151
|
Wang L, Wang X, Wu Y, Guo M, Gu C, Dai C, Kong D, Wang Y, Zhang C, Qu D, Fan C, Xie Y, Zhu Z, Liu Y, Wei D. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat Biomed Eng 2022; 6:276-285. [DOI: 10.1038/s41551-021-00833-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
|
152
|
Adil SF, Ashraf M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tremel W, Tahir MN. Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. CHEM REC 2022; 22:e202100274. [PMID: 35103379 DOI: 10.1002/tcr.202100274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.
Collapse
Affiliation(s)
- Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Muhammad Ashraf
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohamed E Assal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Warthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed Rafiq H Siddiqui
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| | - Muhammad Nawaz Tahir
- Chemistry Department, King Fahd University of Petroleum & Materials, Dhahran, 31261, Kingdom of Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
153
|
Research Progress of Graphene Nano-Electromechanical Resonant Sensors—A Review. MICROMACHINES 2022; 13:mi13020241. [PMID: 35208365 PMCID: PMC8876833 DOI: 10.3390/mi13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Graphene nano-electromechanical resonant sensors have wide application in areas such as seawater desalination, new energy, biotechnology, and aerospace due to their small size, light weight, and high sensitivity and resolution. This review first introduces the physical and chemical properties of graphene and the research progress of four preparation processes of graphene. Next, the principle prototype of graphene resonators is analyzed, and three main methods for analyzing the vibration characteristics of a graphene resonant sheet are described: molecular structural mechanics, non-local elastic theory and molecular dynamics. Then, this paper reviews research on graphene resonator preparation, discussing the working mechanism and research status of the development of graphene resonant mass sensors, pressure sensors and inertial sensors. Finally, the difficulties in developing graphene nano-electromechanical resonant sensors are outlined and the future trend of these sensors is described.
Collapse
|
154
|
Introducing Graphene–Indium Oxide Electrochemical Sensor for Detecting Ethanol in Aqueous Samples with CCD-RSM Optimization. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is significant demand for portable sensors that can deliver selective and sensitive measurement of ethanol on-site. Such sensors have application across many industries, including clinical and forensic work as well as agricultural and environmental analysis. Here, we report a new graphene–indium oxide electrochemical sensor for the determination of ethanol in aqueous samples. Graphene layers were functionalised by anchoring In2O3 to its surface and the developed composite was used as a selective electrochemical sensor for sensing ethanol through cyclic voltammetry. The detection limit of the sensor was 0.068 mol/L and it showed a linear response to increasing ethanol in the environment up to 1.2 mol/L. The most significant parameters involved and their interactions in the response of the sensor and optimization procedures were studied using a four-factor central composite design (CCD) combined with response surface modelling (RSM). The sensor was applied in the detection of ethanol in authentic samples.
Collapse
|
155
|
Irani FS, Shafaghi AH, Tasdelen MC, Delipinar T, Kaya CE, Yapici GG, Yapici MK. Graphene as a Piezoresistive Material in Strain Sensing Applications. MICROMACHINES 2022; 13:119. [PMID: 35056284 PMCID: PMC8779301 DOI: 10.3390/mi13010119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.
Collapse
Affiliation(s)
- Farid Sayar Irani
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Ali Hosseinpour Shafaghi
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Melih Can Tasdelen
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Tugce Delipinar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
| | - Ceyda Elcin Kaya
- Department of Electrical and Computer Engineering, University of Tulsa, Tulsa, OK 74104, USA;
| | - Guney Guven Yapici
- Department of Mechanical Engineering, Ozyegin University, Istanbul TR 34794, Turkey;
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR 34956, Turkey; (F.S.I.); (A.H.S.); (M.C.T.); (T.D.)
- Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
- SUNUM Nanotechnology Research Center, Istanbul TR 34956, Turkey
| |
Collapse
|
156
|
Zummo F, Esposito P, Hou H, Wetzl C, Rius G, Tkatchenko R, Guimera A, Godignon P, Prato M, Prats-Alfonso E, Criado A, Scaini D. Bidirectional Modulation of Neuronal Cells Electrical and Mechanical Properties Through Pristine and Functionalized Graphene Substrates. Front Neurosci 2022; 15:811348. [PMID: 35087375 PMCID: PMC8788235 DOI: 10.3389/fnins.2021.811348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.
Collapse
Affiliation(s)
- Francesca Zummo
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Pietro Esposito
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Huilei Hou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
| | - Cecilia Wetzl
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
| | - Gemma Rius
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Raphaela Tkatchenko
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Anton Guimera
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Philippe Godignon
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Basque Foundation for Science (IKERBASQUE), Bilbao, Spain
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- *Correspondence: Elisabet Prats-Alfonso,
| | - Alejandro Criado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, Spain
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
- Alejandro Criado,
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Denis Scaini,
| |
Collapse
|
157
|
Fan L, Xu J, Hong Y. Defects in graphene-based heterostructures: topological and geometrical effects. RSC Adv 2022; 12:6772-6782. [PMID: 35424609 PMCID: PMC8982235 DOI: 10.1039/d1ra08884j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
The combination of graphene (Gr) and graphene-like materials provides the possibility of using two-dimensional (2D) atomic layer building blocks to create unprecedented architectures. The most attractive characteristics are strongly dependent on the various spatial structures, mainly including in-plane heterostructures butt-joined at the side of an atomic monolayer through covalent bonds, van der Waals (vdW) heterostructures involving a vertically stacked hybrid structure, and their combinations. Heterostructures can not only overcome the limitations inherent to each material but may also obtain new features by appropriate material combination. However, heterostructures made of vdW force superposition or covalent bond splicing are prone to defects. The introduction of external and internal defects causes local deformation and stress in the material, thereby affecting the physical properties of the material, such as its transport properties and mechanical properties. Therefore, research, utilization and control of these defects are highly critical. This paper reviews the vacancy, topological and geometrical effects of defects in modulating the structures and mechanical responses of Gr-based heterostructures. Moreover, the coupling effects of various defects on the Gr-based heterostructures in multi-physics fields are also discussed. This work aims to improve the understanding of the physical mechanism of defective configurations and their association in low dimensions, so as to realize various configurations and to aid the search for new usages. The combination of graphene (Gr) and graphene-like materials provides the possibility of using two-dimensional (2D) atomic layer building blocks to create unprecedented architectures.![]()
Collapse
Affiliation(s)
- Lei Fan
- School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, PR China
| | - Jin Xu
- School of Civil Engineering and Architecture, Zhejiang University of Science & Technology, Hangzhou, PR China
| | - Yihong Hong
- Shanghai Urban Construction Vocational College, Shanghai, China
| |
Collapse
|
158
|
Du W, Yu Z, Wang X, Wu J, Zhang L. Large-scale and clean preparation of low-defect few-layered graphene from commercial graphite via hydroxyl radical exfoliation in an acidic medium. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism diagram of hydroxyl radical stripping graphite.
