151
|
Zhu H, Huang J, Chen H, Feng X. MOF-derived magnetic Co@porous carbon as a direction-controlled micromotor for drug delivery. NEW J CHEM 2020. [DOI: 10.1039/d0nj04957c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous carbon nanocomposites decorated with magnetic Co nanoparticles were obtained via the direct carbonization of ZIF-67 and acted as micromotors with appropriate speeds, controllable motion, and long lifetimes for drug delivery.
Collapse
Affiliation(s)
- Hongli Zhu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Jing Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Huijun Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
152
|
Li CY, Zhang T, Kang YF, Qi CB, Zheng B, Xu CM, Lin Y, Pang DW, Tang HW. Incorporating luminescence-concentrating upconversion nanoparticles and DNA walkers into optical tweezers assisted imaging: a highly stable and ultrasensitive bead supported assay. Chem Commun (Camb) 2020; 56:6997-7000. [DOI: 10.1039/d0cc02454f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescence-concentrating upconversion nanoparticles, optical tweezers, and DNA walkers are incorporated to establish a new single bead supported imaging assay.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Ting Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Chun-Miao Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences, and College of Chemistry
- Nankai University
- Tianjin 300071
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- People's Republic of China
| |
Collapse
|
153
|
Hu N, Wang Y, Liu C, He M, Nie C, Zhang J, Yu Q, Zhao C, Chen T, Chu X. An enzyme-initiated DNAzyme motor for RNase H activity imaging in living cell. Chem Commun (Camb) 2020; 56:639-642. [DOI: 10.1039/c9cc08692g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A signal amplification strategy based on an enzyme-initiated DNAzyme motor for sensitive imaging of RNase H activity in living cell.
Collapse
|
154
|
Yang XJ, Cui MR, Li XL, Chen HY, Xu JJ. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells. Chem Commun (Camb) 2020; 56:2135-2138. [DOI: 10.1039/c9cc09039h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We construct a target-triggered, self-powered 3D DNA walker for achieving intracellular signal amplification and sensitive imaging analysis of microRNAs.
Collapse
Affiliation(s)
- Xue-Jiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
155
|
Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Nie C, Chen T, Chu X. A photocontrolled and self-powered bipedal DNA walking machine for intracellular microRNA imaging. Chem Commun (Camb) 2020; 56:3496-3499. [DOI: 10.1039/d0cc00017e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A photocontrolled and self-powered bipedal DNA walking machine for intracellular microRNA imaging has been reported.
Collapse
|
156
|
Li D, Xu Y, Fan L, Shen B, Ding X, Yuan R, Li X, Chen W. Target-driven rolling walker based electrochemical biosensor for ultrasensitive detection of circulating tumor DNA using doxorubicin@tetrahedron-Au tags. Biosens Bioelectron 2020; 148:111826. [DOI: 10.1016/j.bios.2019.111826] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
|
157
|
Zheng J, Shi H, Wang M, Duan C, Huang Y, Li C, Xiang Y, Li G. Homogenous Electrochemical Method for Ultrasensitive Detection of Tumor Cells Designed by Introduction of Poly(A) Tails onto Cell Membranes. Anal Chem 2019; 92:2194-2200. [PMID: 31850744 DOI: 10.1021/acs.analchem.9b04877] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid and efficient detection of tumor cells is one of the central challenges for modern analytical technology. In this paper, we report a polyadenine (poly(A)) tail-based strategy for ultrasensitive detection of tumor cells in aqueous solution with an electrochemical technique. Specifically, tumor cell-specific EpCAM aptamers without any modification can tightly bind on cell membranes and facilitate the subsequent introduction of multiple poly(A) tails via programmable terminal deoxynucleotidyl transferase (TdT)-mediated elongation. Meanwhile, since tumor cells bearing poly(A) tails can be easily adsorbed onto the surface of gold electrodes through a strong interaction between adenosines and gold, a highly amplified electrochemical signal can be obtained. Thus, by virtue of poly(A) tails, the proposed method allows the detection of as low as 3 cells mL-1. Compared with the previously reported methods for tumor cells detection, this poly(A)-based homogeneous electrochemical method needs just one enzyme and one aptamer without any modification and avoids the complex and time-consuming modification process of the working electrode, which holds great potential application in the future.
Collapse
Affiliation(s)
- Ji Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Mengjiao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , P. R. China
| | - Chao Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences , Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
158
|
Shi L, Sun Y, Mi L, Li T. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. ACS Sens 2019; 4:3219-3226. [PMID: 31763826 DOI: 10.1021/acssensors.9b01655] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Portable chemiluminescence (CL) imaging with a smartphone has shown a great promise for point-of-care testing of diseases, especially for acute myocardial infarction (AMI), which may occur abruptly. A challenge remains how to improve the imaging sensitivity that usually is several orders of magnitude lower than those of counterpart methodologies using the sophisticated equipment. Toward this goal, here, we report the target-triggered in situ growth of AuNP@hairpin-DNA nanoprobes into spherical nucleic acid enzymes (SNAzymes), which serve as both nanolabels and amplifiers for portable CL imaging of microRNAs (miRNAs) with an ultrahigh sensitivity comparable to that of the instrumental measurement under same conditions. A G-quadruplex (G4) DNA dense layer is dynamically produced on the gold nanocore via a DNAzyme machine-driven hairpin cleaving and captures the cofactor hemin to form the SNAzymes with higher peroxidase activity and stronger nuclease resistance than the commonly used G4 DNAzymes. The matured SNAzymes are then utilized as catalytic labels in a luminol-artesunate CL system for miRNA imaging with a smartphone as the portable detector. In this way, two AMI-related miRNAs, miRNA-499 and miRNA-133a, are successfully detected in real patients' serum with a naked eye-visualized CL change at 10 fM, showing a 5 order of magnitude improvement on the sensitivity of visualizing the same disease markers in clinical circulating blood as compared to the reported strategy. In addition, a good selectivity of our developed CL imaging platform is demonstrated. These unique features make it promising to employ this portable imaging platform for clinical AMI diagnosis.
