151
|
Abstract
For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.
Collapse
Affiliation(s)
- Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan Kohrman
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Steven D. Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Tae Kon Kim
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center at Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
152
|
Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation. PLoS One 2016; 11:e0163340. [PMID: 27695092 PMCID: PMC5047480 DOI: 10.1371/journal.pone.0163340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer.
Collapse
|
153
|
Pozner A, Terooatea TW, Buck-Koehntop BA. Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1. J Biol Chem 2016; 291:24538-24550. [PMID: 27694442 DOI: 10.1074/jbc.m116.746370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
The correlation between aberrant DNA methylation with cancer promotion and progression has prompted an interest in discerning the associated regulatory mechanisms. Kaiso (ZBTB33) is a specialized transcription factor that selectively recognizes methylated CpG-containing sites as well as a sequence-specific DNA target. Increasing reports link ZBTB33 overexpression and transcriptional activities with metastatic potential and poor prognosis in cancer, although there is little mechanistic insight into how cells harness ZBTB33 transcriptional capabilities to promote and progress disease. Here we report mechanistic details for how ZBTB33 mediates cell-specific cell cycle regulation. By utilizing ZBTB33 depletion and overexpression studies, it was determined that in HeLa cells ZBTB33 directly occupies the promoters of cyclin D1 and cyclin E1, inducing proliferation by promoting retinoblastoma phosphorylation and allowing for E2F transcriptional activity that accelerates G1- to S-phase transition. Conversely, in HEK293 cells ZBTB33 indirectly regulates cyclin E abundance resulting in reduced retinoblastoma phosphorylation, decreased E2F activity, and decelerated G1 transition. Thus, we identified a novel mechanism by which ZBTB33 mediates the cyclin D1/cyclin E1/RB1/E2F pathway, controlling passage through the G1 restriction point and accelerating cancer cell proliferation.
Collapse
Affiliation(s)
- Amir Pozner
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Tommy W Terooatea
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
154
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
155
|
Development of an electrochemical detection system for measuring DNA methylation levels using methyl CpG-binding protein and glucose dehydrogenase-fused zinc finger protein. Biosens Bioelectron 2016; 93:118-123. [PMID: 27666367 DOI: 10.1016/j.bios.2016.09.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
Abstract
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 106 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure.
Collapse
|
156
|
Ma Z, Song J, Liu S, Han L, Chen Y, Wang Y, Yu C, Hou L. Decreased expression of the CHD5 gene and its clinicopathological significance in breast cancer: Correlation with aberrant DNA methylation. Oncol Lett 2016; 12:4021-4026. [PMID: 27895765 DOI: 10.3892/ol.2016.5147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Chromodomain helicase DNA binding protein 5 (CHD5) has been identified as a tumor suppressor in mouse models. Downregulation of CHD5 gene expression is frequently observed in breast cancer cells and tissues. This may be explained by deletions or other mutations; however, alternative mechanisms require investigation. Therefore, the present study evaluated whether CHD5 aberrant methylation has a role in primary breast tumors. A total of 389 patients with primary breast cancer (including 252 paraffin-embedded specimens and 137 fresh-frozen samples) were enrolled in the present study. In the current study, reverse transcription-polymerase chain reaction (RT-PCR) and nested-methylation-specific PCR were used to analyze the mRNA expression and promoter methylation of CHD5 genes in a large cohort of breast cancer patients, and to investigate their associations with the clinicopathological features of tumors. CHD5 expression was significantly suppressed in breast cancer tissues compared with normal breast tissues when analyzed by RT-PCR. Furthermore, DNA methylation of CHD5 was more prevalent in breast tumors than in normal tissues. CHD5 mRNA levels correlated with the degree of CHD5 methylation in breast cancer tissues. Clinicopathological correlation analysis revealed that CHD5 promoter methylation was associated with estrogen receptor and progesterone receptor status. Thus, downregulation of CHD5, mediated by abnormal methylation, may contribute to the development and progression of breast cancer.
Collapse
Affiliation(s)
- Zhongliang Ma
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinlian Song
- Department of Laboratory Medicine, The Affiliated Qingdao Women and Children's Hospital of Qingdao, Qingdao, Shandong 266034, P.R. China
| | - Simin Liu
- Department of PET Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Linlin Han
- Department of Pediatrics, Jinan Children's Hospital, Jinan, Shandong 250022, P.R. China
| | - Yangping Chen
- Department of Laboratory Medicine, The Affiliated Qingdao Women and Children's Hospital of Qingdao, Qingdao, Shandong 266034, P.R. China
| | - Yaqiu Wang
- Department of Laboratory Medicine, The Affiliated Qingdao Women and Children's Hospital of Qingdao, Qingdao, Shandong 266034, P.R. China
| | - Chundong Yu
- Department of Laboratory Medicine, The Affiliated Qingdao Women and Children's Hospital of Qingdao, Qingdao, Shandong 266034, P.R. China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
157
|
The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features. PLoS One 2016; 11:e0161859. [PMID: 27583477 PMCID: PMC5008725 DOI: 10.1371/journal.pone.0161859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/13/2016] [Indexed: 12/21/2022] Open
Abstract
Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in “normal” human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation.
Collapse
|
158
|
Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity. Semin Cell Dev Biol 2016; 64:5-17. [PMID: 27582426 DOI: 10.1016/j.semcdb.2016.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
DNA methylation is a fundamental means of epigenetic gene regulation that occurs in virtually all cell types. In many higher organisms, including humans, it plays vital roles in cell differentiation and homeostatic maintenance of cell phenotype. The control of DNA methylation has traditionally been attributed to a highly coordinated, linear process, whose dysregulation has been associated with numerous pathologies including cancer, where it occurs early in, and even prior to, the development of neoplastic tissues. Recent experimental evidence has demonstrated that, contrary to prevailing paradigms, methylation patterns are actually maintained through inexact, dynamic processes. These processes normally result in minor stochastic differences between cells that accumulate with age. However, various factors, including cancer itself, can lead to substantial differences in intercellular methylation patterns, viz. methylation heterogeneity. Advancements in molecular biology techniques are just now beginning to allow insight into how this heterogeneity contributes to clonal evolution and overall cancer heterogeneity. In the current review, we begin by presenting a didactic overview of how the basal bimodal methylome is established and maintained. We then provide a synopsis of some of the factors that lead to the accrual of heterogeneous methylation and how this heterogeneity may lead to gene silencing and impact the development of cancerous phenotypes. Lastly, we highlight currently available methylation assessment techniques and discuss their suitability to the study of heterogeneous methylation.
Collapse
|
159
|
Liu H, Li S, Wang X, Zhu J, Wei Y, Wang Y, Wen Y, Wang L, Huang Y, Zhang B, Shang S, Zhang Y. DNA methylation dynamics: identification and functional annotation. Brief Funct Genomics 2016; 15:470-484. [PMID: 27515490 DOI: 10.1093/bfgp/elw029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic modification of cytosines that undergoes dynamic changes in a temporal, spatial and cell-type-specific manner. Recent advances in technology have permitted the profiling of high-throughput methylomes in large numbers of biological samples. Various computational tools have been developed to identify and analyze DNA methylation dynamics in a variety of critical biological processes. As DNA methylation is becoming increasingly viewed as a dynamic process, the mechanisms governing DNA methylation dynamics and its roles in the transcriptional regulatory network are of great interest. It has been reported that DNA methylation dynamics plays essential roles in multiple biological processes, including development and cancer. As a functional event, the dynamics of DNA methylation have become increasingly relevant to many researchers. Here, we review state-of-the-art advances at three levels (genome-wide identification, regulatory mechanism investigation and the functional annotation) in the field of DNA methylation dynamics, as well as the future perspective of DNA methylation dynamics.
