151
|
Abbing A, Blaschke UK, Grein S, Kretschmar M, Stark CMB, Thies MJW, Walter J, Weigand M, Woith DC, Hess J, Reiser COA. Efficient Intracellular Delivery of a Protein and a Low Molecular Weight Substance via Recombinant Polyomavirus-like Particles. J Biol Chem 2004; 279:27410-21. [PMID: 15102846 DOI: 10.1074/jbc.m313612200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient encapsulation of foreign molecules like proteins and low molecular weight drugs into polyoma virus-like particles (capsoids) was achieved by the development of an anchoring technique based upon the specific interaction of the inner core protein VP2 with VP1 pentamers. A stretch of 49 amino acids of VP2 served as an anchor molecule, either expressed as a fusion protein with green fluorescent protein (GFP) or covalently linked to methotrexate (MTX). The loaded capsoids showed regular morphology and stability for several months. GFP and MTX were internalized into cells in vitro, as was demonstrated by the detection of GFP and VP1 fluorescence in mouse fibroblasts and the cytostatic effect of intracellularly released MTX on leukemia T cells.
Collapse
|
152
|
Abstract
Viruses replicate within living cells and use the cellular machinery for the synthesis of their genome and other components. To gain access, they have evolved a variety of elegant mechanisms to deliver their genes and accessory proteins into the host cell. Many animal viruses take advantage of endocytic pathways and rely on the cell to guide them through a complex entry and uncoating program. In the dialogue between the cell and the intruder, the cell provides critical cues that allow the virus to undergo molecular transformations that lead to successful internalization, intra-cellular transport, and uncoating.
Collapse
Affiliation(s)
- Alicia E Smith
- Institute of Biochemistry, Swiss Federal Institute of Technology-Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
153
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
154
|
Johne R, Müller H. Nuclear localization of avian polyomavirus structural protein VP1 is a prerequisite for the formation of virus-like particles. J Virol 2004; 78:930-7. [PMID: 14694124 PMCID: PMC368749 DOI: 10.1128/jvi.78.2.930-937.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.
Collapse
Affiliation(s)
- Reimar Johne
- Institute for Virology, Faculty of Veterinary Medicine, University of Leipzig, D-04103 Leipzig, Germany.
| | | |
Collapse
|
155
|
Carbone M, Ascione G, Chichiarelli S, Garcia MI, Eufemi M, Amati P. Chromosome-protein interactions in polyomavirus virions. J Virol 2004; 78:513-9. [PMID: 14671132 PMCID: PMC303386 DOI: 10.1128/jvi.78.1.513-519.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we sought to determine whether the components of the murine polyomavirus capsid establish specific interactions with the minichromosome encapsidated into the mature viral particles by using the cis-diamminedichloroplatinum(II) cross-linking reagent. Our data indicated that VP1, but not minor capsid proteins, interacts with the viral genome in vivo. In addition, semiquantitative PCR assays performed on cross-linked DNA complexes revealed that VP1 binds to all regions of the viral genome but significantly more to the regulatory region. The implications of such an interaction for viral infectivity are discussed.
Collapse
Affiliation(s)
- Mariarosaria Carbone
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
156
|
Shin YC, Folk WR. Formation of polyomavirus-like particles with different VP1 molecules that bind the urokinase plasminogen activator receptor. J Virol 2003; 77:11491-8. [PMID: 14557634 PMCID: PMC229370 DOI: 10.1128/jvi.77.21.11491-11498.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Icosahedral virus-like particles formed by the self-assembly of polyomavirus capsid proteins (Py-VLPs) can serve as useful nanostructures for delivering nucleic acids, proteins, and pharmaceuticals into animal cells and tissues. Four predominant surface-exposed loops in the VP1 structure offer potential sites to display sequences that might contribute new targeting specificities. Introduction into each of these loops of sequences derived from the amino-terminal fragment of urokinase plasminogen activator (uPA) or a related phage display peptide reduced the solubility of VP1 molecules when expressed in insect cells, and insertions into the EF loop reduced VP1 solubility least. Coexpression in insect cells of the uPA-VP1 molecules and VP1 containing a FLAG epitope in the HI loop permitted the formation of heterotypic Py-VLPs containing uPA-VP1 and FLAG-VP1. These heterotypic VLPs bound to uPAR on the surfaces of animal cells. Heterotypic Py-VLPs containing ligands for multiple cell surface receptors should be useful for targeting specific cells and tissues.
Collapse
Affiliation(s)
- Young C Shin
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | |
Collapse
|
157
|
Smith AE, Lilie H, Helenius A. Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett 2003; 555:199-203. [PMID: 14644415 DOI: 10.1016/s0014-5793(03)01220-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For murine polyomavirus (Py), previous studies suggest the cellular target is a terminal alpha2,3-linked sialic acid. Here, we investigate the binding and uptake of mouse polyomavirus-like particles (PyVLP) derived from bacterially expressed VP1. We find that in fibroblast 3T6 cells, binding of PyVLP was substantially reduced by sialidase treatment, but only moderately affected by protease treatment, suggesting glycolipids such as the sialic acid-containing gangliosides mediate cell attachment. We further tested the entry requirement of PyVLP using the ganglioside-deficient GM95 murine cell line, and find PyVLP binding and entry were reduced in these cells. Finally, we find that addition of gangliosides G(M1), G(D1a), and G(T1b) to GM95 cells restored cellular PyVLP binding and uptake. Taken together, results indicate that gangliosides function in PyVLP cell attachment and endocytosis.
Collapse
Affiliation(s)
- Alicia E Smith
- Institute of Biochemistry, Swiss Federal Institute of Technology-Zurich, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
158
|
Caruso M, Cavaldesi M, Gentile M, Sthandier O, Amati P, Garcia MI. Role of sialic acid-containing molecules and the α4β1 integrin receptor in the early steps of polyomavirus infection. J Gen Virol 2003; 84:2927-2936. [PMID: 14573797 DOI: 10.1099/vir.0.19369-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Murine polyomavirus (MPyV) infection occurs through recognition of sialic acid (SA) residues present on the host cell membrane, but the nature of the molecules involved and the exact role of this interaction in virus cell entry still need to be clarified. In this work, mutations at residues R(77) or H(298) of the MPyV VP1 protein were shown to lead to a complete loss of virus infectivity, which, however, could be restored by lipofection of virus particles into the cytoplasm of the host cells. Using virus-like particles (VLPs), it was demonstrated that the non-infectivity of these mutants was due to impaired cell entry caused by total abrogation of SA-dependent cell binding. This indicates that SA residues are essential primary cell receptors for MPyV. As the alpha4beta1 integrin has been identified recently as a cell receptor for MPyV, the relationship, if any, was investigated between SA-containing and alpha4beta1 integrin receptors. The ability of mutants R(77)Q and H(298)Q and wt VLPs to bind to cells overexpressing the alpha4beta1 integrin was studied in SA-positive (BALB/c 3T3 cells and Pro-5 cells) and SA-deficient (Pro5-derived Lec-2 cells) backgrounds. Overexpression of alpha4beta1 integrin did not restore binding of mutant VLPs in any of these cell lines or, indeed, that of wt VLPs in a SA-deficient background. Moreover, evidence is provided that overexpression of the sialylated alpha4beta1 integrin enhances wt VLP cell binding, suggesting that, in addition to its function at a post-attachment level, alpha4beta1 integrin acts also as one of the SA-containing receptors for initial cell binding.