Collapse
Affiliation(s)
- Wenqiao Du
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Zaiqian Yu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jingdong Wu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Long Zhang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
159
|
Surinlert P, Kokmat P, Ruammaitree A. Growth of turbostratic stacked graphene using waste ferric chloride solution as a feedstock. RSC Adv 2022; 12:25048-25053. [PMID: 36199890 PMCID: PMC9437777 DOI: 10.1039/d2ra02686d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022] Open
Abstract
The growth of turbostratic stacked graphene using waste ferric chloride solution as a feedstock.
Collapse
Affiliation(s)
- Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum Thani 12120, Thailand
| | - Phurida Kokmat
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
| | - Akkawat Ruammaitree
- Department of Physics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
160
|
Mamontova E, Favier I, Pla D, Gómez M. Organometallic interactions between metal nanoparticles and carbon-based molecules: A surface reactivity rationale. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
161
|
Kumar AM, Ehsan MA, Suleiman RK, Hakeem AS. AACVD processed binary amorphous NiVOx coatings on Cu substrates: Surface characterization and corrosion resistant performance in saline medium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
162
|
Graphene Growth Directly on SiO 2/Si by Hot Filament Chemical Vapor Deposition. NANOMATERIALS 2021; 12:nano12010109. [PMID: 35010059 PMCID: PMC8746613 DOI: 10.3390/nano12010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy.
Collapse
|
163
|
Li J, Li H, Niu X, Wang Z. Low-Dimensional In 2Se 3 Compounds: From Material Preparations to Device Applications. ACS NANO 2021; 15:18683-18707. [PMID: 34870407 DOI: 10.1021/acsnano.1c03836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructured In2Se3 compounds have been widely used in electronics, optoelectronics, and thermoelectrics. Recently, the revelation of ferroelectricity in low-dimensional (low-D) In2Se3 has caused a new upsurge of scientific interest in nanostructured In2Se3 and advanced functional devices. The ferroelectric, thermoelectric, and optoelectronic properties of In2Se3 are highly correlated with the crystal structure. In this review, we summarize the crystal structures and electronic band structures of the widely interested members of the In2Se3 compound family. Recent achievements in the preparation of low-D In2Se3 with controlled phases are discussed in detail. General principles for obtaining pure-phased In2Se3 nanostructures are described. The excellent ferroelectric, optoelectronic, and thermoelectric properties having been demonstrated using nanostructured and heterostructured In2Se3 with different phases are also summarized. Progress and challenges on the applications of In2Se3 nanostructures in nonvolatile memories, photodetectors, gas sensors, strain sensors, and photovoltaics are discussed in detail. In the last part of this review, perspectives on the challenges and opportunities in the preparation and applications of In2Se3 materials are presented.
Collapse
Affiliation(s)
- Junye Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Handong Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
164
|
Islam F, Tahmasebi A, Moghtaderi B, Yu J. Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave. NANOMATERIALS 2021; 12:nano12010057. [PMID: 35010007 PMCID: PMC8746775 DOI: 10.3390/nano12010057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium hydroxide activation process. The FLG synthesis processing duration was much faster requiring only 20 min under the microwave radiation. To analyse few-layer graphene samples, we considered the three bands, i.e., D, G, and 2D, of Raman spectra. At 1300 °C, the P10% Fe sample resulted in fewer defects than the other catalyst percentages sample. The catalyst percentages affected the structural change of the FLG composite materials. In addition, the Raman mapping showed that the catalyst loaded sample was homogeneously distributed and indicated a few-layer graphene sheet. In addition, the AFM technique measured the FLG thickness around 4.5 nm. Furthermore, the HRTEM images of the P10% Fe sample contained a unique morphology with 2–7 graphitic layers of graphene thin sheets. This research reported the structural revolution with latent feasibility of FLG synthesis from bituminous coal in a wide range.
Collapse
Affiliation(s)
- Faridul Islam
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Arash Tahmasebi
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Behdad Moghtaderi
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
| | - Jianglong Yu
- Department of Chemical Engineering, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia; (F.I.); (A.T.); (B.M.)