Collapse
|
160
|
Kuo IY, Jen J, Hsu LH, Hsu HS, Lai WW, Wang YC. A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations. J Biomed Sci 2016; 23:58. [PMID: 27484806 PMCID: PMC4969679 DOI: 10.1186/s12929-016-0276-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023] Open
Abstract
Background The incidence of lung adenocarcinoma (LUAD) is increasing worldwide with different prognosis even in early-stage patients. We aimed to identify a prognostic panel with multiple DNA methylation biomarkers to predict survival in early-stage LUAD patients of different racial groups. Methods The methylation array, pyrosequencing methylation assay, Cox regression and Kaplan-Meier analyses were conducted to build the risk score equations of selected probes in a training cohort of 69 Asian LUAD patients. The risk score model was verified in another cohort of 299 Caucasian LUAD patients in The Cancer Genome Atlas (TCGA) database. Results We performed a Cox regression analysis, in which the regression coefficients were obtained for eight probes corresponding to eight genes (AGTRL1, ALDH1A3, BDKRB1, CTSE, EFNA2, NFAM1, SEMA4A and TMEM129). The risk score was derived from sum of each methylated probes multiplied by its corresponding coefficient. Patients with the risk score greater than the median value showed poorer overall survival compared with other patients (p = 0.007). Such a risk score significantly predicted patients showing poor survival in TCGA cohort (p = 0.036). A multivariate analysis was further performed to demonstrate that the eight-probe panel association with poor outcome in early-stage LUAD patients remained significant even after adjusting for different clinical variables including staging parameters (hazard ratio, 2.03; p = 0.039). Conclusions We established a proof-of-concept prognostic panel consisting of eight-probe signature to predict survival of early-stage LUAD patients of Asian and Caucasian populations. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0276-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Jayu Jen
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan
| | - Lien-Huei Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pulmonary Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Taipei Veterans General Hospital; Institute of Emergency and Critical Care Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan, 704, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan.
| |
Collapse
|
161
|
Rasmussen SL, Krarup HB, Sunesen KG, Pedersen IS, Madsen PH, Thorlacius-Ussing O. Hypermethylated DNA as a biomarker for colorectal cancer: a systematic review. Colorectal Dis 2016; 18:549-61. [PMID: 26998585 DOI: 10.1111/codi.13336] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
AIM Improved methods for early detection of colorectal cancer (CRC) are essential for increasing survival. Hypermethylated DNA in blood or stool has been proposed as a biomarker for CRC. Biochemical methods have improved in recent years, and several hypermethylated genes that are sensitive and specific for CRC have been proposed. Articles describing the use of hypermethylated promoter regions in blood or stool as biomarkers for CRC were systematically reviewed. METHOD A systematic literature search was performed using the Medline, Web of Science and Embase databases. Studies were included if they analysed hypermethylated genes from stool or blood samples in correlation with CRC. Studies in languages other than English and those based on animal models or cell lines were excluded. RESULTS The literature search yielded 74 articles, including 43 addressing blood samples and 31 addressing stool samples. In blood samples, hypermethylated ALX4, FBN2, HLTF, P16, TMEFF1 and VIM were associated with poor prognosis, hypermethylated APC, NEUROG1, RASSF1A, RASSF2A, SDC2, SEPT9, TAC1 and THBD were detected in early stage CRC and hypermethylated P16 and TFPI2 were associated with CRC recurrence. In stool samples, hypermethylated BMP3, PHACTR3, SFRP2, SPG20, TFPI2 and TMEFF2 were associated with early stage CRC. CONCLUSION Hypermethylation of the promoters of specific genes measured in blood or stool samples could be used as a CRC biomarker and provide prognostic information. The majority of studies, however, include only a few patients with poorly defined control groups. Further studies are therefore needed before hypermethylated DNA can be widely applied as a clinical biomarker for CRC detection and prognosis.
Collapse
Affiliation(s)
- S L Rasmussen
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - H B Krarup
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - K G Sunesen
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - I S Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - P H Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - O Thorlacius-Ussing
- Department of Gastrointestinal Surgery and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
162
|
Kim SY, Shin DY, Kim SM, Lee M, Kim EJ. Aberrant DNA methylation-induced gene inactivation is associated with the diagnosis and/or therapy of T-cell leukemias. Leuk Res 2016; 47:116-22. [PMID: 27318093 DOI: 10.1016/j.leukres.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
Aberrant hypermethylation of tumor suppressor genes is known to play an important role in the development of many tumors, and aberrant DNA hypermethylation was recently identified in hematologic malignancies, where it is thought to hold relevance in leukemogenesis. Here, we report that there are differences in the DNA methylation patterns seen in normal peripheral blood and two T-cell leukemia cell lines. We identify nine genes (CLEC4E, CR1, DBC1, EPO, HAL-DOA, IGF2, IL12B, ITGA1, and LMX1B) that are significantly hypermethylated in T-cell leukemias cell lines, and suggest that aberrant hypermethylation of these normally unmethylated genes may induce their transcriptional and expressional silencing. Furthermore, we observed that the expression levels of DNMT1 and DNMT3a were significantly decreased by 5-aza-2'-deoxycytidine (5-Aza-dC), which is a demethylation agent known to deplete DNA methyltransferases (DNMTs) in leukemia cancer cells and restore the expression levels of their target genes in Jurkat cells. This result suggests that the overexpression of DNMTs could contribute to the development of T-cell leukemias by inducing hypermethylation of the target genes. Together, our results show that aberrant hypermethylation is an important molecular mechanism in the progression of T-cell leukemias, and thus could prove useful as a prognostic and/or diagnostic marker. Moreover, 5-Aza-dC might be a promising candidate for the treatment of T-cell leukemia.
Collapse
Affiliation(s)
- Sun Young Kim
- Division of Radiation Effect, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Dong-Yeop Shin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sang-Man Kim
- Health Services Management, KH School of Management, Kyung Hee University, Seoul 02453, Korea
| | - Minyoung Lee
- Division of Radiation Effect, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
| | - Eun Ju Kim
- Division of Radiation Effect, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; Health Services Management, KH School of Management, Kyung Hee University, Seoul 02453, Korea.
| |
Collapse
|
163
|
Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct 2016; 34:289-98. [PMID: 27003927 DOI: 10.1002/cbf.3183] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 02/18/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amr Rafat Elhamamsy
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
164
|
Wang Y, Liu C, Wang T, Hong T, Su H, Yu S, Song H, Liu S, Zhou X, Mao W, Zhou X. Highly Selective Detection of 5-Methylcytosine in Genomic DNA Based on Asymmetric PCR and Specific DNA Damaging Reagents. Anal Chem 2016; 88:3348-53. [DOI: 10.1021/acs.analchem.5b04939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yafen Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Chaoxing Liu
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Tianlu Wang
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Tingting Hong
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Haomiao Su
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Shuyi Yu
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Hongwei Song
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Songmei Liu
- Zhongnan
Hospital, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Xin Zhou
- Zhongnan
Hospital, Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Wuxiang Mao
- School
of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, P. R. China
| | - Xiang Zhou
- College
of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
165
|
Yi JH, Liu J, Wang KH. CpG island methylator phenotype in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:558-565. [DOI: 10.11569/wcjd.v24.i4.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and is caused by accumulation of genetic and epigenetic changes. With the discovery of CpG island methylator phenotype (CIMP), more and more studies have focused on epigenetic modifications in CRC. CIMP is found in a subset of CRC with an exceptionally high frequency of methylated genes. Current research shows that CIMP has several molecular characteristics and is significantly associated with multiple clinicopathological features, but the mechanim of CIMP is still unclear. The prognosis and treatment response in CRC with CIMP are largely different form those of other CRCs, however, the absence of widely accepted CIMP biomarkers has prevented the clinical applications of CIMP to guide the personalized therapy of CRC.
