151
|
Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. Intestinal Microbiota-A Promising Target for Antiviral Therapy? Front Immunol 2021; 12:676232. [PMID: 34054866 PMCID: PMC8149780 DOI: 10.3389/fimmu.2021.676232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is thought to be an important biological barrier against enteric pathogens. Its depletion, however, also has curative effects against some viral infections, suggesting that different components of the intestinal microbiota can play both promoting and inhibitory roles depending on the type of viral infection. The two primary mechanisms by which the microbiota facilitates or inhibits viral invasion involve participation in the innate and adaptive immune responses and direct or indirect interaction with the virus, during which the abundance and composition of the intestinal microbiota might be changed by the virus. Oral administration of probiotics, faecal microbiota transplantation (FMT), and antibiotics are major therapeutic strategies for regulating intestinal microbiota balance. However, these three methods have shown limited curative effects in clinical trials. Therefore, the intestinal microbiota might represent a new and promising supplementary antiviral therapeutic target, and more efficient and safer methods for regulating the microbiota require deeper investigation. This review summarizes the latest research on the relationship among the intestinal microbiota, anti-viral immunity and viruses and the most commonly used methods for regulating the intestinal microbiota with the goal of providing new insight into the antiviral effects of the gut microbiota.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengqi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
152
|
Lyu W, Meng Q, Xiao J, Li J, Wang J, Qiu Z, Song X, Zhu H, Shao C, Chu Y, Zhou Q, Li T, Jean-Pierre R, Yu J, Han Y, Kang Y. Gut lactate-producing bacteria promote CD4 T cell recovery on Anti-retroviral therapy in HIV-infected patients. Comput Struct Biotechnol J 2021; 19:2928-2937. [PMID: 34141131 PMCID: PMC8191414 DOI: 10.1016/j.csbj.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023] Open
Abstract
Anti-retroviral therapy (ART) effectively suppresses
viral replication in HIV-infected patients, however CD4 + cell restoration to
normal value is not achieved by 15–20% of patients who are called immune
non-responders. Gut microbiota composition has been shown to influence host
immunity. Herein, to identify intestinal microbial agents that may influence the
CD4 recovery in HIV-infected patients, we utilized a “Quasi-paired cohort”
method to analyze intestinal metagenome data from immunological responders (IRs)
and immunological non-responders (INRs). This method identified significant
enrichment for Streptococcus sp. and related
lactate-producing bacteria (LAB) in IRs. In a validation cohort, positive
correlations between the abundance of these LAB and the post-ART CD4 + recovery
was observed, and a prediction model based on these LAB performed well in
predicting immune recovery. Finally, experiments using a germ-free mouse model
of antibody-induced CD4 + cell depletion showed that supplementation with a
lactate-producing commensal Streptococcus thermophilus
strongly promoted CD4 recovery. In conclusion, our study identified a group of
LAB that was associated with enhanced immune recovery in post-ART HIV-infected
patients and promotes CD4 + cell restoration in a mouse model. These findings
favour supplementation of LAB commensal as a therapeutic strategy for CD4 + cell
count improvement in HIV-infected patients.
Collapse
Affiliation(s)
- Wei Lyu
- Department of Infectious Disease, Peking Union Medical College Hospital, & Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qingren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China.,School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - Jian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China
| | - Zhifeng Qiu
- Department of Infectious Disease, Peking Union Medical College Hospital, & Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaojing Song
- Department of Infectious Disease, Peking Union Medical College Hospital, & Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hua Zhu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) Comparative Medical Center, Peking Union Medical College (PUMC), Beijing 100021, China
| | - Changjun Shao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China
| | - Yanan Chu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China
| | - Qian Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Taisheng Li
- Department of Infectious Disease, Peking Union Medical College Hospital, & Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Routy Jean-Pierre
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China.,University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yang Han
- Department of Infectious Disease, Peking Union Medical College Hospital, & Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, & China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
153
|
Bochart RM, Busman-Sahay K, Bondoc S, Morrow DW, Ortiz AM, Fennessey CM, Fischer MB, Shiel O, Swanson T, Shriver-Munsch CM, Crank HB, Armantrout KM, Barber-Axthelm AM, Langner C, Moats CR, Labriola CS, MacAllister R, Axthelm MK, Brenchley JM, Keele BF, Estes JD, Hansen SG, Smedley JV. Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques. PLoS Pathog 2021; 17:e1009565. [PMID: 33970966 PMCID: PMC8148316 DOI: 10.1371/journal.ppat.1009565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.
Collapse
Affiliation(s)
- Rachele M. Bochart
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kathleen Busman-Sahay
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Stephen Bondoc
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David W. Morrow
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miranda B. Fischer
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Oriene Shiel
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Tonya Swanson
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine M. Shriver-Munsch
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hugh B. Crank
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kimberly M. Armantrout
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Charlotte Langner
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Cassandra R. Moats
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
154
|
Alteration of the gut fecal microbiome in children living with HIV on antiretroviral therapy in Yaounde, Cameroon. Sci Rep 2021; 11:7666. [PMID: 33828220 PMCID: PMC8027858 DOI: 10.1038/s41598-021-87368-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple factors, such as immune disruption, prophylactic co-trimoxazole, and antiretroviral therapy, may influence the structure and function of the gut microbiome of children infected with HIV from birth. In order to understand whether HIV infection altered gut microbiome and to relate changes in microbiome structure and function to immune status, virological response and pediatric ART regimens, we characterized the gut microbiome of 87 HIV-infected and 82 non-exposed HIV-negative children from Yaounde, a cosmopolitan city in Cameroon. We found that children living with HIV had significantly lower alpha diversity in their gut microbiome and altered beta diversity that may not be related to CD4+ T cell count or viral load. There was an increased level of Akkermansia and Faecalibacterium genera and decreased level of Escherichia and other Gamma proteobacteria in children infected with HIV, among other differences. We noted an effect of ethnicity/geography on observed gut microbiome composition and that children on ritonavir-boosted protease inhibitor (PI/r)-based ART had gut microbiome composition that diverged more from HIV-negative controls compared to those on non-nucleoside reverse-transcriptase inhibitors-based ART. Further studies investigating the role of this altered gut microbiome in increased disease susceptibility are warranted for individuals who acquired HIV via mother-to-child transmission.
Collapse
|
155
|
Wilson NL, Peterson SN, Ellis RJ. Cannabis and the Gut-Brain Axis Communication in HIV Infection. Cannabis Cannabinoid Res 2021; 6:92-104. [PMID: 33912676 PMCID: PMC8064951 DOI: 10.1089/can.2020.0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
People living with HIV infection (PWH) disclose that cannabis is an effective strategy for alleviating symptoms associated with HIV disease. However, some medical providers feel ill-informed to engage in evidence-based conversations. HIV leads to alterations in the gut microbiome, gut-brain axis signaling, and chronic inflammation. The endocannabinoid system regulates homeostasis of multiple organ systems. When deficient, dysregulation of the gut-brain axis can result in chronic inflammation and neuroinflammation. Cannabis along with the naturally occurring endocannabinoids has antioxidant and anti-inflammatory properties that can support healing and restoration as an adjunctive therapy. The purpose of this literature review is to report the physiologic mechanisms that occur in the pathology of HIV and discuss potential benefits of cannabinoids in supporting health and reducing the negative effects of comorbidities in PWH.
Collapse
Affiliation(s)
- Natalie L. Wilson
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, San Francisco, California, USA
| | - Scott N. Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW In the gastro-intestinal tract, the complex network of multiple innate cell populations play critical roles not only as a first line of defense against invading pathogens and in driving adaptive immune responses but also in maintaining intestinal homeostasis. Here, we describe the roles of various innate immune cell populations in gut immunity and detail studies investigating the impact of acute and chronic HIV infection on these cell populations. RECENT FINDINGS Alterations in frequencies, phenotype and/or function of innate lymphoid cells, dendritic cells, macrophages, neutrophils, and innate-like T cells have been reported in people with HIV (PWH), with many of these features persisting despite anti-retroviral therapy and virological suppression. Dysregulated gut innate immunity in PWH is a feature of gut pathogenesis. A greater understanding of the mechanisms driving impairment in the multiple different gut innate immune cell populations and the downstream consequences of an altered innate immune response on host defense and gut homeostasis in PWH is needed to develop more effective HIV treatments and cure strategies.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA
| |
Collapse
|
157
|
Xu H, Ou Z, Zhou Y, Li Y, Huang H, Zhao H, Xu J, Luo M, Zhou Y, Nie Y. Intestinal mucosal microbiota composition of patients with acquired immune deficiency syndrome in Guangzhou, China. Exp Ther Med 2021; 21:391. [PMID: 33680113 PMCID: PMC7918403 DOI: 10.3892/etm.2021.9822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acquired immune deficiency syndrome, caused by the human immunodeficiency virus (HIV), has been associated with intestinal dysbiosis, which includes an increase in the number of mucosa-associated pathobionts. In the present study, the intestinal mucosal microbiota patterns of HIV-infected patients were compared with those of healthy individuals in a population from Guangzhou, China. The gut microbiota of intestinal mucosal samples from 12 patients with HIV (transmission routes included sex and intravenous drug abuse) was compared with that of 12 healthy age- and sex-matched controls. Gut microbial communities were profiled via sequencing of the bacterial 16S ribosomal RNA genes. Dysbiosis in HIV-infected individuals was characterized by decreased α-diversity, decreased levels of Firmicutes and increased levels of Proteobacteria. Furthermore, low mean counts of Lachnoclostridium, Roseburia, Thauera, Dorea and Roseburia inulinivorans, and high mean counts of Halomonas and Shewanella bacteria, were indicated to be HIV-associated mucosal bacterial alterations. The relative abundance of Fusobacterium and Lachnoclostridium was significantly decreased, while that of Halomonas and Shewanella was significantly increased in patients with sexually transmitted HIV-infection compared with healthy controls. Alterations of the gut microbiota during HIV infection were also indicated to be associated with the route of HIV transmission. Certain bacteria may be potential biomarkers for HIV infection in patients from Guangzhou, China.