Collapse
Affiliation(s)
- Lin Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Lan Mi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
159
|
Cui Y, Wang H, Liu S, Wang Y, Huang J. Target-activated DNA nanomachines for the ATP detection based on the SERS of plasmonic coupling from gold nanoparticle aggregation. Analyst 2019; 145:445-452. [PMID: 31819931 DOI: 10.1039/c9an02051a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The self-assembly of plasmonic nanoparticles provides a powerful approach to generate surface-enhanced Raman scattering (SERS), which promotes the actual applications in chemical and biomolecular analyses. Herein, we developed a facile SERS sensing strategy for an ATP assay with a 3-D DNA nanomachine that walks by the Exo III cleavage, leading to the formation of AuNP aggregates, which resulted in the enhancement of the electromagnetic field. Depending on the target-activated Exo III cleavage, the 3-D nanomachine can walk along the 3-D track on the surface of AuNPs and generate self-assembled hot-spots to enhance the SERS signal of a Raman dye, allowing a homogenous assay of the ATP concentration with high sensitivity and reproducibility. Under optimized experimental conditions, the biosensor detected ATP with a widened dynamic range from 1 pM to 1 × 105 pM with a limit of detection of up to 0.29 pM. Hence, the novel strategy provides a useful and practical platform for the SERS assay of ATP with high sensitivity and repeatability. Besides, this platform shows great potential for applications in high-throughput assays for drug screening and clinical diagnostics.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Su Liu
- College of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Yu Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China.
| | - Jiadong Huang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou 256603, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
160
|
Xue C, Zhang S, Li C, Yu X, Ouyang C, Lu Y, Wu ZS. Y-Shaped Backbone-Rigidified Triangular DNA Scaffold-Directed Stepwise Movement of a DNAzyme Walker for Sensitive MicroRNA Imaging within Living Cells. Anal Chem 2019; 91:15678-15685. [PMID: 31793769 DOI: 10.1021/acs.analchem.9b03784] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA as a programmable molecule shows great potential in a wide variety of applications, with the dynamic DNA nanodevices such as DNA motors and walkers holding the most promise in controlled functions for biosensing and nanomedicine. However, a motor or walker that consists of DNA exclusively has not been shown to function within cells because of its susceptibility to endogenous nuclease-mediated degradation. In this contribution, we demonstrate a Y-shaped backbone-rigidified triangular DNA scaffold (YTDS)-directed DNAzyme walker that functions inside living cells to detect microRNAs (miRNAs) with high sensitivity. A novel Y-shaped backbone offers access to geometrically well-defined configurations and increases the rigidity of DNA assemblies, providing a unique, circular, and rigid DNA track within living cells without non-nucleic acid auxiliary materials and enabling the stepwise movement of DNAzyme in an inchworm fashion. This strategy is extended to the construction of larger rigid planar geometric polygon-based DNA walkers, demonstrating unprecedented opportunities to build dynamic DNA nanostructures with precise geometry and versatile functionality.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Songbai Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,College of Chemistry and Materials Engineering , Hunan University of Arts and Science , Changde 415000 , China
| | - Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Xin Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Changhe Ouyang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Yi Lu
- Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| |
Collapse
|
161
|
Lv S, Zhang K, Zhu L, Tang D. ZIF-8-Assisted NaYF4:Yb,Tm@ZnO Converter with Exonuclease III-Powered DNA Walker for Near-Infrared Light Responsive Biosensor. Anal Chem 2019; 92:1470-1476. [DOI: 10.1021/acs.analchem.9b04710] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuzhen Lv
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Ling Zhu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
162
|
Xiong E, Zhen D, Jiang L, Zhou X. Binding-Induced 3D-Bipedal DNA Walker for Cascade Signal Amplification Detection of Thrombin Combined with Catalytic Hairpin Assembly Strategy. Anal Chem 2019; 91:15317-15324. [PMID: 31710462 DOI: 10.1021/acs.analchem.9b04987] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As an important biomarker, thrombin (TB) is a major player in thrombosis and hemostasis and has attracted increasing attention involving its determination. Herein a universal and ultrasensitive fluorescence biosensor based on a binding-induced 3D-bipedal DNA walker and catalytic hairpin assembly (CHA) strategy has been proposed for cascade signal amplification detection of thrombin. In this study, we designed two proximity probes (foot 1 and foot 2) which include a specific affinity ligand for TB binding and a Pb2+-dependent DNAzyme tail sequence. In the presence of TB, the simultaneous binding of TB to foot 1 (F1) and foot 2 (F2) via TB aptamer (TBA) brings the tail sequences into close proximity and the melting temperature for tail sequences and track DNA is increased, allowing the Pb2+-dependent DNAzyme to cleave the track DNA into two short fragments which have lower affinities for the DNAzyme and, finally, leading to the release of trigger DNA (T-DNA) for subsequent CHA reaction. In the meantime, the dissociated DNA walkers (F1 and F2) explore adjacent unwound track DNA, and the walking procedure is conducted. Unlike the conventional unipedal DNA walkers that anchor foot DNA and track DNA on the same sensing surface, the proposed 3D-bipedal DNA walking machine can not only increase the local concentration of track DNA but can also improve the walking efficiency and expand the range of the walkers to some extent due to the two free feet. Moreover, with the advantages of superior sensitivity and excellent specificity, this biosensing platform exhibits a huge potential in practical application in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Erhu Xiong
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Deshuai Zhen
- College of Chemistry and Chemical Engineering , Qiannan Normal University for Nationalities , Duyun 558000 , China.,State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082 , China
| | - Ling Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082 , China
| | - Xiaoming Zhou
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
163
|
Peng X, Wen ZB, Yang P, Chai YQ, Liang WB, Yuan R. Biomimetic 3D DNA Nanomachine via Free DNA Walker Movement on Lipid Bilayers Supported by Hard SiO 2@CdTe Nanoparticles for Ultrasensitive MicroRNA Detection. Anal Chem 2019; 91:14920-14926. [PMID: 31674756 DOI: 10.1021/acs.analchem.9b03263] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, a novel three-dimensional (3D) DNA nanomachine with high walking efficiency via free DNA walker movement on biomimetic lipid bilayers supported by hard silica@CdTe quantum dots (SiO2@CdTe) was constructed for ultrasensitive fluorescence detection of microRNA. The synthesized SiO2@CdTe nanoparticles were adopted as the fluorescence indicator and spherical carrier of lipid bilayers, and then the DNA substrates were anchored on lipid bilayers with biomimetic fluidity through the cholesterol-lipid interaction. Once target microRNA-141 interacted with the 3D DNA nanomachine to release cholesterol labeled arm (Chol-arm), the Chol-arm could generate a series of strand displacement reactions by moving freely on the lipid bilayers, resulting in the releasement of numerous quenchers from the SiO2@CdTe nanoparticles and inducing a strong fluorescence signal. Impressively, compared with traditional 3D DNA nanomachine conjugating DNA substrates on hard surfaces (such as gold or silica) with limited reactivity, the proposed biomimetic 3D DNA nanomachine not only immobilized DNA substrates rapidly and effectively but also kept it with a favorable fluidity, which significantly enhanced the walking efficiency. As expected, the biomimetic 3D DNA nanomachine for fluorescence detection of microRNA-141 exhibited an excellent performance with a detection limit of 0.21 pM and presented promising properties in cell lysate detection and intracellular imaging. Thus, the described biomimetic 3D DNA nanomachine provided a novel avenue for sensitive detection of biomolecules, which could be useful for bioanalysis and early clinical diagnoses of disease.
