151
|
Handley A, Pocock R. Transcriptional control of satiety in Caenorhabditis elegans. Commun Integr Biol 2017. [PMCID: PMC5501193 DOI: 10.1080/19420889.2017.1325978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is an enormous worldwide health concern. Chronic illnesses associated with obesity include type-2 diabetes, hypertension, atherosclerosis and certain cancers. Communication between fat storage organs and the brain is essential for regulating feeding, metabolism and organismal activity—and hence obesity control. Model organism research provides opportunities to decipher conserved molecular mechanisms that regulate fat storage and activity levels, which is fundamental to understanding this disorder. We recently identified a transcription factor (ETS-5) that acts in specific neurons of the nematode Caenorhabditis elegans to control intestinal fat levels. Furthermore, we discovered a feedback mechanism where intestinal fat controls feeding and motor programs, similar to humans, where a sated stomach can inhibit feeding and induce lethargy. The precise molecular signals and neuronal circuitry underpinning brain-intestinal communication in C. elegans are however yet to be discovered. As most animals store surplus energy as fat, communication mechanisms that relay external information regarding food availability and quality, and internal energy reserves are likely conserved. Therefore, our identification of a neuronally-expressed transcriptional regulator that controls intestinal fat levels opens up new avenues of investigation for the control of metabolic disease and obesity.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
152
|
McCloskey RJ, Fouad AD, Churgin MA, Fang-Yen C. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. J Neurophysiol 2017; 117:1911-1934. [PMID: 28228583 PMCID: PMC5411472 DOI: 10.1152/jn.00555.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism's internal and external environments. In the nematode Caenorhabditis elegans a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined C. elegans episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior.NEW & NOTEWORTHY One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm Caenorhabditis elegans is an attractive model for investigating how behavioral states are genetically and neuronally controlled. Here we describe the hierarchical organization of behavioral states characterized by locomotory activity, feeding, and egg-laying. We show that decisions to engage in these behaviors are controlled by the nervous system through insulin-like signaling and the perception of food.
Collapse
Affiliation(s)
- Richard J McCloskey
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
153
|
Schulenburg H, Félix MA. The Natural Biotic Environment of Caenorhabditis elegans. Genetics 2017; 206:55-86. [PMID: 28476862 PMCID: PMC5419493 DOI: 10.1534/genetics.116.195511] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel, Germany
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Normale Supérieure, L'université de Recherche Paris Sciences et Lettres, 75005, France
| |
Collapse
|
154
|
Henne S, Sombke A, Schmidt-Rhaesa A. Immunohistochemical analysis of the anterior nervous system of the free-living nematode Plectus spp. (Nematoda, Plectidae). ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0347-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
155
|
Isoamyl alcohol odor promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 2017; 485:395-399. [PMID: 28209513 DOI: 10.1016/j.bbrc.2017.02.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 02/01/2023]
Abstract
The possibility that odor plays a role in lifespan regulation through effects on the nervous system is indicated by research on Caenorhabditis elegans. In fact, ablation of AWA and AWC, which are suggested as olfactory neurons, has been shown to extend lifespan via DAF-16, a homolog of FoxO. However, the effects of odor stimuli on the lifespan still remain unclear. Thus, we here aimed to clarify the effect of attractive and repulsive odors on longevity and stress tolerance in C. elegans and to analyze the pathways thereof. We used isoamyl alcohol as an attractive odor, and acetic acid as a repellent component, as identified by chemotaxis assay. We found that isoamyl alcohol stimulus promoted longevity in a DAF-16-dependent manner. On the other hand, acetic acid stimulus promoted thermotolerance through mechanisms independent of DAF-16. Above all, our results indicate that odor stimuli affect the lifespan and stress tolerance of C. elegans, with attractive and repulsive odors exerting their effects through different mechanisms, and that longevity is induced by both activation and inactivation of olfactory neurons.
Collapse
|
156
|
Lee JH, Kim YG, Kim M, Kim E, Choi H, Kim Y, Lee J. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 2017; 19:1776-1790. [PMID: 28028877 DOI: 10.1111/1462-2920.13649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Indole is an intercellular and interkingdom signalling molecule found in diverse ecological niches. Caenorhabditis elegans is a bacterivorous nematode that lives in soil and compost environments and a useful model host for studies of host-microbe interactions. Although various bacteria and some plants produce large quantities of extracellular indole, little is known about the effects of indole, its derivatives, or of indole-producing bacteria on the behaviours of C. elegans or other animals. Here, they show that C. elegans senses and moves toward indole and several indole-producing bacteria, but avoids non-indole producing pathogenic bacteria. Furthermore, it was found indole-producing and non-indole-producing bacteria exert divergent effects on the egg-laying behaviour of C. elegans, and that various indole derivatives also modulate chemotaxis, egg-laying behaviour and the survival of C. elegans. In contrast, indole at high concentration can kill C. elegans, which in turn, has the ability to detoxify indole by oxidation and glucosylation. Transcriptional analysis showed indole markedly up-regulated the gene expressions of cytochrome P450s, UDP-glucuronosyltransferases and glutathione S-transferase, which well explained the modification of indole by C. elegans while indole down-regulated the expressions of collagen and F-box genes. Their findings suggest that indole and its derivatives are important signalling molecules during bacteria-nematode interactions.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Minsu Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eonmi Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Younghoon Kim
- Department of Animal Science, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
157
|
Lee KS, Iwanir S, Kopito RB, Scholz M, Calarco JA, Biron D, Levine E. Serotonin-dependent kinetics of feeding bursts underlie a graded response to food availability in C. elegans. Nat Commun 2017; 8:14221. [PMID: 28145493 PMCID: PMC5296638 DOI: 10.1038/ncomms14221] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022] Open
Abstract
Animals integrate physiological and environmental signals to modulate their food uptake. The nematode C. elegans, whose food uptake consists of pumping bacteria from the environment into the gut, provides excellent opportunities for discovering principles of conserved regulatory mechanisms. Here we show that worms implement a graded feeding response to the concentration of environmental bacteria by modulating a commitment to bursts of fast pumping. Using long-term, high-resolution, longitudinal recordings of feeding dynamics under defined conditions, we find that the frequency and duration of pumping bursts increase and the duration of long pauses diminishes in environments richer in bacteria. The bioamine serotonin is required for food-dependent induction of bursts as well as for maintaining their high rate of pumping through two distinct mechanisms. We identify the differential roles of distinct families of serotonin receptors in this process and propose that regulation of bursts is a conserved mechanism of behaviour and motor control.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shachar Iwanir
- Department of Physics and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ronen B. Kopito
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Monika Scholz
- Department of Physics and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - John A. Calarco
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David Biron
- Department of Physics and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Erel Levine
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
158
|
Palamiuc L, Noble T, Witham E, Ratanpal H, Vaughan M, Srinivasan S. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nat Commun 2017; 8:14237. [PMID: 28128367 PMCID: PMC5290170 DOI: 10.1038/ncomms14237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/09/2016] [Indexed: 01/13/2023] Open
Abstract
Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.
