| |
Collapse
|
178
|
Zhang Y, Wang XF, Ding ZG, Ma Q, Zhang GR, Zhang SL, Li ZK, Wu LQ, Zhang GY, Ma ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 2013; 14:637. [PMID: 24053558 PMCID: PMC3849602 DOI: 10.1186/1471-2164-14-637] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 09/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Verticillium wilt, caused by the fungal pathogen Verticillium dahliae, is the most severe disease in cotton (Gossypium spp.), causing great lint losses worldwide. Disease management could be achieved in the field if genetically improved, resistant plants were used. However, the interaction between V. dahliae and cotton is a complicated process, and its molecular mechanism remains obscure. To understand better the defense response to this pathogen as a means for obtaining more tolerant cultivars, we monitored the transcriptome profiles of roots from resistant plants of G. barbadense cv. Pima90-53 that were challenged with V. dahliae. RESULTS In all, 46,192 high-quality expressed sequence tags (ESTs) were generated from a full-length cDNA library of G. barbadense. They were clustered and assembled into 23126 unigenes that comprised 2661 contigs and 20465 singletons. Those unigenes were assigned Gene Ontology terms and mapped to 289 KEGG pathways. A total of 3027 unigenes were found to be homologous to known defense-related genes in other plants. They were assigned to the functional classification of plant-pathogen interactions, including disease defenses and signal transduction. The branch of "SA→NPR1→TGA→PR-1→Disease resistance" was first discovered in the interaction of cotton-V. dahliae, indicating that this wilt process includes both biotrophic and necrotrophic stages. In all, 4936 genes coding for putative transcription factors (TF) were identified in our library. The most abundant TF family was the NAC group (527), followed by G2-like (440), MYB (372), BHLH (331), bZIP (271) ERF, C3H, and WRKY. We also analyzed the expression of genes involved in pathogen-associated molecular pattern (PAMP) recognition, the activation of effector-triggered immunity, TFs, and hormone biosynthesis, as well as genes that are pathogenesis-related, or have roles in signaling/regulatory functions and cell wall modification. Their differential expression patterns were compared among mock-/inoculated- and resistant/susceptible cotton. Our results suggest that the cotton defense response has significant transcriptional complexity and that large accumulations of defense-related transcripts may contribute to V. dahliae resistance in cotton. Therefore, these data provide a resource for cotton improvement through molecular breeding approaches. CONCLUSIONS This study generated a substantial amount of cotton transcript sequences that are related to defense responses against V. dahliae. These genomics resources and knowledge of important related genes contribute to our understanding of host-pathogen interactions and the defense mechanisms utilized by G. barbadense, a non-model plant system. These tools can be applied in establishing a modern breeding program that uses marker-assisted selections and oligonucleotide arrays to identify candidate genes that can be linked to valuable agronomic traits in cotton, including disease resistance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Xing Fen Wang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Ze Guo Ding
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Qing Ma
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Gui Rong Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Shu Ling Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Zhi Kun Li
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Li Qiang Wu
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Gui Yin Zhang
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| | - Zhi Ying Ma
- Department of Agriculture, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, People’s Republic of China
| |
Collapse
|
179
|
Caregnato FF, Bortolin RC, Divan Junior AM, Moreira JCF. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. CHEMOSPHERE 2013; 93:320-330. [PMID: 23714146 DOI: 10.1016/j.chemosphere.2013.04.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/12/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Ozone (O3) has become one of the most toxic air pollutants to plants worldwide. However, investigations on O3 impacts on crops health and productivity in South America countries are still scarce. The present study analyzed the differences on the enzymatic and non-enzymatic antioxidant system in foliar tissue of two subtropical Phaseolus vulgaris varieties exposed to high O3 concentration. Both varieties were negatively impacted by the pollutant, but the responses between each variety were quite distinct. Results revealed that Irai has higher constitutive levels of reactive oxygen species (ROS) and ascorbate (AsA) concentration, but lower total thiol levels and catalase immunocontent. In this variety catalase protein concentration was increased after O3 exposure, indicating a better cellular capacity to reduce hydrogen peroxide. On the opposite, Fepagro 26-exposed plants increased ROS generation and AsA concentration, but had the levels of total thiol content and catalase protein unchanged. Furthermore, O3 treatment reduced the levels of chlorophylls a and b, and the relationship analysis between the chlorophyll ratio (a/b) and protein concentration were positively correlated indicating that photosynthetic apparatus is compromised, and thus probably is the biomass acquisition on Fepagro 26. Differently, O3 treatment of Irai did not affect chlorophylls a and b content, and loss on the protein content was lower. Altogether, these data suggest that early accumulation of ROS on Fepagro 26 are associated with an insufficient leaf antioxidant capacity, which leads to cell structure disruption and impairs the photosynthesis. Irai seems to be more tolerant to O3 toxic effects than Fepagro 26, and the observed differences on O3 sensitivity between the two varieties are apparently based on constitutive differences involved in the maintenance of intracellular redox homeostasis.
