151
|
Pajovic S, Corson TW, Spencer C, Dimaras H, Orlic-Milacic M, Marchong MN, To KH, Thériault B, Auspitz M, Gallie BL. The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Muller glia with progenitor properties. Invest Ophthalmol Vis Sci 2011; 52:7618-24. [PMID: 21862643 DOI: 10.1167/iovs.11-7989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Human retinoblastoma arises from an undefined developing retinal cell after inactivation of RB1. This is emulated in a murine retinoblastoma model by inactivation of pRB by retinal-specific expression of simian virus 40 large T-antigen (TAg-RB). Some mutational events after RB1 loss in humans are recapitulated at the expression level in TAg-RB, supporting preclinical evidence that this model is useful for comparative studies between mouse and human. Here, the characteristics of the TAg-RB cell of origin are defined. METHODS TAg-RB mice were killed at ages from embryonic day (E)18 to postnatal day (P)35. Tumors were analyzed by immunostaining, DNA copy number PCR, or real-time quantitative RT-PCR for TAg protein, retinal cell type markers, and retinoblastoma-relevant genes. RESULTS TAg expression began at P8 in a row of inner nuclear layer cells that increased in number through P21 to P28, when clusters reminiscent of small tumors emerged from cells that escaped a wave of apoptosis. Early TAg-expressing cells coexpressed the developmental marker Chx10 and glial markers CRALBP, clusterin, and carbonic anhydrase II (Car2), but not TuJ1, an early neuronal marker. Emerging tumors retained expression of only Chx10 and carbonic anhydrase II. As with human retinoblastoma, TAg-RB tumors showed decreased Cdh11 DNA copy number and gain of Kif14 and Mycn. It was confirmed that TAg-RB tumors lose expression of tumor suppressor cadherin-11 and overexpress oncogenes Kif14, Dek, and E2f3. CONCLUSIONS TAg-RB tumors displayed molecular similarity to human retinoblastoma and origin in a cell with features of differentiated Müller glia with progenitor properties.
Collapse
Affiliation(s)
- Sanja Pajovic
- Division of Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 2011; 359:190-8. [PMID: 21920355 DOI: 10.1016/j.ydbio.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 01/13/2023]
Abstract
The retinoblastoma gene Rb is the prototype tumor suppressor and is conserved in Drosophila. We use the developing fly retina as a model system to investigate the role of Drosophila Rb (rbf) during differentiation. This report shows that mutation of rbf and rhinoceros (rno), which encodes a PHD domain protein, leads to a synergistic delay in photoreceptor cell differentiation in the developing eye disc. We show that this differentiation delay phenotype is caused by decreased levels of different components of the Epidermal Growth Factor Receptor (EGFR) signaling pathway in the absence of rbf and rno. We show that rbf is required for normal expression of Rhomboid proteins and activation of MAP kinase in the morphogenetic furrow (MF), while rno is required for the expression of Pointed (Pnt) and Ebi proteins, which are key factors that mediate EGFR signaling output in the nucleus. Interestingly, while removing the transcription activation function of dE2F1 is sufficient to suppress the synergistic differentiation delay, a mutant form of de2f1 that disrupts the binding with RBF but retains the transcription activation function does not mimic the effect of rbf loss. These observations suggest that RBF has additional functions besides dE2F1 binding that regulates EGFR signaling and photoreceptor differentiation.
Collapse
|
153
|
The short estrous cycle of mice may influence the effect of BRCA1 mutations. Med Hypotheses 2011; 77:401-3. [DOI: 10.1016/j.mehy.2011.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
|
154
|
Sen S, Bunda S, Shi J, Wang A, Mitts TF, Hinek A. Retinoblastoma protein modulates the inverse relationship between cellular proliferation and elastogenesis. J Biol Chem 2011; 286:36580-91. [PMID: 21880723 DOI: 10.1074/jbc.m111.269944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism that leads to the inverse relationship between heightened cellular proliferation and the cessation of elastic fibers production, observed during formation of the arterial occlusions and dermal scars, is not fully understood. Because the retinoblastoma protein (Rb), responsible for cell cycle initiation, has also been implicated in insulin-like growth factor-I-mediated signaling stimulating elastin gene activation, we explored whether differential phosphorylation of Rb by various cyclin·cyclin-dependent kinase complexes would be responsible for promoting either elastogenic or pro-proliferative signals. We first tested cultures of dermal fibroblasts derived from Costello syndrome patients, in which heightened proliferation driven by mutated oncogenic H-Ras coincides with inhibition of elastogenesis. We found that Costello syndrome fibroblasts display elevated level of Rb phosphorylation on serine 780 (Ser(P)-780-Rb) and that pharmacological inhibition of Ras with radicicol, Mek/Erk with PD98059, or cyclin-dependent kinase 4 with PD0332991 not only leads to down-regulation of Ser(P)-780-Rb levels but also enhances Rb phosphorylation on threonine-821 (Thr(P)-821-Rb), which coincides with the recovery of elastin production. Then we demonstrated that treatment of normal skin fibroblasts with the pro-proliferative PDGF BB also up-regulates Ser(P)-780-Rb levels, but treatment with the pro-elastogenic insulin-like growth factor-I activates cyclinE-cdk2 complex to phosphorylate Rb on Thr-821. Importantly, we have established that elevation of Thr(P)-821-Rb promotes Rb binding to the Sp1 transcription factor and that successive binding of the Rb-Sp1 complex to the retinoblastoma control element within the elastin gene promoter stimulates tropoelastin transcription. In summary, we provide novel insight into the role of Rb in mediating the inverse relationship between elastogenesis and cellular proliferation.
Collapse
Affiliation(s)
- Sanjana Sen
- Cardiovascular Research, The Hospital for Sick Children, University of Toronto Toronto M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
155
|
Conkrite K, Sundby M, Mukai S, Thomson JM, Mu D, Hammond SM, MacPherson D. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. Genes Dev 2011; 25:1734-45. [PMID: 21816922 DOI: 10.1101/gad.17027411] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The miR-17~92 cluster is a potent microRNA-encoding oncogene. Here, we show that miR-17~92 synergizes with loss of Rb family members to promote retinoblastoma. We observed miR-17~92 genomic amplifications in murine retinoblastoma and high expression of miR-17~92 in human retinoblastoma. While miR-17~92 was dispensable for mouse retinal development, miR-17~92 overexpression, together with deletion of Rb and p107, led to rapid emergence of retinoblastoma with frequent metastasis to the brain. miR-17~92 oncogenic function in retinoblastoma was not mediated by a miR-19/PTEN axis toward apoptosis suppression, as found in lymphoma/leukemia models. Instead, miR-17~92 increased the proliferative capacity of Rb/p107-deficient retinal cells. We found that deletion of Rb family members led to compensatory up-regulation of the cyclin-dependent kinase inhibitor p21Cip1. miR-17~92 overexpression counteracted p21Cip1 up-regulation, promoted proliferation, and drove retinoblastoma formation. These results demonstrate that the oncogenic determinants of miR-17~92 are context-specific and provide new insights into miR-17~92 function as an RB-collaborating gene in cancer.
Collapse
Affiliation(s)
- Karina Conkrite
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Taneja P, Zhu S, Maglic D, Fry EA, Kendig RD, Inoue K. Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 2011; 5:235-57. [PMID: 21836819 PMCID: PMC3153120 DOI: 10.4137/cmo.s7516] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research. The anti-tumorigenic functions of TSGs, and their role in development and differentiation, and inhibition of oncogenes are discussed. In this review, we summarize some of the important transgenic and knockout mouse models for TSGs, including Rb, p53, Ink4a/Arf, Brca1/2, and their related genes.