Collapse
Affiliation(s)
- Xin Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Zhi-Bin Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Peng Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
164
|
Zhao L, Sun R, He P, Zhang X. Ultrasensitive Detection of Exosomes by Target-Triggered Three-Dimensional DNA Walking Machine and Exonuclease III-Assisted Electrochemical Ratiometric Biosensing. Anal Chem 2019; 91:14773-14779. [PMID: 31660712 DOI: 10.1021/acs.analchem.9b04282] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are membrane-enclosed phospholipid extracellular vesicles. In spite of their great promise as noninvasive biomarkers for cancer diagnosis, sensitive detection of exosomes is still challenging. Herein, the detection of exosomes was changed to the detection of DNA after recognition of exosomes with its aptamers. CD63 aptamer and EpCAM aptamer were used for the detection of MCF-7 cell-secreted exosome. The recognition process was amplified through the movements of a three-dimensional DNA walker. And then, Exonuclease III- assisted electrochemical ratiometric sensor was applied for further signal amplification. Under optimal conditions, the detection limit of 1.3 × 104 particles/mL was obtained with excellent selectivity. Furthermore, clinical application test for the detection of exosomes in human serum was also verified.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Ruijiao Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Peng He
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| | - Xiaoru Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| |
Collapse
|
165
|
Xu S, Chang Y, Wu Z, Li Y, Yuan R, Chai Y. One DNA circle capture probe with multiple target recognition domains for simultaneous electrochemical detection of miRNA-21 and miRNA-155. Biosens Bioelectron 2019; 149:111848. [PMID: 31726271 DOI: 10.1016/j.bios.2019.111848] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
Abstract
In this work, a novel DNA circle capture probe with multiple target recognition domains was designed to develop an electrochemical biosensor for ultrasensitive detection of microRNA-21 (miRNA-21) and miRNA-155 simultaneously. The DNA circle capture probe was anchored at the top of the tetrahedron DNA nanostructure (TDN) to simultaneously recognize miRNA-21 and miRNA-155 through multiple target recognition domains under the assistance of Helper strands, which could trigger mimetic proximity ligation assay (mPLA) for capturing the beacons ferrocene (Fc)-A1 and methylene blue (MB)-A2 to achieve multiple miRNAs detection. In this way, the local reaction concentration could be enhanced and avoid the interference of various capture probes compared with the traditional multiplexed electrochemical biosensor with the use of different capture probes, resulting in the significantly improvement of detection sensitivity. As a result, this proposed biosensor showed wide linearity ranging from 0.1 fM to 10 nM with detection limits of miRNA-21 and miRNA-155 as 18.9 aM and 39.6 aM respectively, which also could be applied in the simultaneously detection of miRNA-21 and miRNA-155 from cancer cell lysates. The present strategy paved a new path in the design of capture probes for achieving more efficient and sensitive multiple biomarkers detections and possessed the potential applications in clinical diagnostic of diseases.
Collapse
Affiliation(s)
- Sai Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhongyu Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yunrui Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
166
|
Chen J, Luo Z, Sun C, Huang Z, Zhou C, Yin S, Duan Y, Li Y. Research progress of DNA walker and its recent applications in biosensor. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115626] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
167
|
Graphene oxide and enzyme-assisted dual-cycling amplification method for sensitive fluorometric determination of DNA. Mikrochim Acta 2019; 186:716. [PMID: 31654133 DOI: 10.1007/s00604-019-3825-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
A fluorometric method is described for the determination of DNA. It involves the use of graphene oxide (GO), exonuclease III (Exo III), and two specially designed fluorophore-labeled hairpin probes (HP1 and HP2). Different from other GO-based DNA assays, the method takes advantage of the distinct binding abilities of GO with hairpin DNA probes and single nucleotides. GO serves as a strong quencher for fluorescent labels to ensure a very low background signal. Two reaction cycles mediated by Exo III are employed to enhance the signals. The combination of GO-induced quenching and Exo III-mediated dual regeneration of analytes leads to a detection limit as low as 1 pM for the model analyte human hemochromatosis protein (HFE) gene. The method is also applicable for the determination of HFE gene spiked into fetal bovine serum. Graphical abstract Schematic representation of a GO-based, Exo III-assisted method for dual-signal amplified detection of DNA, for which human haemochromatosis protein (HFE) gene is designed as the model target. The assay involves graphene oxide (GO), exonuclease (Exo III), and two specially designed, fluorophore-labelled hairpin probes (HP1 and HP2).