- Monash Research Institute of Science and Technology (Suzhou Industrial Park), Southeast University—Monash University Joint Graduate School, Suzhou 215000, China
- Correspondence:
| |
Collapse
|
165
|
Imanzadeh H, Bakirhan NK, Kuralay F, Amiri M, Ozkan SA. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit Rev Anal Chem 2021; 53:1263-1284. [PMID: 34941476 DOI: 10.1080/10408347.2021.2018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Graphene, emerging as a true two-dimensional (2D) material, has attracted increasing attention due to its unique physical and electrochemical properties such as high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production. The entire scientific community recognizes the significance and potential impact of graphene. Electrochemical detection strategies have advantages such as being simple, fast, and low-cost. The use of graphene as an excellent interface for electrode modification provides a promising way to construct more sensitive and stable electrochemical (bio)sensors. The review presents sensors based on graphene and its derivatives for electrochemical drug assays from pharmaceutical dosage forms and biological samples. Future perspectives in this rapidly developing field are also discussed. In addition, the interaction of several important anticancer drug molecules with deoxyribonucleic acid (DNA) that was immobilized onto graphene-modified electrodes has been detailed in terms of dosage regulation and utility purposes.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
166
|
Abstract
Chemical vapor deposition (CVD) is a promising approach for the controllable synthesis of two-dimensional (2D) materials. Many studies have demonstrated that the morphology and structure of 2D materials are highly dependent on growth substrates. Hence, the choice of growth substrates is essential to achieve the precise control of CVD growth. Noble metal substrates have attracted enormous interest owing to the high catalytic activity and rich surface morphology for 2D material growth. In this review, we introduce recent progress in noble metals as substrates for the controllable growth of 2D materials. The underlying growth mechanism and substrate designs of noble metals based on their unique features are thoroughly discussed. In the end, we outline the advantages and challenges of using noble metal substrates and prospect the possible approaches to extend the uses of noble metal substrates for 2D material growth and enhance the structural controllability of the grown materials.
Collapse
Affiliation(s)
- Yang Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Liu
- Cyber Security Research Centre, Nanyang Technological University, Singapore 639798, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
167
|
Asaula VM, Buryanov VV, Solod BY, Tryus DM, Pariiska OO, Kotenko IE, Volovenko YM, Volochnyuk DM, Ryabukhin SV, Kolotilov SV. Catalytic Hydrogenation of Substituted Quinolines on Co–Graphene Composites. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Vitalii M. Asaula
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Nauki ave. Kyiv 03028 Ukraine
| | - Volodymyr V. Buryanov
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
| | - Bohdan Y. Solod
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
| | - Daryna M. Tryus
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
| | - Olena O. Pariiska
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Nauki ave. Kyiv 03028 Ukraine
| | - Igor E. Kotenko
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Nauki ave. Kyiv 03028 Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” 37 Peremogy ave. Kyiv 03056 Ukraine
| | - Yulian M. Volovenko
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine 5 Murmanska str. 02094 Kyiv Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine 5 Murmanska str. 02094 Kyiv Ukraine
| | - Sergey V. Kolotilov
- L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine 31 Nauki ave. Kyiv 03028 Ukraine
- Enamine Ltd 78 Chervonotkatska str. Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv 60 Volodymyrska str. Kyiv 01033 Ukraine
| |
Collapse
|
168
|
Liu DQ, Kang M, Perry D, Chen CH, West G, Xia X, Chaudhuri S, Laker ZPL, Wilson NR, Meloni GN, Melander MM, Maurer RJ, Unwin PR. Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. Nat Commun 2021; 12:7110. [PMID: 34876571 PMCID: PMC8651748 DOI: 10.1038/s41467-021-27339-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Dan-Qing Liu
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.13402.340000 0004 1759 700XSchool of Materials Science and Engineering, Zhejiang University, Hangzhou, 310007 China
| | - Minkyung Kang
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.1021.20000 0001 0526 7079Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 Australia
| | - David Perry
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Chang-Hui Chen
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Geoff West
- grid.7372.10000 0000 8809 1613Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL UK
| | - Xue Xia
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Shayantan Chaudhuri
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.7372.10000 0000 8809 1613Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry, CV4 7AL UK
| | - Zachary P. L. Laker
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Neil R. Wilson
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Gabriel N. Meloni
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Marko M. Melander
- grid.9681.60000 0001 1013 7965Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, (YN) FI-40014 Jyväskylä, Finland
| | - Reinhard J. Maurer
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Patrick R. Unwin
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
169
|
Jeroish ZE, Bhuvaneshwari KS, Samsuri F, Narayanamurthy V. Microheater: material, design, fabrication, temperature control, and applications-a role in COVID-19. Biomed Microdevices 2021; 24:3. [PMID: 34860299 PMCID: PMC8641292 DOI: 10.1007/s10544-021-00595-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Heating plays a vital role in science, engineering, mining, and space, where heating can be achieved via electrical, induction, infrared, or microwave radiation. For fast switching and continuous applications, hotplate or Peltier elements can be employed. However, due to bulkiness, they are ineffective for portable applications or operation at remote locations. Miniaturization of heaters reduces power consumption and bulkiness, enhances the thermal response, and integrates with several sensors or microfluidic chips. The microheater has a thickness of ~ 100 nm to ~ 100 μm and offers a temperature range up to 1900℃ with precise control. In recent years, due to the escalating demand for flexible electronics, thin-film microheaters have emerged as an imperative research area. This review provides an overview of recent advancements in microheater as well as analyses different microheater designs, materials, fabrication, and temperature control. In addition, the applications of microheaters in gas sensing, biological, and electrical and mechanical sectors are emphasized. Moreover, the maximum temperature, voltage, power consumption, response time, and heating rate of each microheater are tabulated. Finally, we addressed the specific key considerations for designing and fabricating a microheater as well as the importance of microheater integration in COVID-19 diagnostic kits. This review thereby provides general guidelines to researchers to integrate microheater in micro-electromechanical systems (MEMS), which may pave the way for developing rapid and large-scale SARS-CoV-2 diagnostic kits in resource-constrained clinical or home-based environments.