Collapse
Affiliation(s)
| | - Sinan Zhu
- The Departments of Pathology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dejan Maglic
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | - Kazushi Inoue
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
157
|
Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. Proc Natl Acad Sci U S A 2011; 108:13379-86. [PMID: 21788502 DOI: 10.1073/pnas.1110104108] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB). Here, we show that genetic ablation of Rbp2 decreases tumor formation and prolongs survival in Rb1(+/-) mice and Men1-defective mice. These studies link RBP2 histone demethylase activity to tumorigenesis and nominate RBP2 as a potential target for cancer therapy.
Collapse
|
158
|
Musumeci G, Cardile V, Fenga C, Caggia S, Loreto C. Mineral fibre toxicity: expression of retinoblastoma (Rb) and phospho-retinoblastoma (pRb) protein in alveolar epithelial and mesothelial cell lines exposed to fluoro-edenite fibres. Cell Biol Toxicol 2011; 27:217-225. [PMID: 21327865 DOI: 10.1007/s10565-011-9183-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/17/2011] [Indexed: 11/25/2022]
Abstract
Several asbestos-like mineral fibres, including fluoro-edenite, may cause lung cancer and/or other lung diseases. However, biological and molecular mechanisms linked to cancer development after mineral fibre exposure have not been fully investigated. In the present study, human non-malignant mesothelial (MeT-5A) and human bronchoalveolar alveolar epithelial (A549) cell lines were incubated with rising concentrations of fluoro-edenite to evaluate the expression of retinoblastoma (Rb) protein, which has been demonstrated to play an important role in cell cycle control and tumour progression. Intriguingly, these results show that Rb expression was unchanged, while the level of the phosphorylated protein increased significantly in a dose-dependent manner, suggesting an involvement of this regulator protein in the pathogenesis of the lung diseases induced by mineral fibres. In conclusion, fluoro-edenite regulates the expression of phospho-retinoblastoma to trigger a network of signals strictly connected with cell proliferation and neoplastic cell transformation.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Anatomy, Diagnostic Pathology, Forensic Medicine, Hygiene and Public Health, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
159
|
Egashira A, Kano K, Naito K. Preimplantation-embryo-specific cell-cycle regulation is attributable to a low expression of retinoblastoma protein rather than its phosphorylation. J Reprod Dev 2011; 57:492-9. [PMID: 21519154 DOI: 10.1262/jrd.10-170o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian preimplantation embryos enter the S phase immediately after the end of the M phase; their cell cycle lacks a substantial G1 phase. Previously, we suggested that the absence of the G1 phase was attributable to a loss of retinoblastoma protein (RB) function, which is required for suppression of S phase entrance and that this loss of RB function in turn was attributable to the low RB expression level during preimplantation development in mouse embryos. The present study aimed to examine whether or not RB inhibition by CDK4/6-cyclin D-dependent phosphorylation is involved in the loss of RB function in preimplantation mouse embryos by the expression of p16(INK4a), a potent endogenous inhibitor of CDK4/6-cyclin D. First, the decrease in RB expression between the four-cell and morula stages was confirmed in in vivo-derived mouse embryos. We then examined the efficiency of the p16(INK4a) expression vector in inhibiting RB phosphorylation and cell cycle progression using NIH-3T3 cells and obtained gradual RB dephosphorylation and a significantly lower proliferation rate in p16(INK4a)-transfected cells than in control cells. This indicated the successful p16(INK4a) effects on cell-cycle progression by the vector used. On the other hand, the development rate of mouse embryos injected with the p16(INK4a) expression vector was the same as that of the control embryos, although p16(INK4a) expression was detected at mRNA and protein levels in the former group but not in the control group. These results suggest that RB phosphorylation is not involved in RB dysfunction or in the lack of a G1 phase in mouse embryos and that the decrease in RB expression is important for preimplantation-embryo-specific cell-cycle regulation. Moreover, the present study indicates the similarity between preimplantation embryos and cancer cells, which p16(INK4a) expression does not arrest at the G1 phase.
Collapse
Affiliation(s)
- Asuka Egashira
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
160
|
Abstract
The RB1 gene is the first tumor suppressor gene identified whose mutational inactivation is the cause of a human cancer, the pediatric cancer retinoblastoma. The 25 years of research since its discovery has not only illuminated a general role for RB1 in human cancer, but also its critical importance in normal development. Understanding the molecular function of the RB1 encoded protein, pRb, is a long-standing goal that promises to inform our understanding of cancer, its relationship to normal development, and possible therapeutic strategies to combat this disease. Achieving this goal has been difficult, complicated by the complexity of pRb and related proteins. The goal of this review is to explore the hypothesis that, at its core, the molecular function of pRb is to dynamically regulate the location-specific assembly or disassembly of protein complexes on the DNA in response to the output of various signaling pathways. These protein complexes participate in a variety of molecular processes relevant to DNA including gene transcription, DNA replication, DNA repair, and mitosis. Through regulation of these processes, RB1 plays a uniquely prominent role in normal development and cancer.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
161
|
Li H, Yang H, Liu Y, Huan W, Zhang S, Wu G, Lu Q, Wang Q, Wang Y. The cyclin-dependent kinase inhibitor p27(Kip1) is a positive regulator of Schwann cell differentiation in vitro. J Mol Neurosci 2011; 45:277-83. [PMID: 21484444 DOI: 10.1007/s12031-011-9518-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
Schwann cell precursors differentiating into a myelinating phenotype are critical for peripheral nerve development and regeneration. However, little is known about the underlying molecular mechanisms of Schwann cell differentiation. In the present study, we performed a cyclic adenosine monophosphate-induced Schwann cell differentiation model in vitro. Western blot analysis showed that p27(Kip1) expression was upregulated during the differentiation of Schwann cell, while the inhibition of p27(Kip1) expression by short hairpin RNA-mediated knockdown significantly abolished the expression of promyelinating markers and the alteration of cellular morphology. In addition, immunofluorescence revealed a decrease of p27(Kip1) nuclear staining and a concomitant increase of cytoplasmic staining in differentiated Schwann cells. In summary, our data indicated that p27(Kip1) was a positive regulator of Schwann cell differentiation in vitro.
Collapse
Affiliation(s)
- Honghui Li
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong 22600, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Kim YC, Kim SY, Mellado-Gil JM, Yadav H, Neidermyer W, Kamaraju AK, Rane SG. RB regulates pancreas development by stabilizing Pdx1. EMBO J 2011; 30:1563-76. [PMID: 21399612 DOI: 10.1038/emboj.2011.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 02/08/2011] [Indexed: 12/15/2022] Open
Abstract
RB is a key substrate of Cdks and an important regulator of the mammalian cell cycle. RB either represses E2Fs that promote cell proliferation or enhances the activity of cell-specific factors that promote differentiation, although the mechanism that facilitates this dual interaction is unclear. Here, we demonstrate that RB associates with and stabilizes pancreatic duodenal homeobox-1 (Pdx-1) that is essential for embryonic pancreas development and adult β-cell function. Interestingly, Pdx-1 utilizes a conserved RB-interaction motif (RIM) that is also present in E2Fs. Point mutations within the RIM reduce RB-Pdx-1 complex formation, destabilize Pdx-1 and promote its proteasomal degradation. Glucose regulates RB and Pdx-1 levels, RB/Pdx-1 complex formation and Pdx-1 degradation. RB occupies the promoters of β-cell-specific genes, and knockdown of RB results in reduced expression of Pdx-1 and its target genes. Further, RB-deficiency in vivo results in reduced pancreas size due to decreased proliferation of Pdx-1(+) pancreatic progenitors, increased apoptosis and aberrant expression of regulators of pancreatic development. These results demonstrate an unanticipated regulatory mechanism for pancreatic development and β-cell function, which involves RB-mediated stabilization of the pancreas-specific transcription factor Pdx-1.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Ciavarra G, Ho AT, Cobrinik D, Zacksenhaus E. Critical role of the Rb family in myoblast survival and fusion. PLoS One 2011; 6:e17682. [PMID: 21423694 PMCID: PMC3053373 DOI: 10.1371/journal.pone.0017682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/08/2011] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival.