Collapse
Affiliation(s)
- Fernanda Freitas Caregnato
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul(UFRGS), Av. Ramiro Barcelos, 2600, Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
180
|
Kim SH, Kim SH, Yoo SJ, Min KH, Nam SH, Cho BH, Yang KY. Putrescine regulating by stress-responsive MAPK cascade contributes to bacterial pathogen defense in Arabidopsis. Biochem Biophys Res Commun 2013; 437:502-8. [PMID: 23831467 DOI: 10.1016/j.bbrc.2013.06.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/20/2013] [Indexed: 11/16/2022]
Abstract
Polyamines in plants are involved in various physiological and developmental processes including abiotic and biotic stress responses. We investigated the expression of ADCs, which are key enzymes in putrescine (Put) biosynthesis, and roles of Put involving defense response in Arabidopsis. The increased expression of ADC1 and ADC2, and the induction of Put were detected in GVG-NtMEK2(DD) transgenic Arabidopsis, whereas, their performance was partially compromised in GVG-NtMEK2(DD)/mpk3 and GVG-NtMEK2(DD)/mpk6 mutant following DEX treatment. The expression of ADC2 was highly induced by Pst DC3000 inoculation, while the transcript levels of ADC1 were slightly up-regulated. Compared to the WT plant, Put content in the adc2 knock-out mutant was reduced after Pst DC3000 inoculation, and showed enhanced susceptibility to pathogen infection. The adc2 mutant exhibited reduced expression of PR-1 after bacterial infection and the growth of the pathogen was about 4-fold more than that in the WT plant. Furthermore, the disease susceptibility of the adc2 mutant was recovered by the addition of exogenous Put. Taken together, these results suggest that Arabidopsis MPK3 and MPK6 play a positive role in the regulation of Put biosynthesis, and that Put contributes to bacterial pathogen defense in Arabidopsis.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
181
|
Oka K, Amano Y, Katou S, Seo S, Kawazu K, Mochizuki A, Kuchitsu K, Mitsuhara I. Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:668-75. [PMID: 23425101 DOI: 10.1094/mpmi-11-12-0272-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction pathways in eukaryotic cells. In tobacco, two MAPK, wound-induced protein kinase (WIPK) and salicylic acid (SA)-induced protein kinase (SIPK), are activated by biotic and abiotic stresses. Both WIPK and SIPK positively regulate the biosynthesis of jasmonic acid (JA) or ethylene (ET) while negatively regulating SA accumulation. We showed previously that recombinant tobacco MAPK phosphatase (NtMKP1) protein dephosphorylates and inactivates SIPK in vitro, and overexpression of NtMKP1 repressed wound-induced activation of both SIPK and WIPK. To elucidate the role of NtMKP1 in response to biotic and abiotic stresses, we generated transgenic tobacco plants in which NtMKP1 expression was suppressed. Suppression of NtMKP1 expression resulted in enhanced activation of WIPK and SIPK and production of both JA and ET upon wounding. Wound-induced expression of JA- or ET-inducible genes, basic PR-1 and PI-II, was also significantly enhanced in these plants. Furthermore, NtMKP1-suppressed plants exhibited enhanced resistance against a necrotrophic pathogen, Botrytis cinerea, and lepidopteran herbivores, Mamestra brassicae and Spodoptera litura. These results suggest that NtMKP1 negatively regulates wound response and resistance against both necrotrophic pathogens and herbivorous insects through suppression of JA or ET pathways via inactivation of MAPK.