Collapse
Affiliation(s)
- Maddalena Caruso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Michaela Cavaldesi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Massimo Gentile
- e Dipartimento di Medicina Sperimentale e Patologia, Sezione di Virologia, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Olga Sthandier
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Paolo Amati
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| | - Marie-Isabelle Garcia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma 'La Sapienza', Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
159
|
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 2003; 22:4346-55. [PMID: 12941687 PMCID: PMC202381 DOI: 10.1093/emboj/cdg439] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyoma virus (Py) and simian virus 40 (SV40) travel from the plasma membrane to the endoplasmic reticulum (ER) from where they enter the cytosol and then the nucleus to initiate infection. Here we demonstrate that specific gangliosides can serve as plasma membrane receptors for these viruses, GD1a and GT1b for Py and GM1 for SV40. Binding and flotation assays were used to show that addition of these gangliosides to phospholipid vesicles allowed specific binding of the respective viruses. The crystal structure of polyoma VP1 with a sialic acid-containing oligosaccharide was used to derive a model of how the two terminal sugars (sialic acid-alpha2,3-galactose) in one branch of GD1a and GT1b are recognized by the virus. A rat cell line deficient in ganglioside synthesis is poorly infectible by polyoma and SV40, but addition of the appropriate gangliosides greatly facilitates virus uptake, transport to the ER and infection. Lipid binding sites for polyoma are shown to be present in rough ER membranes, suggesting that the virus travel with the ganglioside(s) from the plasma membranes to the ER.
Collapse
Affiliation(s)
- Billy Tsai
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
The mechanisms used by murine polyomavirus for intracellular migration are yet to be clarified. In this work we selectively depolymerized microtubules or actin fibers and then studied the progression of polyomavirus infection in cultured cells. Our results demonstrate that microtubule depolymerization prevents polyomavirus migration toward the nucleus and from the nucleus to the cell surface, being also involved in viral release, while disruption of the actin microfilaments appears to have no detrimental effect on the virus ability to reach the nucleus. The ultrastructural observation of polyomavirus nonenveloped particles interacting with the free end and the lateral sides of microtubules together with the coimmunoprecipitation of tubulin and viral VP-1 further supports the idea that polyomavirus intracellular migration seems to be mediated by the interaction of polyomavirus major capsid protein VP-1 with tubulin.
Collapse
Affiliation(s)
- Norberto Sanjuan
- Laboratory of Experimental Pathology, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina.
| | | | | |
Collapse
|
161
|
Ferrari A, Pellegrini V, Arcangeli C, Fittipaldi A, Giacca M, Beltram F. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 2003; 8:284-94. [PMID: 12907151 DOI: 10.1016/s1525-0016(03)00122-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Tat protein from HIV-1, when fused with heterologous proteins or peptides, can traverse cell membranes. This ability has generated great interest due to potential therapeutic applications. However, the relevant cellular pathway and its dynamics have not been elucidated yet. Here we unravel the intracellular fate of exogenously added Tat fused with green fluorescent protein (GFP) in live HeLa and CHO cells, from the early interaction with the plasma membrane up to the long-term accumulation in the perinuclear region. We demonstrate that the internalization process of full-length Tat and of heterologous proteins fused to the transduction domain of Tat exploits a caveolar-mediated pathway and is inhibited at 4 degrees C. Remarkably, a slow linear movement toward the nucleus of individual GFP-tagged Tat-filled caveolae with an average velocity of 3 micro m/h was observed. No fluorescence was observed in the nucleus, possibly suggesting that Tat fusion protein unfolding is required for nuclear translocation. In addition, early sensitivity to cytochalasin-D treatment indicates the essential role of the actin cytoskeleton in the displacement of Tat vesicles toward the nucleus. Our results imply that HIV-1 Tat mediates the internalization of protein cargos in a slow and temperature-dependent manner by exploiting the caveolar pathway.
Collapse
Affiliation(s)
- Aldo Ferrari
- NEST-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
162
|
Rollman E, Ramqvist T, Zuber B, Tegerstedt K, Kjerrström Zuber A, Klingström J, Eriksson L, Ljungberg K, Hinkula J, Wahren B, Dalianis T. Genetic immunization is augmented by murine polyomavirus VP1 pseudocapsids. Vaccine 2003; 21:2263-7. [PMID: 12744856 DOI: 10.1016/s0264-410x(03)00049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To improve immune responses induced by DNA immunization, murine polyomavirus major capsid protein (VP1) pseudocapsids were complexed with a DNA plasmid encoding the p37 (p24 and p17) nucleocapsid proteins of the human immunodeficiency virus type 1 (HIV-1). A 10-fold increase in antibody titer was noted in mice given DNA plasmid together with VP1 pseudocapsids in comparison to animals that received DNA plasmid alone. Cell mediated responses to HIV-1 p24 occurred, but were not significantly augmented by delivering the DNA as a VP1 complex. We have consequently for the first time shown a carrier/adjuvant effect of polyomavirus pseudocapsids that strongly increased the humoral immune response in DNA immunization.
Collapse
Affiliation(s)
- E Rollman
- Department of Virology, Swedish Institute for Infectious Disease Control and the Microbiology and Tumor Biology Center, Karolinska Institute, SE-171 82, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Lednicky JA, Vilchez RA, Keitel WA, Visnegarwala F, White ZS, Kozinetz CA, Lewis DE, Butel JS. Polyomavirus JCV excretion and genotype analysis in HIV-infected patients receiving highly active antiretroviral therapy. AIDS 2003; 17:801-7. [PMID: 12660526 DOI: 10.1097/00002030-200304110-00004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the frequency of shedding of polyomavirus JC virus (JCV) genotypes in urine of HIV-infected patients receiving highly active antiretroviral therapy (HAART). METHODS Single samples of urine and blood were collected prospectively from 70 adult HIV-infected patients and 68 uninfected volunteers. Inclusion criteria for HIV-infected patients included an HIV RNA viral load < 1000 copies, CD4 cell count of 200-700 x 106 cells/l, and stable HAART regimen. PCR assays and sequence analysis were carried out using JCV-specific primers against different regions of the virus genome. RESULTS JCV excretion in urine was more common in HIV-positive patients but not significantly different from that of the HIV-negative group [22/70 (31%) versus 13/68 (19%); P = 0.09]. HIV-positive patients lost the age-related pattern of JCV shedding (P = 0.13) displayed by uninfected subjects (P = 0.01). Among HIV-infected patients significant differences in JCV shedding were related to CD4 cell counts (P = 0.03). Sequence analysis of the JCV regulatory region from both HIV-infected patients and uninfected volunteers revealed all to be JCV archetypal strains. JCV genotypes 1 (36%) and 4 (36%) were the most common among HIV-infected patients, whereas type 2 (77%) was the most frequently detected among HIV-uninfected volunteers. CONCLUSION These results suggest that JCV shedding is enhanced by modest depressions in immune function during HIV infection. JCV shedding occurred in younger HIV-positive persons than in the healthy controls. As the common types of JCV excreted varied among ethnic groups, JCV genotypes associated with progressive multifocal leukoencephalopathy may reflect demographics of those infected patient populations.