Collapse
Affiliation(s)
- Giovanni Ciavarra
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T. Ho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Cobrinik
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
164
|
Chen Z, Higgins JD, Hui JTL, Li J, Franklin FCH, Berger F. Retinoblastoma protein is essential for early meiotic events in Arabidopsis. EMBO J 2011; 30:744-55. [PMID: 21217641 PMCID: PMC3041947 DOI: 10.1038/emboj.2010.344] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/29/2010] [Indexed: 11/09/2022] Open
Abstract
We have analysed the role of RBR (retinoblastoma related), the Arabidopsis homologue of the tumour suppressor Retinoblastoma protein (pRb), during meiosis. We characterise the rbr-2 mutation, which causes a loss of RBR in male meiocytes. The rbr-2 plants exhibit strongly reduced fertility, while vegetative growth is generally unaffected. The reduced fertility is due to a meiotic defect that results in reduced chiasma formation and subsequent errors in chromosome disjunction. Immunolocalisation studies in wild-type meiocytes reveal that RBR is recruited as foci to the chromosomes during early prophase I in a DNA double-strand-break-dependent manner. In the absence of RBR, expression of several meiotic genes is reduced. The localisation of the recombinases AtRAD51 and AtDMC1 is normal. However, localisation of the MutS homologue AtMSH4 is compromised. Additionally, polymerisation of the synaptonemal complex protein AtZYP1 is abnormal. Together, these data indicate that loss of RBR during meiosis results in a reduction of crossover formation and an associated failure in chromosome synapsis. Our results indicate that RBR has an important role in meiosis affecting different aspects of this complex process.
Collapse
Affiliation(s)
- Zhong Chen
- Temasek Life Sciences Laboratory, Singapore
| | - James D Higgins
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Jing Li
- Temasek Life Sciences Laboratory, Singapore
| | | | - Frédéric Berger
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
165
|
Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW. p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene 2011; 30:588-99. [PMID: 20871633 PMCID: PMC3012146 DOI: 10.1038/onc.2010.442] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 12/17/2022]
Abstract
The retinoblastoma protein (Rb) inhibits both cell division and apoptosis, but the mechanism by which Rb alternatively regulates these divergent outcomes remains poorly understood. Cyclin-dependent kinases (Cdks) promote cell division by phosphorylating and reversibly inactivating Rb by a hierarchical series of phosphorylation events and sequential conformational changes. The stress-regulated mitogen-activated protein kinase p38 also phosphorylates Rb, but it does so in a cell cycle-independent manner that is associated with apoptosis rather than with cell division. Here, we show that p38 phosphorylates Rb by a novel mechanism that is distinct from that of Cdks. p38 bypasses the cell cycle-associated hierarchical phosphorylation and directly phosphorylates Rb on Ser567, which is not phosphorylated during the normal cell cycle. Phosphorylation by p38, but not Cdks, triggers an interaction between Rb and the human homolog of murine double minute 2 (Hdm2), leading to degradation of Rb, release of E2F1 and cell death. These findings provide a mechanistic explanation as to how Rb regulates cell division and apoptosis through different kinases, and reveal how Hdm2 may functionally link the tumor suppressors Rb and p53.
Collapse
Affiliation(s)
- R B Delston
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
166
|
Abstract
Since the discovery of cyclins, the role of cell cycle regulators in the control of cell proliferation has been extensively studied. It is clear that proliferation requires an adapted metabolic response of the cells; hence the regulation of cell cycle must be linked to metabolic control. While at a much slower pace, the impact that the activities of cell cycle regulators such as cyclins, cyclin dependent kinases or E2F factor, transcription factor have on cell metabolism are also being uncovered. Here we will focus on recent data implicating cell cycle regulators in metabolic control, with particular attention to studies performed using mouse models. Furthermore, we will discuss the possible relevance of these findings in the context of metabolic disorders such as obesity or diabetes.
Collapse
Affiliation(s)
- Victor Aguilar
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U896, Université de Montpellier1, CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | | |
Collapse
|
167
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
168
|
Abstract
For many years, there were relatively few research efforts that bridged the fields of developmental biology and cancer genetics. However, in the past decade, we have witnessed a dramatic shift and now these two fields are intertwined. Part of the impetus for this transition came from the discovery that regulatory pathways that were previously thought to be uniquely important for developmental processes were also perturbed in cancer. In addition, the conceptual framework for understanding how cells self-renew or undergo unidirectional changes in competence during development has proven to be very useful in cancer biology as researchers explore tumor initiation and progression. Finally, a deeper understanding of the process of terminal differentiation and how that relates to cellular plasticity may have important implications for both cancer biology and developmental biology. Here we highlight some of the important connections between developmental neurobiology and cancer biology in retinoblastoma. By bridging these fields, important advances have been made in modeling retinoblastoma in mice, elucidating the cell-of-origin for retinoblastoma and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Federico
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital Memphis, TN 38105
- Department of Hematology/Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Rachel Brennan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital Memphis, TN 38105
- Department of Hematology/Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital Memphis, TN 38105
- Howard Hughes Medical Institute Early Career Scientist
| |
Collapse
|
169
|
De Leon G, Cavino M, D'Angelo M, Krucher NA. PNUTS knockdown potentiates the apoptotic effect of Roscovitine in breast and colon cancer cells. Int J Oncol 2010; 36:1269-75. [PMID: 20372802 DOI: 10.3892/ijo_00000611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phosphorylation state of Retinoblastoma protein (Rb) plays a role in cell proliferation and apoptosis. Within cells, cyclin dependent kinases (cdks) phosphorylate Rb in response to growth stimulatory signals, whereas protein phosphatase 1 (PP1) dephosphorylates Rb when cells stop proliferating or undergo apoptosis in response to anti-proliferative or stress signals. Stimulation of PP1 activity via siRNA mediated knockdown of its interacting protein PNUTS (Phosphatase Nuclear Targeting Subunit) leads to Rb dephosphorylation and apoptosis in cancer cells. We utilized two separate methods to modulate the phosphorylation state of Rb in cancer cells. Kinase activity toward Rb is inhibited by the clinically relevant cdk inhibitor, Roscovitine. In addition, siRNA mediated PNUTS knockdown stimulates phosphatase activity toward Rb. Either of these treatments in cancer cells causes a 2-fold stimulation of apoptosis. When activation of phosphatase activity is combined with inhibition of cdk activity toward Rb, however, cells exhibit a 4-fold increase in apoptosis. The mechanism by which PNUTS knockdown mediated PP1 activation leads to apoptosis was determined to be dependent on the activity of the transcription factor E2F1. The Rb phosphorylation profiles resulting from each treatment were analyzed and found to be similar but not identical. In addition, the two treatments differentially effect the expression of bcl-2 family proteins. Thus inhibition of cdk activity and activation of PP1 activity toward pRb are functionally distinct processes that together increase the apoptotic effect in cells.