Collapse
Affiliation(s)
- Z E Jeroish
- College of Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia
| | - K S Bhuvaneshwari
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| | - Fahmi Samsuri
- College of Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Vigneswaran Narayanamurthy
- Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
| |
Collapse
|
170
|
Gao Y, Chen J, Chen G, Fan C, Liu X. Recent Progress in the Transfer of Graphene Films and Nanostructures. SMALL METHODS 2021; 5:e2100771. [PMID: 34928026 DOI: 10.1002/smtd.202100771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Indexed: 06/14/2023]
Abstract
The one-atom-thick graphene has excellent electronic, optical, thermal, and mechanical properties. Currently, chemical vapor deposition (CVD) graphene has received a great deal of attention because it provides access to large-area and uniform films with high-quality. This allows the fabrication of graphene based-electronics, sensors, photonics, and optoelectronics for practical applications. Zero bandgap, however, limits the application of a graphene film as electronic transistor. The most commonly used bottom-up approaches have achieved efficient tuning of the electronic bandgap by customizing well-defined graphene nanostructures. The postgrowth transfer of graphene films/nanostructures to a certain substrate is crucial in utilizing graphene in applicable devices. In this review, the basic growth mechanism of CVD graphene is first introduced. Then, recent advances in various transfer methods of as-grown graphene to target substrates are presented. The fabrication and transfer methods of graphene nanostructures are also provided, and then the transfer-related applications are summarized. At last, the challenging issues and the potential transfer-free approaches are discussed.
Collapse
Affiliation(s)
- Yanjing Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
171
|
Song Y, Zou W, Lu Q, Lin L, Liu Z. Graphene Transfer: Paving the Road for Applications of Chemical Vapor Deposition Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007600. [PMID: 33661572 DOI: 10.1002/smll.202007600] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Owing to the fascinating properties of graphene, fulfilling the promising characteristics of graphene in applications has ignited enormous scientific and industrial interest. Chemical vapor deposition (CVD) growth of graphene on metal substrates provides tantalizing opportunities for the large-area synthesis of graphene in a controllable manner. However, the tedious transfer of graphene from metal substrates onto desired substrates remains inevitable, and cracks of graphene membrane, transfer-induced doping, wrinkles as well as surface contamination can be incurred during the transfer, which highly degrade the performance of graphene. Furthermore, new issues can arise when moving to large-scale transfer at an industrial scale, thus cost-efficient and environment-friendly transfer techniques also become imperative. The aim of this review is to provide a comprehensive understanding of transfer-related issues and the corresponding experimental solutions and to provide an outlook for future transfer techniques of CVD graphene films on an industrial scale.
Collapse
Affiliation(s)
- Yuqing Song
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wentao Zou
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Qi Lu
- State Key Laboratory of Heavy Oil Processing, College of Science, China, University of Petroleum, Beijing, 102249, P. R. China
| | - Li Lin
- School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Zhongfan Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
- Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
172
|
Abbas MS, Srivastava PK, Hassan Y, Lee C. Asymmetric carrier transport and weak localization in few layer graphene grown directly on a dielectric substrate. Phys Chem Chem Phys 2021; 23:25284-25290. [PMID: 34734939 DOI: 10.1039/d1cp03225a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature-dependent electrical and magneto-transport measurements have been performed on devices composed of few layer (4L) graphene grown directly on SiO2/Si substrates using the CVD method. An intrinsic energy band-gap of 4.6 meV in 4L graphene is observed, which primarily dictates the current transport at T <50 K. Unusual temperature dependent electron-hole conduction asymmetry is observed at T >50 K, which can be explained in the framework of the defect scattering of relativistic charge carriers. Magneto-transport measurements reveal a weak localization effect sustainable till T >200 K. The coexistence of phonon mediated carrier mobility and defect induced weak localization effects in measuring devices suggests low disorder and impurity scattering.
Collapse
Affiliation(s)
- Muhammad Sabbtain Abbas
- Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea.,Centre for Advanced Studies in Physics (CASP), Government College University Lahore, 54000, Pakistan
| | | | - Yasir Hassan
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea.
| | - Changgu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
173
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
174
|
Lu W, Liu L, Zhu T, Li Z, Shao M, Zhang C, Yu J, Zhao X, Yang C, Li Z. MoS 2/graphene van der Waals heterojunctions combined with two-layered Au NP for SERS and catalysis analyse. OPTICS EXPRESS 2021; 29:38053-38067. [PMID: 34808865 DOI: 10.1364/oe.443835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
MoS2-plasmonic hybrid platforms have attracted significant interest in surface-enhanced Raman scattering (SERS) and plasmon-driven photocatalysis. However, direct contact between the metal and MoS2 creates strain that deteriorates the electron transport across the metal/ MoS2 interfaces, which would affect the SERS effect and the catalytic performance. Here, the MoS2/graphene van der Waals heterojunctions (vdWHs) were fabricated and combined with two-layered gold nanoparticles (Au NP) for SERS and plasmon-driven photocatalysis analyse. The graphene film is introduced to provide an effective buffer layer between Au NP and MoS2, which not only eliminates the inhomogeneous contact on MoS2 but also benefits the electron transfer. The substrate exhibits excellent SERS capability realizing ultra-sensitive detection for 4-pyridinethiol molecules. Also, the surface catalytic reaction of p-nitrothiophenol (PNTP) to p,p-dimercaptobenzene (DMAB) conversion was in situ monitored, demonstrating that the vdWHs-plasmonic hybrid could effectively accelerate reaction process. The mechanism of the SERS and catalytic behaviors are investigated via experiments combined with theoretical simulations (finite element method and quantum chemical calculations).
Collapse
|
175
|
Cuxart MG, Seufert K, Chesnyak V, Waqas WA, Robert A, Bocquet ML, Duesberg GS, Sachdev H, Auwärter W. Borophenes made easy. SCIENCE ADVANCES 2021; 7:eabk1490. [PMID: 34731005 PMCID: PMC8565903 DOI: 10.1126/sciadv.abk1490] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
To date, the scalable synthesis of elemental two-dimensional materials beyond graphene still remains elusive. Here, we introduce a versatile chemical vapor deposition (CVD) method to grow borophenes, as well as borophene heterostructures, by selectively using diborane originating from traceable byproducts of borazine. Specifically, metallic borophene polymorphs were successfully synthesized on Ir(111) and Cu(111) single-crystal substrates and conjointly with insulating hexagonal boron nitride (hBN) to form atomically precise lateral borophene-hBN interfaces or vertical van der Waals heterostructures. Thereby, borophene is protected from immediate oxidation by a single hBN overlayer. The ability to synthesize high-quality borophenes with large single-crystalline domains in the micrometer scale by a straight-forward CVD approach opens up opportunities for the study of their fundamental properties and for device incorporation.