Collapse
Affiliation(s)
- Lavinia Palamiuc
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Tallie Noble
- Mira Costa College, 1 Barnard Drive, Oceanside, California 92056, USA
| | - Emily Witham
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Harkaranveer Ratanpal
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Megan Vaughan
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
- Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
159
|
Saharia K, Kumar R, Gupta K, Mishra S, Subramaniam JR. Reserpine requires the D2-type receptor, dop-3, and the exoribonuclease, eri-1, to extend the lifespan in C. elegans. J Biosci 2016; 41:689-695. [PMID: 27966489 DOI: 10.1007/s12038-016-9652-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lifespan extension is an all systems encompassing event. Involvement of reduced insulin/IGF1 signalling is well worked out, first in the model organism Caenorhbaditis elegans followed by other systems including humans. But the role of neuronal component in lifespan extension is not well understood due to the refractory nature of neurons to small RNA interference (sRNAi) in C. elegans. Earlier, we have demonstrated that an antihypertensive drug, reserpine, extends lifespan through modulation of neurotransmitter release, especially, acetylcholine, in C. elegans. Intriguingly, the reserpine mediated lifespan extension (RMLE) does not happen through the known longevity pathways. Here, we report that the D2-type dopamine receptor (DOP-3), which acts through the inhibitory Gprotein coupled (G alpha i) pathway mediated signalling is partly required for RMLE. In the dop-3 loss of function mutant RMLE is shortened. DOP-3 acts through Gαo (goa-1). One of the downstream targets of G protein signalling is the transcription factor, jun-1. MRP-1, an ATP binding cassette transporter, belonging to the multidrug resistance protein family is one of the genes turned on by JUN-1. RMLE is shortened in dop-3-->goa-1-->jun1-->mrp-1 loss of function mutants, elucidating the contribution of dop-3 signalling. The dop-3 receptor system is known to inhibit acetylcholine release. This suggests dopamine receptor, dop-3 could be contributing to the modulation of acetylcholine release by reserpine. ERI-1 is a 3'-5' exoribonuclease, one of the negative regulators of sRNAi, whose loss of function makes neurons amenable to siRNA. In the absence of eri-1, RMLE is shortened. In the dop-3 loss-of-function background, lack of eri-1 completely abolishes RMLE. This suggests that dop-3 and eri-1 act in independent parallel pathways for RMLE and these two pathways are essential and sufficient for the longevity enhancement by reserpine in C. elegans.
Collapse
Affiliation(s)
- Kopal Saharia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208 016, India
| | | | | | | | | |
Collapse
|
160
|
Oh S, Kawasaki I, Park JH, Shim YH. cdc-25.4, a Caenorhabditis elegans Ortholog of cdc25, Is Required for Male Mating Behavior. G3 (BETHESDA, MD.) 2016; 6:4127-4138. [PMID: 27770028 PMCID: PMC5144981 DOI: 10.1534/g3.116.036129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/14/2011] [Indexed: 11/18/2022]
Abstract
Cell division cycle 25 (cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression. Among the four cdc25 orthologs in Caenorhabditis elegans, we found that cdc-25.4 mutant males failed to produce outcrossed progeny. This was not caused by defects in sperm development, but by defects in male mating behavior. The cdc-25.4 mutant males showed various defects during male mating, including contact response, backing, turning, and vulva location. Aberrant turning behavior was the most prominent defect in the cdc-25.4 mutant males. We also found that cdc-25.4 is expressed in many neuronal cells throughout development. The turning defect in cdc-25.4 mutant males was recovered by cdc-25.4 transgenic expression in neuronal cells, suggesting that cdc-25.4 functions in neurons for male mating. However, the neuronal morphology of cdc-25.4 mutant males appeared to be normal, as examined with several neuronal markers. Also, RNAi depletion of wee-1.3, a C. elegans ortholog of Wee1/Myt1 kinase, failed to suppress the mating defects of cdc-25.4 mutant males. These findings suggest that, for successful male mating, cdc-25.4 does not target cell cycles that are required for neuronal differentiation and development. Rather, cdc-25.4 likely regulates noncanonical substrates in neuronal cells.
Collapse
Affiliation(s)
- Sangmi Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ichiro Kawasaki
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Hyung Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yhong-Hee Shim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
161
|
Mylenko M, Boland S, Penkov S, Sampaio JL, Lombardot B, Vorkel D, Verbavatz JM, Kurzchalia TV. NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans. PLoS One 2016; 11:e0167208. [PMID: 27907064 PMCID: PMC5132307 DOI: 10.1371/journal.pone.0167208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023] Open
Abstract
The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s) present in food, referred to as the “food signal”, promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.
Collapse
Affiliation(s)
- Mykola Mylenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Boland
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julio L. Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoit Lombardot
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
162
|
Berendzen KM, Durieux J, Shao LW, Tian Y, Kim HE, Wolff S, Liu Y, Dillin A. Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell 2016; 166:1553-1563.e10. [PMID: 27610575 DOI: 10.1016/j.cell.2016.08.042] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/17/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
During neurodegenerative disease, the toxic accumulation of aggregates and misfolded proteins is often accompanied with widespread changes in peripheral metabolism, even in cells in which the aggregating protein is not present. The mechanism by which the central nervous system elicits a distal reaction to proteotoxic stress remains unknown. We hypothesized that the endocrine communication of neuronal stress plays a causative role in the changes in mitochondrial homeostasis associated with proteotoxic disease states. We find that an aggregation-prone protein expressed in the neurons of C. elegans binds to mitochondria, eliciting a global induction of a mitochondrial-specific unfolded protein response (UPR(mt)), affecting whole-animal physiology. Importantly, dense core vesicle release and secretion of the neurotransmitter serotonin is required for the signal's propagation. Collectively, these data suggest the commandeering of a nutrient sensing network to allow for cell-to-cell communication between mitochondria in response to protein folding stress in the nervous system.
Collapse
Affiliation(s)
- Kristen M Berendzen
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Li-Wa Shao
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ye Tian
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyun-Eui Kim
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Suzanne Wolff
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ying Liu
- Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Andrew Dillin
- The Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
163
|
Hird CM, Urbina MA, Lewis CN, Snape JR, Galloway TS. Fluoxetine Exhibits Pharmacological Effects and Trait-Based Sensitivity in a Marine Worm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8344-8352. [PMID: 27379928 DOI: 10.1021/acs.est.6b03233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Global production of pharmacologically active compounds exceeds 100 000 tons annually, a proportion of which enters aquatic environments through patient use, improper medicine disposal, and production. These compounds are designed to have mode-of-action (MoA) effects on specific biological pathways, with potential to impact nontarget species. Here, we used MoA and trait-based approaches to quantify uptake and biological effects of fluoxetine, a selective serotonin reuptake inhibitor, in filter and deposit feeding marine worms (Hediste diversicolor). Worms exposed to 10 μg L(-1), accumulated fluoxetine with a body burden over 270 times greater than exposure concentrations, resulting in ∼10% increased coelomic fluid serotonin, a pharmacological effect. Observed effects included weight loss (up to 2% at 500 μg L(-1)), decreased feeding rate (68% at 500 μg L(-1)), and altered metabolism (oxygen consumption, ammonia excretion, and O/N from 10 μg L(-1)). Bioconcentration of fluoxetine was dependent on route of uptake, with filter feeding worms experiencing up to 130 times greater body burden ratios and increased magnitudes of effects than deposit feeders, a trait-based sensitivity likely as a consequence of fluoxetine partitioning to sediment. This study highlights how novel approaches such as MoA and trait-based methods can supplement environmental risk assessments of pharmaceuticals.
Collapse
Affiliation(s)
- Cameron M Hird
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, United Kingdom
| | - Mauricio A Urbina
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, United Kingdom
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción , P.O. Box 460-C, Concepción, Chile
| | - Ceri N Lewis
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, United Kingdom
| | - Jason R Snape
- AstraZeneca Global Environment , Alderley Park, Macclesfield, SK10 4TF, United Kingdom
| | - Tamara S Galloway
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
164
|
Lemieux GA, Ashrafi K. Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends Endocrinol Metab 2016; 27:586-596. [PMID: 27289335 PMCID: PMC4958586 DOI: 10.1016/j.tem.2016.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/19/2023]
Abstract
An overview of Caenorhabditis elegans as an experimental organism for studying energy balance is presented. Some of the unresolved questions that complicate the interpretation of lipid measurements from C. elegans are highlighted. We review studies that show that both lipid synthesis and lipid breakdown pathways are activated and needed for the longevity of hermaphrodites that lack their germlines. These findings illustrate the heterogeneity of triglyceride-rich lipid particles in C. elegans and reveal specific lipid signals that promote longevity. Finally, we provide a brief overview of feeding behavioral responses of C. elegans to varying nutritional conditions and highlight an unanticipated metabolic pathway that allows the incorporation of experience in feeding behavior.