Collapse
Affiliation(s)
- John A Lednicky
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Caruso M, Belloni L, Sthandier O, Amati P, Garcia MI. Alpha4beta1 integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J Virol 2003; 77:3913-21. [PMID: 12634351 PMCID: PMC150644 DOI: 10.1128/jvi.77.7.3913-3921.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 12/18/2002] [Indexed: 11/20/2022] Open
Abstract
The initial interaction of murine polyomavirus (Py) with host cells occurs through direct binding of the major capsid protein VP1 with cell membrane molecules containing terminal sialic acids; however, these Py receptor molecules have not yet been identified. Analysis of the capsid protein primary sequences of all murine strains revealed the presence of integrin ligand motifs in the DE and EF loops of VP1 (LDV and DLXXL, respectively) and at the N terminus of VP2 (DGE). We show that infectivity of the Py A2 strain in mouse Swiss 3T3 fibroblasts is significantly reduced only in the presence of natural integrin ligands carrying an LDV motif or antibodies directed against the alpha4 and beta1 integrin subunits. Furthermore, we demonstrate that expression of the alpha4 subunit in the alpha4-deficient BALB/c 3T3 cells increases viral infectivity. Addition of alpha4 function-blocking antibodies, prior to or after virus adsorption, blocks this increased infectivity without affecting virus binding to cells. Taken together, these data indicate that expression of alpha4 integrin enhances permissivity to Py, probably by acting as one of the postattachment receptors.
Collapse
Affiliation(s)
- Maddalena Caruso
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
165
|
Voronkova T, Grosch A, Kazaks A, Ose V, Skrastina D, Sasnauskas K, Jandrig B, Arnold W, Scherneck S, Pumpens P, Ulrich R. Chimeric bacteriophage fr virus-like particles harboring the immunodominant C-terminal region of hamster polyomavirus VP1 induce a strong VP1-specific antibody response in rabbits and mice. Viral Immunol 2003; 15:627-43. [PMID: 12513932 DOI: 10.1089/088282402320914557] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The late region of the hamster polyomavirus (HaPyV, former HaPV) genome encodes three structural proteins VP1, VP2, and VP3, where VP1 represents the major capsid protein of 384 amino acids. Screening of sera from HaPyV-infected papilloma-bearing and papilloma-free hamsters demonstrated the immunodominant features of all three capsid proteins. For both groups of hamsters in the C-terminal region of VP1 immunodominant B-cell epitopes were identified in the regions between amino acids 305 and 351 and amino acids 351 and 384. The high flexibility of the C-terminal region of VP1 was confirmed by the formation of chimeric virus-like particles based on the coat protein of the RNA bacteriophage fr which was previously found to tolerate only very short-sized foreign insertions. Phage fr coat protein-derived virus-like particles tolerated the N-terminal fusion of amino acids 333-384, 351-384, 351-374, and 364-384, respectively, of VP1. The induction of VP1-specific antibodies in rabbits and mice by immunization with chimeric virus-like particles harboring amino acids 333-384, 351-384, and 364-384, respectively, of VP1 suggested the immunodominant nature of the C-terminal region of VP1.
Collapse
|
166
|
Gleiter S, Lilie H. Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles. Biol Chem 2003; 384:247-55. [PMID: 12675518 DOI: 10.1515/bc.2003.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The variant VP1-Z of the polyomavirus coat protein VP1 has been recently described as an engineered fusion protein of VP1 and the antibody binding domain protein Z. This construct is able to specifically bind and functionally present antibodies on the surface of virus-like particles of VP1-Z. Here we demonstrate that with the binding of Herceptin, an antibody directed against the receptor tyrosine kinase ErbB2, a cell type-specific targeting was established. ErbB2-positive cell lines were transduced with different plasmids encoding eGFP or beta-galactosidase. With both reporter systems functional gene expression in transduced cells could be observed. The transduction was strictly dependent on the use of a ternary complex formed of VLPs of VP1-Z, Herceptin, and the reporter plasmid DNA. The use of single components or ErbB2-negative cell lines did not result in functional gene transfer. The transduction was also completely dependent on the use of chloroquine, a lysosomotropic reagent. This indicates that the complex is internalized by ErbB2-mediated endocytosis.
Collapse
MESH Headings
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Humanized
- Breast Neoplasms/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Cell Line
- Chloroquine/pharmacology
- Gene Expression Regulation, Viral/genetics
- Genes, Reporter/genetics
- Genetic Variation/genetics
- Humans
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Plasmids/genetics
- Plasmids/metabolism
- Polyomavirus/chemistry
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/metabolism
- Transduction, Genetic/methods
- Trastuzumab
- Tumor Cells, Cultured
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Stefan Gleiter
- Martin-Luther-Universität Halle, Institut für Biotechnologie, Kurt-Mothes Strasse 3, D-06120 Halle, Germany
| | | |
Collapse
|
167
|
Affiliation(s)
- Michael S Chapman
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
168
|
Khodair AI, Schmidt RR. Synthesis of C-glycosyl compounds of N-acetylneuraminic acid from D-gluconolactone. Carbohydr Res 2002; 337:1967-78. [PMID: 12433462 DOI: 10.1016/s0008-6215(02)00176-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A general strategy towards the synthesis of C-glycosyl compounds of N-acetylneuraminic acid (Neu5Ac) has been developed and successfully applied to the synthesis of C-methyl and C-phenyl derivatives. The key strategic elements are (i) chain extension of a D-gluconolactone derivative as C(6)-precursor with an allyl Grignard reagent as C(3)-precursor having in 2 position the C-linked aglycon moiety, (ii) stereoselective C-4/C-5 erythro-diol formation, (iii) 6-exo-trig selective heterocyclization, and (iv) installment of the 5-acetylamino and C-1 carboxylate functionalities. The efficiency and potential versatility of this approach was exemplified in the synthesis of C-methyl derivative 1 as target molecule.