Collapse
|
168
|
Blanchard AT, Bazrafshan AS, Yi J, Eisman JT, Yehl KM, Bian T, Mugler A, Salaita K. Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis. NANO LETTERS 2019; 19:6977-6986. [PMID: 31402671 DOI: 10.1021/acs.nanolett.9b02311] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor proteins such as myosin, kinesin, and dynein are essential to eukaryotic life and power countless processes including muscle contraction, wound closure, cargo transport, and cell division. The design of synthetic nanomachines that can reproduce the functions of these motors is a longstanding goal in the field of nanotechnology. DNA walkers, which are programmed to "walk" along defined tracks via the burnt bridge Brownian ratchet mechanism, are among the most promising synthetic mimics of these motor proteins. While these DNA-based motors can perform useful tasks such as cargo transport, they have not been shown to be capable of cooperating to generate large collective forces for tasks akin to muscle contraction. In this work, we demonstrate that highly polyvalent DNA motors (HPDMs), which can be viewed as cooperative teams of thousands of DNA walkers attached to a microsphere, can generate and sustain substantial forces in the 100+ pN regime. Specifically, we show that HPDMs can generate forces that can unzip and shear DNA duplexes (∼12 and ∼50 pN, respectively) and rupture biotin-streptavidin bonds (∼100-150 pN). To help explain these results, we present a variant of the burnt-bridge Brownian ratchet mechanism that we term autochemophoresis, wherein many individual force generating units generate a self-propagating chemomechanical gradient that produces large collective forces. In addition, we demonstrate the potential of this work to impact future engineering applications by harnessing HPDM autochemophoresis to deposit "molecular ink" via mechanical bond rupture. This work expands the capabilities of synthetic DNA motors to mimic the force-generating functions of biological motors. Our work also builds upon previous observations of autochemophoresis in bacterial transport processes, indicating that autochemophoresis may be a fundamental mechanism of pN-scale force generation in living systems.
Collapse
Affiliation(s)
- Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30322 , United States
| | - Alisina S Bazrafshan
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Jacob Yi
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Julia T Eisman
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Kevin M Yehl
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Teng Bian
- Department of Physics , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Andrew Mugler
- Department of Physics , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30322 , United States
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
169
|
Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019; 48:4892-4920. [PMID: 31402369 PMCID: PMC6746594 DOI: 10.1039/c8cs00402a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA nanotechnology engineered at the solid-liquid interface has advanced our fundamental understanding of DNA hybridization kinetics and facilitated the design of improved biosensing, bioimaging and therapeutic platforms. Three research branches of DNA nanotechnology exist: (i) structural DNA nanotechnology for the construction of various nanoscale patterns; (ii) dynamic DNA nanotechnology for the operation of nanodevices; and (iii) functional DNA nanotechnology for the exploration of new DNA functions. Although the initial stages of DNA nanotechnology research began in aqueous solution, current research efforts have shifted to solid-liquid interfaces. Based on shape and component features, these interfaces can be classified as flat interfaces, nanoparticle interfaces, and soft interfaces of DNA origami and cell membranes. This review briefly discusses the development of DNA nanotechnology. We then highlight the important roles of structural DNA nanotechnology in tailoring the properties of flat interfaces and modifications of nanoparticle interfaces, and extensively review their successful bioapplications. In addition, engineering advances in DNA nanodevices at interfaces for improved biosensing both in vitro and in vivo are presented. The use of DNA nanotechnology as a tool to engineer cell membranes to reveal protein levels and cell behavior is also discussed. Finally, we present challenges and an outlook for this emerging field.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Gao H, Zhang J, Liu Y, Tu W, Wei T, Dai Z. Triple-Helix Molecular Switch Electrochemiluminescence Nanoamplifier Based on a S-Doped Lu2O3/Ag2S Pair for Sensitive MicroRNA Detection. Anal Chem 2019; 91:12038-12045. [DOI: 10.1021/acs.analchem.9b03071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | | | | | - Zhihui Dai
- Nanjing Normal University Center for Analysis and Testing, Nanjing 210023, People’s Republic of China
| |
Collapse
|
171
|
Hu M, Mao D, Liu X, Ren L, Zhou M, Chen X, Zhu X. An all-in-one homogeneous DNA walking nanomachine and its application for intracellular analysis of miRNA. Am J Cancer Res 2019; 9:5914-5923. [PMID: 31534528 PMCID: PMC6735375 DOI: 10.7150/thno.36081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/21/2019] [Indexed: 01/03/2023] Open
Abstract
DNA walker is a powerful type of DNA nanomachine that can produce amplified signals during the "burnt-bridge"-like walking process. Despite their successful application in extracellular bioanalysis, the heterogeneity of the existing DNA walkers makes it difficult to guarantee the consistency of the results during the analysis of different cells. Methods: Here, an all-in-one homogeneous DNA walking nanomachine is reported that can be delivered into living cells for intracellular bioanalysis of miRNA without auxiliary materials. Results: This DNA walking nanomachine is constructed of gold nanoparticles on which two types of interrelated DNA tracks are assembled. The target miRNA, cancer-related miR-21, can be captured by one of the tracks (track 1) and then walk to the other track (track 2), releasing the hybrid of track 1 and track 2 from the nanoparticle to produce a signal. The walking process can proceed in a cyclic 1-2-1-2 manner and thereby produce amplified signals. Thus, sensitive imaging of the miRNA in situ can be achieved. Conclusion: Benefiting from the homogeneity of the detection system, the method can be applied for intracellular analysis without interference induced by the fluctuations of stimuli or accessorial contents.
Collapse
|
172
|
Xiao M, Wang X, Li L, Pei H. Stochastic RNA Walkers for Intracellular MicroRNA Imaging. Anal Chem 2019; 91:11253-11258. [DOI: 10.1021/acs.analchem.9b02265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Xiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| |
Collapse
|
173
|
Iwe IA, Li Z, Huang J. A dual-cycling fluorescence scheme for ultrasensitive DNA detection through signal amplification and target regeneration. Analyst 2019; 144:2649-2655. [PMID: 30843550 DOI: 10.1039/c9an00075e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we propose an ultrasensitive fluorescence strategy for DNA detection. This method utilizes a molecular beacon (MB), a hairpin probe (HP), and an enzyme to trigger dual-cycling reactions (cycles I and II). In cycle I, the target is repeatedly used to amplify the fluorescence emission through hybridizations with the MB and cleavage reactions achieved by the enzyme. In cycle II, hybridization reactions between the HP and a segment of the MB continuously regenerate the target to trigger more cycle I reactions, leading to an enhanced fluorescent signal. The detection limit of the method is determined to be as low as 50 fM within 45 min, which is 2 to 3 orders of magnitude lower than that of the conventional fluorescence strategies. The method also shows a high selectivity over mismatched and random DNA sequences. The signal amplification mechanism of the strategy offers insights into constructing efficient and ultrasensitive biosensors for various applications.