Collapse
Affiliation(s)
| | - Kaveh Ashrafi
- University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
165
|
Ballestriero F, Nappi J, Zampi G, Bazzicalupo P, Di Schiavi E, Egan S. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein. Sci Rep 2016; 6:29284. [PMID: 27384057 PMCID: PMC4935850 DOI: 10.1038/srep29284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/14/2016] [Indexed: 12/19/2022] Open
Abstract
Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions.
Collapse
Affiliation(s)
- Francesco Ballestriero
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Jadranka Nappi
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy
| | - Paolo Bazzicalupo
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council, Naples, Italy.,Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Suhelen Egan
- School of Biological, Earth and Environmental Science and Centre for Marine Bio-Innovation, University of New South Wales, Australia
| |
Collapse
|
166
|
Teshiba E, Miyahara K, Takeya H. Glucose-induced abnormal egg-laying rate in Caenorhabditis elegans. Biosci Biotechnol Biochem 2016; 80:1436-9. [DOI: 10.1080/09168451.2016.1158634] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
High glucose reduced the egg-laying rate of the nematode Caenorhabditis elegans and was dependent on serotonergic signaling. Antidiabetic drugs of the biguanide and thiazolidine classes ameliorated the detrimental effect of glucose on egg-laying rate, suggesting the possibility that this quick and easy assay system may be applicable to whole-animal screening for novel antidiabetic drugs, at least, of these classes.
Collapse
Affiliation(s)
- Eri Teshiba
- Department of Applied Life Science, Sojo University, Kumamoto, Japan
| | - Kohji Miyahara
- Department of Applied Life Science, Sojo University, Kumamoto, Japan
| | - Hiroyuki Takeya
- Department of Applied Life Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
167
|
A Run-Length Encoding Approach for Path Analysis of C. elegans Search Behavior. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:3516089. [PMID: 27462364 PMCID: PMC4944090 DOI: 10.1155/2016/3516089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/29/2016] [Indexed: 11/17/2022]
Abstract
The nematode Caenorhabditis elegans explores the environment using a combination of different movement patterns, which include straight movement, reversal, and turns. We propose to quantify C. elegans movement behavior using a computer vision approach based on run-length encoding of step-length data. In this approach, the path of C. elegans is encoded as a string of characters, where each character represents a path segment of a specific type of movement. With these encoded string data, we perform k-means cluster analysis to distinguish movement behaviors resulting from different genotypes and food availability. We found that shallow and sharp turns are the most critical factors in distinguishing the differences among the movement behaviors. To validate our approach, we examined the movement behavior of tph-1 mutants that lack an enzyme responsible for serotonin biosynthesis. A k-means cluster analysis with the path string-encoded data showed that tph-1 movement behavior on food is similar to that of wild-type animals off food. We suggest that this run-length encoding approach is applicable to trajectory data in animal or human mobility data.
Collapse
|
168
|
Reis Rodrigues P, Kaul TK, Ho JH, Lucanic M, Burkewitz K, Mair WB, Held JM, Bohn LM, Gill MS. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1695-705. [PMID: 27172180 PMCID: PMC4889665 DOI: 10.1534/g3.116.026997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.
Collapse
Affiliation(s)
- Pedro Reis Rodrigues
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tiffany K Kaul
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo-Hao Ho
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - William B Mair
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jason M Held
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Matthew S Gill
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
169
|
Martorell P, Llopis S, González N, Chenoll E, López-Carreras N, Aleixandre A, Chen Y, Karoly ED, Ramón D, Genovés S. Probiotic Strain Bifidobacterium animalis subsp. lactis CECT 8145 Reduces Fat Content and Modulates Lipid Metabolism and Antioxidant Response in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3462-3472. [PMID: 27054371 DOI: 10.1021/acs.jafc.5b05934] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recently, microbial changes in the human gut have been proposed as a possible cause of obesity. Therefore, modulation of microbiota through probiotic supplements is of great interest to support obesity therapeutics. The present study examines the functional effect and metabolic targets of a bacterial strain, Bifidobacterium animalis subsp. lactis CECT 8145, selected from a screening in Caenorhabditis elegans. This strain significantly reduced total lipids (40.5% ± 2.4) and triglycerides (27.6% ± 0.5), exerting antioxidant effects in the nematode (30% ± 2.8 increase in survival vs control); activities were also preserved in a final food matrix (milk). Furthermore, transcriptomic and metabolomic analyses in nematodes fed with strain CECT 8145 revealed modulation of the energy and lipid metabolism, as well as the tryptophan metabolism (satiety), as the main metabolic targets of the probiotic. In conclusion, our study describes for the first time a new B. animalis subsp. lactis strain, CECT 8145, as a promising probiotic for obesity disorders. Furthermore, the data support future studies in obesity murine models.
Collapse
Affiliation(s)
- Patricia Martorell
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Silvia Llopis
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Nuria González
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Empar Chenoll
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Noemi López-Carreras
- Department of Pharmacology, School of Medicine, Complutense University of Madrid , Avda. Complutense s/n, 28040 Madrid, Spain
| | - Amaya Aleixandre
- Department of Pharmacology, School of Medicine, Complutense University of Madrid , Avda. Complutense s/n, 28040 Madrid, Spain
| | - Yang Chen
- Metabolon Inc. , Durham, North Carolina 27713, United States
| | | | - Daniel Ramón
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| | - Salvador Genovés
- Cell Biology Laboratory, Food Biotechnology Department, Biópolis SL , Paterna, 46980 Valencia, Spain
| |
Collapse
|
170
|
Abstract
Summary
This is the first report on the presence and localization of the neurotransmitter serotonin (5-HT) in the nervous system of the nematode Trichinella pseudospiralis, the causative agent of trichinellosis. The orientation of the 5-HT-immunoreactive (5-HT-IR) nerve cells in the adult worm is described. In the anterior region of the worm 5-HT-IR occurs in 7 neurons. Longitudinal nerve cords extend posteriorly from the anterior end. They are connected by transverse commissures. The vulval area is intensively supplied with 5-HT-IR nerve cells and fibres forming a plexus. Two rows of small 5HT-IR structures, hypodermal glands, are visible along the whole nematode body. Because of the conserved structural features among nematodes the 5-HT-IR neurons observed are likely to have counterparts in the model worm, Caenorhabditis elegans. Some basic differences are evident and demand further study.
Collapse
|
171
|
Schwartz ML, Jorgensen EM. SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans. Genetics 2016; 202:1277-88. [PMID: 26837755 PMCID: PMC4905529 DOI: 10.1534/genetics.115.184275] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/20/2016] [Indexed: 01/16/2023] Open
Abstract
In principle, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows genetic tags to be inserted at any locus. However, throughput is limited by the laborious construction of repair templates and guide RNA constructs and by the identification of modified strains. We have developed a reagent toolkit and plasmid assembly pipeline, called "SapTrap," that streamlines the production of targeting vectors for tag insertion, as well as the selection of modified Caenorhabditis elegans strains. SapTrap is a high-efficiency modular plasmid assembly pipeline that produces single plasmid targeting vectors, each of which encodes both a guide RNA transcript and a repair template for a particular tagging event. The plasmid is generated in a single tube by cutting modular components with the restriction enzyme SapI, which are then "trapped" in a fixed order by ligation to generate the targeting vector. A library of donor plasmids supplies a variety of protein tags, a selectable marker, and regulatory sequences that allow cell-specific tagging at either the N or the C termini. All site-specific sequences, such as guide RNA targeting sequences and homology arms, are supplied as annealed synthetic oligonucleotides, eliminating the need for PCR or molecular cloning during plasmid assembly. Each tag includes an embedded Cbr-unc-119 selectable marker that is positioned to allow concurrent expression of both the tag and the marker. We demonstrate that SapTrap targeting vectors direct insertion of 3- to 4-kb tags at six different loci in 10-37% of injected animals. Thus SapTrap vectors introduce the possibility for high-throughput generation of CRISPR/Cas9 genome modifications.