Collapse
Affiliation(s)
- Ahmed I Khodair
- Fachbereich Chemie, Universität Konstanz, Fach M 725, D-78457 Konstanz, Germany
| | | |
Collapse
|
169
|
Abstract
Papillomaviruses propagate in differentiating skin cells, and certain types are responsible for the onset of cervical cancer. We have combined image reconstructions from electron cryomicroscopy (cryoEM) of bovine papillomavirus at 9 A resolution with coordinates from the crystal structure of small virus-like particles of the human papillomavirus type 16 L1 protein to generate an atomic model of the virion. The overall fit of the L1 model into the cryoEM map is excellent, but residues 402-446 in the 'C-terminal arm' must be rebuilt. We propose a detailed model for the structure of this arm, based on two constraints: the presence of an intermolecular disulfide bond linking residues 175 and 428, and the clear identification of a feature in the image reconstruction corresponding to an alpha-helix near the C-terminus of L1. We have confirmed the presence of the disulfide bond by mass spectrometry. Our 'invading arm' model shows that papilloma- and polyomaviruses have a conserved capsid architecture. Most of the rebuilt C-terminal arm is exposed on the viral surface; it is likely to have a role in infection and in immunogenicity.
Collapse
Affiliation(s)
| | - Benes L. Trus
- Howard Hughes Medical Institute, Children’s Hospital and Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115 and
Computational Bioscience and Engineering Laboratory, Division of Computer Research and Technology, and Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-5624, USA Corresponding author e-mail:
| | - Stephen C. Harrison
- Howard Hughes Medical Institute, Children’s Hospital and Harvard Medical School, 320 Longwood Avenue, Boston, MA 02115 and
Computational Bioscience and Engineering Laboratory, Division of Computer Research and Technology, and Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-5624, USA Corresponding author e-mail:
| |
Collapse
|
170
|
Mannová P, Liebl D, Krauzewicz N, Fejtová A, Štokrová J, Palková Z, Griffin BE, Forstová J. Analysis of mouse polyomavirus mutants with lesions in the minor capsid proteins. J Gen Virol 2002; 83:2309-2319. [PMID: 12185287 DOI: 10.1099/0022-1317-83-9-2309] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyomavirus mutants E, Q and H, expressing non-myristylated VP2, were generated by replacing the N-terminal glycine residue with glutamic acid, glutamine or histidine, respectively. Viruses mutated in either VP2 or VP3 translation initiation codons were also prepared. All mutated genomes, when transfected into murine host cells, gave rise to viral particles. Infectivity of VP2- and VP3- viruses, as measured by the number of cells expressing viral antigens, was dramatically diminished, indicative of defects in the early stages of infection. In contrast, the absence of a myristyl moiety on VP2 did not substantially affect the early steps of virus infection. No differences in numbers of cells expressing early or late viral antigens were observed between wild-type (wt) and E or Q myr- viruses during the course of a life cycle. Furthermore, no delay in virus DNA replication was detected. However, when cells were left for longer in culture, the number of infected cells, measured by typical virus bursts, was much lower when mutant rather than wt genomes were used. In situ, cell fractionation studies revealed differences in the interaction of viral particles with host cell structures. The infectivity of mutants was affected not only by loss of the myristyl group on VP2, but also, and to a greater extent, by alterations of the N-terminal amino acid composition.
Collapse
Affiliation(s)
- Petra Mannová
- Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic1
| | - David Liebl
- Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic1
| | - Nina Krauzewicz
- Department of Virology, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 0NN, UK2
| | - Anna Fejtová
- Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic1
| | - Jitka Štokrová
- Institute of Molecular Genetics, Czech Academy of Sciences, Flemingovo n. 2, 166 37 Prague 6, Czech Republic3
| | - Zdena Palková
- Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic1
| | - Beverly E Griffin
- Department of Virology, Royal Postgraduate Medical School, Hammersmith Hospital, London W12 0NN, UK2
| | - Jitka Forstová
- Department of Genetics and Microbiology, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic1
| |
Collapse
|
171
|
May T, Gleiter S, Lilie H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J Virol Methods 2002; 105:147-57. [PMID: 12176152 DOI: 10.1016/s0166-0934(02)00099-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of delivery systems in cancer therapy is restricted as a result of the lack of cell specificity of the respective vectors. Recently, a vector system based on virus-like particles (VLPs) of modified polyoma-VP1 was described which were able to bind specifically a tumor-specific antibody fragment, thus directing the vector system towards tumor cells. The functional gene transfer using the VP1 variant VP1-E8C, coupled with the antibody fragment of the tumor-specific antibody B3 is described in this paper. The specific targeting of the antigen expressing cells was highly efficient as determined by fluorescence microscopy. However, only a low percentage of these cells showed a functional gene transfer. This discrepancy could be accounted for by a rather low capacity of the virus like particles to transport DNA and the mechanism of their internalization by the target cells, which led to a lysosomal degradation of the particles. These limitations could be surmounted partially in cell culture experiments, and the principles suitable for applying this vector system in vivo are discussed.
Collapse
Affiliation(s)
- Tobias May
- Institut für Biotechnologie, Universität Halle, Kurt Mothes Strasse 3, D-06120, Halle, Germany
| | | | | |
Collapse
|
172
|
Abstract
Caveolae are flask-shaped invaginations present in the plasma membrane of many cell types. They have long been implicated in endocytosis, transcytosis, and cell signaling. Recent work has confirmed that caveolae are directly involved in the internalization of membrane components (glycosphingolipids and glycosylphosphatidylinositol-anchored proteins), extracellular ligands (folic acid, albumin, autocrine motility factor), bacterial toxins (cholera toxin, tetanus toxin), and several nonenveloped viruses (Simian virus 40, Polyoma virus). Unlike clathrin-mediated endocytosis, internalization through caveolae is a triggered event that involves complex signaling. The mechanism of internalization and the subsequent intracellular pathways that the internalized substances take are starting to emerge.
Collapse
Affiliation(s)
- Lucas Pelkmans
- Swiss Federal Institute of Technology Zürich (ETHZ), HPM, ETH Hoenggerberg, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
173
|
Comparative analysis of ganglioside conformations by MD simulations: implications for specific recognition by proteins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(01)00813-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
174
|
Abstract
Because oncogenic DNA viruses establish persistent infections in humans, continuous immunosurveillance for neoplastic cells is required to prevent virus-induced tumors. Antigen-specific CD8+ T lymphocytes are critical in vivo effectors for eliminating virus-infected and virus-transformed cells. Investigation into the induction, regulation, and maintenance of CD8+ T cells specific for these viruses is hindered by the lack of tractable animal models that mimic natural infection. Resistance to tumors induced by polyoma virus, a persistent natural mouse DNA virus, is mediated by polyoma-specific CD8+ T cells. Mice susceptible to polyoma virus tumorigenesis mount a smaller, albeit still considerable, expansion of anti-polyoma CD8+ T cells; importantly, these antiviral CD8+ T cells lack cytotoxic activity while retaining the phenotype of cytotoxic T lymphocyte (CTL) effectors. In this review, we will discuss potential in vivo mechanisms that regulate the functional competence of anti-polyoma CD8+ T cells, particularly in the context of chronic antigenic stimulation provided by persistent viral infections and tumors.