Collapse
Affiliation(s)
- Gabriel De Leon
- Department of Biology and Health Science, Pace University, Pleasantville, NY 10570, USA
| | | | | | | |
Collapse
|
170
|
Moran TB, Goldberg LB, Serviss SL, Raetzman LT. Numb deletion in POMC-expressing cells impairs pituitary intermediate lobe cell adhesion, progenitor cell localization, and neuro-intermediate lobe boundary formation. Mol Endocrinol 2010; 25:117-27. [PMID: 21084383 DOI: 10.1210/me.2010-0248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pituitary gland contains six distinct hormone-secreting cell types that are essential for basic physiological processes including fertility and responding to stress. Formation of hormone-secreting cells during development relies on Notch signaling to prevent progenitors from prematurely differentiating. The nature of the signal curtailing Notch signaling in the pituitary is unknown, but a good candidate is the endocytic adaptor protein NUMB. NUMB targets Notch for proteolytic degradation, but it also has a broad range of actions, including stabilizing adherens junctions through interactions with cadherins and influencing cell proliferation by stabilizing expression of the tumor suppressor protein p53. Here, we show that NUMB and its closely related homolog, NUMBLIKE, are expressed in undifferentiated cells during development and later in gonadotropes in the anterior lobe and melanotropes of the intermediate lobe. All four isoforms of NUMB, are detectable in the pituitary, with the shorter forms becoming more prominent after adolescence. Conditionally deleting Numb and Numblike in the intermediate lobe melanotropes with Pomc Cre mice dramatically alters the morphology of cells in the intermediate lobe, coincident with impaired localization of adherens junctions proteins including E-CADHERIN, N-CADHERIN, β-CATENIN, and α-CATENIN. Strikingly, the border between posterior and intermediate lobes is also disrupted. These mice also have disorganized progenitor cells, marked by SOX2, but proliferation is unaffected. Unexpectedly, Notch activity appears normal in conditional knockout mice. Thus, Numb is critical for maintaining cell-cell interactions in the pituitary intermediate lobe that are essential for proper cell placement.
Collapse
Affiliation(s)
- Tyler B Moran
- University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
171
|
Wirt SE, Adler AS, Gebala V, Weimann JM, Schaffer BE, Saddic LA, Viatour P, Vogel H, Chang HY, Meissner A, Sage J. G1 arrest and differentiation can occur independently of Rb family function. ACTA ACUST UNITED AC 2010; 191:809-25. [PMID: 21059851 PMCID: PMC2983066 DOI: 10.1083/jcb.201003048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repression of E2F target genes is required for cell cycle arrest in Rb family (Rb, p107, and p130)-deficient cells. The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.
Collapse
Affiliation(s)
- Stacey E Wirt
- Department of Pediatrics, Stanford Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J. The RB-E2F1 pathway regulates autophagy. Cancer Res 2010; 70:7882-93. [PMID: 20807803 PMCID: PMC3104680 DOI: 10.1158/0008-5472.can-10-1604] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a protective mechanism that renders cells viable in stressful conditions. Emerging evidence suggests that this cellular process is also a tumor suppressor pathway. Previous studies showed that cyclin-dependent kinase inhibitors (CDKI) induce autophagy. Whether retinoblastoma protein (RB), a key tumor suppressor and downstream target of CDKIs, induces autophagy is not clear. Here, we show that RB triggers autophagy and that the RB activators p16INK4a and p27/kip1 induce autophagy in an RB-dependent manner. RB binding to E2 transcription factor (E2F) is required for autophagy induction and E2F1 antagonizes RB-induced autophagy, leading to apoptosis. Downregulation of E2F1 in cells results in high levels of autophagy. Our findings indicate that RB induces autophagy by repressing E2F1 activity. We speculate that this newly discovered aspect of RB function is relevant to cancer development and therapy.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, Departments of Carcinogenesis, and Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Pickard A, Wong PP, McCance DJ. Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 2010; 123:3718-26. [PMID: 20940255 DOI: 10.1242/jcs.068924] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the retinoblastoma protein (Rb) functions as a checkpoint in the cell cycle, it also regulates differentiation. It has recently been shown that Rb is acetylated during differentiation; however, the role of this modification has not been identified. Depletion of Rb levels with short hairpin RNA resulted in inhibition of human keratinocyte differentiation, delayed cell cycle exit and allowed cell cycle re-entry. Restoration of Rb levels rescued defects in differentiation and cell cycle exit and re-entry; however, re-expression of Rb with the major acetylation sites mutated did not. During keratinocyte differentiation, acetylation of Rb is mediated by PCAF and it is further shown that PCAF acetyltransferase activity is also required for normal differentiation. The major acetylation sites in Rb are located within the nuclear localization sequence and, although mutation did not alter Rb localization in cycling cells, the mutant is mislocalized to the cytoplasm during differentiation. Studies indicate that acetylation is a mechanism for controlling Rb localization in human keratinocytes, with either reduction of the PCAF or exogenous expression of the deacetylase SIRT1, resulting in mislocalization of Rb. These findings identify PCAF-mediated acetylation of Rb as an event required to retain Rb within the nucleus during keratinocyte differentiation.
Collapse
Affiliation(s)
- Adam Pickard
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | | | | |
Collapse
|
174
|
Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 2010; 5:294-309. [PMID: 20396973 PMCID: PMC2914283 DOI: 10.1007/s11481-010-9205-z] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/05/2010] [Indexed: 01/08/2023]
Abstract
Human immunodeficiency virus type 1 (HIV) infection presently affects more that 40 million people worldwide, and is associated with central nervous system (CNS) disruption in at least 30% of infected individuals. The use of highly active antiretroviral therapy has lessened the incidence, but not the prevalence of mild impairment of higher cognitive and cortical functions (HIV-associated neurocognitive disorders) as well as substantially reduced a more severe form dementia (HIV-associated dementia). Furthermore, improving neurological outcomes will require novel, adjunctive therapies that are targeted towards mechanisms of HIV-induced neurodegeneration. Identifying such molecular and pharmacological targets requires an understanding of the events preceding irreversible neuronal damage in the CNS, such as actions of neurotoxins (HIV proteins and cellular factors), disruption of ion channel properties, synaptic damage, and loss of adult neurogenesis. By considering the specific mechanisms and consequences of HIV neuropathogenesis, unified approaches for neuroprotection will likely emerge using a tailored, combined, and non-invasive approach.