Collapse
Affiliation(s)
- Marc G. Cuxart
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Knud Seufert
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Valeria Chesnyak
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wajahat A. Waqas
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Anton Robert
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Laure Bocquet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Georg S. Duesberg
- Fakultät für Elektrotechnik und Informationstechnik, Institut für Physik EIT-2, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85579 Neubiberg, Germany
| | - Hermann Sachdev
- Fakultät für Elektrotechnik und Informationstechnik, Institut für Physik EIT-2, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, D-85579 Neubiberg, Germany
| | - Willi Auwärter
- Physics Department E20, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
176
|
|
177
|
Jang Y, Seo YM, Jang HS, Heo K, Whang D. Performance Improvement of Residue-Free Graphene Field-Effect Transistor Using Au-Assisted Transfer Method. SENSORS 2021; 21:s21217262. [PMID: 34770570 PMCID: PMC8587746 DOI: 10.3390/s21217262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022]
Abstract
We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants. In addition, this method can also simplify the device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.
Collapse
Affiliation(s)
- Yamujin Jang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Young-Min Seo
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonju 55324, Korea; (Y.-M.S.); (H.-S.J.)
| | - Hyeon-Sik Jang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonju 55324, Korea; (Y.-M.S.); (H.-S.J.)
| | - Keun Heo
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Dongmok Whang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: ; Tel.: +82-31-2907399; Fax: +82-31-2907410
| |
Collapse
|
178
|
Nan Y, He Y, Zhang Z, Wei J, Zhang Y. Controllable synthesis of N-doped carbon nanohorns: tip from closed to half-closed, used as efficient electrocatalysts for oxygen evolution reaction. RSC Adv 2021; 11:35463-35471. [PMID: 35493191 PMCID: PMC9043249 DOI: 10.1039/d1ra06458d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
The development of efficient, cost-effective and stable N-doped carbon material with catalytic activity as an excellent catalyst for the oxygen evolution reaction (OER) is critical for renewable energy systems. In this study, the unique tip-half-closed N-doped carbon nanohorns (THC-N-CNHs) were firstly produced by the positive pressure-assisted arc discharge method using N2 as the nitrogen source. Benefitting from the novel tip-half-closed structure and sufficient porosity, the specific surface area (SSA) of THC-N-CNHs is calculated to be 670 m2 g-1 without any further treatment, which is three times larger than that of traditional tip-closed CNHs. More importantly, the content of nitrogen can achieve ∼1.98 at% with noticeable pyridinic-N enrichment, increasing the number of active sites for the OER. Furthermore, the three-dimensional spherical feature and the unique pore structure for THC-N-CNHs lead to the fast transportation of electrons, and facile release of the evolved O2 bubbles during the OER process. Therefore, THC-N-CNHs exhibit excellent electrocatalytic activity toward the OER, with an overpotential of 328 mV at 10 mA cm-2, which is superior to that of most N-doped carbon material-based electrocatalysts. Meanwhile, the resulting catalyst also shows excellent durability after long-term cycling. Finally, we emphasize that THC-N-CNHs can be promising candidates as cheap, industrially scalable catalytic scaffolds for OER application.
Collapse
Affiliation(s)
- Yanli Nan
- School of Material Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yuanyuan He
- School of Material Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Zihan Zhang
- School of Material Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Jian Wei
- School of Material Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology Xi'an 710055 China
| | - Yubin Zhang
- Ningbo University of Finance and Economics Ningbo 315175 China
| |
Collapse
|
179
|
Langston X, Whitener KE. Graphene Transfer: A Physical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2837. [PMID: 34835602 PMCID: PMC8625831 DOI: 10.3390/nano11112837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Graphene, synthesized either epitaxially on silicon carbide or via chemical vapor deposition (CVD) on a transition metal, is gathering an increasing amount of interest from industrial and commercial ventures due to its remarkable electronic, mechanical, and thermal properties, as well as the ease with which it can be incorporated into devices. To exploit these superlative properties, it is generally necessary to transfer graphene from its conductive growth substrate to a more appropriate target substrate. In this review, we analyze the literature describing graphene transfer methods developed over the last decade. We present a simple physical model of the adhesion of graphene to its substrate, and we use this model to organize the various graphene transfer techniques by how they tackle the problem of modulating the adhesion energy between graphene and its substrate. We consider the challenges inherent in both delamination of graphene from its original substrate as well as relamination of graphene onto its target substrate, and we show how our simple model can rationalize various transfer strategies to mitigate these challenges and overcome the introduction of impurities and defects into the graphene. Our analysis of graphene transfer strategies concludes with a suggestion of possible future directions for the field.
Collapse
Affiliation(s)
| | - Keith E. Whitener
- Chemistry Division, US Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA;
| |
Collapse
|
180
|
Javvaji B, Vasireddi R, Zhuang X, Mahapatra DR, Rabczuk T. Laser-assisted graphene layer exfoliation from graphite slab. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1991920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Brahmanandam Javvaji
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
- Chair of Computational Science and Simulation Technology, Institute of Photonics, Faculty of Mathematics and Physics, Leibniz Universität, Hannover, Germany
| | - Ramakrishna Vasireddi
- Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India
- Synchrotron SOLEIL, Gif-sur-Yvette, France
| | - Xiaoying Zhuang
- Chair of Computational Science and Simulation Technology, Institute of Photonics, Faculty of Mathematics and Physics, Leibniz Universität, Hannover, Germany
| | | | - Timon Rabczuk
- Institute of Structural Mechanics, Bauhaus University of Weimar, Weimar, Germany
| |
Collapse
|
181
|
Mao B, Hodges B, Franklin C, Calatayud DG, Pascu SI. Self-Assembled Materials Incorporating Functional Porphyrins and Carbon Nanoplatforms as Building Blocks for Photovoltaic Energy Applications. Front Chem 2021; 9:727574. [PMID: 34660529 PMCID: PMC8517519 DOI: 10.3389/fchem.2021.727574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
As a primary goal, this review highlights the role of supramolecular interactions in the assembly of new sustainable materials incorporating functional porphyrins and carbon nanoplatforms as building blocks for photovoltaics advancements.