Collapse
Affiliation(s)
- Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zhitao Ou
- Department of Internal Medicine, Guangzhou No. 8 People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Meijuan Luo
- Department of Pediatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
158
|
Koh H, Tuddenham S, Sears CL, Zhao N. Meta-analysis methods for multiple related markers: Applications to microbiome studies with the results on multiple α-diversity indices. Stat Med 2021; 40:2859-2876. [PMID: 33768631 DOI: 10.1002/sim.8940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022]
Abstract
Meta-analysis is a practical and powerful analytic tool that enables a unified statistical inference across the results from multiple studies. Notably, researchers often report the results on multiple related markers in each study (eg, various α-diversity indices in microbiome studies). However, univariate meta-analyses are limited to combining the results on a single common marker at a time, whereas existing multivariate meta-analyses are limited to the situations where marker-by-marker correlations are given in each study. Thus, here we introduce two meta-analysis methods, multi-marker meta-analysis (mMeta) and adaptive multi-marker meta-analysis (aMeta), to combine multiple studies throughout multiple related markers with no priori results on marker-by-marker correlations. mMeta is a statistical estimator for a pooled estimate and its SE across all the studies and markers, whereas aMeta is a statistical test based on the test statistic of the minimum P-value among marker-specific meta-analyses. mMeta conducts both effect estimation and hypothesis testing based on a weighted average of marker-specific pooled estimates while estimating marker-by-marker correlations non-parametrically via permutations, yet its power is only moderate. In contrast, aMeta closely approaches the highest power among marker-specific meta-analyses, yet it is limited to hypothesis testing. While their applications can be broader, we illustrate the use of mMeta and aMeta to combine microbiome studies throughout multiple α-diversity indices. We evaluate mMeta and aMeta in silico and apply them to real microbiome studies on the disparity in α-diversity by the status of human immunodeficiency virus (HIV) infection. The R package for mMeta and aMeta is freely available at https://github.com/hk1785/mMeta.
Collapse
Affiliation(s)
- Hyunwook Koh
- Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, South Korea
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
159
|
Abstract
PURPOSE OF REVIEW To evaluate the current scientific basis for administering probiotics to people living with HIV (PLHIV) to alleviate chronic inflammation and subsequently improve their prognosis. RECENT FINDINGS The gut microbiome is a potential contributing factor to low-grade inflammation in HIV infection, and there is a scientific rationale for attempting to attenuate inflammation by administering probiotics. Sixteen reports from clinical studies in antiretroviral therapy (ART)-treated PLHIV assessing inflammation after probiotic intervention have been identified; half of them randomized control trials (RCT). Some of the studies report improvement in some parameters of inflammation, but results are inconsistent. No studies report improvement of CD4 counts. None of the RCTs report improvements in any markers of inflammation when analyzed according to protocol. SUMMARY Current scientific evidence does not support the use of probiotics to alleviate inflammation in HIV infection. The potential effect of probiotic intervention in ART-treated PLHIV with high risk for inflammation remains to be investigated.
Collapse
|
160
|
Onabajo OO, Mattapallil JJ. Gut Microbiome Homeostasis and the CD4 T- Follicular Helper Cell IgA Axis in Human Immunodeficiency Virus Infection. Front Immunol 2021; 12:657679. [PMID: 33815419 PMCID: PMC8017181 DOI: 10.3389/fimmu.2021.657679] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus (SIV) are associated with severe perturbations in the gut mucosal environment characterized by massive viral replication and depletion of CD4 T cells leading to dysbiosis, breakdown of the epithelial barrier, microbial translocation, immune activation and disease progression. Multiple mechanisms play a role in maintaining homeostasis in the gut mucosa and protecting the integrity of the epithelial barrier. Among these are the secretory IgA (sIgA) that are produced daily in vast quantities throughout the mucosa and play a pivotal role in preventing commensal microbes from breaching the epithelial barrier. These microbe specific, high affinity IgA are produced by IgA+ plasma cells that are present within the Peyer’s Patches, mesenteric lymph nodes and the isolated lymphoid follicles that are prevalent in the lamina propria of the gastrointestinal tract (GIT). Differentiation, maturation and class switching to IgA producing plasma cells requires help from T follicular helper (Tfh) cells that are present within these lymphoid tissues. HIV replication and CD4 T cell depletion is accompanied by severe dysregulation of Tfh cell responses that compromises the generation of mucosal IgA that in turn alters barrier integrity leading to commensal bacteria readily breaching the epithelial barrier and causing mucosal pathology. Here we review the effect of HIV infection on Tfh cells and mucosal IgA responses in the GIT and the consequences these have for gut dysbiosis and mucosal immunopathogenesis.
Collapse
Affiliation(s)
- Olusegun O Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Joseph J Mattapallil
- F. E. Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
161
|
Isnard S, Fombuena B, Sadouni M, Lin J, Richard C, Routy B, Ouyang J, Ramendra R, Peng X, Zhang Y, Finkelman M, Tremblay-Sher D, Tremblay C, Chartrand-Lefebvre C, Durand M, Routy JP. Circulating β-d-Glucan as a Marker of Subclinical Coronary Plaque in Antiretroviral Therapy-Treated People With Human Immunodeficiency Virus. Open Forum Infect Dis 2021; 8:ofab109. [PMID: 34189152 PMCID: PMC8232386 DOI: 10.1093/ofid/ofab109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite antiretroviral therapy (ART), people with human immunodeficiency virus (PWH) have increased risk of inflammatory comorbidities, including cardiovascular diseases. Gut epithelial damage, and translocation of bacterial lipopolysaccharide (LPS) or fungal β-d-glucan (BDG) drive inflammation in ART-treated PWH. In this study, we investigated whether markers of gut damage and microbial translocation were associated with cardiovascular risk in asymptomatic ART-treated PWH. Methods We cross-sectionally analyzed plasma from 93 ART-treated PWH and 52 uninfected controls older than 40 years of age from the Canadian HIV and Aging Cohort. Participants were cardiovascular disease free and underwent a cardiac computed tomography (CT) to measure total coronary atherosclerotic plaque volume (TPV). Levels of bacterial LPS and gut damage markers REG3α and I-FABP were measured by enzyme-linked immunosorbent assay. Fungal BDG levels were analyzed using the Fungitell assay. Results β-d-glucan levels but not LPS were significantly elevated in ART-treated PWH with coronary artery plaque (P = .0007). Moreover, BDG but not LPS levels correlated with TPV (r = 0.26, P = .01). Intestinal fatty acid binding protein (I-FABP) but not REG3α levels correlated with TPV (r = 0.23, P = .03). However, BDG and LPS levels were not elevated in uninfected controls with plaque. In multivariable models, elevated BDG levels were independently associated with the presence of coronary atherosclerosis in PWH but not in uninfected controls. Conclusions Translocation of fungal BDG was associated with coronary atherosclerosis assessed by CT-scan imaging in ART-treated PWH, suggesting a human immunodeficiency virus-specific pathway leading to cardiovascular disease. Further investigation is needed to appraise causality of this association. Translocation of fungal products may represent a therapeutic target to prevent cardiovascular disease in ART-treated PWH. Plasma levels of the fungal product β-D-Glucan, but not the bacterial product lipopolysaccharide, are associated with the presence and the size of subclinical coronary atherosclerosis plaque in people living with HIV taking antiretroviral therapy, independently of classical cardiovascular risk factors.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,CIHR Canadian HIV Trials Network, Vancouver, British Columbia, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Manel Sadouni
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Corentin Richard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Jing Ouyang
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Chongqing Public Health Medical Center, Chongqing, China
| | - Rayoun Ramendra
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yonglong Zhang
- Associates of Cape Cod Inc., Falmouth, Massachusetts, USA
| | | | - Daniel Tremblay-Sher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Montreal, Montréal, Quebec, Canada
| | - Cecile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Carl Chartrand-Lefebvre
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Madeleine Durand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada.,Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
162
|
Pérez-Santiago J, Marquine MJ, Cookson D, Giraud-Colón R, Heaton RK, Grant I, Ellis RJ, Letendre SL, Peterson SN. Gut microbiota dysbiosis is associated with worse emotional states in HIV infection. J Neurovirol 2021; 27:228-238. [PMID: 33651324 DOI: 10.1007/s13365-020-00933-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
The biological mechanisms underlying emotional distress in HIV infection are likely to be complex but remain understudied. We investigated whether dysbiotic signatures in the gut microbiome of persons living with HIV (PLWH) are associated with their emotional status. We retrospectively examined the gut microbiome and clinical evaluation of 129 adults (94 PLWH and 35 HIV-) enrolled at UC San Diego's HIV Neurobehavioral Research Program. A subset of participants (32 PLWH vs. 13 HIV-) underwent an emotional assessment using the NIH Toolbox Emotion Battery summarized by three composite scores (negative affect, social satisfaction, and psychological well-being). We then sequenced the 16S rDNA V3-V4 regions from stool and performed taxonomic assignment using CLC Microbial Genomics Module. The gut microbiota profiles were evaluated in relation to participants' emotional assessment. All analyses were done in R statistical software. We found that the relative abundance of aerotolerant bacteria was significantly higher in PLWH (p < 0.01) and was associated with a lifetime major depression diagnosis independently of HIV status (p = 0.05). Moreover, PLWH experienced significantly worse psychological well-being (p = 0.02), less social satisfaction (p = 0.03), and more negative affect (p = 0.02). Higher levels of aerotolerant bacteria were associated with worse psychological well-being (rho = -0.35, p = 0.02), less social satisfaction (r = - 0.42, p < 0.01), and more negative affect (rho = 0.46, p < 0.01). The association of aerotolerant bacteria with social satisfaction and negative affect was independent of HIV status (p < 0.05, for both). The over-representation of aerotolerant bacteria in the gut may reflect worse oxidative stress and barrier defects and may contribute to emotional distress during HIV infection.