Collapse
Affiliation(s)
- Kumiko Oka
- National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Xing Y, Cao Q, Zhang Q, Qin L, Jia W, Zhang J. MKK5 Regulates High Light-Induced Gene Expression of Cu/Zn Superoxide Dismutase 1 and 2 in Arabidopsis. ACTA ACUST UNITED AC 2013; 54:1217-27. [DOI: 10.1093/pcp/pct072] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
183
|
Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ. Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H₂O₂ generation and stress tolerance. PLANT, CELL & ENVIRONMENT 2013; 36:789-803. [PMID: 22994632 DOI: 10.1111/pce.12014] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are involved in the regulation of plant growth, development and stress responses. While the signalling pathways for BR-regulated plant growth and development are well studied, the mechanisms by which BRs regulate plant stress tolerance remain largely unclear. Here we showed that 24-epibrassinolide (EBR), which induced tolerance to oxidative and heat stress in tomato, was also capable of elevating the transcript levels of RBOH1, MPK1 and MPK2, increasing apoplastic H2 O2 accumulation, and enhancing activation of MPK1/2. Virus-induced gene silencing of RBOH1, MPK1, MPK2 and MPK1/2 resulted in reduced stress tolerance. Silencing of RBOH1 had no effect on the transcripts of MPK1 and MPK2 but inhibited MPK1/2 activation and H2 O2 accumulation. Silencing of either MPK1 or MPK2, on the other hand, reduced RBOH1 transcript, H2 O2 accumulation and MPK1/2 activity. BR-induced tolerance and MPK1/2 activation were compromised in RBOH1-, MPK2- and MPK1/2-silenced plants but not in MPK1-silenced plants. These results suggested that MPK2 played a more critical role than MPK1 in EBR-induced apoplastic H2 O2 accumulation. RBOH1, MPK1 and MPK2 were involved in the stress tolerance and BR-induced stress tolerance likely involved a positive feedback loop among RBOH1, H2 O2 and MPK2, leading to sustained apoplastic accumulation of H2 O2 and related signalling processes.
Collapse
Affiliation(s)
- Wen-Feng Nie
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
184
|
Brock AK, Berger B, Mewis I, Ruppel S. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. MICROBIAL ECOLOGY 2013; 65:661-70. [PMID: 23242136 DOI: 10.1007/s00248-012-0146-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/26/2012] [Indexed: 05/16/2023]
Abstract
Plant growth-promoting bacteria (PGPB) affect plant cellular processes in various ways. The endophytic bacterial strain Enterobacter radicincitans DSM 16656 has been shown to improve plant growth and yield in various agricultural and vegetable crops. Besides its ability to fix atmospheric nitrogen, produce phytohormones, and solubilize phosphate compounds, the strain is highly competitive against native endophytic organisms and colonizes the endorhizosphere in high numbers. Here, we show that E. radicincitans inoculation of the noncrop plant Arabidopsis thaliana promotes plant growth. Furthermore, high performance liquid chromatography (HPLC) analysis revealed that bacterial inoculation slightly decreased amounts of aliphatic glucosinolates in plant leaves in a fast-growing stage but increased these compounds in an older phase where growth is mostly completed. This effect seems to correlate with developmental stage and depends on the nitrogen requirement. Additionally, nitrogen deficiency studies with seedlings grown on medium containing different nitrogen concentrations suggest that plant nitrogen demand can influence the intensity of plant growth enhancement by E. radicincitans. This endophyte seems not to activate stress-inducible mitogen-activated protein kinases (MAPKs). Analyzing transcription of the defense-related genes PR1, PR2, PR5, and PDF1.2 by quantitative real time polymerase chain reaction (qPCR) revealed that E. radicincitans DSM 16656 is able to induce priming via salicylic acid (SA) or jasmonate (JA)/ethylene (ET) signaling pathways to protect plants against potential pathogen attack.