Collapse
Affiliation(s)
- Matthew L Schwartz
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840 Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840 Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840
| |
Collapse
|
172
|
Qi YX, Huang J, Li MQ, Wu YS, Xia RY, Ye GY. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors. eLife 2016; 5. [PMID: 26974346 PMCID: PMC4829436 DOI: 10.7554/elife.12241] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meng-Qi Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ya-Su Wu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ren-Ying Xia
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
173
|
The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior. Curr Biol 2016; 26:862-71. [PMID: 26948874 DOI: 10.1016/j.cub.2016.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Abstract
The modification of behavior in response to experience is crucial for animals to adapt to environmental changes. Although factors such as neuropeptides and hormones are known to function in the switch between alternative behavioral states, the mechanisms by which these factors transduce, store, retrieve, and integrate environmental signals to regulate behavior are poorly understood. The rate of locomotion of the nematode Caenorhabditis elegans depends on both current and past food availability. Specifically, C. elegans slows its locomotion when it encounters food, and animals in a food-deprived state slow even more than animals in a well-fed state. The slowing responses of well-fed and food-deprived animals in the presence of food represent distinct behavioral states, as they are controlled by different sets of genes, neurotransmitters, and neurons. Here we describe an evolutionarily conserved C. elegans protein, VPS-50, that is required for animals to assume the well-fed behavioral state. Both VPS-50 and its murine homolog mVPS50 are expressed in neurons, are associated with synaptic and dense-core vesicles, and control vesicle acidification and hence synaptic function, likely through regulation of the assembly of the V-ATPase complex. We propose that dense-core vesicle acidification controlled by the evolutionarily conserved protein VPS-50/mVPS50 affects behavioral state by modulating neuropeptide levels and presynaptic neuronal function in both C. elegans and mammals.
Collapse
|
174
|
Serotonin promotes exploitation in complex environments by accelerating decision-making. BMC Biol 2016; 14:9. [PMID: 26847342 PMCID: PMC4743430 DOI: 10.1186/s12915-016-0232-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
Background Fast responses can provide a competitive advantage when resources are inhomogeneously distributed. The nematode Caenorhabditis elegans was shown to modulate locomotion on a lawn of bacterial food in serotonin (5-HT)-dependent manners. However, potential roles for serotonergic signaling in responding to food discovery are poorly understood. Results We found that 5-HT signaling in C. elegans facilitates efficient exploitation in complex environments by mediating a rapid response upon encountering food. Genetic or cellular manipulations leading to deficient serotonergic signaling resulted in gradual responses and defective exploitation of a patchy foraging landscape. Physiological imaging revealed that the NSM serotonergic neurons responded acutely upon encounter with newly discovered food and were key to rapid responses. In contrast, the onset of responses of ADF serotonergic neurons preceded the physical encounter with the food. The serotonin-gated chloride channel MOD-1 and the ortholog of mammalian 5-HT1 metabotropic serotonin receptors SER-4 acted in synergy to accelerate decision-making. The relevance of responding rapidly was demonstrated in patchy environments, where the absence of 5-HT signaling was detrimental to exploitation. Conclusions Our results implicate 5-HT in a novel form of decision-making, demonstrate its fitness consequences, suggest that NSM and ADF act in concert to modulate locomotion in complex environments, and identify the synergistic action of a channel and a metabotropic receptor in accelerating C. elegans decision-making. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0232-y) contains supplementary material, which is available to authorized users.
Collapse
|
175
|
Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 2016; 7:10388. [PMID: 26790951 PMCID: PMC4735912 DOI: 10.1038/ncomms10388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.
Collapse
Affiliation(s)
- Tanimul Alam
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroki Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Strahil Iv. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Paola Nix
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Michael Bastiani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
176
|
Moy K, Li W, Tran HP, Simonis V, Story E, Brandon C, Furst J, Raicu D, Kim H. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior. PLoS One 2015; 10:e0145870. [PMID: 26713869 PMCID: PMC4699910 DOI: 10.1371/journal.pone.0145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/09/2015] [Indexed: 02/04/2023] Open
Abstract
The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition.
Collapse
Affiliation(s)
- Kyle Moy
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Weiyu Li
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Huu Phuoc Tran
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Valerie Simonis
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Evan Story
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Christopher Brandon
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
| | - Jacob Furst
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
| | - Daniela Raicu
- School of Computing, College of Computing and Digital Media, DePaul University, Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois, United States of America
- * E-mail: (DR); (HK)
| |
Collapse
|
177
|
Pereira L, Kratsios P, Serrano-Saiz E, Sheftel H, Mayo AE, Hall DH, White JG, LeBoeuf B, Garcia LR, Alon U, Hobert O. A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife 2015; 4. [PMID: 26705699 PMCID: PMC4769160 DOI: 10.7554/elife.12432] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022] Open
Abstract
Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI:http://dx.doi.org/10.7554/eLife.12432.001 To better understand the nervous system—the most complex of all the body’s organs—scientists have begun to painstakingly map its many features. These maps can then be used as a basis for understanding how the nervous system develops and works. Researchers have mapped the connections – called synapses – between all the nerve cells in the nervous system of a simple worm called Caenorhabditis elegans. Cells communicate by releasing chemicals called neurotransmitters across the synapses, but it is not fully known which types of neurotransmitters are released across each of the synapses in C. elegans. Now, Pereira et al. have mapped all worm nerve cells that use a neurotransmitter called acetylcholine by fluorescently marking proteins that synthesize and transport the neurotransmitter. This map revealed that 52 of the 118 types of nerve cells in the worm use acetylcholine, making it the most widely used neurotransmitter. This information was then combined with the findings of previous work that investigated which nerve cells release some other types of neurotransmitters. The combined data mean that it is now known which neurotransmitter is used for signaling by over 90% of the nerve cells in C. elegans. Using the map, Pereira et al. found that some neurons release different neurotransmitters in the different sexes of the worm. Additionally, the experiments revealed a set of proteins that cause the nerve cells to produce acetylcholine. Some of these proteins affect the fates of connected nerve cells. Overall, this information will allow scientists to more precisely manipulate specific cells or groups of cells in the worm nervous system to investigate how the nervous system develops and is regulated. DOI:http://dx.doi.org/10.7554/eLife.12432.002
Collapse
Affiliation(s)
- Laura Pereira
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Paschalis Kratsios
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| | - Hila Sheftel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avi E Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - John G White
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, United States
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, United States.,Howard Hughes Medical Institute, Texas A&M University, College Station, United States
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Howard Hughes Medical Institute, Columbia University, New York, United States
| |
Collapse
|
178
|
Chakraborty S, Lambie EJ, Bindu S, Mikeladze-Dvali T, Conradt B. Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. Nat Commun 2015; 6:10126. [PMID: 26657541 PMCID: PMC4682117 DOI: 10.1038/ncomms10126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/04/2015] [Indexed: 12/14/2022] Open
Abstract
Components of the conserved engulfment pathways promote programmed cell death in Caenorhabditis elegans (C. elegans) through an unknown mechanism. Here we report that the phagocytic receptor CED-1 mEGF10 is required for the formation of a dorsal–ventral gradient of CED-3 caspase activity within the mother of a cell programmed to die and an increase in the level of CED-3 protein within its dying daughter. Furthermore, CED-1 becomes enriched on plasma membrane regions of neighbouring cells that appose the dorsal side of the mother, which later forms the dying daughter. Therefore, we propose that components of the engulfment pathways promote programmed cell death by enhancing the polar localization of apoptotic factors in mothers of cells programmed to die and the unequal segregation of apoptotic potential into dying and surviving daughters. Our findings reveal a novel function of the engulfment pathways and provide a better understanding of how apoptosis is initiated during C. elegans development. Programed cell death occurs in a stereotypic fashion during C. elegans development, and it is thought that engulfment promotes programmed cell death. Here the authors present evidence that a signaling function of the conserved engulfment pathways, not the process of engulfment itself, promotes apoptotic cell death.