Collapse
Affiliation(s)
- Idorenyin A Iwe
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | |
Collapse
|
174
|
Fluorometric determination of microRNA by using an entropy-driven three-dimensional DNA walking machine based on a catalytic hairpin assembly reaction on polystyrene microspheres. Mikrochim Acta 2019; 186:574. [PMID: 31342252 DOI: 10.1007/s00604-019-3689-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
Abstract
An entropy-driven 3-D DNA walking machine is presented which involves catalytic hairpin assembly (CHA) for detection of microRNA. A 3-D DNA walking machine was designed that uses streptavidin-coated polystyrene microspheres as track carriers to obtain reproducibility. The method was applied to microRNA 21 as a model analyte. Continuous walking on the DNA tracks is achieved via entropy increase. This results in a disassembly of ternary DNA substrates on polystyrene microspheres and leads to cycling of microRNA 21. The release of massive auxiliary strands from ternary DNA substrates induces the CHA. This is accompanied by in increase in fluorescence, best measured at excitation/emission wavelengths of 480/520 nm. On account of entropy-driven reaction, the assay is remarkably selective. It can differentiate microRNA 21 from homologous microRNAs in giving a signal that is less than 5% of the signal for microRNA 21 except for microRNA-200b. The assay works in the 50 pM to 20 nM concentration range and has a 41 pM detection limit. The method displays good reproducibility (between 1.1 and 4.2%) and recovery (from 99.8 to 104.0%). Graphical abstract An entropy-driven 3-D DNA walking machine is described. It is based on the use of polystyrene microspheres and of a catalytic hairpin assembly reaction for sensitive microRNA detection. Figure Notes: AS represents auxiliary strand; S represents substrate strand; LS represents link strand; F represents fuel nucleic acid; RepF represents nucleic acid labeled with FAM; RepQ represents nucleic acid labeled with BHQ1.
Collapse
|
175
|
Mason SD, Wang GA, Yang P, Li Y, Li F. Probing and Controlling Dynamic Interactions at Biomolecule-Nanoparticle Interfaces Using Stochastic DNA Walkers. ACS NANO 2019; 13:8106-8113. [PMID: 31241883 DOI: 10.1021/acsnano.9b03053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a bottom-up approach to assemble a series of stochastic DNA walkers capable of probing dynamic interactions occurring at the bio-nano interface. We systematically investigated the impact of varying interfacial factors, including intramolecular interactions, orientation, cooperativity, steric effect, multivalence, and binding hindrance on enzymatic behaviors at the interfaces of spherical nucleic acids. Our mechanistic study has revealed critical roles of various interfacial factors that significantly alter molecular binding and enzymatic behaviors from bulk solutions. The improved understanding of the bio-nano interface may facilitate better design and operation of nanoparticle-based biosensors and/or functional devices. We successfully demonstrate how improved understanding of the bio-nano interface help rationalize the design of amplifiable biosensors for nucleic acids and antibodies.
Collapse
Affiliation(s)
- Sean D Mason
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario , Canada L2S 3A1
| | - Guan A Wang
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario , Canada L2S 3A1
| | - Peng Yang
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario , Canada L2S 3A1
- College of Chemistry, Analytical & Testing Centre , Sichuan University , Chengdu 610064 , China
| | - Yongya Li
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario , Canada L2S 3A1
| | - Feng Li
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario , Canada L2S 3A1
- College of Chemistry, Analytical & Testing Centre , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
176
|
Nucleic acid enzymes based on functionalized nucleosides. Curr Opin Chem Biol 2019; 52:93-101. [PMID: 31307007 DOI: 10.1016/j.cbpa.2019.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 06/06/2019] [Indexed: 12/29/2022]
Abstract
Nucleic acid-based enzymes have recently joined their proteinaceous counterparts as important biocatalysts. While RNA enzymes (ribozymes) are found in nature, deoxyribozymes or DNAzymes are man-made entities. Numerous ribozymes and DNAzymes have been identified by Darwinian selection methods to catalyze a broad array of chemical transformations. Despite these important advances, practical applications involving nucleic acid enzymes are often plagued by relatively poor pharmacokinetic properties and cellular uptake, rapid degradation by nucleases and/or by the limited chemical arsenal carried by natural DNA and RNA. In this review, the two main chemical approaches for the modification of nucleic acid-based catalysts, particularly DNAzymes, are described. These methods aim at improving the functional properties of nucleic acid enzymes by mitigating some of these shortcomings. In this context, recent developments in the post-SELEX processing of existing nucleic acid catalysts as well as efforts for the selection of DNAzymes and ribozymes with modified nucleoside triphosphates are summarized.
Collapse
|
177
|
Lei S, Xu L, Liu Z, Zou L, Li G, Ye B. An enzyme-free and label-free signal-on aptasensor based on DNAzyme-driven DNA walker strategy. Anal Chim Acta 2019; 1081:59-64. [PMID: 31446964 DOI: 10.1016/j.aca.2019.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022]
Abstract
Herein, a signal-on electrochemical aptasensor for highly sensitive detection of thrombin (TB) was constructed based on the DNAzyme-driven DNA walker strategy. We developed a new dual functional hairpin DNA (HP) containing a substrate sequence of the Mg2+-dependent DNAzyme (in the loop region) and the G-quadruplex forming segment (in the stem region). The DNA walker (TBA2-DWs), containing a TB aptamer and an enzymatic sequence, was introduced onto gold electrode (GE) by aptamers-target specific recognition, and thus initiated the enzymatic sequences to hybridize with the substrate sequence. Then, the DNA walker could repeatedly bind and cleave HP in the assistance of Mg2+, unlocking many active G-quadruplex forming sequences. Finally, hemin can further bind the G-quadruplex to form G-quadruplex/hemin complexes and generate enhanced current output. The aptasensor for TB assay showed a linear detection range from 1 pM to 60000 pM with a lower detection limit of 0.58 pM. And more, the proposed detection strategy was enzyme-free and label-free.