Collapse
Affiliation(s)
- Josué Pérez-Santiago
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, USA. .,University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | - Igor Grant
- University of California San Diego, La Jolla, CA, USA
| | | | | | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
163
|
Ancona G, Merlini E, Tincati C, Barassi A, Calcagno A, Augello M, Bono V, Bai F, Cannizzo ES, d'Arminio Monforte A, Marchetti G. Long-Term Suppressive cART Is Not Sufficient to Restore Intestinal Permeability and Gut Microbiota Compositional Changes. Front Immunol 2021; 12:639291. [PMID: 33717191 PMCID: PMC7952451 DOI: 10.3389/fimmu.2021.639291] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: We explored the long-term effects of cART on markers of gut damage, microbial translocation, and paired gut/blood microbiota composition, with a focus on the role exerted by different drug classes. Methods: We enrolled 41 cART naïve HIV-infected subjects, undergoing blood and fecal sampling prior to cART (T0) and after 12 (T12) and 24 (T24) months of therapy. Fifteen HIV-uninfected individuals were enrolled as controls. We analyzed: (i) T-cell homeostasis (flow cytometry); (ii) microbial translocation (sCD14, EndoCab, 16S rDNA); (iii) intestinal permeability and damage markers (LAC/MAN, I-FABP, fecal calprotectin); (iv) plasma and fecal microbiota composition (alpha- and beta-diversity, relative abundance); (v) functional metagenome predictions (PICRUSt). Results: Twelve and twenty four-month successful cART resulted in a rise in EndoCAb (p = 0.0001) and I-FABP (p = 0.039) vis-à-vis stable 16S rDNA, sCD14, calprotectin and LAC/MAN, along with reduced immune activation in the periphery. Furthermore, cART did not lead to substantial modifications of microbial composition in both plasma and feces and metabolic metagenome predictions. The stratification according to cART regimens revealed a feeble effect on microbiota composition in patients on NNRTI-based or INSTI-based regimens, but not PI-based regimens. Conclusions: We hereby show that 24 months of viro-immunological effective cART, while containing peripheral hyperactivation, exerts only minor effects on the gastrointestinal tract. Persistent alteration of plasma markers indicative of gut structural and functional impairment seemingly parallels enduring fecal dysbiosis, irrespective of drug classes, with no effect on metabolic metagenome predictions.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Esther Merlini
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Barassi
- Biochemistry Laboratory, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Elvira S Cannizzo
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, University of Milan, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
164
|
Serrano-Villar S, Talavera-Rodríguez A, Gosalbes MJ, Madrid N, Pérez-Molina JA, Elliott RJ, Navia B, Lanza VF, Vallejo A, Osman M, Dronda F, Budree S, Zamora J, Gutiérrez C, Manzano M, Vivancos MJ, Ron R, Martínez-Sanz J, Herrera S, Ansa U, Moya A, Moreno S. Fecal microbiota transplantation in HIV: A pilot placebo-controlled study. Nat Commun 2021; 12:1139. [PMID: 33602945 PMCID: PMC7892558 DOI: 10.1038/s41467-021-21472-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in the microbiota have been linked to persistent inflammation during treated HIV infection. In this pilot double-blind study, we study 30 HIV-infected subjects on antiretroviral therapy (ART) with a CD4/CD8 ratio < 1 randomized to either weekly fecal microbiota capsules or placebo for 8 weeks. Stool donors were rationally selected based on their microbiota signatures. We report that fecal microbiota transplantation (FMT) is safe, not related to severe adverse events, and attenuates HIV-associated dysbiosis. FMT elicits changes in gut microbiota structure, including significant increases in alpha diversity, and a mild and transient engraftment of donor's microbiota during the treatment period. The greater engraftment seems to be achieved by recent antibiotic use before FMT. The Lachnospiraceae and Ruminococcaceae families, which are typically depleted in people with HIV, are the taxa more robustly engrafted across time-points. In exploratory analyses, we describe a significant amelioration in the FMT group in intestinal fatty acid-binding protein (IFABP), a biomarker of intestinal damage that independently predicts mortality. Gut microbiota manipulation using a non-invasive and safe strategy of FMT delivery is feasible and deserves further investigation. Trial number: NCT03008941.
Collapse
Affiliation(s)
- Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain.
| | | | - María José Gosalbes
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nadia Madrid
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Beatriz Navia
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain
| | - Alejandro Vallejo
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | | | - Javier Zamora
- Barts and the London School for Medicine and Dentistry. Queen Mary University of London, London, UK
| | - Carolina Gutiérrez
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Mónica Manzano
- Department of Nutrition, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Uxua Ansa
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, FISABIO-Salud Pública, Valencia, Spain
- Institute for Integrative Systems Biology (I2SysBio), The University of Valencia and The Spanish National Research Council (CSIC)-UVEG), Valencia, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, and IRYCIS, Madrid, Spain
| |
Collapse
|
165
|
Luo Q, Lei X, Xu J, Jahangir A, He J, Huang C, Liu W, Cheng A, Tang L, Geng Y, Chen Z. An altered gut microbiota in duck-origin parvovirus infection on cherry valley ducklings is associated with mucosal barrier dysfunction. Poult Sci 2021; 100:101021. [PMID: 33677399 PMCID: PMC7940990 DOI: 10.1016/j.psj.2021.101021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/13/2023] Open
Abstract
Duck-origin parvovirus disease is an epidemic disease mainly caused by duck-origin goose parvovirus (D-GPV), which is characterized by beak atrophy and dwarfism syndrome. Its main symptoms are persistent diarrhea, skeletal dysplasia, and growth retardation. However, the pathogenesis of Cherry Valley ducks infected by D-GPV has not been studied thoroughly. To perceive the distribution of D-GPV in the intestinal tract, intestinal morphological development, intestinal permeability, inflammatory cytokines in Cherry Valley ducks, and expression of tight junction protein, the D-GPV infection was given intramuscularly. Illumina MiSeq sequencing technology was used to analyze the diversity and structure of ileum flora and content of short-chain fatty acids of its metabolites. To investigate the relationship between intestinal flora changes and intestinal barrier function after D-GPV infection on Cherry Valley ducks is of great theoretical and practical significance for further understanding the pathogenesis of D-GPV and the structure of intestinal flora in ducks. The results showed that D-GPV infection was accompanied by intestinal inflammation and barrier dysfunction. At this time, the decrease of a large number of beneficial bacteria and the content of short-chain fatty acids in intestinal flora led to the weakening of colonization resistance of the intestinal flora and the accumulation of potentially pathogenic bacteria, which would aggravate the negative effect of D-GPV damage to the intestinal tract. Furthermore, a significant increase in Unclassified_S24-7 and decrease in Streptococcus was observed in D-GPV persistent, indicating the disruption in the structure of gut microbiota. Notably, the shift of microbiota was associated with the transcription of tight-junction protein and immune-associated cytokines. These results indicate that altered ileum microbiota, intestinal barrier, and immune dysfunction are associated with D-GPV infection. Therefore, there is a relationship between the intestinal barrier dysfunction and dysbiosis caused by D-GPV, but the specific mechanism needs to be further explored.
Collapse
Affiliation(s)
- Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinyu Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Asad Jahangir
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junbo He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wentao Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
166
|
Modulation of inflammatory responses by gastrointestinal Prevotella spp. - From associations to functional studies. Int J Med Microbiol 2021; 311:151472. [PMID: 33461110 DOI: 10.1016/j.ijmm.2021.151472] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have associated alterations in the gut microbiota composition with almost every known inflammatory disease. However, proving the biological relevance of distinct microbial signatures and linking specific microorganisms to host phenotypes, remains a considerable challenge. Correspondingly, increased abundance of members of Prevotella genus within microbial communities colonizing distinct mucosal surfaces has been found in individuals diagnosed with rheumatoid arthritis, periodontitis, metabolic disorders, and intestinal and vaginal dysbiosis. Still, the role of Prevotella spp. in the incidence of these diseases continues to be debated. For many years, poor understanding of Prevotella biology could be in large part attributed to the lack of experimental tools. However, in the recent years significant advances have been made towards overcoming these limitations, including increased number of isolates and improved understanding of genetic diversity. Besides discussing the most relevant associations between Prevotella spp. and inflammatory disorders, in the present review we examine the recent efforts to expand the Prevotella experimental "toolbox" and we highlight remaining experimental challenges that should advance future research and our understanding of Prevotella-host interplay.
Collapse
|
167
|
Xie Y, Sun J, Wei L, Jiang H, Hu C, Yang J, Huang Y, Ruan B, Zhu B. Altered gut microbiota correlate with different immune responses to HAART in HIV-infected individuals. BMC Microbiol 2021; 21:11. [PMID: 33407128 PMCID: PMC7789785 DOI: 10.1186/s12866-020-02074-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although gut microbiota dysbiosis has been reported in HIV infected individuals recently, the relationship between the gut microbiota and immune activation in patients with different immune responses to highly active antiretroviral therapy (HAART) is still not well understood. Gut microbiota and immune activation were studied in 36 non-HIV-infected subjects (healthy controls) and 58 HIV-infected individuals, including 28 immunological responders (IR) and 30 immunological non-responders (INR) (≥500 and < 200 CD4+ T-cell counts/μl after 2 years of HIV-1 viral suppression respectively) without comorbidities. RESULTS Metagenome sequencing revealed that HIV-infected immunological responders and immunological non-responders could not recover completely from the gut microbiota dysbiosis. At a 97% similarity level, the relative abundances of Fusobacterium, Ruminococcus gnavus and Megamonas were greater, whereas Faecalibacterium, Alistipes, Bifidobacterium, Eubacterium rectale and Roseburia were more depleted in the IR and INR groups than those in the healthy controls. Ruminococcaceae and Alistipes were positively correlated with nadir and current CD4+ T-cell counts, but negatively correlated with CD8 + CD57+ T-cell counts. Inflammation markers and translocation biomarkers (LPS) levels were positively correlated with the abundances of genera Ruminococcus and Fusobacterium but were negatively correlated with the genus Faecalibacterium. The relative abundances of Escherichia-Shigella and Blautia were significantly higher in the IR than those in the INR group. Escherichia-Shigella were negatively correlated with the CD4/CD8 ratio but positively correlated with the amount of CD8 + CD57+ T-cells. Roseburia and Blautia were negatively associated with nadir CD4+ T-cell and positively associated with CD8 + CD57+ T-cell counts. CONCLUSIONS Gut microbiota dysbiosis may be one of the factors contributing to different immune responses and treatment outcomes to HAART.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China.
| | - Jia Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
- Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China
| | - Li Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Haiyin Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Caiqin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Ying Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79, QingChun Road, Hangzhou, 310003, China.
| |
Collapse
|
168
|
Illanes-Álvarez F, Márquez-Ruiz D, Márquez-Coello M, Cuesta-Sancho S, Girón-González JA. Similarities and differences between HIV and SARS-CoV-2. Int J Med Sci 2021; 18:846-851. [PMID: 33437221 PMCID: PMC7797543 DOI: 10.7150/ijms.50133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last 50 years we have experienced two big pandemics, the HIV pandemic and the pandemic caused by SARS-CoV-2. Both pandemics are caused by RNA viruses and have reached us from animals. These two viruses are different in the transmission mode and in the symptoms they generate. However, they have important similarities: the fear in the population, increase in proinflammatory cytokines that generate intestinal microbiota modifications or NETosis production by polymorphonuclear neutrophils, among others. They have been implicated in the clinical, prognostic and therapeutic attitudes.