Collapse
Affiliation(s)
- Sayantan Chakraborty
- Department of Biology II, Ludwig-Maximilians-University, Munich, Center for Integrated Protein Science Munich-CIPSM, LMU Biocenter, Planegg-Martinsried 82152, Germany
| | - Eric J Lambie
- Department of Biology II, Ludwig-Maximilians-University, Munich, Center for Integrated Protein Science Munich-CIPSM, LMU Biocenter, Planegg-Martinsried 82152, Germany
| | - Samik Bindu
- Department of Biology II, Ludwig-Maximilians-University, Munich, Center for Integrated Protein Science Munich-CIPSM, LMU Biocenter, Planegg-Martinsried 82152, Germany.,Department of Surgery Cardiac &Thoracic Surgery The University of Chicago Biological Sciences, 5841 S. Maryland Ave., Chicago, Illinosis 60637, USA
| | - Tamara Mikeladze-Dvali
- Department of Biology II, Ludwig-Maximilians-University, Munich, Center for Integrated Protein Science Munich-CIPSM, LMU Biocenter, Planegg-Martinsried 82152, Germany
| | - Barbara Conradt
- Department of Biology II, Ludwig-Maximilians-University, Munich, Center for Integrated Protein Science Munich-CIPSM, LMU Biocenter, Planegg-Martinsried 82152, Germany
| |
Collapse
|
179
|
Park MR, Oh S, Son SJ, Park DJ, Oh S, Kim SH, Jeong DY, Oh NS, Lee Y, Song M, Kim Y. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10227-10233. [PMID: 26541069 DOI: 10.1021/acs.jafc.5b03730] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.
Collapse
Affiliation(s)
- Mi Ri Park
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Sangnam Oh
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Seok Jun Son
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| | - Dong-June Park
- Korea Food Research Institute , Seongnam-si, Gyeonggi-do 463-746, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University , Gwangju 500-757, Korea
| | - Sae Hun Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University , 136-701 Seoul, Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry , Sunchang, Jeonbuk 595-804, Republic of Korea
| | - Nam Su Oh
- R&D Center, Seoul Dairy Cooperative , Ansan, Gyeonggi-do 425-839, South Korea
| | - Youngbok Lee
- Department of Applied Chemistry, Hanyang University , ERICA Campus, Ansan, Gyeonggi-do 426-791, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University , Daejeon 305-764, Korea
| | - Younghoon Kim
- BK21 Plus Graduate Program, Department of Animal Science and Institute Agricultural Science & Technology, Chonbuk National University , Jeonju 561-756, Korea
| |
Collapse
|
180
|
Rangaraju S, Solis GM, Thompson RC, Gomez-Amaro RL, Kurian L, Encalada SE, Niculescu AB, Salomon DR, Petrascheck M. Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. eLife 2015; 4:e08833. [PMID: 26623667 PMCID: PMC4720515 DOI: 10.7554/elife.08833] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/29/2015] [Indexed: 12/28/2022] Open
Abstract
Longevity mechanisms increase lifespan by counteracting the effects of aging. However, whether longevity mechanisms counteract the effects of aging continually throughout life, or whether they act during specific periods of life, preventing changes that precede mortality is unclear. Here, we uncover transcriptional drift, a phenomenon that describes how aging causes genes within functional groups to change expression in opposing directions. These changes cause a transcriptome-wide loss in mRNA stoichiometry and loss of co-expression patterns in aging animals, as compared to young adults. Using Caenorhabditis elegans as a model, we show that extending lifespan by inhibiting serotonergic signals by the antidepressant mianserin attenuates transcriptional drift, allowing the preservation of a younger transcriptome into an older age. Our data are consistent with a model in which inhibition of serotonergic signals slows age-dependent physiological decline and the associated rise in mortality levels exclusively in young adults, thereby postponing the onset of major mortality. DOI:http://dx.doi.org/10.7554/eLife.08833.001 All organisms age, leading to gradual declines in the body’s systems and eventually death. How certain genetic mutations and drugs delay the effects of aging and promote survival to an older age is a question many researchers are exploring. One way this problem is investigated is by looking at how the activity – or expression – of different genes changes during aging. Scientists interested in understanding aging and longevity often study a simple worm called Caenorhabditis elegans. This worm normally lives for about three weeks, and young C. elegans are able to produce offspring within days of hatching. This accelerated life cycle allows scientists to observe the entire lifespan of the worms. Over time, experiments have shown that DNA damage, changes in behavior and changes to gene expression are all markers of aging in the worms. Now, Rangaraju et al. describe how changes in gene expression patterns that begin early in the lives of C. elegans shorten their lifespan. Specifically, in groups of genes that work together, some genes increase expression, while others decrease expression with age. This phenomenon is called “transcriptional drift” and leads to an age-associated loss of coordination among groups of genes that help orchestrate specific tasks. Rangaraju et al. show that an antidepressant called mianserin prevents transcriptional drift in many of C. elegans’ genes: young worms treated with the drug resist the effects of aging on the transcriptome and maintain coordinated patterns of gene expression for longer. Maintaining coordinated patterns of gene expression postpones the onset of age-related bodily declines and extends the life of treated worms by extending the duration of young adulthood and postponing the onset of age-associated death. The drug also appears to protect against stress-induced changes in gene expression. This suggests that some of the age-related shifts in gene expression occur when cells fail to recover normal gene expression patterns after a stressful event. Questions that remain to be investigated in future studies are whether other longevity mechanisms also extend lifespan by preserving coordinated gene expression patterns, and whether other longevity mechanisms act by extending specific periods of life. DOI:http://dx.doi.org/10.7554/eLife.08833.002
Collapse
Affiliation(s)
- Sunitha Rangaraju
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Gregory M Solis
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Ryan C Thompson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Rafael L Gomez-Amaro
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Leo Kurian
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Sandra E Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, United States
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | - Michael Petrascheck
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States.,Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States.,Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
181
|
Metabotropic GABA signalling modulates longevity in C. elegans. Nat Commun 2015; 6:8828. [PMID: 26537867 PMCID: PMC4667614 DOI: 10.1038/ncomms9828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/08/2015] [Indexed: 02/05/2023] Open
Abstract
The nervous system plays an important but poorly understood role in modulating longevity. GABA, a prominent inhibitory neurotransmitter, is best known to regulate nervous system function and behaviour in diverse organisms. Whether GABA signalling affects aging, however, has not been explored. Here we examined mutants lacking each of the major neurotransmitters in C. elegans, and find that deficiency in GABA signalling extends lifespan. This pro-longevity effect is mediated by the metabotropic GABAB receptor GBB-1, but not ionotropic GABAA receptors. GBB-1 regulates lifespan through G protein-PLCβ signalling, which transmits longevity signals to the transcription factor DAF-16/FOXO, a key regulator of lifespan. Mammalian GABAB receptors can functionally substitute for GBB-1 in lifespan control in C. elegans. Our results uncover a new role of GABA signalling in lifespan regulation in C. elegans, raising the possibility that a similar process may occur in other organisms. The C. elegans nervous system influences organismal lifespan but mechanistic details are poorly understood. Here, Chun et al. show that the neurotransmitter GABA regulates worm lifespan by acting on GABAB receptors in motor neurons, which activate the transcription factor DAF-16 in the intestine.