Collapse
Affiliation(s)
- Anita K Brock
- Leibniz-Institute of Vegetable & Ornamental Crops Grossbeeren/Erfurt eV, Grossbeeren, Germany.
| | | | | | | |
Collapse
|
185
|
Swigonska S, Weidner S. Proteomic analysis of response to long-term continuous stress in roots of germinating soybean seeds. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:470-9. [PMID: 23394790 DOI: 10.1016/j.jplph.2012.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/12/2012] [Accepted: 11/16/2012] [Indexed: 05/27/2023]
Abstract
Germination is a complex process, highly dependent on various environmental factors, including temperature and water availability. Germinating soybean seeds are especially vulnerable to unfavorable environmental conditions and exposure to long-term abiotic stresses may result in diminishing much of the yield and most importantly - restrained germination. In the present study, a proteomic approach was employed to analyze influence of cold and osmotic stress on roots of germinated soybean (Glycine max, L.) seeds. Seeds were germinating under continuous conditions of cold stress (+10°C/H2O), osmotic stress (+25°C/-0.2MPa) as well as cold and osmotic stress combined (+10°C/-0.2MPa). Proteome maps established for control samples and stress-treated samples displayed 1272 CBB-stained spots. A total of 59 proteins, present in both control and stress-treated samples and showing significant differences in volume, were identified with LC/nanoESI-MS. Identified proteins divided into functional categories, revealed 9 proteins involved in plant defense, 8 proteins responsible for plant destination and storage and 10 proteins involved in various tracks of carbohydrate metabolism. Furthermore, a number of proteins were assigned to electron transport, range of metabolic pathways, secondary metabolism, protein synthesis, embryogenesis and development, signal transduction, cellular transport, translocation and storage. By analyzing differences in expression patterns, it was possible to trace the soybean response to long-term abiotic stress as well as to distinguish similarities and differences between response to cold and osmotic stress.
Collapse
Affiliation(s)
- Sylwia Swigonska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | | |
Collapse
|
186
|
Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. THE PLANT CELL 2013; 25:1126-42. [PMID: 23524660 PMCID: PMC3634681 DOI: 10.1105/tpc.112.109074] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/26/2013] [Accepted: 03/07/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Juan Xu
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia He
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kwang-Yeol Yang
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, South Korea
| | - Breanne Mordorski
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Address correspondence to
| |
Collapse
|
187
|
Poór P, Kovács J, Szopkó D, Tari I. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. PROTOPLASMA 2013; 250:273-84. [PMID: 22535239 DOI: 10.1007/s00709-012-0408-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/29/2012] [Indexed: 05/25/2023]
Abstract
Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Középfasor 52, 6701 Szeged, PO Box 654, Hungary
| | | | | | | |
Collapse
|
188
|
Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. PLANT, CELL & ENVIRONMENT 2013; 36:1-15. [PMID: 22621159 DOI: 10.1111/j.1365-3040.2012.02543.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO), a vital cell-signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen-activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd(2+) ) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase-3-like protease activation was detected after Cd(2+) treatment. This was further confirmed with a caspase-3 substrate assay. Cd(2+) -induced caspase-3-like activity was inhibited in the presence of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO mediated caspase-3-like protease activation under Cd(2+) stress conditions. Pretreatment with cPTIO effectively inhibited Cd(2+) -induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd(2+) -induced caspase-3-like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase-3-like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd(2+) -induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation.