Collapse
Affiliation(s)
| | | | | | - Sara Cuesta-Sancho
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA)
| | - José Antonio Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain. Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA)
| |
Collapse
|
169
|
Newsome RC, Gauthier J, Hernandez MC, Abraham GE, Robinson TO, Williams HB, Sloan M, Owings A, Laird H, Christian T, Pride Y, Wilson KJ, Hasan M, Parker A, Senitko M, Glover SC, Gharaibeh RZ, Jobin C. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort. Gut Microbes 2021; 13:1-15. [PMID: 34100340 PMCID: PMC8205023 DOI: 10.1080/19490976.2021.1926840] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
To investigate the relationship between intestinal microbiota and SARS-CoV-2-mediated pathogenicity in a United States, majority African American cohort. We prospectively collected fecal samples from 50 SARS-CoV-2 infected patients, 9 SARS-CoV-2 recovered patients, and 34 uninfected subjects seen by the hospital with unrelated respiratory medical conditions (controls). 16S rRNA sequencing and qPCR analysis was performed on fecal DNA/RNA. The fecal microbial composition was found to be significantly different between SARS-CoV-2 patients and controls (PERMANOVA FDR-P = .004), independent of antibiotic exposure. Peptoniphilus, Corynebacterium and Campylobacter were identified as the three most significantly enriched genera in COVID-19 patients compared to controls. Actively infected patients were also found to have a different gut microbiota than recovered patients (PERMANOVA FDR-P = .003), and the most enriched genus in infected patients was Campylobacter, with Agathobacter and Faecalibacterium being enriched in the recovered patients. No difference in microbial community structure between recovered patients and uninfected controls was observed, nor a difference in alpha diversity between the three groups. 24 of the 50 COVID-19 patients (48%) tested positive via RT-qPCR for fecal SARS-CoV-2 RNA. A significant difference in gut microbial composition between SARS-CoV-2 positive and negative samples was observed, with Klebsiella and Agathobacter being enriched in the positive cohort. No significant associations between microbiome composition and disease severity was found. The intestinal microbiota is sensitive to the presence of SARS-CoV-2, with increased relative abundance of genera (Campylobacter, Klebsiella) associated with gastrointestinal (GI) disease. Further studies are needed to investigate the functional impact of SARS-CoV-2 on GI health.
Collapse
Affiliation(s)
- Rachel C. Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Josee Gauthier
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - George E. Abraham
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya O. Robinson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Anna Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Taylor Christian
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yilianys Pride
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kenneth J. Wilson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mohammad Hasan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adam Parker
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michal Senitko
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah C. Glover
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
170
|
Abstract
The usage of combination antiretroviral therapy in people with HIV (PWH) has incited profound improvement in morbidity and mortality. Yet, PWH may not experience full restoration of immune function which can manifest with non-AIDS comorbidities that frequently associate with residual inflammation and can imperil quality of life or longevity. In this review, we discuss the pathogenesis underlying chronic inflammation and residual immune dysfunction in PWH, as well as potential therapeutic interventions to ameliorate them and prevent incidence or progression of non-AIDS comorbidities. Current evidence advocates that early diagnosis and prompt initiation of therapy at high CD4 counts may represent the best available approach for an improved immune recovery in PWH.
Collapse
Affiliation(s)
- Catherine W Cai
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States.
| |
Collapse
|
171
|
Managing the Microbiome: How the Gut Influences Development and Disease. Nutrients 2020; 13:nu13010074. [PMID: 33383647 PMCID: PMC7823600 DOI: 10.3390/nu13010074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The microbiome lies at the forefront of scientific research, as researchers work to uncover its mysterious influence on human development and disease. This paper reviews how the microbiome is studied, how researchers can improve its study, and what clinical applications microbiome research might yield. For this review, we analyzed studies concerning the role of the microbiome in disease and early development, the common methodologies by which the microbiome is researched in the lab, and modern clinical treatments for dysbiosis and their possible future applications. We found that the gut microbiome is essential for proper development of various physiological systems and that gut dysbiosis is a clear factor in the etiology of various diseases. Furthermore, we found that germ-free animal models and microbiome manipulation techniques are inadequate, reducing the efficacy of microbiome research. Nonetheless, research continues to show the significance of microbiome manipulation in the clinical treatment of disease, having shown great promise in the prevention and treatment of dysbiosis. Though the clinical applications of microbiome manipulation are currently limited, the significance of dysbiosis in the etiology of a wide array of diseases indicates the significance of this research and highlights the need for more effective research methods concerning the microbiome.
Collapse
|
172
|
Wang Z, Usyk M, Sollecito CC, Qiu Y, Williams-Nguyen J, Hua S, Gradissimo A, Wang T, Xue X, Kurland IJ, Ley K, Landay AL, Anastos K, Knight R, Kaplan RC, Burk RD, Qi Q. Altered Gut Microbiota and Host Metabolite Profiles in Women With Human Immunodeficiency Virus. Clin Infect Dis 2020; 71:2345-2353. [PMID: 31748797 PMCID: PMC7713676 DOI: 10.1093/cid/ciz1117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alterations in gut microbiota (GMB) and host metabolites have been noted in individuals with HIV. However, it remains unclear whether alterations in GMB and related functional groups contribute to disrupted host metabolite profiles in these individuals. METHODS This study included 185 women (128 with longstanding HIV infection, 88% under antiretroviral therapy; and 57 women without HIV from the same geographic location with comparable characteristics). Stool samples were analyzed by 16S rRNA V4 region sequencing, and GMB function was inferred by PICRUSt. Plasma metabolomic profiling was performed using liquid chromatography-tandem mass spectrometry, and 133 metabolites (amino acids, biogenic amines, acylcarnitines, and lipids) were analyzed. RESULTS Four predominant bacterial genera were identified as associated with HIV infection, with higher abundances of Ruminococcus and Oscillospira and lower abundances of Bifidobacterium and Collinsella in women with HIV than in those without. Women with HIV showed a distinct plasma metabolite profile, which featured elevated glycerophospholipid levels compared with those without HIV. Functional analyses also indicated that GMB lipid metabolism was enriched in women with HIV. Ruminococcus and Oscillospira were among the top bacterial genera contributing to the GMB glycerophospholipid metabolism pathway and showed positive correlations with host plasma glycerophospholipid levels. One bacterial functional capacity in the acetate and propionate biosynthesis pathway was identified to be mainly contributed by Bifidobacterium; this functional capacity was lower in women with HIV than in women without HIV. CONCLUSIONS Our integrative analyses identified altered GMB with related functional capacities that might be associated with disrupted plasma metabolite profiles in women with HIV.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Yunping Qiu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jessica Williams-Nguyen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Simin Hua
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ana Gradissimo
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Irwin J Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush Medical College, Chicago, Illinois, USA
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
173
|
Sortino O, Phanuphak N, Schuetz A, Ortiz AM, Chomchey N, Belkaid Y, Davis J, Mystakelis HA, Quiñones M, Deleage C, Ingram B, Rerknimitr R, Pinyakorn S, Rupert A, Robb ML, Ananworanich J, Brenchley J, Sereti I. Impact of Acute HIV Infection and Early Antiretroviral Therapy on the Human Gut Microbiome. Open Forum Infect Dis 2020; 7:ofz367. [PMID: 33324725 PMCID: PMC7724511 DOI: 10.1093/ofid/ofz367] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Intestinal microbial dysbiosis is evident in chronic HIV-infected individuals and may underlie inflammation that persists even during antiretroviral therapy (ART). It remains unclear, however, how early after HIV infection gut dysbiosis emerges and how it is affected by early ART. Methods Fecal microbiota were studied by 16s rDNA sequencing in 52 Thai men who have sex with men (MSM), at diagnosis of acute HIV infection (AHI), Fiebig Stages 1-5 (F1-5), and after 6 months of ART initiation, and in 7 Thai MSM HIV-uninfected controls. Dysbiotic bacterial taxa were associated with relevant inflammatory markers. Results Fecal microbiota profiling of AHI pre-ART vs HIV-uninfected controls showed a mild dysbiosis. Transition from F1-3 of acute infection was characterized by enrichment in pro-inflammatory bacteria. Lower proportions of Bacteroidetes and higher frequencies of Proteobacteria and Fusobacteria members were observed post-ART compared with pre-ART. Fusobacteria members were positively correlated with levels of soluble CD14 in AHI post-ART. Conclusions Evidence of gut dysbiosis was observed during early acute HIV infection and was partially restored upon early ART initiation. The association of dysbiotic bacterial taxa with inflammatory markers suggests that a potential relationship between altered gut microbiota and systemic inflammation may also be established during AHI.
Collapse
Affiliation(s)
- Ornella Sortino
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute
| | | | - Alexandra Schuetz
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alexandra M Ortiz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nitiya Chomchey
- SEARCH/Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jacquice Davis
- Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harry A Mystakelis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mariam Quiñones
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Brian Ingram
- Metabolon, Inc., Research Triangle Park, North Carolina
| | | | - Suteeraporn Pinyakorn
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Adam Rupert
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute
| | - Merlin L Robb
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jintanat Ananworanich
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Jason Brenchley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
174
|
Jasinska AJ, Dong TS, Lagishetty V, Katzka W, Jacobs JP, Schmitt CA, Cramer JD, Ma D, Coetzer WG, Grobler JP, Turner TR, Freimer N, Pandrea I, Apetrei C. Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys. MICROBIOME 2020; 8:154. [PMID: 33158452 PMCID: PMC7648414 DOI: 10.1186/s40168-020-00928-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa. RESULTS We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with Lactobacillus and Escherichia/Shigella and Helicobacter, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples. CONCLUSIONS The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus. Video Abstract.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Eye on Primates, Los Angeles, CA, USA.