Collapse
|
182
|
Dallière N, Bhatla N, Luedtke Z, Ma DK, Woolman J, Walker RJ, Holden-Dye L, O'Connor V. Multiple excitatory and inhibitory neural signals converge to fine-tune Caenorhabditis elegans feeding to food availability. FASEB J 2015; 30:836-48. [PMID: 26514165 DOI: 10.1096/fj.15-279257] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/02/2023]
Abstract
How an animal matches feeding to food availability is a key question for energy homeostasis. We addressed this in the nematode Caenorhabditis elegans, which couples feeding to the presence of its food (bacteria) by regulating pharyngeal activity (pumping). We scored pumping in the presence of food and over an extended time course of food deprivation in wild-type and mutant worms to determine the neural substrates of adaptive behavior. Removal of food initially suppressed pumping but after 2 h this was accompanied by intermittent periods of high activity. We show pumping is fine-tuned by context-specific neural mechanisms and highlight a key role for inhibitory glutamatergic and excitatory cholinergic/peptidergic drives in the absence of food. Additionally, the synaptic protein UNC-31 [calcium-activated protein for secretion (CAPS)] acts through an inhibitory pathway not explained by previously identified contributions of UNC-31/CAPS to neuropeptide or glutamate transmission. Pumping was unaffected by laser ablation of connectivity between the pharyngeal and central nervous system indicating signals are either humoral or intrinsic to the enteric system. This framework in which control is mediated through finely tuned excitatory and inhibitory drives resonates with mammalian hypothalamic control of feeding and suggests that fundamental regulation of this basic animal behavior may be conserved through evolution from nematode to human.
Collapse
Affiliation(s)
- Nicolas Dallière
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nikhil Bhatla
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zara Luedtke
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dengke K Ma
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan Woolman
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Robert J Walker
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lindy Holden-Dye
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Vincent O'Connor
- *Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom; and Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
183
|
Abstract
The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, California 94158;
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
184
|
Xu L, Choi S, Xie Y, Sze JY. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005540. [PMID: 26402365 PMCID: PMC4581872 DOI: 10.1371/journal.pgen.1005540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. Levels of neurotransmitter serotonin synthesis shape disparate behaviors in evolutionary diverse organisms, but the mechanisms defining steady state serotonin synthesis in functionally distinct neuronal types remain unknown. A genetic screen for neuron-specific serotonin synthesis mutants in Caenorhabditis elegans revealed a unique Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to define the baseline expression of serotonin synthesis rate-limiting enzyme tryptophan hydroxylase tph-1. Unlike in canonical heterotrimeric G protein signaling pathways where Gα subunits drive downstream effectors, we found that signaling through Gβ GPB-1 to the OCR-2 TRPV channel defines the baseline tph-1 expression. This Gβ signaling is not required for the establishment or maintenance of the serotonergic cell fates, but dedicated to set steady state 5-HT synthesis in mature neurons. Behavioral analyses showed that 5-HT synthesized in different neurons modulates distinct innate rhythmic behaviors. Our work identified a Gβ-mediated signaling pathway operating in differentiated neuronal cells to specify intrinsic functional diversities, and illuminate a mechanistic principle for genetic programming of neuron-specific steady state 5-HT synthesis in dedicated behavioral circuits.
Collapse
Affiliation(s)
- Lu Xu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunju Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yusu Xie
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
185
|
Entchev EV, Patel DS, Zhan M, Steele AJ, Lu H, Ch'ng Q. A gene-expression-based neural code for food abundance that modulates lifespan. eLife 2015; 4:e06259. [PMID: 25962853 PMCID: PMC4417936 DOI: 10.7554/elife.06259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology. DOI:http://dx.doi.org/10.7554/eLife.06259.001 To maximize their chances of survival, animals need to be able to sense changes in the abundance of food in their environment and respond in an appropriate manner. The nervous system is able to sense cues from the environment and coordinate responses in the whole organism, but it is not clear how this leads to long-term changes in the organism's biology. In nematode worms, two genes called daf-7 and tph-1 appear to be involved in connecting the sensing of food availability with changes in the biology of the organism. The daf-7 gene encodes a hormone, while tph-1 encodes an enzyme that makes a neurochemical called serotonin. Here, Entchev, Patel, Zhan et al. found that daf-7 and tph-1 genes are active in three pairs of neurons in nematode worms. The experiments show that these neurons collectively form a circuit that carries information about the abundance of food, which leads to changes in how long the worms live. When this circuit was disrupted by removing these genes, the worms' ability to adjust their lifespan in response to changes in the availability of food was weakened, likely because they were unable to sense food. The experiments also show that the circuit regulates itself, largely because daf-7 and tph-1 are able to control each-other's activity. Together, these results suggest that changing the activity of certain genes in neurons enables nematode worms to alter their biology in response to changes in the availability of food. Neurons in the brain use electrical activity to communicate and process information and Entchev, Patel, Zhan et al.'s findings imply that gene activity can also perform a similar role. DOI:http://dx.doi.org/10.7554/eLife.06259.002
Collapse
Affiliation(s)
- Eugeni V Entchev
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Dhaval S Patel
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Andrew J Steele
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Hang Lu
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - QueeLim Ch'ng
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
186
|
Schmid T, Snoek LB, Fröhli E, van der Bent ML, Kammenga J, Hajnal A. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA. PLoS Genet 2015; 11:e1005236. [PMID: 25978500 PMCID: PMC4433219 DOI: 10.1371/journal.pgen.1005236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.
Collapse
Affiliation(s)
- Tobias Schmid
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
- PhD Program in Molecular Life Sciences, University and ETH Zurich, Zurich, Switzerland
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Erika Fröhli
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | | | - Jan Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Alex Hajnal
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
187
|
Loer CM, Calvo AC, Watschinger K, Werner-Felmayer G, O'Rourke D, Stroud D, Tong A, Gotenstein JR, Chisholm AD, Hodgkin J, Werner ER, Martinez A. Cuticle integrity and biogenic amine synthesis in Caenorhabditis elegans require the cofactor tetrahydrobiopterin (BH4). Genetics 2015; 200:237-53. [PMID: 25808955 PMCID: PMC4423366 DOI: 10.1534/genetics.114.174110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.
Collapse
Affiliation(s)
- Curtis M Loer
- Department of Biology, University of San Diego, San Diego, California, 92110
| | - Ana C Calvo
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Amy Tong
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jennifer R Gotenstein
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Andrew D Chisholm
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
188
|
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans. Genetics 2015; 200:443-54. [PMID: 25903497 PMCID: PMC4492371 DOI: 10.1534/genetics.115.175851] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditiselegans has emerged as a powerful model to study the genetics of feeding, food-related behaviors, and metabolism. Despite the many advantages of C. elegans as a model organism, direct measurement of its bacterial food intake remains challenging. Here, we describe two complementary methods that measure the food intake of C. elegans. The first method is a microtiter plate-based bacterial clearing assay that measures food intake by quantifying the change in the optical density of bacteria over time. The second method, termed pulse feeding, measures the absorption of food by tracking de novo protein synthesis using a novel metabolic pulse-labeling strategy. Using the bacterial clearance assay, we compare the bacterial food intake of various C. elegans strains and show that long-lived eat mutants eat substantially more than previous estimates. To demonstrate the applicability of the pulse-feeding assay, we compare the assimilation of food for two C. elegans strains in response to serotonin. We show that serotonin-increased feeding leads to increased protein synthesis in a SER-7-dependent manner, including proteins known to promote aging. Protein content in the food has recently emerged as critical factor in determining how food composition affects aging and health. The pulse-feeding assay, by measuring de novo protein synthesis, represents an ideal method to unequivocally establish how the composition of food dictates protein synthesis. In combination, these two assays provide new and powerful tools for C. elegans research to investigate feeding and how food intake affects the proteome and thus the physiology and health of an organism.