Collapse
Affiliation(s)
- Boyang Mao
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Cambridge Graphene Centre, Engineering Department, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Hodges
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Bath, United Kingdom
| | - Craig Franklin
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - David G Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Electroceramics, Instituto de Ceramica y Vidrio (CSIC), Madrid, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Centre for Sustainable and Circular Technologies (CSCT), University of Bath, Bath, United Kingdom
| |
Collapse
|
182
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
183
|
Zhang HZ, Wu WJ, Zhou L, Wu Z, Zhu J. Steering on Degrees of Freedom of 2D Van der Waals Heterostructures. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Hui-Zhen Zhang
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Wen-Jing Wu
- Department of Electrical Engineering The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Lin Zhou
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Zhen Wu
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures College of Engineering and Applied Sciences School of Physics Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
184
|
Pulingam T, Thong KL, Appaturi JN, Lai CW, Leo BF. Mechanistic actions and contributing factors affecting the antibacterial property and cytotoxicity of graphene oxide. CHEMOSPHERE 2021; 281:130739. [PMID: 34004516 DOI: 10.1016/j.chemosphere.2021.130739] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Recent advances in the field of nanotechnology contributed to the increasing use of nanomaterials in the engineering, health and biological sectors. Graphene oxide (GO) has great potentials as it could be fine-tuned to be adapted into various applications, especially in the electrical, electronic, industrial and clinical fields. One of the important applications of GO is its use as an antibacterial material due to its promising activity against a broad range of bacteria. However, our understanding of the mechanism of action of GO towards bacteria is still lacking and is often less described. Therefore, a comprehensive overview of bactericidal mechanistic actions of GO and the roles of physicochemical factors including size, aggregation, functionalization and adsorption behavior contributing to its antibacterial activities are described in this review. As the use of GO is expected to increase exponentially in the health sector, the cytotoxicity of GO among the cell lines is also discussed. Thus, this review emphasizes the physicochemical characteristics of GO that can be tailored for optimal antibacterial properties that is of importance to the health industry.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia; Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
185
|
Terahertz Absorber with Graphene Enhanced Polymer Hemispheres Array. NANOMATERIALS 2021; 11:nano11102494. [PMID: 34684934 PMCID: PMC8538060 DOI: 10.3390/nano11102494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
We propose an original technique for the fabrication of terahertz (THz) metasurfaces comprising a 3D printed regular array of polymer hemispheres covered with a thin conductive layer. We demonstrate that the deposition of a thin metal layer onto polymer hemispheres suppresses the THz reflectivity to almost zero, while the frequency range of such a suppression can be considerably broadened by enhancing the structure with graphene. Scaling up of the proposed technique makes it possible to tailor the electromagnetic responses of metasurfaces and allows for the fabrication of various components of THz photonics.
Collapse
|
186
|
Lee WY, Park NW, Kang MS, Kim GS, Yoon YG, Lee S, Choi KY, Kim KS, Kim JH, Seong MJ, Kikkawa T, Saitoh E, Lee SK. Extrinsic Surface Magnetic Anisotropy Contribution in Pt/Y 3Fe 5O 12 Interface in Longitudinal Spin Seebeck Effect by Graphene Interlayer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45097-45104. [PMID: 34496563 DOI: 10.1021/acsami.1c13180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A recent study found that magnetization curves for Y3Fe5O12 (YIG) slab and thick films (>20 μm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption. We show the Pt/YIG bilayer system graphene interlayer role using large area single and multilayered graphenes using the longitudinal spin Seebeck effect at room temperature, and address the presence of surface magnetic anisotropy due to magnetic proximity between graphene and YIG layer. These findings suggest a promising route to understand new physics of spin Seebeck effect in spin transport.
Collapse
Affiliation(s)
- Won-Yong Lee
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - No-Won Park
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Min-Sung Kang
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gil-Sung Kim
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Gui Yoon
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Suheon Lee
- Deopartment of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Yong Choi
- Deopartment of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Keun Soo Kim
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Republic of Korea
| | - Jin-Hyuk Kim
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Takashi Kikkawa
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
| | - Eiji Saitoh
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sang-Kwon Lee
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
187
|
Saha JK, Dutta A. A Review of Graphene: Material Synthesis from Biomass Sources. WASTE AND BIOMASS VALORIZATION 2021; 13:1385-1429. [PMID: 34548888 PMCID: PMC8446731 DOI: 10.1007/s12649-021-01577-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 09/08/2021] [Indexed: 05/30/2023]
Abstract
Single-atom-thick graphene is a particularly interesting material in basic research and applications owing to its remarkable electronic, mechanical, chemical, thermal, and optical properties. This leads to its potential use in a multitude of applications for improved energy storage (capacitors, batteries, and fuel cells), energy generation, biomedical, sensors or even as an advanced membrane material for separations. This paper provided an overview of research in graphene, in the area of synthesis from various sources specially from biomass, advanced characterization techniques, properties, and application. Finally, some challenges and future perspectives of graphene are also discussed.