Collapse
Affiliation(s)
- Sheng Lei
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lingling Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lina Zou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Gaiping Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Baoxian Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
178
|
Yang F, Cheng Y, Cao Y, Zhang Y, Dong H, Lu H, Zhang X. MicroRNA Triggered DNA “Nano Wheel” for Visualizing Intracellular microRNA via Localized DNA Cascade Reaction. Anal Chem 2019; 91:9828-9835. [DOI: 10.1021/acs.analchem.9b01487] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yaru Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yu Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yiyi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Haifeng Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Huiting Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Xueji Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| |
Collapse
|
179
|
Fluorometric determination of the p53 cancer gene using strand displacement amplification on gold nanoparticles. Mikrochim Acta 2019; 186:517. [DOI: 10.1007/s00604-019-3609-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
|
180
|
Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Chen T, Chu X. A microRNA-triggered self-powered DNAzyme walker operating in living cells. Biosens Bioelectron 2019; 136:31-37. [DOI: 10.1016/j.bios.2019.04.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
|
181
|
Wu T, Cao Y, Yang Y, Zhang X, Wang S, Xu LP, Zhang X. A three-dimensional DNA walking machine for the ultrasensitive dual-modal detection of miRNA using a fluorometer and personal glucose meter. NANOSCALE 2019; 11:11279-11284. [PMID: 31165838 DOI: 10.1039/c9nr03588e] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) DNA walking machines inspired by natural molecular machines have attracted significant attention due to their high walking efficiency and signal amplification capability. Herein, we report a 3D DNA walking machine for the dual-modal detection of miRNA using a fluorometer and personal glucose meter (PGM). The 3D DNA walking machine on magnetic beads (MBs) was coated with the BHQ-H1-FAM hairpin structures (DNA tracks), activated by target miRNA-21 (walking strand) and propelled by a strand displacement reaction. During these processes, the fluorescence of FAM on H1 was turned on (first signal), and the invertase on H2 was introduced into the surface of the MBs. After being separated by an external magnetic field, the invertase hydrolyzed sucrose into glucose to generate a second signal, which was quantified by the PGM. The developed 3D DNA walking machine showed high sensitivity and good specificity, and the detection limits of 98 pM and 60 pM were obtained for the fluorescence-based assay and PGM-based assay, respectively. Compared with the single-modal detection, the developed DNA walking machine can achieve a unique double signal readout and more reliable sensitive performance. In addition, the proposed 3D DNA walking machine was successfully applied to detect miRNA in real biological samples. The 3D DNA walking machine with dual-modal detection has potential applications in disease diagnostics and clinical applications and can satisfy different testing requirements both in the laboratory and field.
Collapse
Affiliation(s)
- Tingting Wu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yu Cao
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xiaoyan Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
182
|
Ma H, Guo B, Yan X, Wang T, Que H, Gan X, Liu P, Yan Y. A smart fluorescent biosensor for the highly sensitive detection of BRCA1 based on a 3D DNA walker and ESDR cascade amplification. RSC Adv 2019; 9:19347-19353. [PMID: 35519381 PMCID: PMC9064877 DOI: 10.1039/c9ra02401h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
Nucleic acid analysis plays an important role in the diagnosis of diseases. There is a continuous demand to develop rapid and sensitive methods for the specific detection of nucleic acids. Herein, we constructed a highly sensitive and rapid fluorescent biosensor for the detection of BRCA1 by coupling a 3D DNA walker machine with spontaneous entropy-driven strand displacement reactions (ESDRs). In this study, the 3D DNA walker machine was well activated by the target DNA; this resulted in the cyclic utilization of the target DNA and the release of intermediate DNAs. Subsequently, the free intermediate DNAs triggered the circulation process of ESDRs with the help of the assistant probe A, leading to a significant enhancement of the fluorescence intensity. Due to the robust execution of the 3D DNA walker machine and highly efficient amplification capability of ESDRs, the developed biosensing method shows a wide linear range from 0.1 pM to 10 nM with the detection limit as low as 41.44 fM (S/N = 3). Moreover, the constructed biosensor displays superior specificity and has been applied to monitor BRCA1 in complex matrices. Thus, this elaborated cascade amplification biosensing strategy provides a potential platform for the bioassays of nucleic acids and the clinical diagnosis of diseases.
Collapse
Affiliation(s)
- Hongmin Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Xiaoyu Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Haiying Que
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Xiufeng Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-68485786 +86-23-68485688
| |
Collapse
|
183
|
Chang Y, Wu Z, Sun Q, Zhuo Y, Chai Y, Yuan R. Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Anal Chem 2019; 91:8123-8128. [DOI: 10.1021/acs.analchem.9b00363] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhongyu Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qianxin Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
184
|
Sun MF, Liu JL, Chai YQ, Zhang J, Tang Y, Yuan R. Three-Dimensional Cadmium Telluride Quantum Dots–DNA Nanoreticulation as a Highly Efficient Electrochemiluminescent Emitter for Ultrasensitive Detection of MicroRNA from Cancer Cells. Anal Chem 2019; 91:7765-7773. [DOI: 10.1021/acs.analchem.9b01185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Man-Fei Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jin Zhang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ying Tang
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
185
|
Huang J, Zhu L, Ju H, Lei J. Telomerase Triggered DNA Walker with a Superhairpin Structure for Human Telomerase Activity Sensing. Anal Chem 2019; 91:6981-6985. [PMID: 31099242 DOI: 10.1021/acs.analchem.9b01603] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Different from conventional DNA walkers, we designed a telomerase-triggered three-dimensional DNA walker consisting of a superhairpin structure with a bulged loop in the stem as the walking strand and dye-labeled tracks for ultrasensitive detection of telomerase activity. In the presence of telomerase, the primers in the stem of the superhairpin structure were elongated and triggered internal strand displacement, thus activating the superhairpin structure. Subsequently, the open superhairpin structure as a swing arm was able to bind with the track, and the swing arm could be released by enzymatic cleavage of the binding duplex domain, resulting in the fluorescence recovery of dye-labeled fragments from the surface of gold nanoparticles. Based on signal amplification of the telomerase-triggered DNA walker, the walking device was further applied to various cancer lines with a low detection limit of telomerase activity equivalent to 90 cells μL-1 for HeLa cells. Moreover, the advantage of this DNA walker strategy was confirmed by calculating telomerase activity in a single cell. This telomerase-triggered DNA walker provides a new concept on signal transduction for telomerase detection and is anticipated to stimulate interest in DNA nanomachine design for bioanalysis.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Longyi Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
186
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019; 58:7992-7996. [DOI: 10.1002/anie.201900697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
187
|
Wang L, Hortelão AC, Huang X, Sánchez S. Lipase‐Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Ana C. Hortelão
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Baldiri i Reixac 10–12 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
188
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
189
|
Yousefi H, Su HM, Imani SM, Alkhaldi K, M. Filipe CD, Didar TF. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens 2019; 4:808-821. [PMID: 30864438 DOI: 10.1021/acssensors.9b00440] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food safety is a major factor affecting public health and the well-being of society. A possible solution to control food-borne illnesses is through real-time monitoring of the food quality throughout the food supply chain. The development of emerging technologies, such as active and intelligent packaging, has been greatly accelerated in recent years, with a focus on informing consumers about food quality. Advances in the fields of sensors and biosensors has enabled the development of new materials, devices, and multifunctional sensing systems to monitor the quality of food. In this Review, we place the focus on an in-depth summary of the recent technological advances that hold the potential for being incorporated into food packaging to ensure food quality, safety, or monitoring of spoilage. These advanced sensing systems usually target monitoring gas production, humidity, temperature, and microorganisms' growth within packaged food. The implementation of portable and simple-to-use hand-held devices is also discussed in this Review. We highlight the mechanical and optical properties of current materials and systems, along with various limitations associated with each device. The technologies discussed here hold great potential for applications in food packaging and bring us one step closer to enable real-time monitoring of food throughout the supply chain.