Collapse
Affiliation(s)
- Yun Ye
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
189
|
Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA. Cross-talk between sulfur assimilation and ethylene signaling in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e22478. [PMID: 23104111 PMCID: PMC3745555 DOI: 10.4161/psb.22478] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 05/06/2023]
Abstract
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Asim Masood
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | | | - Mohd Asgher
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Mehar Fatma
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Nafees A. Khan
- Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
190
|
Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. PLANT MOLECULAR BIOLOGY 2012; 80:587-608. [PMID: 22987115 DOI: 10.1007/s11103-012-9969-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/08/2012] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is considered the most common toxic metalloid, but its molecular mode of action is not well understood. We investigated whether arsenate [As(V)] can induce intracellular reactive oxygen species production and calcium oscillation in rice roots. To better understand the molecular basis of plant cell responses to As, we performed a large-scale analysis of the rice transcriptome during As(V) stress. As(V) induced genes involved in abiotic stress, detoxification pathways and secondary metabolic process. Genes involved in secondary cell wall biogenesis, cell cycle and oligopeptide transport were mainly downregulated. Genes encoding signalling components such as receptor-like cytoplasmic kinases protein kinase, APETALA2/ethylene response factor, heat shock factor, MYB and zinc-finger protein expressed in inflorescence meristem transcription factors were increased in expression. The expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. The predominant families of As(V)-regulated transporters belonged to the ATP-binding cassette superfamily and telurite-resistance/dicarboxylate transporters. Several factors involved in signaling, such as mitogen-activated protein kinase (MAPK), MAPK kinase kinase and calcium-dependent protein kinase (CDPK), were also upregulated. Moreover, As(V) markedly increased the activity of MAPKs and CDPK-like kinases, and CDPK and NADPH oxidases were involved in As-induced MAPK activation. Further characterization of these As(V)-responsive genes and signalling pathways may help better understand the mechanisms of metalloid uptake, tolerance and detoxification in plants.
Collapse
Affiliation(s)
- Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan City, Taiwan
| | | | | | | | | | | |
Collapse
|
191
|
Zhang H, Li D, Wang M, Liu J, Teng W, Cheng B, Huang Q, Wang M, Song W, Dong S, Zheng X, Zhang Z. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1639-53. [PMID: 22835275 DOI: 10.1094/mpmi-11-11-0293] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many bacterial, fungal, and oomycete species secrete necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) that trigger programmed cell death (PCD) and innate immune responses in dicotyledonous plants. However, how NLP induce such immune responses is not understood. Here, we show that silencing of the MAPKKKα-MEK2-WIPK mitogen-activated protein kinase (MAPK) cascade through virus-induced gene silencing compromises hydrogen peroxide accumulation and PCD induced by Nep1(Mo) from Magnaporthe oryzae. WIPK interacts with NbWRKY2, a transcription factor in Nicotiana benthamiana, in vitro and in vivo, suggesting an effector pathway that mediates Nep1(Mo)-induced cell death. Unexpectedly, salicylic acid-induced protein kinase (SIPK)- and NbWRKY2-silenced plants showed impaired Nep1(Mo)-induced stomatal closure, decreased Nep1(Mo)-promoted nitric oxide (NO) production in guard cells, and a reduction in Nep1(Mo)-induced resistance against Phytophthora nicotianae. Expression studies by real-time polymerase chain reaction suggested that the MEK2-WIPK-NbWRKY2 pathway regulated Nep1(Mo)triggered NO accumulation could be partly dependent on nitrate reductase, which was implicated in NO synthesis. Taken together, these studies demonstrate that the MAPK cascade is involved in Nep1(Mo)-triggered plant responses and MAPK signaling associated with PCD exhibits shared and distinct components with that for stomatal closure.
Collapse
Affiliation(s)
- Huajian Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chen L, Hu W, Tan S, Wang M, Ma Z, Zhou S, Deng X, Zhang Y, Huang C, Yang G, He G. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One 2012; 7:e46744. [PMID: 23082129 PMCID: PMC3474763 DOI: 10.1371/journal.pone.0046744] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 01/31/2023] Open
Abstract
MAPK cascades are universal signal transduction modules and play important roles in plant growth, development and in response to a variety of biotic and abiotic stresses. Although MAPKs and MAPKKs have been systematically investigated in several plant species including Arabidopsis, rice and poplar, no systematic analysis has been conducted in the emerging monocot model plant Brachypodium distachyon. In the present study, a total of 16 MAPK genes and 12 MAPKK genes were identified from B. distachyon. An analysis of the genomic evolution showed that both tandem and segment duplications contributed significantly to the expansion of MAPK and MAPKK families. Evolutionary relationships within subfamilies were supported by exon-intron organizations and the architectures of conserved protein motifs. Synteny analysis between B. distachyon and the other two plant species of rice and Arabidopsis showed that only one homolog of B. distachyon MAPKs was found in the corresponding syntenic blocks of Arabidopsis, while 13 homologs of B. distachyon MAPKs and MAPKKs were found in that of rice, which was consistent with the speciation process of the three species. In addition, several interactive protein pairs between the two families in B. distachyon were found through yeast two hybrid assay, whereas their orthologs of a pair in Arabidopsis and other plant species were not found to interact with each other. Finally, expression studies of closely related family members among B. distachyon, Arabidopsis and rice showed that even recently duplicated representatives may fulfill different functions and be involved in different signal pathways. Taken together, our data would provide a foundation for evolutionary and functional characterization of MAPK and MAPKK gene families in B. distachyon and other plant species to unravel their biological roles.