Collapse
|
166
|
Bhat S, Kabekkodu SP, Noronha A, Satyamoorthy K. Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie 2016; 121:298-311. [PMID: 26743075 DOI: 10.1016/j.biochi.2015.12.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide. About 528,000 women are diagnosed with cervical cancer contributing to around 266,000 deaths, across the globe every year. Out of these, the burden of 226,000 (85%) deaths occurs in the developing countries, who are less resource intensive to manage the disease. This is despite the fact that cervical cancer is amenable for early detection due to its long and relatively well-known natural history prior to its culmination as invasive disease. Infection with high risk human papillomavirus (hrHPVs) is essential but not sufficient to cause cervical cancer. Although it was thought that genetic mutations alone was sufficient to cause cervical cancer, the current epidemiological and molecular studies have shown that HPV infection along with genetic and epigenetic changes are frequently associated and essential for initiation, development and progression of the disease. Moreover, aberrant DNA methylation in host and HPV genome can be utilized not only as biomarkers for early detection, disease progression, diagnosis and prognosis of cervical cancer but also to design effective therapeutic strategies. In this review, we focus on recent studies on DNA methylation changes in cervical cancer and their potential role as biomarkers for early diagnosis, prognosis and targeted therapy.
Collapse
Affiliation(s)
- Samatha Bhat
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Ashish Noronha
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India
| | - Kapaettu Satyamoorthy
- Department of Biotechnology, School of Life Sciences, Manipal University, Karnataka 576104, India.
| |
Collapse
|
167
|
Huang Q, Wen J, Chen G, Ge M, Gao Y, Ye X, Liu C, Cai C. Omega-3 Polyunsaturated Fatty Acids Inhibited Tumor Growth via Preventing the Decrease of Genomic DNA Methylation in Colorectal Cancer Rats. Nutr Cancer 2016; 68:113-9. [DOI: 10.1080/01635581.2016.1115526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
168
|
Achille NJ, Othus M, Phelan K, Zhang S, Cooper K, Godwin JE, Appelbaum FR, Radich JP, Erba HP, Nand S, Zeleznik-Le NJ. Association between early promoter-specific DNA methylation changes and outcome in older acute myeloid leukemia patients. Leuk Res 2016; 42:68-74. [PMID: 26818573 DOI: 10.1016/j.leukres.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
Treatment options for older patients with acute myeloid leukemia (AML) range from supportive care alone to full-dose chemotherapy. Identifying factors that predict response to therapy may help increase efficacy and avoid toxicity. The phase II SWOG S0703 study investigated the use of hydroxyurea and azacitidine with gemtuzumab ozogamicin in the elderly AML population and found survival rates similar to those expected with standard AML regimens, with less toxicity. As part of this study, global DNA methylation along with promoter DNA methylation and expression analysis of six candidate genes (CDKN2A, CDKN2B, HIC1, RARB, CDH1 and APAF1) were determined before and during therapy to investigate whether very early changes are prognostic for clinical response. Global DNA methylation was not associated with a clinical response. Samples after 3 or 4 days of treatment with azacitidine showed significantly decreased CDKN2A promoter DNA methylation in patients achieving complete remission (CR) compared to those who did not. Samples from day 7 of treatment showed significantly decreased RARB, CDKN2B and CDH1 promoter DNA methylation in responders compared to nonresponders. Gene-specific DNA methylation analysis of peripheral blood samples may help early identification of those older AML patients most likely to benefit from demethylating agent therapy.
Collapse
Affiliation(s)
- Nicholas J Achille
- Oncology Research Institute, Loyola University Health Sciences Division, Maywood, IL 60153, United States
| | - Megan Othus
- SWOG Statistical Center, Seattle, WA 98109, United States
| | - Kathleen Phelan
- Division of Hematology & Oncology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Shubin Zhang
- Oncology Research Institute, Loyola University Health Sciences Division, Maywood, IL 60153, United States
| | - Kathrine Cooper
- Division of Hematology & Oncology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, United States
| | - John E Godwin
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR 97213, United States
| | | | - Jerald P Radich
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Harry P Erba
- Division of Hematology & Oncology, Department of Medicine, University of Alabama, Birmingham, AL 35294, United States
| | - Sucha Nand
- Division of Hematology & Oncology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Nancy J Zeleznik-Le
- Oncology Research Institute, Loyola University Health Sciences Division, Maywood, IL 60153, United States; Division of Hematology & Oncology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, United States.
| |
Collapse
|
169
|
Abstract
Epigenetic regulation refers to heritable changes in gene expression that do not involve any alteration of the DNA sequence. DNA methylation, histone modification, and gene regulation by microRNAs are well-known epigenetic modulations that are closely associated with several cellular processes and diverse disease states, such as cancers, even under precancerous conditions. More recently, several studies have indicated that epigenetic changes may be associated with renal cystic diseases, including autosomal dominant polycystic kidney disease, and the restoration of altered epigenetic factors may become a therapeutic target of renal cystic disease and would be expected to have minimal side effects. This review focuses on recently reported findings on epigenetic and considers the potential of targeting epigenetic regulation as a novel therapeutic approach to control cystogenesis.
Collapse
|
170
|
Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:39-69. [PMID: 26659263 DOI: 10.1007/978-3-319-24738-0_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
171
|
Sakaguchi H, Muramatsu H, Okuno Y, Makishima H, Xu Y, Furukawa-Hibi Y, Wang X, Narita A, Yoshida K, Shiraishi Y, Doisaki S, Yoshida N, Hama A, Takahashi Y, Yamada K, Miyano S, Ogawa S, Maciejewski JP, Kojima S. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia. PLoS One 2015; 10:e0145394. [PMID: 26720758 PMCID: PMC4697810 DOI: 10.1371/journal.pone.0145394] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options.