Collapse
|
189
|
Kniazeva M, Zhu H, Sewell AK, Han M. A Lipid-TORC1 Pathway Promotes Neuronal Development and Foraging Behavior under Both Fed and Fasted Conditions in C. elegans. Dev Cell 2015; 33:260-71. [PMID: 25892013 DOI: 10.1016/j.devcel.2015.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Food deprivation suppresses animal growth and development but spares the systems essential for foraging. The mechanisms underlying this selective development, and potential roles of lipids in it, are unclear. When C. elegans hatch in a food-free environment, postembryonic growth and development stall, but sensory neuron differentiation and neuronal development required for food responses continue. Here, we show that monomethyl branched-chain fatty acids (mmBCFAs) and their derivative, d17iso-glucosylceramide, function in the intestine to promote foraging behavior and sensory neuron maturation through both TORC1-dependent and -independent mechanisms. We show that mmBCFAs impact the expression of a subset of genes, including ceh-36/Hox, which we show to play a key role in mediating the regulation of the neuronal functions by this lipid pathway. This study uncovers that a lipid pathway promotes neuronal functions involved in foraging under both fed and fasting conditions and adds critical insight into the physiological functions of TORC1.
Collapse
Affiliation(s)
- Marina Kniazeva
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | - Huanhu Zhu
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Aileen K Sewell
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Howard Hughes Medical Institute; Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
190
|
Zhang L, Gualberto DG, Guo X, Correa P, Jee C, Garcia LR. TMC-1 attenuates C. elegans development and sexual behaviour in a chemically defined food environment. Nat Commun 2015; 6:6345. [PMID: 25695879 DOI: 10.1038/ncomms7345] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/21/2015] [Indexed: 01/22/2023] Open
Abstract
Although diet affects growth and behaviour, the adaptive mechanisms that coordinate these processes in non-optimal food sources are unclear. Here we show that the C. elegans tmc-1 channel, which is homologous to the mammalian tmc deafness genes, attenuates development and inhibits sexual behaviour in non-optimal food, the synthetic CeMM medium. In CeMM medium, signalling from the pharyngeal MC neurons and body wall muscles slows larval development. However, in the non-standard diet, mutation in tmc-1 accelerates development, by impairing the excitability of these cells. The tmc-1 larva can immediately generate ATP when fed CeMM, and their fast development requires insulin signalling. Our findings suggest that the tmc-1 channel indirectly affects metabolism in wild-type animals. In addition to regulating the development, we show that mutating tmc-1 can relax diet-induced inhibition of male sexual behaviour, thus indicating that a single regulator can be genetically modified to promote growth rate and reproductive success in new environments.
Collapse
Affiliation(s)
- Liusuo Zhang
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Daisy G Gualberto
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Xiaoyan Guo
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Paola Correa
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - Changhoon Jee
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| | - L Rene Garcia
- Department of Biology, Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU College Station, Texas 77843-3258, USA
| |
Collapse
|
191
|
Lemieux GA, Cunningham KA, Lin L, Mayer F, Werb Z, Ashrafi K. Kynurenic acid is a nutritional cue that enables behavioral plasticity. Cell 2015; 160:119-31. [PMID: 25594177 PMCID: PMC4334586 DOI: 10.1016/j.cell.2014.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Katherine A Cunningham
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Fahima Mayer
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA.
| |
Collapse
|
192
|
Guo M, Wu TH, Song YX, Ge MH, Su CM, Niu WP, Li LL, Xu ZJ, Ge CL, Al-Mhanawi MTH, Wu SP, Wu ZX. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat Commun 2015; 6:5655. [PMID: 25585042 DOI: 10.1038/ncomms6655] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 02/02/2023] Open
Abstract
Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.
Collapse
Affiliation(s)
- Min Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Tai-Hong Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yan-Xue Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chun-Ming Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Wei-Pin Niu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lan-Lan Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Zi-Jing Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Chang-Li Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Maha T H Al-Mhanawi
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shi-Ping Wu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
193
|
Wilecki M, Lightfoot JW, Susoy V, Sommer RJ. Predatory feeding behaviour in Pristionchus nematodes is dependent on a phenotypic plasticity and induced by serotonin. J Exp Biol 2015; 218:1306-13. [DOI: 10.1242/jeb.118620] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/23/2015] [Indexed: 12/29/2022]
Abstract
Behavioural innovation and morphological adaptation are intrinsically linked but their relationship is often poorly understood. In nematodes, a huge diversity of feeding morphologies and behaviours can be observed to meet their distinctive dietary and environmental demands. Pristionchus and their relatives show varied feeding activities consuming both bacteria and also predating other nematodes. In addition, Pristionchus nematodes display dimorphic mouth structures triggered by an irreversible developmental switch, which generates a narrower mouthed form with a single tooth and a wider mouthed form with an additional tooth. However, little is known about the specific predatory adaptations of these mouth forms nor the associated mechanisms and behaviours. Through a mechanistic analysis of predation behaviours, in particular in the model organism Pristionchus pacificus, we reveal multifaceted feeding modes characterised by dynamic rhythmic switching and tooth stimulation. This complex feeding mode switch is regulated by a previously uncharacterised role for the neurotransmitter serotonin, a process which appears conserved across several predatory nematode species. Furthermore, we investigated the effects of starvation, prey size and prey preference on P. pacificus predatory feeding kinetics revealing predation to be a fundamental component of the P. pacificus feeding repertoire thus providing an additional rich source of nutrition in addition to bacteria. Finally, we found that mouth form morphology also has a striking impact on predation suppressing predatory behaviour in the narrow mouthed form. Our results therefore hint at the regulatory networks involved in controlling predatory feeding and underscore P. pacificus as a model for understanding the evolution of complex behaviours.
Collapse
Affiliation(s)
- Martin Wilecki
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - James W. Lightfoot
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - Vladislav Susoy
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| | - Ralf J. Sommer
- Max-Planck Institute for Developmental Biology, Dept. for Evolutionary Biology, Spemannstrasse 37, 72076 Tuebingen, Germany
| |
Collapse
|
194
|
Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 2014; 25:163-174. [PMID: 25557666 DOI: 10.1016/j.cub.2014.11.040] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular mechanisms aimed at repairing protein damage and maintaining homeostasis, widely understood to be triggered by the damage itself, have recently been shown to be under cell nonautonomous control in the metazoan C. elegans. The heat shock response (HSR) is one such conserved mechanism, activated by cells upon exposure to proteotoxic conditions such as heat. Previously, we had shown that this conserved cytoprotective response is regulated by the thermosensory neuronal circuitry of C. elegans. Here, we investigate the mechanisms and physiological relevance of neuronal control. RESULTS By combining optogenetic methods with live visualization of the dynamics of the heat shock transcription factor (HSF1), we show that excitation of the AFD thermosensory neurons is sufficient to activate HSF1 in another cell, even in the absence of temperature increase. Excitation of the AFD thermosensory neurons enhances serotonin release. Serotonin release elicited by direct optogenetic stimulation of serotonergic neurons activates HSF1 and upregulates molecular chaperones through the metabotropic serotonin receptor SER-1. Consequently, excitation of serotonergic neurons alone can suppress protein misfolding in C. elegans peripheral tissue. CONCLUSIONS These studies imply that thermosensory activity coupled to serotonergic signaling is sufficient to activate the protective HSR prior to frank proteotoxic damage. The ability of neurosensory release of serotonin to control cellular stress responses and activate HSF1 has powerful implications for the treatment of protein conformation diseases.