Collapse
Affiliation(s)
- Kathryn A. Lindl
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Room 312 Levy Building, Philadelphia, PA 19104-6030 USA
| | - David R. Marks
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Room 312 Levy Building, Philadelphia, PA 19104-6030 USA
| | - Dennis L. Kolson
- Department of Neurology School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Room 312 Levy Building, Philadelphia, PA 19104-6030 USA
| |
Collapse
|
175
|
Hsieh TC, Nicolay BN, Frolov MV, Moon NS. Tuberous sclerosis complex 1 regulates dE2F1 expression during development and cooperates with RBF1 to control proliferation and survival. PLoS Genet 2010; 6:e1001071. [PMID: 20808898 PMCID: PMC2924346 DOI: 10.1371/journal.pgen.1001071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 07/15/2010] [Indexed: 02/06/2023] Open
Abstract
Previous studies in Drosophila melanogaster have demonstrated that many tumor suppressor pathways impinge on Rb/E2F to regulate proliferation and survival. Here, we report that Tuberous Sclerosis Complex 1 (TSC1), a well-established tumor suppressor that regulates cell size, is an important regulator of dE2F1 during development. In eye imaginal discs, the loss of tsc1 cooperates with rbf1 mutations to promote ectopic S-phase and cell death. This cooperative effect between tsc1 and rbf1 mutations can be explained, at least in part, by the observation that TSC1 post-transcriptionally regulates dE2F1 expression. Clonal analysis revealed that the protein level of dE2F1 is increased in tsc1 or tsc2 mutant cells and conversely decreased in rheb or dTor mutant cells. Interestingly, while s6k mutations have no effect on dE2F1 expression in the wild-type background, S6k is absolutely required for the increase of dE2F1 expression in tsc2 mutant cells. The canonical TSC/Rheb/Tor/S6k pathway is also an important determinant of dE2F1-dependent cell death, since rheb or s6k mutations suppress the developmentally regulated cell death observed in rbf1 mutant eye discs. Our results provide evidence to suggest that dE2F1 is an important cell cycle regulator that translates the growth-promoting signal downstream of the TSC/Rheb/Tor/S6k pathway. Tuberous Sclerosis Complex genes 1 (TSC1) is a downstream component of the Insulin Receptor signaling pathway that is often deregulated in many tumors. In this study, we discovered that the fruit fly homolog of TSC1 regulates E2F transcription factor by controlling protein expression. E2F family proteins are key regulators of cellular division, and other tumor promoting events are previously shown to regulate E2F activity. Our findings demonstrate the importance of altering the E2F activity during tumorigenesis and provide new insights into the crosstalk between tumor promoting events.
Collapse
Affiliation(s)
- Ting-Chiu Hsieh
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Canada
| | - Brandon N. Nicolay
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Nam-Sung Moon
- Department of Biology, Developmental Biology Research Initiative, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
176
|
Abstract
Historically basic neuroscience research has made several important contributions to the cell biology of the nucleus, in particular the elucidation of nuclear structures and compartments. As research progressed towards elucidating the mechanism of neurological disease at the cellular and molecular levels, it is now providing insight into the importance and basis of coordination of nuclear pathways within the nucleus and with other cellular compartments. Ataxias, lethal neurodegenerative diseases that are distinguished by a progressive loss of motor coordination, stem from disruption of nuclear function.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Translational Neuroscience, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
177
|
Pitcher J, Shimizu S, Meucci O. Disruption of neuronal CXCR4 function by opioids: preliminary evidence of ferritin heavy chain as a potential etiological agent in neuroAIDS. J Neuroimmunol 2010; 224:66-71. [PMID: 20627326 PMCID: PMC2910242 DOI: 10.1016/j.jneuroim.2010.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 11/24/2022]
Abstract
The chemokine CXCL12 and its receptor, CXCR4, regulate neuronal migration, differentiation, and survival. Alterations of CXCL12/CXCR4 signaling are implicated in different neuropathologies, including the neurological complications of HIV infection. Opiates are important co-factors for progression to neuroAIDS and can disrupt the CXCL12/CXCR4 axis in vitro and in vivo. This paper will review recently identified mechanisms of opiate-induced CXCR4 impairment in neurons and introduce results from pilot studies in human brain tissue, which highlight the role of the protein ferritin heavy chain in HIV neuropathology in patients with history of drug abuse.
Collapse
Affiliation(s)
- Jonathan Pitcher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| | - Saori Shimizu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, 19102 PA
| |
Collapse
|
178
|
Le Floch N, Rincheval V, Ferecatu I, Ali-Boina R, Renaud F, Mignotte B, Vayssière JL. The p76(Rb) and p100(Rb) truncated forms of the Rb protein exert antagonistic roles on cell death regulation in human cell lines. Biochem Biophys Res Commun 2010; 399:173-8. [PMID: 20638363 DOI: 10.1016/j.bbrc.2010.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/28/2022]
Abstract
Several caspase-cleaved forms of the retinoblastoma protein have been described. Here, we compared the effect of full-length Rb versus the truncated p76(Rb) and p100(Rb) proteins on cell death regulation in five human cell lines. Interestingly, we observed that p76(Rb) triggers cell death in all tested cell lines and that p100(Rb) protects two cell lines against etoposide or TNF-alpha-induced cell death, whereas full-length Rb has no apoptotic effect. These results show that truncated forms of Rb can have specific activities in the regulation of cell death. They also suggest that caspase cleavage of Rb should not be simply assimilated to a degradation process. Finally, we show that cell death induced by p76(Rb) is Bax-dependent and is diminished by Bcl-2 overexpression or by caspase inhibition and that p100(Rb) could inhibit cell death by decreasing both p53 stability and caspase activity.
Collapse
Affiliation(s)
- Nathalie Le Floch
- Université de Versailles/St Quentin-en-Yvelines, CNRS FRE3216, Laboratoire de génétique et biologie cellulaire/Ecole Pratique des Hautes Etudes, Laboratoire de génétique moléculaire et physiologique, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | | | | | | | | | | | | |
Collapse
|
179
|
Bellodi C, Krasnykh O, Haynes N, Theodoropoulou M, Peng G, Montanaro L, Ruggero D. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010; 70:6026-35. [PMID: 20587522 PMCID: PMC2913864 DOI: 10.1158/0008-5472.can-09-4730] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mutations in DKC1, encoding for dyskerin, a pseudouridine synthase that modifies rRNA and regulates telomerase activity, are associated with ribosomal dysfunction and increased cancer susceptibility in the human syndrome, X-linked dyskeratosis congenita (X-DC). In a mouse model for X-DC, impairments in DKC1 function affected the translation of specific mRNAs harboring internal ribosomal entry site (IRES) elements, including the tumor suppressor, p27. However, how this translational deregulation contributes to tumor initiation and progression remains poorly understood. Here, we report that impairment in p27 IRES-mediated translation due to decreased levels of DKC1 activity markedly increases spontaneous pituitary tumorigenesis in p27 heterozygous mice. Using a new bioluminescent mouse model, we monitored p27 translation in vivo and show that p27 IRES-mediated translation is reduced in the pituitary of DKC1 hypomorphic mice (DKC1(m)). Furthermore, we show that DKC1 has a critical role in regulating the assembly of the 48S translational preinitiation complex mediated by the p27 IRES element. An analysis of human tumors identified a novel mutation of DKC1 (DKC1(S485G)) in a human pituitary adenoma. We show that this specific amino acid substitution significantly alters DKC1 stability/pseudouridylation activity, and this correlates with reductions in p27 protein levels. Furthermore, DKC1(S485G) mutation does not alter telomerase RNA levels. Altogether, these findings show that genetic alterations in DKC1 could contribute to tumorigenesis associated with somatic cancers and establish a critical role for DKC1 in tumor suppression, at least in part, through translational control of p27.