Collapse
Affiliation(s)
- J M Moser
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
175
|
Vasudevan SV, Balaji PV. Molecular dynamics simulations of alpha2 --> 8-linked disialoside: conformational analysis and implications for binding to proteins. Biopolymers 2002; 63:168-80. [PMID: 11787005 DOI: 10.1002/bip.10019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computational methods have played a key role in elucidating the various three-dimensional structures of oligosaccharides. Such structural information, together with other experimental data, leads to a better understanding of the role of oligosaccharide in various biological processes. The disialoside Neu5Ac-alpha2-->8-Neu5Ac appears as the terminal glycan in glycoproteins and glycolipids, and is known to play an important role in various events of cellular communication. Neurotoxins such as botulinum and tetanus require Neu5Ac-alpha2 --> 8-Neu5Ac for infecting the host. Glycoconjugates containing this disialoside and the enzymes catalyzing their biosynthesis are also regulated during cell growth, development, and differentiation. Unlike other biologically relevant disaccharides that have only two linkage bonds, the alpha2-->8-linked disialoside has four: C2-O, O-C8', C8'-C7', and C7'-C6'. The present report describes the results from nine 1 ns MD simulations of alpha2-->8-linked disialoside (Neu5Ac-alpha2-->8-Neu5Ac); simulations were run using GROMOS96 by explicitly considering the solvent molecules. Conformations around the O-C8' bond are restricted to the +sc/+ap regions due to stereochemical reasons. In contrast, conformations around the C2-O and C8'-C7' bonds were found to be largely unrestricted and all the three staggered regions are accessible. The conformations around the C7'-C6' bond were found to be in either the -sc or the anti region. These results are in excellent agreement with the available NMR and potential energy calculation studies. Overall, the disaccharide is flexible and adopts mainly two ensembles of conformations differing in the conformation around the C7'-C6' bond. The flexibility associated with this disaccharide allows for better optimization of intermolecular contacts while binding to proteins and this may partially compensate for the loss of conformational entropy that may be incurred due to disaccharide's flexibility.
Collapse
Affiliation(s)
- Sheeja V Vasudevan
- Biotechnology Center, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
176
|
Li PP, Nakanishi A, Clark SW, Kasamatsu H. Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Natl Acad Sci U S A 2002; 99:1353-8. [PMID: 11805304 PMCID: PMC122194 DOI: 10.1073/pnas.032668699] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentamer formation by Vp1, the major capsid protein of simian virus 40, requires an interdigitation of structural elements from the Vp1 monomers [Liddington, R. C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T. L. & Harrison, S. C. (1991) Nature (London) 354, 278-284]. Our analyses reveal that disulfide-linked Vp1 homooligomers are present in the simian virus 40-infected cytoplasm and that they are derived from a 41-kDa monomeric intermediate containing an intrachain disulfide bond(s). The 41-kDa species, emerging within 5 min of pulse labeling with [(35)S]methionine, is converted into a 45-kDa, disulfide-free Vp1 monomer and disulfide-bonded dimers through pentamers. The covalent oligomer formation is blocked in the presence of a sulfhydryl-modifying reagent. We propose that there are two stages in this Vp1 disulfide bonding. First, the newly synthesized Vp1 monomers acquire intrachain bonds as they fold and begin to interact. Next, these bonds are replaced with intermolecular bonds as the monomers assemble into pentamers. This sequential appearance of transitory disulfide bonds is consistent with a role for sulfhydryl-disulfide redox reactions in the coordinate folding of Vp1 chains into pentamers. The cytoplasmic Vp1 does not colocalize with marker proteins of the endoplasmic reticulum. This paper demonstrates in vivo disulfide formations and exchanges coupled to the folding and oligomerization of a mammalian protein in the cytoplasm, outside the secretory pathway. Such disulfide dynamics may be a general phenomenon for other cysteine-bearing mammalian proteins that fold in the cytoplasm.
Collapse
Affiliation(s)
- Peggy P Li
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
177
|
Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 2002; 102:439-69. [PMID: 11841250 DOI: 10.1021/cr000407m] [Citation(s) in RCA: 970] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Angata
- Glycobiology Research and Training Center, Department of Medicine, University of California-San Diego, La Jolla, California 92093-0687, USA
| | | |
Collapse
|
178
|
Affiliation(s)
- Yehia Mechref
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
179
|
Abstract
The accidental discovery of the mouse polyoma virus nearly 50 years ago opened up an experimental system unique in opportunities for investigating virus-host interactions leading to the development of tumors. Extensive studies of the virus in tissue culture have provided a detailed understanding of its genetics and molecular biology. Knowledge of the virus as a transforming agent in culture can now be tested in the animal where multiple cell types are targets for tumorigenic conversion and where a variety of host factors, both immunological and nonimmunological, come into play. Studies in the animal using well-characterized wild-type and mutant virus strains have led to some unexpected findings. Some of these run counter to certain widely held beliefs in cancer biology. This minireview focuses on these surprising findings and the challenges they raise.
Collapse
Affiliation(s)
- T L Benjamin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
180
|
Schmidt U, Rudolph R, Böhm G. Binding of external ligands onto an engineered virus capsid. PROTEIN ENGINEERING 2001; 14:769-74. [PMID: 11739895 DOI: 10.1093/protein/14.10.769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The development of novel delivery systems for therapeutic substances includes targeting of the carriers to a specific site or tissue within the body of the recipient. This can be accomplished by appropriate receptor-binding domains and requires linking of these domains to the carrier. We have used recombinantly expressed polyomavirus-like particles as a model system and inserted the sequence of a WW domain into different surface loops of the viral capsid protein VP1. In one variant, the WW domain maintained its highly selective binding properties of proline-rich ligands and showed an increased affinity but also an accelerated association/dissociation equilibrium compared to the isolated WW domain, thus allowing a short-term coupling of external ligands onto the surface of the virus-like particles.
Collapse
Affiliation(s)
- U Schmidt
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany.
| | | | | |
Collapse
|
181
|
Schweighardt B, Atwood WJ. Glial cells as targets of viral infection in the human central nervous system. PROGRESS IN BRAIN RESEARCH 2001; 132:721-35. [PMID: 11545031 DOI: 10.1016/s0079-6123(01)32113-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- B Schweighardt
- Department of Molecular Microbiology and Immunology, Brown University, 117 Meeting Street, Providence, RI 02912, USA
| | | |
Collapse
|
182
|
Chen PL, Wang M, Ou WC, Lii CK, Chen LS, Chang D. Disulfide bonds stabilize JC virus capsid-like structure by protecting calcium ions from chelation. FEBS Lett 2001; 500:109-13. [PMID: 11445066 DOI: 10.1016/s0014-5793(01)02598-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the role of disulfide bonds in the capsid structure, a recombinant JC virus-like particle (VLP) was used. The major capsid protein, VP1, of the JC virus was expressed in yeast cells. The yeast-expressed VP1 was self-assembled into a VLP. Disulfide bonds were found in the VLP which caused dimeric and trimeric VP1 linkages as demonstrated by non-reducing SDS-PAGE. The VLP remained intact when disulfide bonds were reduced by dithiothreitol. The VLP without disulfide bonds could be disassembled into capsomeres by EGTA alone, but those with disulfide bonds could not be disassembled by EGTA. Capsomeres were reassembled into VLPs in the presence of calcium ions. Capsomeres formed irregular aggregations instead of VLPs when treated with diamide to reconstitute the disulfide bonds. These results indicate that disulfide bonds play an important role in maintaining the integrity of the JC VLP by protecting calcium ions from chelation.