Collapse
Affiliation(s)
- Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | | | |
Collapse
|
190
|
Zhang X, Chen C, Wu J, Ju H. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13581-13588. [PMID: 30888785 DOI: 10.1021/acsami.9b00605] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A chemically powered jellyfish-like micromotor was proposed by using a multimetallic shell and a DNA assembly with catalase decorations modified on the concave surface to simulate the umbrella-shaped body and the muscle fibers on the inner umbrella of jellyfish. Relying on the catalytic generation of oxygen gas by catalase in H2O2 fuel, the jellyfish-like micromotor showed good bubble-propelled motion in different biomedia with speed exceeding 209 μm s-1 in 1.5% H2O2. The jellyfish-like micromotors could also be applied for motion detection of DNA based on a displacement hybridization-triggered catalase release. The proposed jellyfish-like micromotors showed advantages of easy fabrication, good motion ability, sensitive motion detection of DNA, and good stability and reproducibility, indicating considerable promise for biological application.
Collapse
Affiliation(s)
- Xueqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Chengtao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
191
|
Chen X, Chen W, Tang L, Hu W, Wang M, Miao P. Electrochemical impedance spectroscopic analysis of nucleic acids through DNA tetrahedron self-walking machine. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
192
|
Xue J, Chen F, Bai M, Cao X, Huang P, Zhao Y. All-in-One Synchronized DNA Nanodevices Facilitating Multiplexed Cell Imaging. Anal Chem 2019; 91:4696-4701. [PMID: 30859815 DOI: 10.1021/acs.analchem.9b00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional DNA nanodevices perform ever more tasks with applications ranging from in vitro biomarker detection to in situ cell imaging. However, most developed ones consist of a series of split building blocks, which suffer from asynchronous behaviors in complicated cellular microenvironments (endocytosis pathway, diffusion-limited cytoplasm, etc.), causing the loss of stoichiometric information and additional postassembly processes. Herein, we constructed all-in-one DNA nanodevices to achieve synchronous multiplexed imaging. All DNA components, including two sets of probe modules (each containing target-specific walkers, i.e., hairpin tracks with chemically damaged bases), are modified on individual gold nanoparticles. This design not only enables their integrated internalization into cells, circumventing inhomogeneous distribution of different building blocks and increasing the local concentrations of the interacting modules, but also avoids the impact of stochastic diffusion in viscous cytoplasm. A couple of intracellular enzymes in situ actuate the synchronized motion of the modules, all on-particle, after specific recognition of intracellular targets (such as RNAs and proteins), thus facilitating synchronized, multiplexed cell imaging. Finally, the proposed all-in-one nanodevices were successfully applied to monitor intracellular microRNA-21 and telomerase expression levels. The flexible design can be extended to detect other cytoplasmic molecules and monitor related pathways by simply changing the sequences.
Collapse
Affiliation(s)
- Jing Xue
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| | - Feng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| | - Min Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| | - Xiaowen Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| | - Ping Huang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| | - Yongxi Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , PR China
| |
Collapse
|
193
|
Wang J, Wang DX, Tang AN, Kong DM. Highly Integrated, Biostable, and Self-Powered DNA Motor Enabling Autonomous Operation in Living Bodies. Anal Chem 2019; 91:5244-5251. [DOI: 10.1021/acs.analchem.9b00007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300071, People’s Republic of China
| |
Collapse
|
194
|
Chen F, Xue J, Bai M, Qin J, Zhao Y. Programming in situ accelerated DNA walkers in diffusion-limited microenvironments. Chem Sci 2019; 10:3103-3109. [PMID: 30996893 PMCID: PMC6432271 DOI: 10.1039/c8sc05302b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Macromolecule diffusion in cellular microenvironments dictates the kinetics of biochemical processes, yet inevitably limiting the assembly and operation of biomimetic motors. Herein we program in situ accelerated DNA walkers in diffusion-limited microenvironments such as molecularly crowded solutions and cytoplasm. All DNA components, including single-foot walkers, chemically damaged tracks and calibration elements, are anchored on individual gold nanoparticles. Two endogenous enzymes participating in base repair pathways are used to actuate on-particle walking via a base excision/hydrolyzation coupled reaction. The walkers are in situ driven without requiring external drivers and accelerated several times. They also avoid low-efficiency diffusion/assembly procedures and respond to heterogeneous cellular milieus with calibration function. We further regulated the walking kinetics via DNA densities and sets of enzymes, and demonstrated cytoplasmic behaviors of three kinds of walkers. They were utilized to profile DNA repair pathways and monitor enzyme catalysis in living cells.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Jing Xue
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
- State Key Laboratory for Mechanical Behavior of Materials , School of Materials Science and Engineering , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China
| | - Min Bai
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Jing Qin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology , Xi'an Jiaotong University , Xianning West Road , Xi'an , Shaanxi 710049 , P. R. China .