Collapse
Affiliation(s)
- Cristian Bellodi
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Center, University of California, San Francisco, San Francisco CA
| | - Olya Krasnykh
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Center, University of California, San Francisco, San Francisco CA
| | - Nikesha Haynes
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Center, University of California, San Francisco, San Francisco CA
| | | | - Guang Peng
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Center, University of California, San Francisco, San Francisco CA
| | - Lorenzo Montanaro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Center, University of California, San Francisco, San Francisco CA
| |
Collapse
|
180
|
Dosage-sensitive function of retinoblastoma related and convergent epigenetic control are required during the Arabidopsis life cycle. PLoS Genet 2010; 6:e1000988. [PMID: 20585548 PMCID: PMC2887464 DOI: 10.1371/journal.pgen.1000988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 05/14/2010] [Indexed: 11/19/2022] Open
Abstract
The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development.
Collapse
|
181
|
Borghi L, Gutzat R, Fütterer J, Laizet Y, Hennig L, Gruissem W. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. THE PLANT CELL 2010; 22:1792-811. [PMID: 20525851 PMCID: PMC2910961 DOI: 10.1105/tpc.110.074591] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/27/2010] [Accepted: 05/19/2010] [Indexed: 05/18/2023]
Abstract
Several genes involved in the regulation of postembryonic organ initiation and growth have been identified. However, it remains largely unclear how developmental cues connect to the cell cycle. RETINOBLASTOMA RELATED (RBR) is a plant homolog of the tumor suppressor Retinoblastoma (pRb), which is a key regulator of the cell cycle. Using inducible RNA interference (RNAi) against Arabidopsis thaliana RBR (RBRi), we reduced RBR expression levels at different stages of plant development. Conditional reduction or loss of RBR function disrupted cell division patterns, promoted context-dependent cell proliferation, and negatively influenced establishment of cell differentiation. Several lineages of toti- and pluripotent cells, including shoot apical meristem stem cells, meristemoid mother cells, and procambial cells, failed to produce appropriately differentiated cells. Meristem activity was altered, leading to a disruption of the CLAVATA-WUSCHEL feedback loop and inhibition of lateral organ formation. Release of RBR from RNAi downregulation restored meristem activity. Gene profiling analyses soon after RBRi induction revealed that a change in RBR homeostasis is perceived as a stress, even before genes regulated by RBR-E2F become deregulated. The results establish RBR as a key cell cycle regulator required for coordination of cell division, differentiation, and cell homeostasis.
Collapse
|
182
|
Nicolay BN, Bayarmagnai B, Moon NS, Benevolenskaya EV, Frolov MV. Combined inactivation of pRB and hippo pathways induces dedifferentiation in the Drosophila retina. PLoS Genet 2010; 6:e1000918. [PMID: 20421993 PMCID: PMC2858677 DOI: 10.1371/journal.pgen.1000918] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/22/2010] [Indexed: 01/23/2023] Open
Abstract
Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.
Collapse
Affiliation(s)
- Brandon N. Nicolay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nam Sung Moon
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Elizaveta V. Benevolenskaya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
183
|
Swiss VA, Casaccia P. Cell-context specific role of the E2F/Rb pathway in development and disease. Glia 2010; 58:377-90. [PMID: 19795505 DOI: 10.1002/glia.20933] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Development of the central nervous system (CNS) requires the generation of neuronal and glial cell subtypes in appropriate numbers, and this demands the careful coordination of cell-cycle exit, survival, and differentiation. The E2F/Rb pathway is critical for cell-cycle regulation and also modulates survival and differentiation of distinct cell types in the developing and adult CNS. In this review, we first present the specific temporal patterns of expression of the E2F and Rb family members during CNS development and then discuss the genetic ablation of single or multiple members of these two families. Overall, the available data suggest a time-dependent and cell-context specific role of E2F and Rb family members in the developing and adult CNS.
Collapse
Affiliation(s)
- Victoria A Swiss
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
184
|
Beck L, Leroy C, Beck-Cormier S, Forand A, Salaün C, Paris N, Bernier A, Ureña-Torres P, Prié D, Ollero M, Coulombel L, Friedlander G. The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development. PLoS One 2010; 5:e9148. [PMID: 20161774 PMCID: PMC2818845 DOI: 10.1371/journal.pone.0009148] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na(+)-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing. METHODOLOGY/PRINCIPAL FINDINGS To determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5-E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation. CONCLUSION/SIGNIFICANCE This work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Count
- Cell Proliferation
- Cells, Cultured
- Embryo, Mammalian/abnormalities
- Embryo, Mammalian/metabolism
- Erythrocytes/metabolism
- Female
- Gene Expression Regulation, Developmental
- Genes, Essential
- Genotype
- Hematopoietic Stem Cells/metabolism
- Liver/cytology
- Liver/embryology
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Mutation
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium-Phosphate Cotransporter Proteins, Type III/deficiency
- Sodium-Phosphate Cotransporter Proteins, Type III/genetics
- Time Factors
Collapse
Affiliation(s)
- Laurent Beck
- INSERM, U845, Centre de Recherche Croissance et Signalisation, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Agapova OA, Person E, Harbour JW. Id2 deficiency promotes metastasis in a mouse model of ocular cancer. Clin Exp Metastasis 2010; 27:91-6. [PMID: 20127274 DOI: 10.1007/s10585-010-9304-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 01/12/2010] [Indexed: 11/30/2022]
Abstract
The inhibitor of DNA binding 2 (Id2) basic helix-loop-helix protein interacts genetically and physically with the pocket proteins (Rb, p107 and p130) and has been implicated as an oncogene. In other studies, however, Id2 has been shown to function as a tumor suppressor. Here, we studied the role of Id2 in a well characterized model of ocular cancer in which the three pocket proteins are inactivated by generating mice lacking one or both Id2 alleles. Id2 deficiency had no impact on tumorigenesis in the eye. Unexpectedly, however, Id2 loss significantly increased the rate of metastasis. Liver metastases in Id2 heterozygotes demonstrated significant decrease of Id2 expression and loss of the remaining Id2 allele, strongly suggesting that Id2 inactivation specifically was required for metastasis in this model. These findings provide new insights into the role of Id2 in metastasis.