Collapse
Affiliation(s)
- P L Chen
- Institute of Molecular Biology, National Chung Cheng University, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
183
|
Schmidt U, Günther C, Rudolph R, Böhm G. Protein and peptide delivery via engineered polyomavirus-like particles. FASEB J 2001; 15:1646-8. [PMID: 11427514 DOI: 10.1096/fj.00-0645fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- U Schmidt
- Institut für Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | | | | |
Collapse
|
184
|
Ou WC, Hseu TH, Wang M, Chang H, Chang D. Identification of a DNA encapsidation sequence for human polyomavirus pseudovirion formation. J Med Virol 2001; 64:366-73. [PMID: 11424128 DOI: 10.1002/jmv.1060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human polyomavirus is a naked capsid virus containing a closed circular double-stranded DNA genome. The mechanism of DNA encapsidation for the viral progeny formation is not fully understood. In this study, DNA encapsidation domain of the major capsid protein, VP1, of the human polyomavirus JCV was investigated. When the first 12 amino acids were deleted, the E. coli expressed VP1 (Delta N12VP1) failed to encapsidate the host DNA although the integrity of the capsid-like structure was maintained. In addition, capsid-like particles of Delta N12VP1 did not package exogenous DNA in vitro, which is in contrast to that of the full-length VP1 protein. These findings suggest that the N-terminal of the first 12 amino acids of VP1 were responsible for DNA encapsidation. The importance of amino acids in the DNA encapsidation domain was determined further using site-directed mutagenesis. All of the positively charged amino acids at the N-terminal region of VP1 were essential for DNA encapsidation. The results indicate that the N-terminal region of the human polyomavirus major capsid protein VP1 may be involved in viral genome encapsidation during progeny maturation.
Collapse
Affiliation(s)
- W C Ou
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan
| | | | | | | | | |
Collapse
|
185
|
Vasudevan SV, Balaji PV. Dynamics of Ganglioside Headgroup in Lipid Environment: Molecular Dynamics Simulations of GM1 Embedded in Dodecylphosphocholine Micelle. J Phys Chem B 2001. [DOI: 10.1021/jp0027952] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheeja V. Vasudevan
- Biotechnology Center, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | - Petety V. Balaji
- Biotechnology Center, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
186
|
Stubenrauch K, Gleiter S, Brinkmann U, Rudolph R, Lilie H. Conjugation of an antibody Fv fragment to a virus coat protein: cell-specific targeting of recombinant polyoma-virus-like particles. Biochem J 2001; 356:867-73. [PMID: 11389696 PMCID: PMC1221915 DOI: 10.1042/0264-6021:3560867] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of cell-type-specific delivery systems is highly desirable for gene-therapeutic applications. Current virus-based vector systems show broad cell specificity, which results in the need to restrict the natural tropism of these viral systems. Here we demonstrate that tumour-cell-specific virus-like particles can be functionally assembled in vitro from recombinant viral coat protein expressed in Escherichia coli. The insertion of a negatively charged peptide in the HI loop of polyoma VP1 interferes with the binding of VP1 to the natural recognition site on mammalian cells and also serves as an adapter for the coupling of antibody fragments that contain complementary charged fusion peptides. A recombinant antibody fragment of the tumour-specific anti-(Lewis Y) antibody B3 could be coupled to the mutant VP1 by engineered polyionic peptides and an additional disulphide bond. With this system an entirely recombinant cell-specific delivery system assembled in vitro could be generated that transfers genes preferentially to cells presenting the tumour-specific antigen on the cell surface.
Collapse
Affiliation(s)
- K Stubenrauch
- Institut für Biotechnologie, Universität Halle, Kurt Mothes Strasse 3, D-06120 Halle, Germany
| | | | | | | | | |
Collapse
|
187
|
Notz W, Hartel C, Waldscheck B, Schmidt RR. De novo synthesis of a methylene-bridged Neu5Ac-alpha-(2,3)-gal C-disaccharide. J Org Chem 2001; 66:4250-60. [PMID: 11397161 DOI: 10.1021/jo015543l] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A general strategy toward the synthesis of C-ketosides of N-acetylneuraminic acid (Neu5Ac) has been developed and successfully applied to the synthesis of methylene-bridged Neu5Ac-alpha-(2,3)-Gal C-disaccharide 2. The key strategic element of this novel approach is a stereoselective, 6-exo-trig selective, electrophilic cyclization of the appropriate open chain precursor 4 by means of phenylselenyl triflate. The open chain precursor was formed by the addition of lithiated iodide 18 accessible from D-galactose to open chain aldehyde 5a obtained from D-glucono-delta-lactone by chain elongation. Subsequent C1-incorporation using Tebbe-reagent, formation of a cyclic carbonate, and deprotection of the two isopropylidene ketals afforded tetrol 4 which, upon treatment with phenylselenyl triflate, was stereoselectively cyclized in a 6-exo-trig selective manner. A selena-Pummerer rearrangement, oxidation, and esterification readily led to methyl ester 37 which, after deacetylation, could be regioselectively tetrabenzoylated with benzoyl cyanide. Triflate activation of the axial hydroxyl group in 40 and nucleophilic displacement by azide ion with inversion of configuration afforded azide 41, which was reduced with hydrogen and Pearlman's catalyst. Concomitant removal of the benzyl ethers and subsequent saponification of all ester moieties successfully completed the de novo synthesis of the desired methylene bridged Neu5Ac-alpha-(2,3)-Gal C-disaccharide 2.
Collapse
Affiliation(s)
- W Notz
- Fachbereich Chemie, Universität Konstanz, Fach M 725, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
188
|
Affiliation(s)
- A P May
- Department of Structural Biology, Stanford University School of Medicine, Fairchild Building, Stanford, CA 94305, USA
| | | |
Collapse
|
189
|
Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1. J Mol Biol 2001; 307:173-82. [PMID: 11243812 DOI: 10.1006/jmbi.2000.4464] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The L1 major capsid proteins of human papillomavirus (HPV) types 11 and 16 were purified and analyzed for structural integrity and in vitro self-assembly. Proteins were expressed in Escherichia coli as glutathione-S-transferase-L1 (GST-L1) fusions and purified to near homogeneity as pentamers (equivalent to viral capsomeres), after thrombin cleavage from the GST moiety and removal of tightly associated GroEL protein. Sequences at the amino and carboxy termini contributing to formation of L1 pentamers and to in vitro capsid assembly were identified by deletion analysis. For both HPV11 and HPV16 L1, up to at least ten residues could be deleted from the amino terminus (Delta N10) and 30 residues from the carboxy terminus (Delta C30) without affecting pentamer formation. The HPV16 pentamers assembled into relatively regular, 72-pentamer shells ("virus-like particles" or VLPs) at low pH, with the exception of HPV16 L1 Delta N10, which assembled into a 12-pentamer, T=1 capsid (small VLP) under all conditions tested. The production of large quantities of assembly-competent L1, using the expression and purification protocol described here, has been useful for crystallographic analysis, and will be valuable for studies of virus-receptor interactions and potentially for vaccine design.