Collapse
Affiliation(s)
- Lihong Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Wei Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shenglong Tan
- Services Computing Technology and System Laboratory, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Min Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Zhanbing Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Shiyi Zhou
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Xiaomin Deng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Chao Huang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
- * E-mail: (GY); (GH)
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan, China
- * E-mail: (GY); (GH)
| |
Collapse
|
193
|
Ding B, Bellizzi MDR, Ning Y, Meyers BC, Wang GL. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. THE PLANT CELL 2012; 24:3783-94. [PMID: 22968716 PMCID: PMC3480302 DOI: 10.1105/tpc.112.101972] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 05/17/2023]
Abstract
Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.
Collapse
Affiliation(s)
- Bo Ding
- Department of Plant Pathology, Ohio State University, Columbus, Ohio 43210
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Yuese Ning
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio 43210
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
194
|
Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012; 34:117-26. [PMID: 22820920 PMCID: PMC3887813 DOI: 10.1007/s10059-012-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyunwoo Cho
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Daeseok Choi
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Ildoo Hwang
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
195
|
Hashimoto M, Komatsu K, Maejima K, Okano Y, Shiraishi T, Ishikawa K, Takinami Y, Yamaji Y, Namba S. Identification of three MAPKKKs forming a linear signaling pathway leading to programmed cell death in Nicotiana benthamiana. BMC PLANT BIOLOGY 2012; 12:103. [PMID: 22770370 PMCID: PMC3507812 DOI: 10.1186/1471-2229-12-103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/26/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily ancient mechanism of signal transduction found in eukaryotic cells. In plants, MAPK cascades are associated with responses to various abiotic and biotic stresses such as plant pathogens. MAPK cascades function through sequential phosphorylation: MAPK kinase kinases (MAPKKKs) phosphorylate MAPK kinases (MAPKKs), and phosphorylated MAPKKs phosphorylate MAPKs. Of these three types of kinase, the MAPKKKs exhibit the most divergence in the plant genome. Their great diversity is assumed to allow MAPKKKs to regulate many specific signaling pathways in plants despite the relatively limited number of MAPKKs and MAPKs. Although some plant MAPKKKs, including the MAPKKKα of Nicotiana benthamiana (NbMAPKKKα), are known to play crucial roles in plant defense responses, the functional relationship among MAPKKK genes is poorly understood. Here, we performed a comparative functional analysis of MAPKKKs to investigate the signaling pathway leading to the defense response. RESULTS We cloned three novel MAPKKK genes from N. benthamiana: NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKε2. Transient overexpression of full-length NbMAPKKKβ or NbMAPKKKγ or their kinase domains in N. benthamiana leaves induced hypersensitive response (HR)-like cell death associated with hydrogen peroxide production. This activity was dependent on the kinase activity of the overexpressed MAPKKK. In addition, virus-induced silencing of NbMAPKKKβ or NbMAPKKKγ expression significantly suppressed the induction of programmed cell death (PCD) by viral infection. Furthermore, in epistasis analysis of the functional relationships among NbMAPKKKβ, NbMAPKKKγ, and NbMAPKKKα (previously shown to be involved in plant defense responses) conducted by combining transient overexpression analysis and virus-induced gene silencing, silencing of NbMAPKKKα suppressed cell death induced by the overexpression of the NbMAPKKKβ kinase domain or of NbMAPKKKγ, but silencing of NbMAPKKKβ failed to suppress cell death induced by the overexpression of NbMAPKKKα or NbMAPKKKγ. Silencing of NbMAPKKKγ suppressed cell death induced by the NbMAPKKKβ kinase domain but not that induced by NbMAPKKKα. CONCLUSIONS These results demonstrate that in addition to NbMAPKKKα, NbMAPKKKβ and NbMAPKKKγ also function as positive regulators of PCD. Furthermore, these three MAPKKKs form a linear signaling pathway leading to PCD; this pathway proceeds from NbMAPKKKβ to NbMAPKKKγ to NbMAPKKKα.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yusuke Takinami