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William Katzka
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- UCLA Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Jennifer Danzy Cramer
- Department of Sociology, Anthropology, and General Studies, American Public University System, Charles Town, WV, USA
| | - Dongzhu Ma
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Willem G Coetzer
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Trudy R Turner
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
- Department of Anthropology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Ivona Pandrea
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
175
|
Gelpi M, Vestad B, Hansen SH, Holm K, Drivsholm N, Goetz A, Kirkby NS, Lindegaard B, Lebech AM, Hoel H, Michelsen AE, Ueland T, Gerstoft J, Lundgren J, Hov JR, Nielsen SD, Trøseid M. Impact of Human Immunodeficiency Virus-Related Gut Microbiota Alterations on Metabolic Comorbid Conditions. Clin Infect Dis 2020; 71:e359-e367. [PMID: 31894240 DOI: 10.1093/cid/ciz1235] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to identify a human immunodeficiency virus (HIV)-related microbiota signature, independent of sexual preferences and demographic confounders, in order to assess a possible impact of the microbiome on metabolic comorbid conditions. METHODS Bacterial 16S ribosomal RNA analyses were performed on stool samples from 405 HIV-infected and 111 uninfected participants of the Copenhagen Comorbidity in HIV Infection (COCOMO) study. Individuals were stratified according to sexual behavior (men who have sex with men [MSM] vs non-MSM). RESULTS After excluding MSM-associated microbiota traits and adjusting for confounders, we identified an HIV-related microbiota signature, consisting of lower biodiversity, increased relative abundance of the bacterial clades Gammaproteobacteria and Desulfovibrionaceae and decrease in several Clostridia. This microbiota profile was associated with a 2-fold excess risk of metabolic syndrome, driven by increase in Desulfovibrionaceae and decrease in Clostridia (Butyrivibrio, Coprococcus 2, Lachnospiraceae UCG-001 and CAG-56). This association was accentuated (5-fold excess risk) in individuals with previous severe immunodeficiency, which also modified the association between HIV-related microbiota signature and visceral adipose tissue (VAT) area (P for interaction = .01). Accordingly, HIV-related microbiota was associated with 30-cm2 larger VAT in individuals with history of severe immunodeficiency, but not in those without. CONCLUSION The HIV-related microbiota was associated with increased risk of metabolic syndrome and VAT accumulation, particularly in individuals with previous severe immunodeficiency, driven by increased Desulfovibrionaceae and lower abundance of several Clostridia. Our findings suggest a potential interplay between HIV-related microbiota, immune dysfunction and metabolic comorbid conditions. Interventions targeting the gut microbiome may be warranted to reduce cardiovascular risk, particularly in individuals with previous immunodeficiency.
Collapse
Affiliation(s)
- Marco Gelpi
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Beate Vestad
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Simen Hyll Hansen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kristian Holm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ninna Drivsholm
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Goetz
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Nicolai Søren Kirkby
- Department of Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- Center for inflammation and Metabolism, Rigshospitalet, København, Denmark
- Department of Pulmonary and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hedda Hoel
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Medical Department, Lovisenberg Hospital, Oslo, Norway
| | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lundgren
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Health, Immunity and Infections, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Roksund Hov
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Department of Rheumatology, Dermatology and Infectious Diseases, Oslo, Norway
| |
Collapse
|
176
|
Siddiqui S, Bao D, Doyle-Meyers L, Dufour J, Wu Y, Liu YZ, Ling B. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci Rep 2020; 10:19056. [PMID: 33149234 PMCID: PMC7642356 DOI: 10.1038/s41598-020-76145-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis and microbial translocation are associated with chronic systemic immune activation and inflammation in HIV-1 infection. However, the extent of restoration of gut microbiota in HIV-1 patients with short or long-term antiretroviral therapy (ART) is unclear. To understand the impact of ART on the gut microbiota, we used the rhesus macaque model of SIV infection to characterize and compare the gut microbial community upon SIV infection and during ART. We observed altered taxonomic compositions of gut microbiota communities upon SIV infection and at different time points of ART. SIV-infected animals showed decreased diversity of gut microbiome composition, while the ART group appeared to recover towards the diversity level of the healthy control. Animals undergoing ART for various lengths of time were observed to have differential gut bacterial abundance across different time points. In addition, increased blood lipopolysaccharide (LPS) levels during SIV infection were reduced to near normal upon ART, indicating that microbial translocation and immune activation can be improved during therapy. In conclusion, while short ART may be related to transient increase of certain pathogenic bacterial microbiome, ART may promote microbiome diversity compromised by SIV infection, improve the gut microbiota towards the healthy compositions and alleviate immune activation.
Collapse
Affiliation(s)
- Summer Siddiqui
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Duran Bao
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | | | - Jason Dufour
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Yuntao Wu
- Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Covington, LA, 70433, USA. .,Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX, 78227, USA.
| |
Collapse
|
177
|
Gálvez EJC, Iljazovic A, Amend L, Lesker TR, Renault T, Thiemann S, Hao L, Roy U, Gronow A, Charpentier E, Strowig T. Distinct Polysaccharide Utilization Determines Interspecies Competition between Intestinal Prevotella spp. Cell Host Microbe 2020; 28:838-852.e6. [PMID: 33113351 DOI: 10.1016/j.chom.2020.09.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Prevotella spp. are a dominant bacterial genus within the human gut. Multiple Prevotella spp. co-exist in some individuals, particularly those consuming plant-based diets. Additionally, Prevotella spp. exhibit variability in the utilization of diverse complex carbohydrates. To investigate the relationship between Prevotella competition and diet, we isolated Prevotella species from the mouse gut, analyzed their genomes and transcriptomes in vivo, and performed competition experiments between species in mice. Diverse dominant Prevotella species compete for similar metabolic niches in vivo, which is linked to the upregulation of specific polysaccharide utilization loci (PULs). Complex plant-derived polysaccharides are required for Prevotella spp. expansion, with arabinoxylans having a prominent impact on species abundance. The most dominant Prevotella species encodes a specific tandem-repeat trsusC/D PUL that enables arabinoxylan utilization and is conserved in human Prevotella copri strains, particularly among those consuming a vegan diet. These findings suggest that efficient (arabino)xylan-utilization is a factor contributing to Prevotella dominance.
Collapse
Affiliation(s)
- Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thibaud Renault
- Max Planck Unit for the Science of Pathogens, Berlin, Germany; CNRS/University of Bordeaux, UMR 5234, Microbiologie Fondamentale et Pathogénicité, France; Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France
| | - Sophie Thiemann
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lianxu Hao
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Urmi Roy
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany; Institute for Biology, Humboldt University, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
178
|
Geng ST, Zhang ZY, Wang YX, Lu D, Yu J, Zhang JB, Kuang YQ, Wang KH. Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Front Microbiol 2020; 11:594820. [PMID: 33193273 PMCID: PMC7652894 DOI: 10.3389/fmicb.2020.594820] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells in the gut plays an insidious role in acquired immunodeficiency syndrome (AIDS) pathogenesis. Host immune function is closely related to gut microbiota. Changes in the gut microbiota cause a different immune response. Previous studies revealed that HIV-1 infection caused changes in gut microbiota, which induced immune deficiency. HIV-1 infection results in an abnormal composition and function of the gut microbiota, which may disrupt the intestinal epithelial barrier and microbial translocation, leading to long-term immune activation, including inflammation and metabolic disorders. At the same time, an abnormal gut microbiota also hinders the effect of antiviral therapy and affects the immune reconstruction of patients. However, studies on the impact of the gut microbiota on immune reconstitution in patients with HIV/AIDS are still limited. In this review, we focus on changes in the gut microbiota caused by HIV infection, as well as the impact and regulation of the gut microbiota on immune function and immune reconstitution, while we also discuss the potential impact of probiotics/prebiotics and fecal microbiota transplantation (FMT) on immune reconstitution.
Collapse
Affiliation(s)
- Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
179
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
180
|
Guo K, Shen G, Kibbie J, Gonzalez T, Dillon SM, Smith HA, Cooper EH, Lavender K, Hasenkrug KJ, Sutter K, Dittmer U, Kroehl M, Kechris K, Wilson CC, Santiago ML. Qualitative Differences Between the IFNα subtypes and IFNβ Influence Chronic Mucosal HIV-1 Pathogenesis. PLoS Pathog 2020; 16:e1008986. [PMID: 33064743 PMCID: PMC7592919 DOI: 10.1371/journal.ppat.1008986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 10/28/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
The Type I Interferons (IFN-Is) are innate antiviral cytokines that include 12 different IFNα subtypes and IFNβ that signal through the IFN-I receptor (IFNAR), inducing hundreds of IFN-stimulated genes (ISGs) that comprise the 'interferome'. Quantitative differences in IFNAR binding correlate with antiviral activity, but whether IFN-Is exhibit qualitative differences remains controversial. Moreover, the IFN-I response is protective during acute HIV-1 infection, but likely pathogenic during the chronic stages. To gain a deeper understanding of the IFN-I response, we compared the interferomes of IFNα subtypes dominantly-expressed in HIV-1-exposed plasmacytoid dendritic cells (1, 2, 5, 8 and 14) and IFNβ in the earliest cellular targets of HIV-1 infection. Primary gut CD4 T cells from 3 donors were treated for 18 hours ex vivo with individual IFN-Is normalized for IFNAR signaling strength. Of 1,969 IFN-regulated genes, 246 'core ISGs' were induced by all IFN-Is tested. However, many IFN-regulated genes were not shared between the IFNα subtypes despite similar induction of canonical antiviral ISGs such as ISG15, RSAD2 and MX1, formally demonstrating qualitative differences between the IFNα subtypes. Notably, IFNβ induced a broader interferome than the individual IFNα subtypes. Since IFNβ, and not IFNα, is upregulated during chronic HIV-1 infection in the gut, we compared core ISGs and IFNβ-specific ISGs from colon pinch biopsies of HIV-1-uninfected (n = 13) versus age- and gender-matched, antiretroviral-therapy naïve persons with HIV-1 (PWH; n = 19). Core ISGs linked to inflammation, T cell activation and immune exhaustion were elevated in PWH, positively correlated with plasma lipopolysaccharide (LPS) levels and gut IFNβ levels, and negatively correlated with gut CD4 T cell frequencies. In sharp contrast, IFNβ-specific ISGs linked to protein translation and anti-inflammatory responses were significantly downregulated in PWH, negatively correlated with gut IFNβ and LPS, and positively correlated with plasma IL6 and gut CD4 T cell frequencies. Our findings reveal qualitative differences in interferome induction by diverse IFN-Is and suggest potential mechanisms for how IFNβ may drive HIV-1 pathogenesis in the gut.
Collapse
Affiliation(s)
- Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Jon Kibbie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tania Gonzalez
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Harry A. Smith
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Canada
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, Hamilton, MT, United States of America
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisberg-Essen, Essen, Germany
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
181
|
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, Tripathi A, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Oliveira MF, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, Knight R. Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. mSystems 2020; 5:e00465-20. [PMID: 32994287 PMCID: PMC7527136 DOI: 10.1128/msystems.00465-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences.IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems.