Collapse
Affiliation(s)
- X S Chen
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, 4200 E. 9th Ave, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
190
|
Sanjuan N, Porrás A, Otero J, Perazzo S. Expression of major capsid protein VP-1 in the absence of viral particles in thymomas induced by murine polyomavirus. J Virol 2001; 75:2891-9. [PMID: 11222714 PMCID: PMC115915 DOI: 10.1128/jvi.75.6.2891-2899.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymomas induced by polyomavirus strain PTA in mice are known to express the major capsid protein VP-1. Since the expression of a late structural protein such as VP-1 is considered a sign of virus replication, the present work attempted to clarify the implication of the presence of this protein in tumor cells. Electron microscopy of tumors showed a striking absence of viral particles in the vast majority of the cells. However, immunoelectron microscopy of the same samples demonstrated intranuclear VP-1 in most cells despite the absence of viral particles. Very little infectious virus was recovered from tumors. A change in the electrophoretic mobility of VP-1 from thymomas was detected compared with VP-1 from productively infected cells. The data presented in this work prove that the expression of VP-1 in polyomavirus-induced tumors is not synonymous with the presence of infectious virus, suggesting a possible defect in viral encapsidation.
Collapse
Affiliation(s)
- N Sanjuan
- Laboratory of Experimental Pathology, Department of Microbiology, University of Buenos Aires School of Medicine, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
191
|
Szomolanyi-Tsuda E, Brien JD, Dorgan JE, Garcea RL, Woodland RT, Welsh RM. Antiviral T-cell-independent type 2 antibody responses induced in vivo in the absence of T and NK cells. Virology 2001; 280:160-8. [PMID: 11162830 DOI: 10.1006/viro.2000.0766] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomavirus (PyV) infection induces protective T-cell-independent (TI) IgM and IgG responses in T-cell-deficient (TCR beta x delta-/-) mice. In this study, we show that PyV is a TI -2 antigen: B cells with a mutated Bruton's tyrosine kinase (Xid mutants) do not respond to PyV with antibody secretion in the absence of T cells. We also demonstrate that NK-cell-mediated "help" is not absolutely required for the induction of the TI-2 antibodies to PyV; thus for the first time, we provide evidence for protective IgM and IgG responses against a viral infection induced in mice lacking T and NK cells (CD3Etg). Comparison of the antibody responses observed in T- and NK-cell-deficient mice with those of mice lacking only T cells, however, suggests that NK cells may promote isotype switching to IgG2a. This effect is probably mediated by IFN gamma secretion. In support of this idea, studies on the antibody responses of PyV-infected SCID mice that had been reconstituted with IFN gamma R-/- B cells or wild-type B cells demonstrated the IFN gamma dependence of PyV-specific TI IgG2a secretion and provided evidence that IFN gamma acting directly on B cells plays an important role in TI pathways of isotype switching to IgG2a in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, T-Independent/immunology
- B-Lymphocytes/immunology
- CD3 Complex
- Female
- Humans
- Immunoglobulin G/immunology
- Killer Cells, Natural/immunology
- Lymphocyte Depletion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, SCID
- Mice, Transgenic
- Polyomavirus/immunology
- Polyomavirus Infections/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Interferon/immunology
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- Tumor Virus Infections/immunology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- E Szomolanyi-Tsuda
- Department of Pathology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | |
Collapse
|
192
|
Keppler OT, Horstkorte R, Pawlita M, Schmidt C, Reutter W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 2001; 11:11R-18R. [PMID: 11287396 DOI: 10.1093/glycob/11.2.11r] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylneuraminic acid is the most prominent sialic acid in eukaryotes. The structural diversity of sialic acid is exploited by viruses, bacteria, and toxins and by the sialoglycoproteins and sialoglycolipids involved in cell-cell recognition in their highly specific recognition and binding to cellular receptors. The physiological precursor of all sialic acids is N-acetyl D-mannosamine (ManNAc). By recent findings it could be shown that synthetic N-acyl-modified D-mannosamines can be taken up by cells and efficiently metabolized to the respective N-acyl-modified neuraminic acids in vitro and in vivo. Successfully employed D-mannosamines with modified N-acyl side chains include N-propanoyl- (ManNProp), N-butanoyl- (ManNBut)-, N-pentanoyl- (ManNPent), N-hexanoyl- (ManNHex), N-crotonoyl- (ManNCrot), N-levulinoyl- (ManNLev), N-glycolyl- (ManNGc), and N-azidoacetyl D-mannosamine (ManNAc-azido). All of these compounds are metabolized by the promiscuous sialic acid biosynthetic pathway and are incorporated into cell surface sialoglycoconjugates replacing in a cell type-specific manner 10-85% of normal sialic acids. Application of these compounds to different biological systems has revealed important and unexpected functions of the N-acyl side chain of sialic acids, including its crucial role for the interaction of different viruses with their sialylated host cell receptors. Also, treatment with ManNProp, which contains only one additional methylene group compared to the physiological precursor ManNAc, induced proliferation of astrocytes, microglia, and peripheral T-lymphocytes. Unique, chemically reactive ketone and azido groups can be introduced biosynthetically into cell surface sialoglycans using N-acyl-modified sialic acid precursors, a process offering a variety of applications including the generation of artificial cellular receptors for viral gene delivery. This group of novel sialic acid precursors enabled studies on sialic acid modifications on the surface of living cells and has improved our understanding of carbohydrate receptors in their native environment. The biochemical engineering of the side chain of sialic acid offers new tools to study its biological relevance and to exploit it as a tag for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- O T Keppler
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
193
|
Gleiter S, Lilie H. Coupling of antibodies via protein Z on modified polyoma virus-like particles. Protein Sci 2001; 10:434-44. [PMID: 11266629 PMCID: PMC2373932 DOI: 10.1110/ps.31101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic application of virus-based delivery systems often implies a change of the tropism of these vectors. This can be achieved by insertion of polypeptides (e.g., antibody fragments) in viral coat proteins. Such fusion proteins have only been used in viral vectors so far and, as part of a virus, they have not been available for a detailed biophysical characterization. We analyzed a fusion protein called VP1-Z, which is based on the polyoma virus coat protein VP1 and protein Z. Protein Z is an engineered antibody-binding domain derived from protein A from Staphylococcus aureus. The fusion VP1-Z was constructed by insertion of protein Z in the HI-loop of VP1. As wild-type VP1, VP1-Z formed pentameric capsomers and assembled to VLPs in vitro. The stability of these particles was very similar compared to that of VLPs of wild-type VP1. Protein Z was fully structured in the fusion protein and was still capable of binding antibodies on the surface of VLPs of VP1-Z. Using this fusion protein, we could change the tropism of polyoma VLPs toward cells presenting on their surface the antigen of the coupled antibody.