Collapse
|
195
|
Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, Zhang Y, Wang Y, Xu Y, Cao J. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation. PLoS Negl Trop Dis 2014; 8:e3392. [PMID: 25500817 PMCID: PMC4263413 DOI: 10.1371/journal.pntd.0003392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. The successful infection establishment of parasites depends on their ability to combat their host's immune system while maintaining metabolic adaptation to their hosts. The mechanisms of these processes are not well understood. We used the protoscoleces (PSCs) of E. granulosus as a model system to study this complex host-parasite interaction by investigating the role of excretory-secretory proteins (ESPs) in the physiological adaptation of the parasite. Using Roche 454 sequencing technology and in silico secretome analysis, we predicted 2280 ESPs and analyzed their biological functions. Our analysis of the bioinformatic data suggested that ESPs are integral to the metabolism of carbohydrates and proteins within the parasite and/or hosts. We also found that ESPs are involved in mediating the immune responses of hosts and function within key development-related signaling pathways. We found 11 intracellular enzymes, 25 molecular chaperones and four proteases that were highly represented in the ESPs, in addition to 44 antigenic proteins that showed promise as candidates for vaccine or serodiagnostic development purposes. These findings provide valuable information on the mechanisms of metabolic adaptation in parasites that will aid the development of novel hydatid treatment and control targets.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| | - Xiuming Han
- Department of Parasitic Diseases, Qinghai Institute for Endemic Disease Prevention and Control, Zong Zhai, Xining, Qinghai, People's Republic of China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yumei Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| |
Collapse
|
196
|
Asakura T, Ogura KI, Goshima Y. IRE-1/XBP-1 pathway of the unfolded protein response is required for properly localizing neuronal UNC-6/Netrin for axon guidance in C. elegans. Genes Cells 2014; 20:153-9. [PMID: 25469499 DOI: 10.1111/gtc.12206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/23/2014] [Indexed: 01/05/2023]
Abstract
During developing nervous system, neurons project axons to their targets precisely. In this process, axon guidance molecules provide positional information to the axons. Therefore, the spatially and temporally controlled localization of the axon guidance molecules is required for the proper structure formation of the complex nervous system. In C. elegans, UNC-6/Netrin is a secreted protein that elicits both attractive and repulsive response in axon guidance. UNC-6/Netrin secreted from ventral cells may establish a concentration gradient from the ventral to the dorsal side of the animal, thus providing dorso-ventral positional information. However, the mechanisms specifying positional information of UNC-6/Netrin are largely unknown. Here, we show that the ire-1/xbp-1 pathway of the unfolded protein response (UPR) is required for axonal distribution of UNC-6/Netrin in the ventral neurons. In addition, the ire-1/xbp-1 pathway is also required for dorso-ventral axon guidance mediated by UNC-6/Netrin. Our results suggest that the ire-1/xbp-1 pathway of the UPR is crucial for establishing positional information of UNC-6/Netrin. We propose that the proper secretion of UNC-6/Netrin from the ventral neurons requires the activity of IRE-1.
Collapse
Affiliation(s)
- Taro Asakura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
197
|
Anderson A, McMullan R. From head to tail it's a 2 way street for neuro-immune communication. WORM 2014; 3:e959425. [PMID: 26430547 PMCID: PMC4588538 DOI: 10.4161/21624046.2014.959425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022]
Abstract
Animals need to be able to rapidly and effectively respond to changes in their external and internal environment. To achieve this the nervous and immune systems need to coordinate their responses, integrating multiple cues including presence of potential pathogens, and availability of food. In our recent study (1) we demonstrate that signaling by sensory neurons in the head using the classical neurotransmitter serotonin can negatively regulate the rectal epithelial immune response upon infection of C. elegans with the naturally occurring bacterial pathogen Microbacterium nematophilum (M. nematophilum). The complicated nature of the mammalian brain and immune system has made it difficult to identify the molecular mechanisms mediating these interactions. With its simple, well described, nervous system and a rapidly growing understanding of its immune system, C. elegans has emerged as an excellent model to study the mechanisms by which animals recognize pathogens and coordinate behavioral and cellular immune responses to infection.
Collapse
Affiliation(s)
- A Anderson
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| | - R McMullan
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| |
Collapse
|
198
|
Abstract
Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute (TSRI), La Jolla, California 92037;
| |
Collapse
|
199
|
Kalis AK, Kissiov DU, Kolenbrander ES, Palchick Z, Raghavan S, Tetreault BJ, Williams E, Loer CM, Wolff JR. Patterning of sexually dimorphic neurogenesis in the caenorhabditis elegans ventral cord by Hox and TALE homeodomain transcription factors. Dev Dyn 2014; 243:159-71. [PMID: 24115648 DOI: 10.1002/dvdy.24064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Reproduction in animals requires development of distinct neurons in each sex. In C. elegans, most ventral cord neurons (VCNs) are present in both sexes, with the exception of six hermaphrodite-specific neurons (VCs) and nine pairs of male-specific neurons (CAs and CPs) that arise from analogous precursor cells. How are the activities of sexual regulators and mediators of neuronal survival, division, and fate coordinated to generate sex-specificity in VCNs? RESULTS To address this, we have developed a toolkit of VCN markers that allows us to examine sex-specific neurogenesis, asymmetric fates of daughters of a neuroblast division, and regional specification on the anteroposterior axis. Here, we describe the roles of the Hox transcription factors LIN-39 and MAB-5 in promoting survival, differentiation, and regionalization of VCNs. We also find that the TALE class homeodomain proteins CEH-20 and UNC-62 contribute to specification of neurotransmitter fate in males. Furthermore, we identify that VCN sex is determined during the L1 larval stage. CONCLUSIONS These findings, combined with future analyses made possible by the suite of VCN markers described here, will elucidate how Hox-mediated cell fate decisions and sex determination intersect to influence development of neuronal sex differences.
Collapse
|
200
|
Qi YX, Xia RY, Wu YS, Stanley D, Huang J, Ye GY. Larvae of the small white butterfly, Pieris rapae, express a novel serotonin receptor. J Neurochem 2014; 131:767-77. [PMID: 25187179 DOI: 10.1111/jnc.12940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G-protein-coupled receptors. Five 5-HT receptor subtypes have been reported in Drosophila that share high similarity with mammalian 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT7 receptors. We isolated a cDNA (Pr5-HT8 ) from larval Pieris rapae, which shares relatively low similarity to the known 5-HT receptor classes. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT. The receptor did not affect [cAMP]i even at high concentrations (> 10 μM) of 5-HT. Dopamine, octopamine, and tyramine did not influence receptor signaling. Pr5-HT8 was also activated by various 5-HT receptor agonists including 5-methoxytryptamine, (±)-8-Hydroxy-2-(dipropylamino) tetralin, and 5-carboxamidotryptamine. Methiothepin, a non-selective 5-HT receptor antagonist, activated Pr5-HT8 . WAY 10635, a 5-HT1A antagonist, but not SB-269970, SB-216641, or RS-127445, inhibited 5-HT-induced [Ca(2+)]i increases. We infer that Pr5-HT8 represents the first recognized member of a novel 5-HT receptor class with a unique pharmacological profile. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee or parasitoid wasps. This is likely to be an invertebrate-specific receptor because there were no similar receptors in mammals. We isolated a cDNA (Pr5-HT8) from larval Pieris rapae, which shares relatively low similarity to the known GPCRs. After heterologous expression in HEK293 cells, Pr5-HT8 mediated increased [Ca(2+)]i in response to low concentrations (< 10 nM) of 5-HT and various 5-HT receptor agonists. We found orthologs of Pr5-HT8 in some insect pests and vectors such as beetles and mosquitoes, but not in the genomes of honeybee, parasitoid wasps, or mammals.
Collapse
Affiliation(s)
- Yi-Xiang Qi
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|