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
196
|
Chang X, Nick P. Defence signalling triggered by Flg22 and Harpin is integrated into a different stilbene output in Vitis cells. PLoS One 2012; 7:e40446. [PMID: 22792328 PMCID: PMC3391249 DOI: 10.1371/journal.pone.0040446] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/07/2012] [Indexed: 11/19/2022] Open
Abstract
Plants can activate defence to pathogen attack by two layers of innate immunity: basal immunity triggered by pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) and effector-triggered immunity (ETI) linked with programmed cell death. Flg22 and Harpin are evolutionary distinct bacterial PAMPs. We have previously shown that Harpin triggers hypersensitive cell death mimicking ETI in Vitis rupestris, but not in the Vitis vinifera cultivar 'Pinot Noir'. In contrast, the bacterial PAMP flg22 activating PTI does not trigger cell death. To get insight into the defence signalling triggered by flg22 and Harpin, we compared cellular responses upon flg22 and Harpin treatment in the two Vitis cell lines. We found that extracellular alkalinisation was blocked by inhibition of calcium influx, and modulated by pharmacological manipulation of the cytoskeleton and mitogen-activated protein kinase activity with quantitative differences between cell lines and type of PAMPs. In addition, an oxidative burst was detected that was much stronger and faster in response to Harpin as compared to flg22. In V. rupestris, both flg22 and Harpin induced transcripts of defence-related genes including stilbene synthase, microtubule disintegration and actin bundling in a similar way, whereas they differed in V. vinifera cv. 'Pinot Noir'. In contrast to Harpin, flg22 failed to trigger significant levels of the stilbene trans-resveratrol, and did not induce hypersensitive cell death even in the highly responsive V. rupestris. We discuss these data in a model, where flg22- and Harpin-triggered defence shares a part of early signal components, but differs in perception, oxidative burst, and integration into a qualitatively different stilbene output, such that for flg22 a basal PTI is elicited in both cell lines, while Harpin induces cell death mimicking an ETI-like pattern of defence.
Collapse
Affiliation(s)
- Xiaoli Chang
- Molecular Cell Biology, Botanical Institute 1, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | |
Collapse
|
197
|
Li Z, Yue H, Xing D. MAP Kinase 6-mediated activation of vacuolar processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis. THE NEW PHYTOLOGIST 2012; 195:85-96. [PMID: 22497243 DOI: 10.1111/j.1469-8137.2012.04131.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Vacuolar processing enzyme (VPE), a cysteine protease, has been intensively studied in plant hypersensitive cell death, but the role and molecular mechanism of VPEs in response to abiotic stresses remain unclear. This work investigated the involvement of VPEs in Arabidopsis response to heat stress. • Under heat shock (HS), Arabidopsis VPE activity and the transcript level of γVPE were both upregulated, and γVPE deficiency suppressed vacuolar disruption and delayed caspase-3-like activation in HS-induced programmed cell death (PCD). Moreover, the change of VPE activity generally paralleled the alteration of caspase-1-like activity under HS treatment, indicating that HS-induced VPE activity might exhibit the caspase-1-like activity. • Further studies showed that MAP Kinase 6 (MPK6) activity was increased after HS treatment, and experiments with inhibitors and mutants suggested that MPK6 was responsible for the γVPE activation after HS treatment. In response to HS stress, reactive oxygen species (ROS) production, increase of cytoplasmic calcium concentration ([Ca(2+) ](cyt)) and the upregulation of calmodulin 3 (CaM3) transcript level occurred upstream of MPK6 activation. • Our results suggested that activation of Arabidopsis γVPE was mediated by MPK6 and played an important role in HS-induced Arabidopsis PCD, providing new insight into the mechanistic study of plant VPEs.