Collapse
Affiliation(s)
- S Gleiter
- Martin-Luther-Universität Halle, Institut für Biotechnologie, D-06120 Halle, Germany
| | | |
Collapse
|
194
|
Troncoso MF, Iglesias MM, Isecke R, Todel CW, Brossmer R. Specificity of the binding site of the sialic acid-binding lectin from ovine placenta, deduced from interactions with synthetic analogues. Glycoconj J 2000; 17:705-711. [PMID: 11425190 DOI: 10.1023/a:1011022721545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The specificity of the sialic acid-binding lectin from ovine placenta was examined in detail by haemagglutination inhibition assays applying a panel of 32 synthetic sialic acid analogues. The carboxylic acid group is a prerequisite for the interaction with the lectin, the alpha-anomer of the methyl glycoside is only a little more effective as an inhibitor than the beta-anomer and the most potent inhibitor was 9-deoxy-10-carboxylic acid Neu5Ac, followed by 4-oxo-Neu5Ac. In contrast to the majority of known sialic acid-binding lectins, the N-acetyl group of Neu5Ac is not indispensable for binding, neither is the hydroxyl group at C-9 since substitutions at this carbon atom are well tolerated. Furthermore, all sulfur-containing substituents at C-9 enhanced the affinity of the lectin. This is the first sialic acid-binding lectin found to strongly bind thio derivatives.
Collapse
Affiliation(s)
- M F Troncoso
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
195
|
An K, Paulsen AQ, Tilley MB, Consigli RA. Use of electron microscopic and immunogold labeling techniques to determine polyomavirus recombinant VP1 capsid-like particles entry into mouse 3T6 cell nucleus. J Virol Methods 2000; 90:91-7. [PMID: 11011085 DOI: 10.1016/s0166-0934(00)00219-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine polyomavirus major structural protein VP1 could assemble into capsid-like particles when expressed in the baculovirus system. The recombinant capsid-like particles that were purified by CsCl density gradient centrifugation were capable of packaging host DNA. Electron microscopic and immunogold labeling techniques were used to study the entry of these VP1 recombinant capsid-like particles into mouse 3T6 cells. It was found that these VP1 recombinant capsid-like particles, which lack polyomavirus minor structural proteins (VP2 and VP3), use the same mechanism to enter mouse 3T6 cell cytoplasm and nucleus as that used by native polyomavirus virions.
Collapse
Affiliation(s)
- K An
- Division of Biology-Ackert Hall, Section of Virology and Oncology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
196
|
Krauzewicz N, Griffin BE. Polyoma and papilloma virus vectors for cancer gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:73-82. [PMID: 10810617 DOI: 10.1007/0-306-46817-4_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- N Krauzewicz
- Department of Infectious Diseases, Imperial College School of Medicine, London, UK
| | | |
Collapse
|
197
|
Garcia MI, Perez M, Caruso M, Sthandier O, Ferreira R, Cermola M, Macchia C, Amati P. A mutation in the DE loop of the VP1 protein that prevents polyomavirus transcription and replication. Virology 2000; 272:293-301. [PMID: 10873772 DOI: 10.1006/viro.2000.0351] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural mutants of the DE loop of the Polyomavirus (Py) major coat protein VP1 have been previously shown to display an altered host specificity (L. Ricci, R. Maione, C. Passananti, A. Felsani, and P. Amati, 1992, J. Virol. 66, 7153-7158). To better understand the role of this outfacing loop of the VP1 protein in Py infectivity, we constructed and characterized a Py mutant (Py M17) harboring a deletion of 7 AA within the tip of the DE loop. The mutant virions obtained after DNA transfection were unable to replicate and initiate early transcription in fibroblast cells. Complementation experiments performed to rescue the deficient M17 replication by means of wt functions revealed the cis-dominance of the mutation. In situ cell fractionation experiments demonstrated that the Py mutant, like the Py wt, enters the cells, reaches the nucleus and that both the viral DNA and VP1 protein are found tightly bound to the nuclear matrix. These data suggest that the VP1 protein, associated to the viral DNA, conditions early viral gene expression and that the DE loop of the protein must be involved in this process.
Collapse
Affiliation(s)
- M I Garcia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, Rome, 00161, Italy
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
The reovirus core is an assembly with a relative molecular mass of 52 million that synthesizes, modifies and exports viral messenger RNA. Analysis of its structure by X-ray crystallography shows that there are alternative, specific and completely non-equivalent contacts made by several surfaces of two of its proteins; that the RNA capping and export apparatus is a hollow cylinder, which probably sequesters its substrate to ensure completion of the capping reactions; that the genomic double-stranded RNA is coiled into concentric layers within the particle; and that there is a protein shell that appears to be common to all groups of double-stranded RNA viruses.
Collapse
Affiliation(s)
- K M Reinisch
- Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
199
|
Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 2000; 5:557-67. [PMID: 10882140 DOI: 10.1016/s1097-2765(00)80449-9] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The papillomavirus major late protein, L1, forms the pentameric assembly unit of the viral shell. Recombinant HPV16 L1 pentamers assemble in vitro into capsid-like structures, and truncation of ten N-terminal residues leads to a homogeneous preparation of 12-pentamer, icosahedral particles. X-ray crystallographic analysis of these particles at 3.5 A resolution shows that L1 closely resembles VP1 from polyomaviruses. Surface loops contain the sites of sequence variation among HPV types and the locations of dominant neutralizing epitopes. The ease with which small virus-like particles may be obtained from L1 expressed in E. coli makes them attractive candidate components of a papillomavirus vaccine. Their crystal structure also provides a starting point for future vaccine design.
Collapse
Affiliation(s)
- X S Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
200
|
Palková Z, Spanielová H, Gottifredi V, Hollanderová D, Forstová J, Amati P. The polyomavirus major capsid protein VP1 interacts with the nuclear matrix regulatory protein YY1. FEBS Lett 2000; 467:359-64. [PMID: 10675569 DOI: 10.1016/s0014-5793(00)01170-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Polyomavirus reaches the nucleus in a still encapsidated form, and the viral genome is readily found in association with the nuclear matrix. This association is thought to be essential for viral replication. In order to identify the protein(s) involved in the virus-nuclear matrix interaction, we focused on the possible roles exerted by the multifunctional cellular nuclear matrix protein Yin Yang 1 (YY1) and by the viral major capsid protein VP1. In the present work we report on the in vivo association between YY1 and VP1. Using the yeast two-hybrid system we demonstrate that the VP1 and YY1 proteins physically interact through the D-E region of VP1 and the activation domain of YY1.
Collapse
Affiliation(s)
- Z Palková
- Instituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|