Collapse
Affiliation(s)
- Olga A Agapova
- Department of Ophthalmology & Visual Sciences and Siteman Cancer Center, Washington University School of Medicine, Campus Box 8096, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
186
|
Spiller CM, Wilhelm D, Koopman P. Retinoblastoma 1 Protein Modulates XY Germ Cell Entry into G1/G0 Arrest During Fetal Development in Mice1. Biol Reprod 2010; 82:433-43. [DOI: 10.1095/biolreprod.109.078691] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
187
|
Zhang J, Lee EY, Liu Y, Berman SD, Lodish HF, Lees JA. pRB and E2F4 play distinct cell-intrinsic roles in fetal erythropoiesis. Cell Cycle 2010; 9:371-6. [PMID: 20023434 DOI: 10.4161/cc.9.2.10467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The retinoblastoma tumor suppressor protein pRB functions, at least in part, by directly binding to and modulating the activity of the E2F transcription factors. Previous studies have shown that both E2F4 and pRB play important roles in fetal erythropoiesis. Given that these two proteins interact directly we investigated the overlap of E2F4 and pRB function in this process by analyzing E2f4(-/-), conditional Rb knockout (Rb(1lox/1lox)), and compound E2f4(-/-);Rb(1lox/1lox) embryos. At E15.5 E2f4(-/-) and Rb(1lox/1lox) fetal erythroid cells display distinct abnormalities in their differentiation profiles. When cultured in vitro, both E2f4(-/-) and Rb(1lox/1lox) erythroid cells show defects in cell cycle progression. Surprisingly, analysis of cell cycle profiling suggests that E2F4 and pRB control cell cycle exit through different mechanisms. Moreover, only pRB, but not E2F4, promotes cell survival in erythroid cells. We observed an additive rather than a synergistic impact upon the erythroid defects in the compound E2f4(-/-);Rb(1lox/1lox) embryos. We further found that fetal liver macrophage development is largely normal regardless of genotype. Taken together, our results show that E2F4 and pRB play independent cell-intrinsic roles in fetal erythropoiesis.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
Hypoxia inducible factor (HIF) is a transcription factor that acts in low-oxygen conditions. The cellular response to HIF activation is transcriptional upregulation of a large group of genes. Some target genes promote anaerobic metabolism to reduce oxygen consumption, while others "alleviate" hypoxia by acting non-cell-autonomously to extend and modify the surrounding vasculature. Although hypoxia is often thought of as being a pathological phenomenon, the mammalian embryo in fact develops in a low-oxygen environment, and in this context HIF has additional responsibilities. This review describes how low oxygen and HIF affect gene expression, cell behavior, and ultimately morphogenesis of the embryo and placenta.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Developmental Biology Division, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
189
|
|
190
|
Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 2009; 16:475-86. [PMID: 19962666 PMCID: PMC2842992 DOI: 10.1016/j.ccr.2009.10.023] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 10/16/2009] [Indexed: 12/22/2022]
Abstract
Genetic alterations that promote chromosome missegregation have been proposed to drive tumorigenesis through loss of whole chromosomes containing key tumor suppressor genes. To test this unproven idea, we bred Bub1 mutant mice that inaccurately segregate their chromosomes onto p53(+/-), Apc(Min/+), Rb(+/-), or Pten(+/-) backgrounds. Bub1 insufficiency predisposed p53(+/-) mice to thymic lymphomas and Apc(Min/+) mice to colonic tumors. These tumors consistently lacked the nonmutated tumor suppressor allele but had gained a copy of the mutant allele. In contrast, Bub1 insufficiency had no impact on tumorigenesis in Rb(+/-) mice and inhibited prostatic intraepithelial neoplasia formation in Pten(+/-) mice. Thus, Bub1 insufficiency can drive tumor formation through tumor suppressor gene loss of heterozygosity, but only in restricted genetic and cellular contexts.
Collapse
Affiliation(s)
- Darren J. Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Fang Jin
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Karthik B. Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jan M. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Molecular Biology and Biochemistry, Mayo Clinic College of Medicine, Rochester, MN 55905
- Address correspondence to Jan van Deursen Mayo Clinic, 200 First Street SW, Rochester, MN 55905 Tel: 507-284-2524
| |
Collapse
|
191
|
Abstract
Urothelium, one of the slowest cycling epithelia in the body, embodies a unique biological context for cellular transformation. Introduction of oncogenes into or removing tumor suppressor genes from the urothelial cells or a combination of both using the transgenic and/or knockout mouse approaches has provided useful insights into the molecular mechanisms of urothelial transformation and tumorigenesis. It is becoming increasingly clear that over-activation of the receptor tyrosine kinase (RTK) pathway, as exemplified by the constitutively activated Ha-ras oncogene, is both necessary and sufficient to initiate the low-grade, non-invasive urothelial carcinomas. Dosage of the mutated Ha-ras, but not concurrent inactivation of pro-senescence molecules p16Ink4a and p19Arf, dictates whether and when the low-grade urothelial carcinomas arise. Inactivation of both p53 and pRb, a prevailing paradigm previously proposed for muscle-invasive urothelial tumorigenesis, is found to be necessary but insufficient to initiate this urothelial carcinoma variant. Instead, downregulation in p53/pRb co-deficient urothelial cells of p107, a pRb family member, is associated with the genesis of the muscle-invasive bladder cancers. p53 deficiency also seems to be capable of cooperating with that of PTEN in eliciting invasive urothelial carcinomas. The genetically engineered mice have improved the molecular definition of the divergent pathways of urothelial tumorigenesis and progression, helped delineate the intricate crosstalk among different genetic alterations within a urothelium-specific context, identified new prognostic markers and novel therapeutic targets potentially applicable for clinical intervention, and provided in vivo platforms for testing preventive strategies of bladder cancer.
Collapse
Affiliation(s)
- Xue-Ru Wu
- Department of Urology and Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
192
|
Simpson DS, Mason-Richie NA, Gettler CA, Wikenheiser-Brokamp KA. Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis. Cancer Res 2009; 69:8733-41. [PMID: 19887614 DOI: 10.1158/0008-5472.can-09-1359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths, accounting for more deaths than breast, colon, and prostate cancer combined. The retinoblastoma (Rb)/p16 tumor suppressive pathway is deregulated in most cancers. Loss of p16 occurs more frequently than Rb loss, suggesting that p16 suppresses cancer by regulating Rb as well as the related proteins p107 and p130. However, direct evidence demonstrating that p130 or p107 cooperate with Rb to suppress epithelial cancers associated with p16 loss is currently lacking. Moreover, the roles of p130 and p107 in lung cancer are not clear. In the present studies, Rb ablation was targeted to the lung epithelium in wild-type, p107, or p130 null mice to determine unique and overlapping Rb family functions critical in tumor suppression. Rb ablation during development resulted in marked epithelial abnormalities despite p107 upregulation. In contrast, p130 and p107 were not required during development but had distinct functions in the Rb-deficient epithelium: p107 was required to suppress proliferation, whereas a novel proapoptotic function was identified for p130. Adult Rb-ablated lungs lacked the epithelial phenotype seen at birth and showed compensatory p107 upregulation and p16 induction in epithelial cell lineages that share phenotypic characteristics with human non-small cell lung cancers (NSCLC) that frequently show p16 loss. Importantly, Rb/p107-deficient, but not Rb/p130-deficient, lungs developed tumors resembling NSCLC. Taken together, these studies identify distinct Rb family functions critical in controlling epithelial cell growth, and provide direct evidence that p107 cooperates with Rb to protect against a common adult cancer.
Collapse
Affiliation(s)
- David S Simpson
- Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
193
|
Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
194
|
Abstract
Cell and molecular biological studies of p53 functions over the past 30 years have been complemented in the past 20 years by studies that use genetically engineered mice. As expected, mice that have mutant Trp53 alleles usually develop cancers of various types more rapidly than their counterparts that have wild-type Trp53 genes. These mouse studies have been instrumental in providing important new insights into p53 tumour suppressor function. Such studies have been facilitated by the development of increasingly sophisticated genetic engineering approaches, which allow the more precise manipulation of p53 structure and function in a mammalian model.
Collapse
Affiliation(s)
- Lawrence A Donehower
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
195
|
Nalam RL, Andreu-Vieyra C, Braun RE, Akiyama H, Matzuk MM. Retinoblastoma protein plays multiple essential roles in the terminal differentiation of Sertoli cells. Mol Endocrinol 2009; 23:1900-13. [PMID: 19819985 DOI: 10.1210/me.2009-0184] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma protein (RB) plays crucial roles in cell cycle control and cellular differentiation. Specifically, RB impairs the G(1) to S phase transition by acting as a repressor of the E2F family of transcriptional activators while also contributing towards terminal differentiation by modulating the activity of tissue-specific transcription factors. To examine the role of RB in Sertoli cells, the androgen-dependent somatic support cell of the testis, we created a Sertoli cell-specific conditional knockout of Rb. Initially, loss of RB has no gross effect on Sertoli cell function because the mice are fertile with normal testis weights at 6 wk of age. However, by 10-14 wk of age, mutant mice demonstrate severe Sertoli cell dysfunction and infertility. We show that mutant mature Sertoli cells continue cycling with defective regulation of multiple E2F1- and androgen-regulated genes and concurrent activation of apoptotic and p53-regulated genes. The most striking defects in mature Sertoli cell function are increased permeability of the blood-testis barrier, impaired tissue remodeling, and defective germ cell-Sertoli cell interactions. Our results demonstrate that RB is essential for proper terminal differentiation of Sertoli cells.