Collapse
Affiliation(s)
- Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neuroscience, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
| | - Donald Franklin
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tobin Groth
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gregory Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Julia Toronczak
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michelli F Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
182
|
Zhou J, Zhang Y, Cui P, Luo L, Chen H, Liang B, Jiang J, Ning C, Tian L, Zhong X, Ye L, Liang H, Huang J. Gut Microbiome Changes Associated With HIV Infection and Sexual Orientation. Front Cell Infect Microbiol 2020; 10:434. [PMID: 33102244 PMCID: PMC7546801 DOI: 10.3389/fcimb.2020.00434] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Many studies have explored changes in the gut microbiome associated with HIV infection, but the consistent pattern of changes has not been clarified. Men who have sex with men (MSM) are very likely to be an independent influencing factor of the gut microbiome, but relevant research is still lacking. Methods: We conducted a meta-analysis by screening 12 published studies of 16S rRNA gene amplicon sequencing of gut microbiomes related to HIV/AIDS (six of these studies contain data that is relevant and available to MSM) from NCBI and EBI databases. The analysis of gut microbiomes related to HIV infection status and MSM status included 1,288 samples (HIV-positive (HIV+) individuals, n = 744; HIV-negative (HIV–) individuals, n = 544) and 632 samples (MSM, n = 328; non-MSM, n = 304), respectively. The alpha diversity indexes, beta diversity indexes, differentially enriched genera, differentially enriched species, and differentially enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways related to gut microbiomes were calculated. Finally, the overall trend of the above indicators was evaluated. Results: Our results indicate that HIV+ status is associated with decreased alpha diversity of the gut microbiome. MSM status is an important factor that affects the study of HIV-related gut microbiomes; that is, MSM are associated with alpha diversity changes in the gut microbiome regardless of HIV infection, and the changes in the gut microbiome composition of MSM are more significant than those of HIV+ individuals. A consistent change in Bacteroides caccae, Bacteroides ovatus, Bacteroides uniformis, and Prevotella stercorea was found in HIV+ individuals and MSM. The differential expression of the gut microbiome may be accompanied by changes in functional pathways of carbohydrate metabolism, amino acid metabolism, and lipid Metabolism. Conclusions: This study shows that the changes in the gut microbiome are related to HIV and MSM status. Importantly, MSM status may have a far greater impact on the gut microbiome than HIV status.
Collapse
Affiliation(s)
- Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Lijia Luo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Hui Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingyu Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Li Tian
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Zhong
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Guangxi Medical University, Nanning, China.,School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
183
|
Isnard S, Lin J, Fombuena B, Ouyang J, Varin TV, Richard C, Marette A, Ramendra R, Planas D, Raymond Marchand L, Messaoudene M, Van der Ley CP, Kema IP, Sohail Ahmed D, Zhang Y, Finkelman M, Routy B, Angel J, Ancuta P, Routy JP. Repurposing Metformin in Nondiabetic People With HIV: Influence on Weight and Gut Microbiota. Open Forum Infect Dis 2020; 7:ofaa338. [PMID: 32964062 PMCID: PMC7489545 DOI: 10.1093/ofid/ofaa338] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background People with HIV (PWH) taking antiretroviral therapy (ART) may experience weight gain, dyslipidemia, increased risk of non-AIDS comorbidities, and long-term alteration of the gut microbiota. Both low CD4/CD8 ratio and chronic inflammation have been associated with changes in the gut microbiota of PWH. The antidiabetic drug metformin has been shown to improve gut microbiota composition while decreasing weight and inflammation in diabetes and polycystic ovary syndrome. Nevertheless, it remains unknown whether metformin may benefit PWH receiving ART, especially those with a low CD4/CD8 ratio. Methods In the Lilac pilot trial, we recruited 23 nondiabetic PWH receiving ART for more than 2 years with a low CD4/CD8 ratio (<0.7). Blood and stool samples were collected during study visits at baseline, after a 12-week metformin treatment, and 12 weeks after discontinuation. Microbiota composition was analyzed by 16S rDNA gene sequencing, and markers of inflammation were assessed in plasma. Results Metformin decreased weight in PWH, and weight loss was inversely correlated with plasma levels of the satiety factor GDF-15. Furthermore, metformin changed the gut microbiota composition by increasing the abundance of anti-inflammatory bacteria such as butyrate-producing species and the protective Akkermansia muciniphila. Conclusions Our study provides the first evidence that a 12-week metformin treatment decreased weight and favored anti-inflammatory bacteria abundance in the microbiota of nondiabetic ART-treated PWH. Larger randomized placebo-controlled clinical trials with longer metformin treatment will be needed to further investigate the role of metformin in reducing inflammation and the risk of non-AIDS comorbidities in ART-treated PWH.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada.,CIHR Canadian HIV Trials Network, Vancouver, British Columbia, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada
| | - Jing Ouyang
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada.,Chongqing Public Health Medical Center, Chongqing, China
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada
| | - Corentin Richard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Laval University, Québec City, Québec, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Rayoun Ramendra
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Delphine Planas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Meriem Messaoudene
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Claude P Van der Ley
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Darakhshan Sohail Ahmed
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada
| | - Yonglong Zhang
- Associates of Cape Cod Inc., Falmouth, Massachusetts, USA
| | | | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Division of Medicine, Department of Hemato-Oncology, University of Montreal Healthcare Center, Montreal, Quebec, Canada
| | - Jonathan Angel
- The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, Québec, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, Québec, Canada.,Division of Hematology, McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
184
|
Gojanovich GS, Jacobson DL, Jao J, Russell JS, Van Dyke RB, Libutti DE, Sharma TS, Geffner ME, Gerschenson M. Mitochondrial Dysfunction and Insulin Resistance in Pubertal Youth Living with Perinatally Acquired HIV. AIDS Res Hum Retroviruses 2020; 36:703-711. [PMID: 32586116 DOI: 10.1089/aid.2020.0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction (MD) is linked to cardiometabolic complications, such as obesity and insulin resistance (IR), the frequencies of which are higher in adults living with HIV infection and receiving combination antiretroviral therapies (ARV). ARV-treated youth living with perinatally acquired HIV infection (YLPHIV) may be especially susceptible to IR due to long-term exposure to both factors. Medical histories, fasting blood chemistry panels, and mitochondrial function in banked peripheral blood mononuclear cells (PBMCs) were assessed in eligible YLPHIV from the Pediatric HIV/AIDS Cohort Study (PHACS)/Adolescent Master Protocol (AMP) Mitochondrial Determinants Component cohort, stratified by Homeostatic Model Assessment of IR (HOMA-IR) score: case (score ≥4, n = 39) or control (score <4, n = 105). PBMCs were sources for mitochondrial (mt) DNA copies/cell; mtRNA transcript levels of oxidative phosphorylation (OXPHOS) subunits NADH dehydrogenases 1 and 6, and cytochrome B; and enzymatic activities of OXPHOS Complexes I (CI) and IV (CIV). Logistic regression models were fit to estimate the odds of IR case diagnosis, adjusted for sex, race/ethnicity, body mass index (BMI) z-score, and Tanner stage. IR cases were similar to controls by age, sex, and race/ethnicity. Cases had higher median levels of peak HIV viral load, lactate, pyruvate, triglycerides, and BMI z-scores. OXPHOS CI enzymatic activity was lower in cases (log10 1.62 vs. 1.70) and inversely correlated with HOMA-IR score (r = -0.157, p = .061), but did not associate with IR in adjusted models. Fully adjusted models indicated associations of nadir CD4% [odds ratio (OR) = 0.95, 95% confidence intervals (CIs) = 0.90-1.00] or peak HIV load (OR = 3.48, 95% CIs = 1.70-10.79) with IR. IR in YLPHIV was strongly associated with morphometrics, but early virologic and immunologic factors may also influence MD.
Collapse
Affiliation(s)
- Greg S. Gojanovich
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Denise L. Jacobson
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jennifer Jao
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan S. Russell
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Russell B. Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Daniel E. Libutti
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Tanvi S. Sharma
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mitchell E. Geffner
- Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
185
|
Sinha A, Ma Y, Scherzer R, Rahalkar S, Neilan BD, Crane H, Drozd D, Martin J, Deeks SG, Hunt P, Hsue PY. Carnitine Is Associated With Atherosclerotic Risk and Myocardial Infarction in HIV -Infected Adults. J Am Heart Assoc 2020; 8:e011037. [PMID: 31030595 PMCID: PMC6512101 DOI: 10.1161/jaha.118.011037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background People living with HIV (PLWH) have an increased risk of myocardial infarction (MI). Changes in the gut microbiota that occur with chronic HIV infection could play a role in HIV‐associated atherosclerosis. Choline, carnitine, betaine, and trimethylamine N‐oxide are small molecules that are, in part, metabolized or produced by the gut microbiome. We hypothesized that these metabolites would be associated with carotid artery intima‐media thickness and MI in PLWH. Methods and Results Carotid artery intima‐media thickness was measured at baseline and at a median interval of 4 years in 162 PLWH from the SCOPE (Study of the Consequences of the Protease Inhibitor Era) cohort in San Francisco, CA. Separately, 105 PLWH (36 cases with type I adjudicated MI and 69 controls without MI) were selected from the Center for AIDS Research Network of Integrated Clinical Systems, a multicenter clinic‐based cohort. Controls were matched by demographics, CD4 cell count, and duration of viral suppression. In the SCOPE cohort, higher carnitine levels had a significant association with presence of carotid plaque and greater baseline and progression of mean carotid artery intima‐media thickness after adjusting for traditional cardiovascular disease risk factors. In the treated and suppressed subgroup, these associations with carnitine remained significant after adjustment for cardiovascular disease risk factors. In the Center for AIDS Research Network of Integrated Clinical Systems cohort, the risk of MI was significantly increased in subjects with carnitine levels in the highest quartile after adjustment for cardiovascular disease risk factors. Conclusions In PLWH, including the treated and suppressed subgroup, carnitine is independently associated with carotid artery intima‐media thickness, carotid plaque, and MI in 2 separate cohorts. These results emphasize the potential role of gut microbiota in HIV‐associated atherosclerosis and MI, especially in relation to carnitine metabolism.