Collapse
Affiliation(s)
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Canada
| |
Collapse
|
188
|
Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. SENSORS 2021; 21:s21186146. [PMID: 34577354 PMCID: PMC8473289 DOI: 10.3390/s21186146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Light loss is one of the main factors affecting the quantum efficiency of photodetectors. Many researchers have attempted to use various methods to improve the quantum efficiency of silicon-based photodetectors. Herein, we designed highly anti-reflective silicon nanometer truncated cone arrays (Si NTCAs) as a light-trapping layer in combination with graphene to construct a high-performance graphene/Si NTCAs photodetector. This heterojunction structure overcomes the weak light absorption and severe surface recombination in traditional silicon-based photodetectors. At the same time, graphene can be used both as a broad-spectrum absorption layer and as a transparent electrode to improve the response speed of heterojunction devices. Due to these two mechanisms, this photodetector had a high quantum efficiency of 97% at a wavelength of 780 nm and a short rise/fall time of 60/105µs. This device design promotes the development of silicon-based photodetectors and provides new possibilities for integrated photoelectric systems.
Collapse
|
189
|
Majee AK, Aksamija Z. Electronic transport across extended grain boundaries in graphene. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Owing to its superlative carrier mobility and atomic thinness, graphene exhibits great promise for interconnects in future nanoelectronic integrated circuits. Chemical vapor deposition (CVD), the most popular method for wafer-scale growth of graphene, produces monolayers that are polycrystalline, where misoriented grains are separated by extended grain boundaries (GBs). Theoretical models of GB resistivity focused on small sections of an extended GB, assuming it to be a straight line, and predicted a strong dependence of resistivity on misorientation angle. In contrast, measurements produced values in a much narrower range and without a pronounced angle dependence. Here we study electron transport across rough GBs, which are composed of short straight segments connected together into an extended GB. We found that, due to the zig-zag nature of rough GBs, there always exist a few segments that divide the crystallographic angle between two grains symmetrically and provide a highly conductive path for the current to flow across the GBs. The presence of highly conductive segments produces resistivity between 102 to 104 Ω μm regardless of misorientation angle. An extended GB with large roughness and small correlation length has small resistivity on the order of 103 Ω μm, even for highly mismatched asymmetric GBs. The effective slope of the GB, given by the ratio of roughness and lateral correlation length, is an effective universal quantifier for GB resistivity. Our results demonstrate that the probability of finding conductive segments diminishes in short GBs, which could cause a large variation in the resistivity of narrow ribbons etched from polycrystalline graphene. We also uncover spreading resistance due to the current bending in the grains to flow through the conductive segments of the GB and show that it scales linearly with the grain resistance. Our results will be crucial for designing graphene-based interconnects for future integrated circuits.
Collapse
|
190
|
Vivas VH, da Cunha THR, Ferlauto AS, de Souza Figueiredo KC. Process of production of CVD graphene membrane for desalination and water treatment: a review of experimental research results. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00119-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
191
|
SI A, Kyzas GZ, Pal K, de Souza Jr. FG. Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
192
|
Nitrogen-doped porous carbon encapsulated nickel iron alloy nanoparticles, one-step conversion synthesis for application as bifunctional catalyst for water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
193
|
Jiang B, Wang S, Sun J, Liu Z. Controllable Synthesis of Wafer-Scale Graphene Films: Challenges, Status, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008017. [PMID: 34106524 DOI: 10.1002/smll.202008017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The availability of high-quality, large-scale, and single-crystal wafer-scale graphene films is fundamental for key device applications in the field of electronics, optics, and sensors. Synthesis determines the future: unleashing the full potentials of such emerging materials relies heavily upon their tailored synthesis in a scalable fashion, which is by no means an easy task to date. This review covers the state-of-the-art progress in the synthesis of wafer-scale graphene films by virtue of chemical vapor deposition (CVD), with a focus on main challenges and present status. Particularly, prevailing synthetic strategies are highlighted on a basis of the discussion in the reaction kinetics and gas-phase dynamics during CVD process. Perspectives with respect to key opportunities and promising research directions are proposed to guide the future development of wafer-scale graphene films.
Collapse
Affiliation(s)
- Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing, 100095, P. R. China
| |
Collapse
|
194
|
Temperature dependence of iron oxide-graphene oxide properties for synthesis of carbon nanotube/graphene hybrid material. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
195
|
Kotsidi M, Gorgolis G, Pastore Carbone MG, Anagnostopoulos G, Paterakis G, Poggi G, Manikas A, Trakakis G, Baglioni P, Galiotis C. Preventing colour fading in artworks with graphene veils. NATURE NANOTECHNOLOGY 2021; 16:1004-1010. [PMID: 34211165 DOI: 10.1038/s41565-021-00934-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Modern and contemporary art materials are generally prone to irreversible colour changes upon exposure to light and oxidizing agents. Graphene can be produced in thin large sheets, blocks ultraviolet light, and is impermeable to oxygen, moisture and corrosive agents; therefore, it has the potential to be used as a transparent layer for the protection of art objects in museums, during storage and transportation. Here we show that a single-layer or multilayer graphene veil, produced by chemical vapour deposition, can be deposited over artworks to protect them efficiently against colour fading, with a protection factor of up to 70%. We also show that this process is reversible since the graphene protective layer can be removed using a soft rubber eraser without causing any damage to the artwork. We have also explored a complementary contactless graphene-based route for colour protection that is based on the deposition of graphene on picture framing glass for use when the direct application of graphene is not feasible due to surface roughness or artwork fragility. Overall, the present results are a proof of concept of the potential use of graphene as an effective and removable protective advanced material to prevent colour fading in artworks.
Collapse
Affiliation(s)
- M Kotsidi
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
- Department of Chemical Engineering, University of Patras, Patras, Greece
| | - G Gorgolis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
| | - M G Pastore Carbone
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
| | - G Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
| | - G Paterakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
- Department of Chemical Engineering, University of Patras, Patras, Greece
| | - G Poggi
- CSGI & Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - A Manikas
- Department of Chemical Engineering, University of Patras, Patras, Greece
| | - G Trakakis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece
| | - P Baglioni
- CSGI & Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - C Galiotis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ ICE-HT), Patras, Greece.