Collapse
Affiliation(s)
- Roopa L Nalam
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
196
|
Steele L, Sukhanova MJ, Xu J, Gordon GM, Huang Y, Yu L, Du W. Retinoblastoma family protein promotes normal R8-photoreceptor differentiation in the absence of rhinoceros by inhibiting dE2F1 activity. Dev Biol 2009; 335:228-36. [PMID: 19744473 DOI: 10.1016/j.ydbio.2009.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 08/10/2009] [Accepted: 09/01/2009] [Indexed: 12/31/2022]
Abstract
The retinoblastoma gene Rb is a prototype tumor suppressor which is conserved in Drosophila. Although much is known about the roles of Rb in cell proliferation and apoptosis, much less is known about how Rb regulates cell differentiation. Inactivation of Drosophila Rb (rbf) exhibited subtle differentiation defects similar to inactivation of Rb in mice, suggesting the existence of redundant mechanisms in the control of cell differentiation. To test this possibility and to characterize the role of Rbf in cell differentiation during retinal development, we carried out a genetic screen and identified a mutation in rhinoceros (rno), which leads to synergistic differentiation defects in conjunction with rbf inactivation. Characterization of an early differentiation defect, the multiple-R8 phenotype, revealed that this phenotype was caused by limiting amounts of Notch signaling due to reduced expression of the Notch ligand, Delta (Dl). Decreasing the gene dosage of Dl enhanced the multiple-R8 phenotype, while increasing the level of Dl suppressed this phenotype. Interestingly, removal of the transcriptional activation of dE2F1 partially restores Dl expression in rbf,rno mutant clones and suppresses the associated differentiation defects, indicating that this differentiation function of RBF is mediated by its regulation of dE2F1 activity.
Collapse
Affiliation(s)
- Latishya Steele
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Li Y, Piatigorsky J. Targeted deletion of Dicer disrupts lens morphogenesis, corneal epithelium stratification, and whole eye development. Dev Dyn 2009; 238:2388-400. [PMID: 19681134 PMCID: PMC2787093 DOI: 10.1002/dvdy.22056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dicer, a ribonuclease essential for miRNA processing, is expressed abundantly in developing mouse cornea and lens. We studied the roles of Dicer and miRNAs in eye development by conditionally deleting the Dicer gene in the mouse lens and corneal epithelium. Adult Dicer conditional null (DicerCN) mice had severe microphthalmia with no discernible lens and a poorly stratified corneal epithelium. Targeted deletion of Dicer effectively inhibited miRNA processing in the developing lens at 12.5 day of embryogenesis (E12.5). Lens development initiated normally but underwent progressive dystrophy between E14.5 and E18.5. Microarray analysis revealed activation of P53 signaling in DicerCN lenses at E13.5, consistent with increased apoptosis and reduced cell proliferation between E12.5 and E14.5. Expression of Pax6 and other lens developmental transcription factors were not greatly affected between E12.5 and E14.5 but decreased as the lens degenerated. Our data indicated an indispensible role for Dicer and miRNAs in lens and corneal development.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
198
|
Wang W, Bu B, Xie M, Zhang M, Yu Z, Tao D. Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 2009; 89:1-17. [DOI: 10.1016/j.pneurobio.2009.01.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
|
199
|
Lee EY, Yuan TL, Danielian PS, West JC, Lees JA. E2F4 cooperates with pRB in the development of extra-embryonic tissues. Dev Biol 2009; 332:104-15. [PMID: 19433082 PMCID: PMC2832217 DOI: 10.1016/j.ydbio.2009.05.541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/09/2009] [Accepted: 05/04/2009] [Indexed: 12/20/2022]
Abstract
The retinoblastoma gene, RB-1, was the first identified tumor suppressor. Rb(-/-) mice die in mid-gestation with defects in proliferation, differentiation and apoptosis. The activating E2F transcription factors, E2F1-3, contribute to these embryonic defects, indicating that they are key downstream targets of the retinoblastoma protein, pRB. E2F4 is the major pRB-associated E2F in vivo, yet its role in Rb(-/-) embryos is unknown. Here we establish that E2f4 deficiency reduced the lifespan of Rb(-/-) embryos by exacerbating the Rb mutant placental defect. We further show that this reflects the accumulation of trophectoderm-like cells in both Rb and Rb;E2f4 mutant placentas. Thus, Rb and E2f4 play cooperative roles in placental development. We used a conditional mouse model to allow Rb(-/-);E2f4(-/-) embryos to develop in the presence of Rb wild-type placentas. Under these conditions, Rb(-/-);E2f4(-/-) mutants survived to birth. These Rb(-/-);E2f4(-/-) embryos exhibited all of the defects characteristic of the Rb and E2f4 single mutants and had no novel defects. Taken together, our data show that pRB and E2F4 cooperate in placental development, but play largely non-overlapping roles in the development of many embryonic tissues.
Collapse
Affiliation(s)
- Eunice Y. Lee
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tina L. Yuan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Paul S. Danielian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Julie C. West
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
200
|
Lin PP, Pandey MK, Jin F, Raymond AK, Akiyama H, Lozano G. Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis 2009; 30:1789-95. [PMID: 19635748 DOI: 10.1093/carcin/bgp180] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mice bearing germ line mutations of p53 develop sarcomas at a significant rate. Since they are susceptible to a variety of other malignancies, they are not ideally suited to the study of sarcomas. To test the possibility that targeted mutation of tumor suppressor genes in early mesenchymal cells would induce formation of sarcomas, the Prx1-cre transgenic mouse was crossed to mice-bearing floxed alleles of p53 and Rb. Mice with homozygous deletion of p53 (Prx1-cre p53(lox/lox)) developed sarcomas in the extremities at a mean time of 50 weeks. Osteosarcomas (OS) were the most common type of sarcoma (61%) followed by poorly differentiated soft tissue sarcomas (PDSTS) (32%). Homozygous deletion of p53 produced sarcomas significantly more rapidly than heterozygous deletion, which resulted in sarcoma formation after a mean of 96 weeks. Mice with homozygous Rb mutation (Prx1-cre Rb(lox/lox)) developed normally and had no ostensible defects in the limbs. In contrast to p53, targeted deletion of Rb did not produce sarcomas in the limbs. However, simultaneous deletion of Rb and p53 accelerated the time to sarcoma formation, and a greater percentage of PDSTS were found. Deletion of p53 in committed osteoblasts by the Col1a1-cre transgenic mouse bearing an osteoblast-specific enhancer resulted in a high percentage of OS. These findings suggest that deletion of p53 in mesenchymal cells that give rise to osteoblasts is a powerful initiator of OS. Deletion of Rb does not initiate sarcoma formation in mice, but it accelerates formation of both soft tissue sarcomas and OS.
Collapse
Affiliation(s)
- Patrick P Lin
- Department of Orthopaedic Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230-1402, USA.
| | | | | | | | | | | |
Collapse
|