Collapse
Affiliation(s)
- Arjun Sinha
- 1 Department of Medicine Northwestern University Chicago IL
| | - Yifei Ma
- 2 Department of Medicine San Francisco Veterans Affairs Medical Center University of California, San Francisco, San Francisco CA
| | - Rebecca Scherzer
- 2 Department of Medicine San Francisco Veterans Affairs Medical Center University of California, San Francisco, San Francisco CA
| | - Smruti Rahalkar
- 3 Division of Cardiology Department of Medicine San Francisco General Hospital University of California, San Francisco San Francisco CA
| | - Brendan D Neilan
- 3 Division of Cardiology Department of Medicine San Francisco General Hospital University of California, San Francisco San Francisco CA
| | - Heidi Crane
- 4 Department of Medicine University of Washington Seattle WA
| | - Daniel Drozd
- 4 Department of Medicine University of Washington Seattle WA
| | - Jeffrey Martin
- 5 Department of Epidemiology and Biostatistics University of California, San Francisco San Francisco CA
| | - Steven G Deeks
- 6 Positive Health Program San Francisco General Hospital San Francisco CA
| | - Peter Hunt
- 7 Division of HIV/AIDS Department of Medicine University of California, San Francisco San Francisco CA
| | - Priscilla Y Hsue
- 3 Division of Cardiology Department of Medicine San Francisco General Hospital University of California, San Francisco San Francisco CA
| |
Collapse
|
186
|
High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS 2020; 34:1467-1473. [PMID: 32675560 DOI: 10.1097/qad.0000000000002574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HIV-1-associated dysbiosis is most commonly characterized by overall decreased diversity, with abundance of the genus Prevotella, recently related to inflammatory responses. DESIGN A pilot study including 10 antiretroviral therapy-treated HIV-1-infected men and 50 uninfected controls was performed to identify the main gut dysbiosis determinants (e.g. Prevotella enrichment), that may affect mucosal antiviral defenses and T cell immunity in HIV-1-infected individuals. METHODS 16rRNA gene sequencing was applied to the HIV-1-infected individuals' fecal microbiota and compared with controls. Measurements of CD4 and CD8 T cell activation [CD38, human leukocyte antigen (HLA)-DR, CD38 HLA-DR] and frequencies of Th17, obtained from lamina propria lymphocytes isolated from five different intestinal sites, were performed by flow cytometry. IFNβ, IFNAR1 and MxA gene expression level was evaluated by real-time PCR in lamina propria lymphocytes. Nonparametric t tests were used for statistical analysis. RESULTS HIV-1-infected men had a significant fecal microbial communities' imbalance, including different levels of genera Faecalibacterium, Prevotella, Alistipes and Bacteroides, compared with controls. Notably, Prevotella abundance positively correlated with frequencies of CD4 T cells expressing CD38 or HLA-DR and coexpressing CD38 and HLA-DR (P < 0.05 for all these measures). The same trend was observed for the activated CD8 T cells. Moreover, Prevotella levels were inversely correlated with IFN-I genes (P < 0.05 for IFNβ, IFNAR1 and MxA genes) and the frequencies of Th17 cells (P < 0.05). By contrast, no statistically significant correlations were observed for the remaining bacterial genera. CONCLUSION Our findings suggest that Prevotella enrichment might affect gut mucosal IFN-I pathways and T cell response in HIV-1-infected patients, thus contributing to immune dysfunction.
Collapse
|
187
|
Maffei VJ, Siggins RW, Luo M, Brashear MM, Mercante DE, Taylor CM, Molina P, Welsh DA. Alcohol Use Is Associated With Intestinal Dysbiosis and Dysfunctional CD8+ T-Cell Phenotypes in Persons With Human Immunodeficiency Virus. J Infect Dis 2020; 223:1029-1039. [PMID: 32725203 DOI: 10.1093/infdis/jiaa461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Inflammation persists among persons with human immunodeficiency virus (PWH) despite effective antiretroviral therapy and may contribute to T-cell dysfunction. Alcohol use is prevalent among PWH and promotes intestinal leak, dysbiosis, and a proinflammatory milieu. Whether alcohol use is associated with T-cell late differentiation remains to be investigated. METHODS Data and samples from PWH (N = 359 of 365) enrolled in the New Orleans Alcohol Use in HIV Study were used. Alcohol use was assessed by self-report (Alcohol Use Disorders Identification Test; lifetime alcohol exposure; 30-day Alcohol Timeline Followback) and phosphatidylethanol (PEth) quantitation. In a subset of participants, fecal bacterial content was assessed by ribosomal 16S marker gene deep sequencing and quantitative polymerase chain reaction. Intestinal leak was assessed by fecal-to-plasma α-1-antitrypsin (A1AT) enzyme-linked immunosorbent assay ratio. Peripheral T-cell populations were quantified by flow cytometry. RESULTS Alcohol Use Disorder Identification Test scores were positively associated with activated-senescent, exhausted, and terminal effector memory CD45RA+CD8+ but not CD4+ T cells (cells/μL) after confounder adjustment (P < .050). Phosphatidylethanol was positively associated with A1AT (P < .050). The PEth and activated-senescent CD8+ were associated with bacterial β-diversity (P < .050) and positively associated with the relative abundance of coabundant Prevotellaceae members (q < .100). CONCLUSIONS Alcohol use among PWH is associated with CD8+ T-cell late differentiation, intestinal leak, and dysbiosis. Alcohol-associated dysbiosis is implicated in CD8+ T-cell senescence.
Collapse
Affiliation(s)
- Vincent J Maffei
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Microbiology, Immunology, and Parasitology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Robert W Siggins
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Physiology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Meng Luo
- Department of Microbiology, Immunology, and Parasitology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Meghan M Brashear
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Physiology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Donald E Mercante
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Physiology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Microbiology, Immunology, and Parasitology, School of Graduate Studies, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA.,Department of Internal Medicine, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
188
|
Sainz T, Gosalbes MJ, Talavera A, Jimenez-Hernandez N, Prieto L, Escosa L, Guillén S, Ramos JT, Muñoz-Fernández MÁ, Moya A, Navarro ML, Mellado MJ, Serrano-Villar S. Effect of a Nutritional Intervention on the Intestinal Microbiota of Vertically HIV-Infected Children: The Pediabiota Study. Nutrients 2020; 12:2112. [PMID: 32708743 PMCID: PMC7400861 DOI: 10.3390/nu12072112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS The gut microbiota exerts a critical influence in the immune system. The gut microbiota of human virus immunodeficiency (HIV)-infected children remains barely explored. We aimed to characterize the fecal microbiota in vertically HIV-infected children and to explore the effects of its modulation with a symbiotic nutritional intervention. METHODS a pilot, double blind, randomized placebo-controlled study including HIV-infected children who were randomized to receive a nutritional supplementation including prebiotics and probiotics or placebo for four weeks. HIV-uninfected siblings were recruited as controls. The V3-V4 region of the 16S rRNA gene was sequenced in fecal samples. RESULTS 22 HIV-infected children on antiretroviral therapy (ART) and with viral load (VL) <50/mL completed the follow-up period. Mean age was 11.4 ± 3.4 years, eight (32%) were male. Their microbiota showed reduced alpha diversity compared to controls and distinct beta diversity at the genus level (Adonis p = 0.042). Patients showed decreased abundance of commensals Faecalibacterium and an increase in Prevotella, Akkermansia and Escherichia. The nutritional intervention shaped the microbiota towards the control group, without a clear directionality. CONCLUSIONS Vertical HIV infection is characterized by changes in gut microbiota structure, distinct at the compositional level from the findings reported in adults. A short nutritional intervention attenuated bacterial dysbiosis, without clear changes at the community level. SUMMARY In a group of 24 vertically HIV-infected children, in comparison to 11 uninfected controls, intestinal dysbiosis was observed despite effective ART. Although not fully effective to restore the microbiota, a short intervention with pre/probiotics attenuated bacterial dysbiosis.
Collapse
Affiliation(s)
- Talía Sainz
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
| | - María José Gosalbes
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Alba Talavera
- Bioinformatics Unit, Hospital Universitario Ramón y Cajal and IRYCIS, 28034 Madrid, Spain;
| | - Nuria Jimenez-Hernandez
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Luis Prieto
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital 12 de Octubre and I+12, 28041 Madrid, Spain
| | - Luis Escosa
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
| | - Sara Guillén
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital de Getafe, 28901 Madrid, Spain
| | - José Tomás Ramos
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Spain Servicio de Pediatría, Hospital Clinico San Carlos and UCM, 28040 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Sección Inmunología, Hospital General Universitario Gregorio Marañón and Spanish HIV HGM BioBank, Madrid Spain, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain;
| | - Andrés Moya
- Área Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica (FISABIO), 46010 Valencia, Spain; (M.J.G.); (N.J.-H.); (A.M.)
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
- Instituto de Biología Integrativa de Sistemas, Universidad de Valencia, 46003 Valencia, Spain
| | - Maria Luisa Navarro
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - María José Mellado
- Servicio de Pediatría, Hospital Universitario La Paz and IdiPAZ, 28046 Madrid, Spain; (L.E.); (M.J.M.)
- Red de Investigación CoRISpe integrada en la Red en Infectología Pediátrica (RITIP), 28046 Madrid, Spain; (L.P.); (S.G.); (J.T.R.); (M.L.N.)
| | - Sergio Serrano-Villar
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal and IRYCIS, 28034 Madrid, Spain;
| |
Collapse
|
189
|
Modulation of Phenylalanine and Tyrosine Metabolism in HIV-1 Infected Patients with Neurocognitive Impairment: Results from a Clinical Trial. Metabolites 2020; 10:metabo10070274. [PMID: 32635406 PMCID: PMC7408387 DOI: 10.3390/metabo10070274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
To investigate the effects of oral bacteriotherapy on intestinal phenylalanine and tyrosine metabolism, in this longitudinal, double-arm trial, 15 virally suppressed HIV+ individuals underwent blood and fecal sample collection at baseline and after 6 months of oral bacteriotherapy. A baseline fecal sample was collected from 15 healthy individuals and served as control group for the baseline levels of fecal phenylalanine and tyrosine. CD4 and CD8 immune activation (CD38+) was evaluated by flow cytometry. Amino acid evaluation on fecal samples was conducted by Proton Nuclear Magnetic Resonance. Results showed that HIV+ participants displayed higher baseline phenylalanine/tyrosine ratio values than healthy volunteers. A significand reduction in phenylalanine/tyrosine ratio and peripheral CD4+ CD38+ activation was observed at the end of oral bacteriotherapy. In conclusion, probiotics beneficially affect the immune activation of HIV+ individuals. Therefore, the restoration of intestinal amino acid metabolism could represent the mechanisms through which probiotics exert these desirable effects.
Collapse
|
190
|
Allers K, Stahl-Hennig C, Fiedler T, Wibberg D, Hofmann J, Kunkel D, Moos V, Kreikemeyer B, Kalinowski J, Schneider T. The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4 + T cell depletion and enterocyte damage. Sci Rep 2020; 10:10887. [PMID: 32616803 PMCID: PMC7331662 DOI: 10.1038/s41598-020-67843-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
The intesinal microbiome is considered important in human immunodeficiency virus (HIV) pathogenesis and therefore represents a potential therapeutic target to improve the patients’ health status. Longitudinal alterations in the colonic mucosa-associated microbiome during simian immunodeficiency virus (SIV) infection were investigated using a 16S rRNA amplicon approach on the Illumina sequencing platform and bioinformatics analyses. Following SIV infection of six animals, no alterations in microbial composition were observed before the viral load peaked in the colon. At the time of acute mucosal SIV replication, the phylum Bacteroidetes including the Bacteroidia class as well as the phylum Firmicutes and its families Ruminococcaceae and Eubacteriaceae became more abundant. Enrichment of Bacteroidetes was maintained until the chronic phase of SIV infection. The shift towards Bacteroidetes in the mucosa-associated microbiome was associated with the extent of SIV infection-induced mucosal CD4+ T cell depletion and correlated with increasing rates of enterocyte damage. These observations suggest that Bacteroidetes strains increase during virus-induced mucosal immune destruction. As Bacteroidetes belong to the lipopolysaccharide- and short chain fatty acids-producing bacteria, their rapid enrichment may contribute to inflammatory tissue damage and metabolic alterations in SIV/HIV infection. These aspects should be considered in future studies on therapeutic interventions.