| |
Collapse
|
195
|
Yuan C, Fang J, Duan Q, Yan Q, Guo J, Yuan T, Yi G. Two-layer three-dimensional DNA walker with highly integrated entropy-driven and enzyme-powered reactions for HIV detection. Biosens Bioelectron 2019; 133:243-249. [PMID: 30981134 DOI: 10.1016/j.bios.2019.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Here, we propose a new two-layer three-dimensional (3-D) DNA walker sensor with highly integrated entropy-driven and enzyme-powered reactions for the first time. The 3-D DNA walker sensor is constructed by assembling densely carboxyfluorescein-labeled single strand oligonucleotides (inner-layer tracks) and nucleic acid complex S (outer-layer tracks) on a microparticle. In the presence of the target, outer and inner tracks are activated in turn, thereby releasing a great deal of the signal reporters for signal reading. As a result, our 3-D DNA walker sensor can realize the target detection in the range from 2 pM to 5 nM within one hour. Besides, the specific walker sensor can clearly distinguish even one-base mismatched target analogue. More importantly, our walker sensor can also test the target in human serum samples in the concentrations as low as 0.1 nM, which provides a bridge between real sample detection and clinical application. Certainly, this smart strategy could also be generalized to any target of interest by proper design.
Collapse
Affiliation(s)
- Changjing Yuan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jie Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuyue Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qi Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jing Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Taixian Yuan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Gang Yi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
196
|
Xu Z, Chang Y, Chai Y, Wang H, Yuan R. Ultrasensitive Electrochemiluminescence Biosensor for Speedy Detection of microRNA Based on a DNA Rolling Machine and Target Recycling. Anal Chem 2019; 91:4883-4888. [DOI: 10.1021/acs.analchem.9b00728] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ziqi Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuanyuan Chang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Haijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
197
|
Chen Z, Wang C, Hao L, Gao R, Li F, Liu S. Proximity recognition and polymerase-powered DNA walker for one-step and amplified electrochemical protein analysis. Biosens Bioelectron 2019; 128:104-112. [DOI: 10.1016/j.bios.2018.12.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022]
|
198
|
Li L, Li N, Fu S, Deng Y, Yu C, Su X. Base excision repair-inspired DNA motor powered by intracellular apurinic/apyrimidinic endonuclease. NANOSCALE 2019; 11:1343-1350. [PMID: 30604811 DOI: 10.1039/c8nr07813k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The transition of DNA nanomachines from test tubes to living cells would realize the ultimate goal of smart therapeutic dynamic DNA nanotechnology. The operation of DNA nanomachines in living cells remains challenging because it is difficult to utilize an endogenous driving force. Inspired by the base excision repair (BER) process, we demonstrate a 'burnt-bridge' DNA motor system powered by intracellular apurinic/apyrimidinic (AP) endonuclease APE1. The high specificity of APE1 to the AP site in double-stranded DNA permits directional and autonomous movement. The advanced single-molecule fluorescence technique was utilized to directly monitor the stepwise movement of the motor strand, confirming the excellent controllability and processivity of this system. The speed of this DNA motor relies highly on APE1 concentration, allowing discrimination by APE1 level against cancer cells and normal cells. Western blot was used to confirm APE1 expression level. Successful operation of the DNA motor in living cells demonstrates that an endogenous enzyme can operate the rationally designed DNA nanostructures in a programmable way, rather than digesting simple molecular probes. This is useful and practicable for broad application, such as for cellular diagnostic tools, gene regulators for DNA repair, and enzyme-mediated drug delivery.
Collapse
Affiliation(s)
- Lidan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | | | |
Collapse
|
199
|
Yun W, You L, Li F, Wu H, Chen L, Yang L. Proximity ligation assay induced and DNAzyme powered DNA motor for fluorescent detection of thrombin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:39-45. [PMID: 30195184 DOI: 10.1016/j.saa.2018.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
A novel DNA motor for thrombin detection was described here based on proximity ligation assay (PLA) induced DNAzyme recycling cleavage. Fluorophore labeled DNA is modified on gold nanoparticles (AuNPs) and the fluorescent signal is quenched by AuNPs. The PLA between target thrombin and two aptamers induces the forming of Mg2+-dependent DNAzyme. The fluorophore labeled DNA is cleaved circularly by the DNAzyme, releasing the fluorescent fragment from AuNPs surface. The cleavage and rebinding process create a processive walking along AuNPs surface track. As a result, the fluorescent intensity recovers significantly. A good linear relationship is obtained between the ratio of fluorescence intensity and thrombin concentration in the range from 10 pM to 10 nM. The limit of detection is calculated to be 4 pM. These results are comparable or even better than other amplification based methods.
Collapse
Affiliation(s)
- Wen Yun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Linfeng You
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fukun Li
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Hong Wu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
200
|
Wei M, Wang C, Xu E, Chen J, Xu X, Wei W, Liu S. A simple and sensitive electrochemiluminescence aptasensor for determination of ochratoxin A based on a nicking endonuclease-powered DNA walking machine. Food Chem 2019; 282:141-146. [PMID: 30711098 DOI: 10.1016/j.foodchem.2019.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) poses a serious threat to the health of human beings and animals. In this paper, a simple and sensitive electrochemiluminescence (ECL) aptasensor was constructed to detect OTA based on electrochemiluminescence resonance energy transfer (ECL-RET) and a nicking endonuclease-powered DNA walking machine. Originally, the signal of cadmium sulfide semiconductor quantum dots (CdS QDs) was quenched efficiently by Cy5. After the addition of OTA, the walker autonomously hybridized with Cy5-labeled DNA and released plenty of Cy5-DNA from the electrode surface with the help of a nicking endonuclease. As a result, the signal of CdS QDs recovered efficiently. As an artificial and popular signal amplification technique, the DNA walking machine greatly improved the sensitivity. Under optimal conditions, the aptasensor not only detected OTA in a linear range from 0.05 nM to 5 nM with a detection limit of 0.012 nM (S/N = 3), but also showed an excellent selectivity for OTA over other mycotoxins.
Collapse
Affiliation(s)
- Min Wei
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chunlei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ensheng Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jin Chen
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Xiaolin Xu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|