Collapse
Affiliation(s)
- Hirotoshi Sakaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Hematology and Oncology, Children’s Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yinyan Xu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Furukawa-Hibi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xinan Wang
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayoko Doisaki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children’s Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| |
Collapse
|
172
|
Joensuu EI, Nieminen TT, Lotsari JE, Pavicic W, Abdel-Rahman WM, Peltomäki P. Methyltransferase expression and tumor suppressor gene methylation in sporadic and familial colorectal cancer. Genes Chromosomes Cancer 2015; 54:776-787. [PMID: 26305882 DOI: 10.1002/gcc.22289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/01/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2023] Open
Abstract
Molecular mechanisms underlying coordinated hypermethylation of multiple CpG islands in cancer remain unclear and studies of methyltransferase enzymes have arrived at conflicting results. We focused on DNMT1 and DNMT3B, DNA methyltransferases responsible for (de novo) methylation, and EZH2, histone (H3K27) methyltransferase, and examined their roles in tumor suppressor gene (TSG) methylation patterns we have previously established in sporadic and familial cancers. Our investigation comprised 165 tumors, stratified by tissue of origin (117 colorectal and 48 endometrial carcinomas) and sporadic vs. familial disease (57 sporadic vs. 60 familial, mainly Lynch syndrome, colorectal carcinomas). By immunohistochemical evaluation, EZH2 protein expression was associated with a TSG methylator phenotype. DNMT1, DNMT3B, and EZH2 were expressed at significantly higher levels in tumor vs. normal tissues. DNMT1 and EZH2 expression were positively correlated and higher in microsatellite-unstable vs. microsatellite-stable tumors, whether sporadic or hereditary. Ki-67 expression mirrored the same pattern. Promoter methylation of the methyltransferase genes themselves was addressed as a possible cause behind their altered expression. While DNMT1 or EZH2 did not show differential methylation between normal and tumor tissues, DNMT3B analysis corroborated the regulatory role of a distal promoter region. Our study shows that methyltransferase expression in cancer depends on the tissue of origin, microsatellite-instability status, cellular proliferation, and--in the case of DNMT3B--promoter methylation of the respective gene. Translation of methyltransferase expression into DNA methylation appears complex as suggested by the fact that except for EZH2, no clear association between methyltransferase protein expression and TSG methylation was observed.
Collapse
Affiliation(s)
- Emmi I Joensuu
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna E Lotsari
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Walter Pavicic
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Cytogenetics and Mutagenesis Unit, IMBICE-CONICET-CICPBA, La Plata, Argentina
| | - Wael M Abdel-Rahman
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
173
|
The Roles of miR-26, miR-29, and miR-203 in the Silencing of the Epigenetic Machinery during Melanocyte Transformation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:634749. [PMID: 26618174 PMCID: PMC4649077 DOI: 10.1155/2015/634749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
The epigenetic marks located throughout the genome exhibit great variation between normal and transformed cancer cells. While normal cells contain hypomethylated CpG islands near gene promoters and hypermethylated repetitive DNA, the opposite pattern is observed in cancer cells. Recently, it has been reported that alteration in the microenvironment of melanocyte cells, such as substrate adhesion blockade, results in the selection of anoikis-resistant cells, which have tumorigenic characteristics. Melanoma cells obtained through this model show an altered epigenetic pattern, which represents one of the first events during the melanocytes malignant transformation. Because microRNAs are involved in controlling components of the epigenetic machinery, the aim of this work was to evaluate the potential association between the expression of miR-203, miR-26, and miR-29 family members and the genes Dnmt3a, Dnmt3b, Mecp2, and Ezh2 during cells transformation. Our results show that microRNAs and their validated or predicted targets are inversely expressed, indicating that these molecules are involved in epigenetic reprogramming. We also show that miR-203 downregulates Dnmt3b in mouse melanocyte cells. In addition, treatment with 5-aza-CdR promotes the expression of miR-26 and miR-29 in a nonmetastatic melanoma cell line. Considering the occurrence of CpG islands near the miR-26 and miR-29 promoters, these data suggest that they might be epigenetically regulated in cancer.
Collapse
|
174
|
Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 2015; 15:816. [PMID: 26510686 PMCID: PMC4625569 DOI: 10.1186/s12885-015-1777-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/09/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Breast cancer formation is associated with frequent changes in DNA methylation but the extent of very early alterations in DNA methylation and the biological significance of cancer-associated epigenetic changes need further elucidation. METHODS Pyrosequencing was done on bisulfite-treated DNA from formalin-fixed, paraffin-embedded sections containing invasive tumor and paired samples of histologically normal tissue adjacent to the cancers as well as control reduction mammoplasty samples from unaffected women. The DNA regions studied were promoters (BRCA1, CD44, ESR1, GSTM2, GSTP1, MAGEA1, MSI1, NFE2L3, RASSF1A, RUNX3, SIX3 and TFF1), far-upstream regions (EN1, PAX3, PITX2, and SGK1), introns (APC, EGFR, LHX2, RFX1 and SOX9) and the LINE-1 and satellite 2 DNA repeats. These choices were based upon previous literature or publicly available DNA methylome profiles. The percent methylation was averaged across neighboring CpG sites. RESULTS Most of the assayed gene regions displayed hypermethylation in cancer vs. adjacent tissue but the TFF1 and MAGEA1 regions were significantly hypomethylated (p ≤0.001). Importantly, six of the 16 regions examined in a large collection of patients (105 - 129) and in 15-18 reduction mammoplasty samples were already aberrantly methylated in adjacent, histologically normal tissue vs. non-cancerous mammoplasty samples (p ≤0.01). In addition, examination of transcriptome and DNA methylation databases indicated that methylation at three non-promoter regions (far-upstream EN1 and PITX2 and intronic LHX2) was associated with higher gene expression, unlike the inverse associations between cancer DNA hypermethylation and cancer-altered gene expression usually reported. These three non-promoter regions also exhibited normal tissue-specific hypermethylation positively associated with differentiation-related gene expression (in muscle progenitor cells vs. many other types of normal cells). The importance of considering the exact DNA region analyzed and the gene structure was further illustrated by bioinformatic analysis of an alternative promoter/intron gene region for APC. CONCLUSIONS We confirmed the frequent DNA methylation changes in invasive breast cancer at a variety of genome locations and found evidence for an extensive field effect in breast cancer. In addition, we illustrate the power of combining publicly available whole-genome databases with a candidate gene approach to study cancer epigenetics.
Collapse
|
175
|
Lipka DB, Wang Q, Cabezas-Wallscheid N, Klimmeck D, Weichenhan D, Herrmann C, Lier A, Brocks D, von Paleske L, Renders S, Wünsche P, Zeisberger P, Gu L, Haas S, Essers MA, Brors B, Eils R, Trumpp A, Milsom MD, Plass C. Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing. Cell Cycle 2015; 13:3476-87. [PMID: 25483069 DOI: 10.4161/15384101.2014.973334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.