Collapse
Affiliation(s)
- Zhe Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
198
|
Avila J, Gregory OG, Su D, Deeter TA, Chen S, Silva-Sanchez C, Xu S, Martin GB, Devarenne TP. The β-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3. PLANT PHYSIOLOGY 2012; 159:1277-90. [PMID: 22573803 PMCID: PMC3387709 DOI: 10.1104/pp.112.198432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/08/2012] [Indexed: 05/17/2023]
Abstract
The protein kinase AvrPto-dependent Pto-interacting protein3 (Adi3) is a known suppressor of cell death, and loss of its function has been correlated with cell death induction during the tomato (Solanum lycopersicum) resistance response to its pathogen Pseudomonas syringae pv tomato. However, Adi3 downstream interactors that may play a role in cell death regulation have not been identified. We used a yeast two-hybrid screen to identify the plant SnRK1 (for Sucrose non-Fermenting-1-Related Protein Kinase1) protein as an Adi3-interacting protein. SnRK1 functions as a regulator of carbon metabolism and responses to biotic and abiotic stresses. SnRK1 exists in a heterotrimeric complex with a catalytic α-subunit (SnRK1), a substrate-interacting β-subunit, and a regulatory γ-subunit. Here, we show that Adi3 interacts with, but does not phosphorylate, the SnRK1 α-subunit. The ability of Adi3 to phosphorylate the four identified tomato β-subunits was also examined, and it was found that only the Galactose Metabolism83 (Gal83) β-subunit was phosphorylated by Adi3. This phosphorylation site on Gal83 was identified as serine-26 using a mutational approach and mass spectrometry. In vivo expression of Gal83 indicates that it contains multiple phosphorylation sites, one of which is serine-26. An active SnRK1 complex containing Gal83 as the β-subunit and sucrose nonfermenting4 as the γ-subunit was constructed to examine functional aspects of the Adi3 interaction with SnRK1 and Gal83. These assays revealed that Adi3 is capable of suppressing the kinase activity of the SnRK1 complex through Gal83 phosphorylation plus the interaction with SnRK1 and suggested that this function may be related to the cell death suppression activity of Adi3.
Collapse
Affiliation(s)
- Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Oliver G. Gregory
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Dongyin Su
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Taunya A. Deeter
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Sixue Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Cecilia Silva-Sanchez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Shouling Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Gregory B. Martin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| | - Timothy P. Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843 (J.A., D.S., T.A.D., T.P.D.); Department of Biology, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida 32610 (S.C., C.S.-S.); Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (S.X.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (O.G.G., G.B.M.)
| |
Collapse
|
199
|
Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 2012; 8:e1002767. [PMID: 22761583 PMCID: PMC3386168 DOI: 10.1371/journal.pgen.1002767] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/26/2012] [Indexed: 11/18/2022] Open
Abstract
Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.
Collapse
Affiliation(s)
- Guojing Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Guohong Mao
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ling Han
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
200
|
Opdenakker K, Remans T, Vangronsveld J, Cuypers A. Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 2012; 13:7828-7853. [PMID: 22837729 PMCID: PMC3397561 DOI: 10.3390/ijms13067828] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022] Open
Abstract
Exposure of plants to toxic concentrations of metals leads to disruption of the cellular redox status followed by an accumulation of reactive oxygen species (ROS). ROS, like hydrogen peroxide, can act as signaling molecules in the cell and induce signaling via mitogen-activated protein kinase (MAPK) cascades. MAPK cascades are evolutionary conserved signal transduction modules, able to convert extracellular signals to appropriate cellular responses. In this review, our current understanding about MAPK signaling in plant metal stress is discussed. However, this knowledge is scarce compared to research into the role of MAPK signaling in the case of other abiotic and biotic stresses. ROS production is a common response induced by different stresses and undiscovered analogies may exist with metal stress. Therefore, further attention is given to MAPK signaling in other biotic and abiotic stresses and its interplay with other signaling pathways to create a framework in which the involvement of MAPK signaling in metal stress may be studied.
Collapse
Affiliation(s)
- Kelly Opdenakker
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; E-Mails: (K.O.); (T.R.); (J.V.)
| |
Collapse
|