- Department of Chemical Engineering, University of Patras, Patras, Greece.
| |
Collapse
|
196
|
Chemical Functionalization of Graphene Nanoplatelets with Hydroxyl, Amino, and Carboxylic Terminal Groups. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As the most studied two-dimensional material, graphene is still attracting a lot of attention from both academia and industry due to its fantastic properties such as lightness, excellent mechanical strength, and high conductivity of heat and electricity. As an important branch of graphene materials, graphene nanoplatelets show numerous applications such as in coating, fillers of polymer composites, energy conversion and storage devices, sensing, etc. Chemical functionalization can introduce different functional groups to graphene nanoplatelets and can potentially endow them with different properties and functions to meet the increasing demand in the fields mentioned above. In this minireview, we present an overview of the research progress of functionalized graphene nanoplatelets bearing hydroxyl, amino, and carboxylic terminal groups, including both covalent and noncovalent approaches. These terminal groups allow subsequent functionalization reactions to attach additional moieties. Relevant characterization techniques, different applications, challenges, and future directions of functionalized graphene nanoplatelets are also critically summarized.
Collapse
|
197
|
Wu K, Wu D, Zhu L, Wu Y. Application of Monolayer Graphene and Its Derivative in Cryo-EM Sample Preparation. Int J Mol Sci 2021; 22:8940. [PMID: 34445650 PMCID: PMC8396334 DOI: 10.3390/ijms22168940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cryo-electron microscopy (Cryo-EM) has become a routine technology for resolving the structure of biological macromolecules due to the resolution revolution in recent years. The specimens are typically prepared in a very thin layer of vitrified ice suspending in the holes of the perforated amorphous carbon film. However, the samples prepared by directly applying to the conventional support membranes may suffer from partial or complete denaturation caused by sticking to the air-water interface (AWI). With the application in materials, graphene has also been used recently to improve frozen sample preparation instead of a suspended conventional amorphous thin carbon. It has been proven that graphene or graphene oxide and various chemical modifications on its surface can effectively prevent particles from adsorbing to the AWI, which improves the dispersion, adsorbed number, and orientation preference of frozen particles in the ice layer. Their excellent properties and thinner thickness can significantly reduce the background noise, allowing high-resolution three-dimensional reconstructions using a minimum data set.
Collapse
Affiliation(s)
- Ke Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (K.W.); (D.W.)
- Electron Microscopy Centre of Lanzhou University, Lanzhou 730000, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
198
|
Schranghamer TF, Sharma M, Singh R, Das S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem Soc Rev 2021; 50:11032-11054. [PMID: 34397050 DOI: 10.1039/d1cs00706h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two-dimensional (2D) materials offer immense potential for scientific breakthroughs and technological innovations. While early demonstrations of 2D material-based electronics, optoelectronics, flextronics, straintronics, twistronics, and biomimetic devices exploited micromechanically-exfoliated single crystal flakes, recent years have witnessed steady progress in large-area growth techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and metal-organic CVD (MOCVD). However, use of high growth temperatures, chemically-active growth precursors and promoters, and the need for epitaxy often limit direct growth of 2D materials on the substrates of interest for commercial applications. This has led to the development of a large number of methods for the layer transfer of 2D materials from the growth substrate to the target application substrate with varying degrees of cleanliness, uniformity, and transfer-related damage. This review aims to catalog and discuss these layer transfer methods. In particular, the processes, advantages, and drawbacks of various transfer methods are discussed, as is their applicability to different technological platforms of interest for 2D material implementation.
Collapse
Affiliation(s)
- Thomas F Schranghamer
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA.
| | - Madan Sharma
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA. and Department of Materials Science and Engineering, Penn State University, University Park, PA 16802, USA and Materials Research Institute, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
199
|
Karunanithi B, Kumar KS, Balakrishnan K, Muralidharan S, Suresh S, Viswanathan V, Angamuthu M. Characteristic study of exfoliated graphene particles from waste batteries. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
200
|
Seo YM, Jang W, Gu T, Seok HJ, Han S, Choi BL, Kim HK, Chae H, Kang J, Whang D. Defect-Free Mechanical Graphene Transfer Using n-Doping Adhesive Gel Buffer. ACS NANO 2021; 15:11276-11284. [PMID: 34184867 DOI: 10.1021/acsnano.0c10798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synthesis of uniform low-defect graphene on a catalytic metal substrate is getting closer to the industrial level. However, its practical application is still challenging due to the lack of an appropriate method for its scalable damage-free transfer to a device substrate. Here, an efficient approach for a defect-free, etchant-free, wrinkle-free, and large-area graphene transfer is demonstrated by exploiting a multifunctional viscoelastic polymer gel as a simultaneous shock-free adhesive and dopant layer. Initially, an amine-rich polymer solution in its liquid form allows for conformal coating on a graphene layer grown on a Cu substrate. The subsequent thermally cured soft gel enables the shock-free and wrinkle-free direct mechanical exfoliation of graphene from a substrate due to its strong charge-transfer interaction with graphene and excellent shock absorption. The adhesive gel with a high optical transparency works as an electron doping layer toward graphene, which exhibits significantly reduced sheet resistances without optical transmittance loss. Lastly, the transferred graphene layer shows high mechanical and chemical stabilities under the repeated bending test and exposure to various solvents. This gel-assisted mechanical transfer method can be a solution to connect the missing part between large-scale graphene synthesis and next-generation electronics and optoelectronic applications.
Collapse
Affiliation(s)
- Young-Min Seo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Wonseok Jang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Taejun Gu
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Seunghun Han
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Byoung Lyong Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Heeyeop Chae
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Dongmok Whang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| |
Collapse
|