Collapse
Affiliation(s)
- Daniel B Lipka
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center (DKFZ) ; Heidelberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Zhou X, Meng Y. Association between serum folate level and cervical cancer: a meta-analysis. Arch Gynecol Obstet 2015; 293:871-7. [PMID: 26319154 DOI: 10.1007/s00404-015-3852-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE The aim of this study was to evaluate the association between serum folate level and cervical cancer. METHODS PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library and Google scholar were searched for relevant trials. Rev.Man5.1 and Stata 11.0 software were applied for this meta-analysis. Odds Ratio (OR) and 95 % confidence intervals (95 % CI) were collected and calculated in a fixed-effects model or a random-effects model when appropriate. Subgroup analysis was performed by sample size, participant's geographical location and definition of deficient serum folate level. RESULTS A total of 6 case-control studies including 2383 participants were included in the meta-analysis. The overall meta-analysis showed that there were significant differences between cases and controls, suggesting that deficient serum folate level was associated with the increased risk of cervical cancer. After stratification subgroup analysis, significant difference was also found in subgroup with sample size <500 as well as in Asian population, but not in subgroup with sample size ≥500, American populations as well as different definition of deficient serum folate level (<6.4 ng/ml or others). CONCLUSIONS Based on our meta-analysis, deficiency of serum folate level was associated with the increased risk of cervical cancer among Asian populations.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Obstetrics and Gynecology, the General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, the General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
177
|
Expression Analysis of Genes Involved in the RB/E2F Pathway in Astrocytic Tumors. PLoS One 2015; 10:e0137259. [PMID: 26317630 PMCID: PMC4552853 DOI: 10.1371/journal.pone.0137259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/13/2015] [Indexed: 02/08/2023] Open
Abstract
Astrocytic gliomas, which are derived from glial cells, are considered the most common primary neoplasias of the central nervous system (CNS) and are histologically classified as low grade (I and II) or high grade (III and IV). Recent studies have shown that astrocytoma formation is the result of the deregulation of several pathways, including the RB/E2F pathway, which is commonly deregulated in various human cancers via genetic or epigenetic mechanisms. On the basis of the assumption that the study of the mechanisms controlling the INK4/ARF locus can help elucidate the molecular pathogenesis of astrocytic tumors, identify diagnostic and prognostic markers, and help select appropriate clinical treatments, the present study aimed to evaluate and compare methylation patterns using bisulfite sequencing PCR and evaluate the gene expression profile using real-time PCR in the genes CDKN2A, CDKN2B, CDC6, Bmi-1, CCND1, and RB1 in astrocytic tumors. Our results indicate that all the evaluated genes are not methylated independent of the tumor grade. However, the real-time PCR results indicate that these genes undergo progressive deregulation as a function of the tumor grade. In addition, the genes CDKN2A, CDKN2B, and RB1 were underexpressed, whereas CDC6, Bmi-1, and CCND1 were overexpressed; the increase in gene expression was significantly associated with decreased patient survival. Therefore, we propose that the evaluation of the expression levels of the genes involved in the RB/E2F pathway can be used in the monitoring of patients with astrocytomas in clinical practice and for the prognostic indication of disease progression.
Collapse
|
178
|
miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 2015; 6:1967-84. [PMID: 25495987 DOI: 10.4155/fmc.14.116] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of miRNAs as important regulatory agents for gene expression has expanded the therapeutic opportunities for oligonucleotides. In contrast to siRNA, miRNA-targeted therapy is able to influence not only a single gene, but entire cellular pathways or processes. It is possible to supplement downregulated or non-functional miRNAs by synthetic oligonucleotides, as well as alleviating effects caused by overexpression of malignant miRNAs through artificial antagonists, either oligonucleotides or small molecules. Chemical oligonucleotide modifications together with an efficient delivery system seem to be mandatory for successful therapeutic application. While miRNA-based therapy benefits from the decades of research spent on other therapeutic oligonucleotides, there are some specific challenges associated with miRNA therapy, mainly caused by the short target sequence. The current status and recent progress of miRNA-targeted therapeutics is described and future challenges and potential applications in treatment of cancer and viral infections are discussed.
Collapse
|
179
|
Heimer BW, Shatova TA, Lee JK, Kaastrup K, Sikes HD. Evaluating the sensitivity of hybridization-based epigenotyping using a methyl binding domain protein. Analyst 2015; 139:3695-701. [PMID: 24824477 DOI: 10.1039/c4an00667d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypermethylation of CpG islands in gene promoter regions has been shown to be a predictive biomarker for certain diseases. Most current methods for methylation profiling are not well-suited for clinical analysis. Here, we report the development of an inexpensive device and an epigenotyping assay with a format conducive to multiplexed analysis.
Collapse
Affiliation(s)
- Brandon W Heimer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02129, USA.
| | | | | | | | | |
Collapse
|
180
|
Basu S, Majumder S, Bhowal A, Ghosh A, Naskar S, Nandy S, Mukherjee S, Sinha RK, Basu K, Karmakar D, Banerjee S, Sengupta S. A study of molecular signals deregulating mismatch repair genes in prostate cancer compared to benign prostatic hyperplasia. PLoS One 2015; 10:e0125560. [PMID: 25938433 PMCID: PMC4418837 DOI: 10.1371/journal.pone.0125560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is one of the leading causes of mortality among aging males. There is an unmet requirement of clinically useful biomarkers for early detection of prostate cancer to reduce the liabilities of overtreatment and accompanying morbidity. The present population-based study investigates the factors disrupting expression of multiple functionally related genes of DNA mismatch repair pathway in prostate cancer patients to identify molecular attributes distinguishing adenocarcinoma from benign hyperplasia of prostate. Gene expression was compared between tissue samples from prostate cancer and benign prostatic hyperplasia using real-time-PCR, western blot and immunohistochemistry. Assessment of genotypes of seven single-nucleotide-polymorphisms of three MMR genes was conducted using PCR-coupled RFLP and sequencing. Promoter methylation was interrogated by methylation-specific-PCR and bisulfite-sequencing. Interaction between microRNAs and MMR genes was verified by 3'UTR-based dual luciferase assays. Concurrent reduction of three MMR genes namely hMLH1, hMSH6 and hMSH2 (34-85%, P<0.05) was observed in prostate cancer tissues. hMSH6 polymorphism rs1800932(Pro92Pro) conferred a borderline protection in cancer patients (OR = 0.33, 95% CI = 0.15-0.75). Relative transcript level of hMLH1 was inversely related (r = -0.59, P<0.05) with methylation quotient of its promoter which showed a significantly higher methylation density (P = 0.008, Z = -2.649) in cancer patients. hsa-miR-155, hsa-miR-141 and hsa-miR-21 gene expressions were significantly elevated (66-85%, P<0.05) in tumor specimens and negatively correlated (r = -0.602 to -0.527, P<0.05) with that of MMR genes. hsa-miR-155 & hsa-miR-141 and hsa-miR-155 & hsa-miR-21 were demonstrated to bind to their putative seed sequences in hMLH1 and hMSH6 3'UTRs respectively. Relatively higher expression of DNA methyl-transferases (DNMT1 and DNMT3b) and HIF-1α genes (34-50%, P<0.05) were also detected in tumor tissues. This study provides statistical evidence that MMR deficiency is correlated with hypermethylation of hMLH1 promoter and upregulation of hsa-miR-155, hsa-miR-141 and hsa-miR-21 in prostate cancer. This comparative study reflects that microRNA expression level, particularly hsa-miR-155, exhibits predictive signature of prostate adenocarcinoma.
Collapse
Affiliation(s)
- Sanmitra Basu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Subhadipa Majumder
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Ankur Bhowal
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Alip Ghosh
- Centre for Liver Research, Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Sukla Naskar
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Sumit Nandy
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Subhabrata Mukherjee
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Rajan Kumar Sinha
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Keya Basu
- Department of Pathology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Dilip Karmakar
- Department of Urology, Calcutta National Medical College & Hospital, Kolkata, West Bengal, India
| | - Soma Banerjee
- Centre for Liver Research, Institute of Post-Graduate Medical Education & Research, Kolkata, West Bengal, India
| | | |
Collapse
|
181
|
Hahn SM, Kwon SY, Kim HS, Han JW, Lyu CJ. Aberrant DNA Methylation of CDH1, p16 and DAPK in Childhood Acute Lymphoblastic Leukemia. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2015. [DOI: 10.15264/cpho.2015.22.1.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Seung Min Hahn
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Yeon Kwon
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sun Kim
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Woo Han
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
182
|
Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, Veeranan-Karmegam R, Arjunan P, Gnana-Prakasam JP, Sadanand F, Pei L, Chang CS, Choi JH, Shi H, Manicassamy S, Prasad PD, Sharma S, Ganapathy V, Jothi R, Thangaraju M. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 2015; 6:6910. [PMID: 25908435 PMCID: PMC4410389 DOI: 10.1038/ncomms7910] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Rajneesh Pathania
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Sabarish Ramachandran
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Selvakumar Elangovan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Ravi Padia
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Pengyi Yang
- System Biology Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Senthilkumar Cinghu
- System Biology Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Rajalakshmi Veeranan-Karmegam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Pachiappan Arjunan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Fulzele Sadanand
- Department of Orthopedic Surgery, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Lirong Pei
- Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Chang-Sheng Chang
- Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Jeong-Hyeon Choi
- Department of Biostatistics, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Santhakumar Manicassamy
- Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Suash Sharma
- Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| | - Raja Jothi
- System Biology Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA.,Cancer Research Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912, USA
| |
Collapse
|
183
|
How J, Minden MD, Brian L, Chen EX, Brandwein J, Schuh AC, Schimmer AD, Gupta V, Webster S, Degelder T, Haines P, Stayner LA, McGill S, Wang L, Piekarz R, Wong T, Siu LL, Espinoza-Delgado I, Holleran JL, Egorin MJ, Yee KWL. A phase I trial of two sequence-specific schedules of decitabine and vorinostat in patients with acute myeloid leukemia. Leuk Lymphoma 2015; 56:2793-802. [PMID: 25682963 PMCID: PMC4688006 DOI: 10.3109/10428194.2015.1018248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This phase I trial evaluated two schedules of escalating vorinostat in combination with decitabine every 28 days: (i) sequential or (ii) concurrent. There were three dose-limiting toxicities: grade 3 fatigue and generalized muscle weakness on the sequential schedule (n = 1) and grade 3 fatigue on the concurrent schedule (n = 2). The maximum tolerated dose was not reached on both planned schedules. The overall response rate (ORR) was 23% (three complete response [CR], two CR with incomplete incomplete blood count recovery [CRi], one partial response [PR] and two morphological leukemic free state [MLFS]). The ORR for all and previously untreated patients in the sequential arm was 13% (one CRi; one MLFS) and 0% compared to 30% (three CR; one CRi; one PR; one MLFS) and 36% in the concurrent arm (p = 0.26 for both), respectively. Decitabine plus vorinostat was safe and has clinical activity in patients with previously untreated acute myeloid leukemia. Responses appear higher with the concurrent dose schedule. Cumulative toxicities may limit long-term usage on the current dose/schedules.
Collapse
Affiliation(s)
- Jonathan How
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Mark D Minden
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Leber Brian
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Eric X Chen
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | | | - Andre C Schuh
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | | | - Vikas Gupta
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Sheila Webster
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Tammy Degelder
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Patricia Haines
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | | | - Shauna McGill
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Lisa Wang
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Richard Piekarz
- b Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute , Bethesda , MD , USA
| | - Tracy Wong
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Lillian L Siu
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| | - Igor Espinoza-Delgado
- b Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute , Bethesda , MD , USA
| | - Julianne L Holleran
- c Departments of Medicine and Pharmacology and Cancer Institute , University of Pittsburgh , Pittsburgh , PA , USA
| | - Merrill J Egorin
- c Departments of Medicine and Pharmacology and Cancer Institute , University of Pittsburgh , Pittsburgh , PA , USA
| | - Karen W L Yee
- a Princess Margaret Phase I Consortium , Toronto , ON , Canada
| |
Collapse
|
184
|
Theophilou G, Paraskevaidi M, Lima KMG, Kyrgiou M, Martin-Hirsch PL, Martin FL. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 2015; 15:693-713. [DOI: 10.1586/14737159.2015.1028372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
185
|
DNA Methyltransferase Inhibitor Zebularine Induces Human Cholangiocarcinoma Cell Death through Alteration of DNA Methylation Status. PLoS One 2015. [DOI: 10.1371/journal.pone.0120545
expr 911344426 + 964939221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
186
|
Nakamura K, Nakabayashi K, Htet Aung K, Aizawa K, Hori N, Yamauchi J, Hata K, Tanoue A. DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One 2015; 10:e0120545. [PMID: 25799509 PMCID: PMC4370694 DOI: 10.1371/journal.pone.0120545] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/23/2015] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a cancer arising from the neoplastic transformation of cholangiocytes. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on CCA cells. We demonstrate that zebularine exerts an antitumor effect on CCA cells. Zebularine treatment decreased the concentrations of DNA methyltransferase (DNMT) proteins, and DNMT1 knockdown led to apoptotic cell death in the CCA cell lines TFK-1 and HuCCT1. DNA methylation analysis demonstrated that zebularine induced DNA demethylation, and the GO Biological Process terms “hemophilic cell adhesion”, “regulation of transcription, DNA-dependent” and “Wnt signaling pathway” were found to be significantly enriched in association with demethylated genes. Furthermore, we observed that zebularine treatment decreased β-catenin protein levels in TFK-1 and HuCCT1 cells. These results suggest that zebularine alters DNA methylation status, and that some aspect of DNA demethylation by zebularine induces suppression of the Wnt signaling pathway, which leads to apoptotic cell death in CCA. We previously reported a novel mechanism of zebularine-induced cell growth arrest and apoptosis in hepatocellular carcinoma via a DNA methylation-independent pathway. Together, our present and previous studies indicate that zebularine could function as both a DNMT inhibitor and a non-DNMT inhibitor reagent, and that, while the optimal usage of zebularine may depend on cancer type, zebularine may be useful for chemotherapy against cancer.
Collapse
Affiliation(s)
- Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
- * E-mail:
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kyaw Htet Aung
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuko Aizawa
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoko Hori
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
187
|
Marzese DM, Hoon DS. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 2015; 15:647-64. [PMID: 25797072 DOI: 10.1586/14737159.2015.1027194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, Saint John's Health Center, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | |
Collapse
|
188
|
Pilozzi E, Maresca C, Duranti E, Giustiniani MC, Catalanotto C, Lucarelli M, Cogoni C, Ferri M, Ruco L, Zardo G. Left-sided early-onset vs late-onset colorectal carcinoma: histologic, clinical, and molecular differences. Am J Clin Pathol 2015; 143:374-84. [PMID: 25696795 DOI: 10.1309/ajcpnoc55iolxfud] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Carcinomas of the left colon represent a neoplasm of older patients (late onset), but epidemiologic evidence has been showing an increasing incidence in patients 50 years or younger (early onset). In this study, we investigate pathologic and molecular features of early- and late-onset carcinoma of the left colon. METHODS We selected 22 patients 50 years or younger and 21 patients 70 years or older with left-sided colorectal carcinoma (CRC). All samples were evaluated for pathologic features, microsatellite instability, and KRAS and BRAF mutations. Moreover, both groups were analyzed to identify CpG island methylator phenotype features and assessed with restriction landmark genome scanning (RLGS) to unveil differential DNA methylation patterns. RESULTS Early-onset patients had advanced pathologic stages compared with late-onset patients (P = .0482). All cases showed a microsatellite stable profile and BRAF wild-type sequence. Early-onset patients (43%) more frequently had mutations at KRAS codon 12 compared with late-onset patients (14%) (P =.0413). RLGS showed that patients younger than 50 years who had CRC had a significantly lower percentage of methylated loci than did patients 70 years or older (P = .04124), and differential methylation of several genomic loci was observed in the two groups. CONCLUSIONS Our results suggest that left-sided CRCs may present differential patterns of aberrant DNA methylation when they are separated by age.
Collapse
Affiliation(s)
- Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Carmen Maresca
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Duranti
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | | | - Caterina Catalanotto
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Carlo Cogoni
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| | - Mario Ferri
- Department of Medical-Surgical Sciences and Translation Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Luigi Ruco
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, University of Rome “La Sapienza,” Rome, Italy
| | - Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
189
|
Xu Y, Niu C, Xiao X, Zhu W, Dai Z, Zou X. Chemical-Oxidation Cleavage Triggered Isothermal Exponential Amplification Reaction for Attomole Gene-Specific Methylation Analysis. Anal Chem 2015; 87:2945-51. [DOI: 10.1021/ac5044785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuzhi Xu
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| | - Chang Niu
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| | - Xiaofen Xiao
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| | - Wenyuan Zhu
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| | - Zong Dai
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| | - Xiaoyong Zou
- School of Chemistry and Chemical
Engineering, Sun Yat−Sen University, Guangzhou, 510275 Guangdong, PR China
| |
Collapse
|
190
|
Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, Medana C, Dal Bello F, Oliviero S. Single-Base Resolution Analysis of 5-Formyl and 5-Carboxyl Cytosine Reveals Promoter DNA Methylation Dynamics. Cell Rep 2015; 10:674-683. [PMID: 25660018 DOI: 10.1016/j.celrep.2015.01.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Ten eleven translocation (Tet) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC can be further excised by thymine-DNA glycosylase (Tdg). Here, we present a genome-wide approach, named methylation-assisted bisulfite sequencing (MAB-seq), that enables single-base resolution mapping of 5fC and 5caC and measures their abundance. Application of this method to mouse embryonic stem cells (ESCs) shows the occurrence of 5fC and 5caC residues on the hypomethylated promoters of highly expressed genes, which is increased upon Tdg silencing, revealing active DNA demethylation on these promoters. Genome-wide mapping of Tdg reveals extensive colocalization with Tet1 on active promoters. These regions were found to be methylated by Dnmt1 and Dnmt3a and demethylated by a Tet-dependent mechanism. Our work demonstrates the DNA methylation dynamics that occurs on the promoters of the expressed genes and provides a genomic reference map of 5fC and 5caC in ESCs.
Collapse
Affiliation(s)
- Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Danny Incarnato
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy; Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Fiorentina 1, 53100 Siena, Italy
| | - Anna Krepelova
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Stefania Rapelli
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy; Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, via Fiorentina 1, 53100 Siena, Italy
| | - Francesca Anselmi
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Caterina Parlato
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | - Claudio Medana
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Federica Dal Bello
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Pietro Giuria 5, 10125 Torino, Italy
| | - Salvatore Oliviero
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy; Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
191
|
Ng JMK, Yu J. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int J Mol Sci 2015; 16:2472-96. [PMID: 25622259 PMCID: PMC4346847 DOI: 10.3390/ijms16022472] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy and the fourth leading cause of cancer deaths worldwide. It results from the accumulation of multiple genetic and epigenetic changes leading to the transformation of colon epithelial cells into invasive adenocarcinomas. In CRC, epigenetic changes, in particular promoter CpG island methylation, occur more frequently than genetic mutations. Hypermethylation contributes to carcinogenesis by inducing transcriptional silencing or downregulation of tumour suppressor genes and currently, over 600 candidate hypermethylated genes have been identified. Over the past decade, a deeper understanding of epigenetics coupled with technological advances have hinted at the potential of translating benchtop research into biomarkers for clinical use. DNA methylation represents one of the largest bodies of literature in epigenetics, and hence has the highest potential for minimally invasive biomarker development. Most progress has been made in the development of diagnostic markers and there are currently two, one stool-based and one blood-based, biomarkers that are commercially available for diagnostics. Prognostic and predictive methylation markers are still at their infantile stages.
Collapse
Affiliation(s)
- Jennifer Mun-Kar Ng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
192
|
Abstract
DNA methylation and histone modification are epigenetic mechanisms that result in altered gene expression and cellular phenotype. The exact role of methylation in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remains unclear. However, aberrations (e.g. loss-/gain-of-function or up-/down-regulation) in components of epigenetic transcriptional regulation in general, and of the methylation machinery in particular, have been implicated in the pathogenesis of these diseases. In addition, many of these components have been identified as therapeutic targets for patients with MDS/AML, and are also being assessed as potential biomarkers of response or resistance to hypomethylating agents (HMAs). The HMAs 5-azacitidine (AZA) and 2'-deoxy-5-azacitidine (decitabine, DAC) inhibit DNA methylation and have shown significant clinical benefits in patients with myeloid malignancies. Despite being viewed as mechanistically similar drugs, AZA and DAC have differing mechanisms of action. DAC is incorporated 100% into DNA, whereas AZA is incorporated into RNA (80-90%) as well as DNA (10-20%). As such, both drugs inhibit DNA methyltransferases (DNMTs; dependently or independently of DNA replication) resulting in the re-expression of tumor-suppressor genes; however, AZA also has an impact on mRNA and protein metabolism via its inhibition of ribonucleotide reductase, resulting in apoptosis. Herein, we first give an overview of transcriptional regulation, including DNA methylation, post-translational histone-tail modifications, the role of micro-RNA and long-range epigenetic gene silencing. We place special emphasis on epigenetic transcriptional regulation and discuss the implication of various components in the pathogenesis of MDS/AML, their potential as therapeutic targets, and their therapeutic modulation by HMAs and other substances (if known). The main focus of this review is laid on dissecting the rapidly evolving knowledge of AZA and DAC with a special focus on their differing mechanisms of action, and the effect of HMAs on transcriptional regulation.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Hospital Salzburg, Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute , Salzburg , Austria
| | | |
Collapse
|
193
|
Chen J, Lutsik P, Akulenko R, Walter J, Helms V. AKSmooth: enhancing low-coverage bisulfite sequencing data via kernel-based smoothing. J Bioinform Comput Biol 2015; 12:1442005. [PMID: 25553811 DOI: 10.1142/s0219720014420050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome bisulfite sequencing (WGBS) is an approach of growing importance. It is the only approach that provides a comprehensive picture of the genome-wide DNA methylation profile. However, obtaining a sufficient amount of genome and read coverage typically requires high sequencing costs. Bioinformatics tools can reduce this cost burden by improving the quality of sequencing data. We have developed a statistical method Ajusted Local Kernel Smoother (AKSmooth) that can accurately and efficiently reconstruct the single CpG methylation estimate across the entire methylome using low-coverage bisulfite sequencing (Bi-Seq) data. We demonstrate the AKSmooth performance on the low-coverage (~ 4 ×) DNA methylation profiles of three human colon cancer samples and matched controls. Under the best set of parameters, AKSmooth-curated data showed high concordance with the gold standard high-coverage sample (Pearson 0.90), outperforming the popular analogous method. In addition, AKSmooth showed computational efficiency with runtime benchmark over 4.5 times better than the reference tool. To summarize, AKSmooth is a simple and efficient tool that can provide an accurate human colon methylome estimation profile from low-coverage WGBS data. The proposed method is implemented in R and is available at https://github.com/Junfang/AKSmooth.
Collapse
Affiliation(s)
- Junfang Chen
- Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany , Department of Genetics, Saarland University, Saarbrücken 66123, Germany
| | | | | | | | | |
Collapse
|
194
|
Zhao HF, Liang RP, Wang JW, Qiu JD. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosens Bioelectron 2015; 63:458-464. [DOI: 10.1016/j.bios.2014.07.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/27/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
195
|
Methylation of DLEC1 promoter is a predictor for recurrence in Chinese patients with gastric cancer. DISEASE MARKERS 2014; 2014:804023. [PMID: 25574068 PMCID: PMC4276360 DOI: 10.1155/2014/804023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE To investigate promoter methylation in the deleted in lung and esophageal cancer 1 (DLEC1) gene in Chinese patients with gastric cancer. METHODS A total of 227 patients with gastric cancer were enrolled. The methylations of the promoter regions of DLEC1 and ACTB were determined using quantitative methylation-specific PCR. The DLEC1 methylation was compared to the clinicopathological variables of gastric cancer. RESULTS DLEC1 methylation was not associated with the clinicopathological variables of gastric cancer. Patients with DLEC1-hypermethylated gastric cancer had significantly higher recurrence rate than those with DLEC1-hypomethylated gastric cancer (P = 0.025; hazard ratio = 2.43). CONCLUSIONS Methylation of DELC1 promoter may be a valuable predictor for recurrence in Chinese patients with gastric cancer.
Collapse
|
196
|
Lin SH, Wang J, Saintigny P, Wu CC, Giri U, Zhang J, Menju T, Diao L, Byers L, Weinstein JN, Coombes KR, Girard L, Komaki R, Wistuba II, Date H, Minna JD, Heymach JV. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics 2014; 15:1079. [PMID: 25486910 PMCID: PMC4298954 DOI: 10.1186/1471-2164-15-1079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation is associated with aberrant gene expression in cancer, and has been shown to correlate with therapeutic response and disease prognosis in some types of cancer. We sought to investigate the biological significance of DNA methylation in lung cancer. Results We integrated the gene expression profiles and data of gene promoter methylation for a large panel of non-small cell lung cancer cell lines, and identified 578 candidate genes with expression levels that were inversely correlated to the degree of DNA methylation. We found these candidate genes to be differentially methylated in normal lung tissue versus non-small cell lung cancer tumors, and segregated by histologic and tumor subtypes. We used gene set enrichment analysis of the genes ranked by the degree of correlation between gene expression and DNA methylation to identify gene sets involved in cellular migration and metastasis. Our unsupervised hierarchical clustering of the candidate genes segregated cell lines according to the epithelial-to-mesenchymal transition phenotype. Genes related to the epithelial-to-mesenchymal transition, such as AXL, ESRP1, HoxB4, and SPINT1/2, were among the nearly 20% of the candidate genes that were differentially methylated between epithelial and mesenchymal cells. Greater numbers of genes were methylated in the mesenchymal cells and their expressions were upregulated by 5-azacytidine treatment. Methylation of the candidate genes was associated with erlotinib resistance in wild-type EGFR cell lines. The expression profiles of the candidate genes were associated with 8-week disease control in patients with wild-type EGFR who had unresectable non-small cell lung cancer treated with erlotinib, but not in patients treated with sorafenib. Conclusions Our results demonstrate that the underlying biology of genes regulated by DNA methylation may have predictive value in lung cancer that can be exploited therapeutically. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1079) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,, Unit 097, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Dong SW, Zhang YW, Chen Y, Wang S, Sun P, Wang YG, Zhang P. PRDI-BF1-RIZ domain of retinoblastoma protein-interacting zinc finger gene 1 induces apoptosis and exerts anticancer activity in esophageal squamous cell carcinoma cells. Oncol Lett 2014; 9:341-346. [PMID: 25435989 PMCID: PMC4246629 DOI: 10.3892/ol.2014.2671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
The present study examined the role of the PRDI-BF1-RIZ (PR) domain of tumor suppressor retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) as an anticancer domain and its ability to induce apoptosis in esophageal squamous cell carcinoma (ESCC) cells. The TE13 ESCC cell line was transfected with pcDNA3.1(+) eukaryotic expression vectors bearing the open reading frames of either the human RIZ1 gene or the PR domain, and the mRNA and protein expression levels were then detected using quantitative reverse transcription polymerase chain reaction and western blotting, respectively. The rate of apoptosis was determined by flow cytometry and the cell invasion ability was determined by an invasion assay. RIZ1 and the PR domain induced apoptosis and reduced the cell invasion ability (P<0.01). These findings indicate that the RIZ1 gene possesses anticancer activity in the PR domain, which may be important in inhibiting the development of ESCC.
Collapse
Affiliation(s)
- Shang-Wen Dong
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yao-Wen Zhang
- First Department of Radiotherapy, Henan Province Anyang Tumor Hospital, Anyang, Henan 455000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pei Sun
- Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yuan-Guo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
198
|
RASSF1 and PTEN Promoter Hypermethylation Influences the Outcome in Epithelial Ovarian Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cogc.2014.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
199
|
Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, Bsoul N, Ghabkari A. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev 2014; 15:75-84. [PMID: 24528084 DOI: 10.7314/apjcp.2014.15.1.75] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Biology, Jordan University of Science and Technology, Irbid, Jordan E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Wip1 phosphatase in breast cancer. Oncogene 2014; 34:4429-38. [PMID: 25381821 DOI: 10.1038/onc.2014.375] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
Understanding the factors contributing to tumor initiation, progression and evolution is of paramount significance. Among them, wild-type p53-induced phosphatase 1 (Wip1) is emerging as an important oncogene by virtue of its negative control on several key tumor suppressor pathways. Originally discovered as a p53-regulated gene, Wip1 has been subsequently found amplified and more recently mutated in a significant fraction of human cancers including breast tumors. Recent development in the field further uncovered the utility of anti-Wip1-directed therapies in delaying tumor onset or in reducing the tumor burden. Furthermore, Wip1 could be an important factor that contributes to tumor heterogeneity, suggesting that its inhibition may decrease the rate of cancer evolution. These effects depend on several signaling pathways modulated by Wip1 phosphatase in a spatial and temporal manner. In this review we discuss the recent development in understanding how Wip1 contributes to tumorigenesis with its relevance to breast cancer.
Collapse
|