Collapse
Affiliation(s)
- Kristina Allers
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | | | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| | - Désirée Kunkel
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353, Berlin, Germany
| | - Verena Moos
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615, Bielefeld, Germany
| | - Thomas Schneider
- Institute of Medical Virology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117, Berlin, Germany
| |
Collapse
|
191
|
Fecal Gram stain morphotype and their distribution patterns in a Cameroonian cohort with and without HIV infection. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
192
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
193
|
Abstract
Early in the HIV epidemic, lipodystrophy, characterized by subcutaneous fat loss (lipoatrophy), with or without central fat accumulation (lipohypertrophy), was recognized as a frequent condition among people living with HIV (PLWH) receiving combination antiretroviral therapy. The subsequent identification of thymidine analogue nucleoside reverse transcriptase inhibitors as the cause of lipoatrophy led to the development of newer antiretroviral agents; however, studies have demonstrated continued abnormalities in fat and/or lipid storage in PLWH treated with newer drugs (including integrase inhibitor-based regimens), with fat gain due to restoration to health in antiretroviral therapy-naive PLWH, which is compounded by the rising rates of obesity. The mechanisms of fat alterations in PLWH are complex, multifactorial and not fully understood, although they are known to result in part from the direct effects of HIV proteins and antiretroviral agents on adipocyte health, genetic factors, increased microbial translocation, changes in the adaptive immune milieu after infection, increased tissue inflammation and accelerated fibrosis. Management includes classical lifestyle alterations with a role for pharmacological therapies and surgery in some patients. Continued fat alterations in PLWH will have an important effect on lifespan, healthspan and quality of life as patients age worldwide, highlighting the need to investigate the critical uncertainties regarding pathophysiology, risk factors and management.
Collapse
|
194
|
Gabuzda D, Jamieson BD, Collman RG, Lederman MM, Burdo TH, Deeks SG, Dittmer DP, Fox HS, Funderburg NT, Pahwa SG, Pandrea I, Wilson CC, Hunt PW. Pathogenesis of Aging and Age-related Comorbidities in People with HIV: Highlights from the HIV ACTION Workshop. Pathog Immun 2020; 5:143-174. [PMID: 32856008 PMCID: PMC7449259 DOI: 10.20411/pai.v5i1.365] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
People with HIV (PWH) experience accentuated biological aging, as defined by markers of inflammation, immune dysfunction, and the epigenetic clock. They also have an elevated risk of multiple age-associated comorbidities. To discuss current knowledge, research gaps, and priorities in aging and age-related comorbidities in treated HIV infection, the NIH program staff organized a workshop held in Bethesda, Maryland in September 2019. This review article describes highlights of discussions led by the Pathogenesis/Basic Science Research working group that focused on three high priority topics: immunopathogenesis; the microbiome/virome; and aging and senescence. We summarize knowledge in these fields and describe key questions for research on the pathogenesis of aging and age-related comorbidities in PWH. Understanding the drivers and mechanisms underlying accentuated biological aging is a high priority that will help identify potential therapeutic targets to improve healthspan in older PWH.
Collapse
Affiliation(s)
- Dana Gabuzda
- Department of Cancer Immunology and Virology; Dana-Farber Cancer Institute; Boston, Massachusetts; Department of Neurology; Harvard Medical School; Boston, Massachusetts
| | - Beth D Jamieson
- Department of Medicine; David Geffen School of Medicine; University of California; Los Angeles, California
| | - Ronald G Collman
- Department of Medicine; University of Pennsylvania School of Medicine; Philadelphia, Pennsylvania
| | - Michael M Lederman
- Department of Medicine; Case Western Reserve University School of Medicine; Cleveland, Ohio
| | - Tricia H Burdo
- Department of Neuroscience; Lewis Katz School of Medicine; Temple University; Philadelphia, Pennsylvania
| | - Steven G Deeks
- Department of Medicine; University of California; San Francisco, California
| | - Dirk P Dittmer
- Department of Microbiology and Immunology; University of North Carolina School of Medicine; Chapel Hill, North Carolina
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience; University of Nebraska Medical Center; Omaha, Nebraska
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science; School of Health and Rehabilitation Sciences; Ohio State University College of Medicine; Columbus, Ohio
| | - Savita G Pahwa
- Department of Microbiology and Immunology; University of Miami Miller School of Medicine; Miami, Florida
| | - Ivona Pandrea
- Department of Microbiology and Molecular Genetics; School of Medicine; University of Pittsburgh; Pittsburgh, Pennsylvania
| | - Cara C Wilson
- Department of Medicine; Division of Infectious Diseases; University of Colorado Anschutz Medical Campus; Aurora, Colorado
| | - Peter W Hunt
- Department of Medicine; University of California; San Francisco, California
| |
Collapse
|
195
|
HIV-associated gut dysbiosis is independent of sexual practice and correlates with noncommunicable diseases. Nat Commun 2020; 11:2448. [PMID: 32415070 PMCID: PMC7228978 DOI: 10.1038/s41467-020-16222-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Loss of gut mucosal integrity and an aberrant gut microbiota are proposed mechanisms contributing to chronic inflammation and increased morbidity and mortality during antiretroviral-treated HIV disease. Sexual practice has recently been uncovered as a major source of microbiota variation, potentially confounding prior observations of gut microbiota alterations among persons with HIV (PWH). To overcome this and other confounding factors, we examine a well-powered subset of AGEhIV Cohort participants comprising antiretroviral-treated PWH and seronegative controls matched for age, body-mass index, sex, and sexual practice. We report significant gut microbiota differences in PWH regardless of sex and sexual practice including Gammaproteobacteria enrichment, Lachnospiraceae and Ruminococcaceae depletion, and decreased alpha diversity. Men who have sex with men (MSM) exhibit a distinct microbiota signature characterized by Prevotella enrichment and increased alpha diversity, which is linked with receptive anal intercourse in both males and females. Finally, the HIV-associated microbiota signature correlates with inflammatory markers including suPAR, nadir CD4 count, and prevalence of age-associated noncommunicable comorbidities.
Collapse
|
196
|
Ergin HE, Inga EE, Maung TZ, Javed M, Khan S. HIV, Antiretroviral Therapy and Metabolic Alterations: A Review. Cureus 2020; 12:e8059. [PMID: 32537277 PMCID: PMC7286589 DOI: 10.7759/cureus.8059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
The introduction of antiretroviral therapy (ART) has caused some metabolic problems to people who suffer from HIV. ART probably is not the sole reason for these metabolic disorders. Most likely, HIV itself affects the metabolism as well. We conducted research to find the prevalence of the different types of metabolic disorders among HIV(+) patients. Female gender, high BMI, and older age are among the risk factors for the occurrence of metabolic disorders. Regarding dyslipidemia, hypertriglyceridemia and low high-density lipoproteins (HDLs) are the most common types of dyslipidemia in the studies we included. Protease inhibitors (PIs) are widely known as the most common class of antiretroviral drugs that cause metabolic disorders, and some studies in our review also demonstrated this knowledge. In our review, we concluded that HIV and ART concurrently alter the metabolism, but further research is required about this substantial topic.
Collapse
Affiliation(s)
- Huseyin Ekin Ergin
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Evelyn E Inga
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
- Internal Medicine, LaSante Health Center, Brooklyn, USA
| | - Tun Zan Maung
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mehwish Javed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
197
|
Bourke CD, Gough EK, Pimundu G, Shonhai A, Berejena C, Terry L, Baumard L, Choudhry N, Karmali Y, Bwakura-Dangarembizi M, Musiime V, Lutaakome J, Kekitiinwa A, Mutasa K, Szubert AJ, Spyer MJ, Deayton JR, Glass M, Geum HM, Pardieu C, Gibb DM, Klein N, Edens TJ, Walker AS, Manges AR, Prendergast AJ. Cotrimoxazole reduces systemic inflammation in HIV infection by altering the gut microbiome and immune activation. Sci Transl Med 2020; 11:11/486/eaav0537. [PMID: 30944164 DOI: 10.1126/scitranslmed.aav0537] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Long-term cotrimoxazole prophylaxis reduces mortality and morbidity in HIV infection, but the mechanisms underlying these clinical benefits are unclear. Here, we investigate the impact of cotrimoxazole on systemic inflammation, an independent driver of HIV mortality. In HIV-positive Ugandan and Zimbabwean children receiving antiretroviral therapy, we show that plasma inflammatory markers were lower after randomization to continue (n = 144) versus stop (n = 149) cotrimoxazole. This was not explained by clinical illness, HIV progression, or nutritional status. Because subclinical enteropathogen carriage and enteropathy can drive systemic inflammation, we explored cotrimoxazole effects on the gut microbiome and intestinal inflammatory biomarkers. Although global microbiome composition was unchanged, viridans group Streptococci and streptococcal mevalonate pathway enzymes were lower among children continuing (n = 36) versus stopping (n = 36) cotrimoxazole. These changes were associated with lower fecal myeloperoxidase. To isolate direct effects of cotrimoxazole on immune activation from antibiotic effects, we established in vitro models of systemic and intestinal inflammation. In vitro cotrimoxazole had modest but consistent inhibitory effects on proinflammatory cytokine production by blood leukocytes from HIV-positive (n = 16) and HIV-negative (n = 8) UK adults and reduced IL-8 production by gut epithelial cell lines. Collectively we demonstrate that cotrimoxazole reduces systemic and intestinal inflammation both indirectly via antibiotic effects on the microbiome and directly by blunting immune and epithelial cell activation. Synergy between these pathways may explain the clinical benefits of cotrimoxazole despite high antimicrobial resistance, providing further rationale for extending coverage among people living with HIV in sub-Saharan Africa.
Collapse
Affiliation(s)
- Claire D Bourke
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| | - Ethan K Gough
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Annie Shonhai
- College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Chipo Berejena
- College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Louise Terry
- Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Lucas Baumard
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Naheed Choudhry
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Yusuf Karmali
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | | | - Victor Musiime
- Joint Clinical Research Centre, Kampala, Uganda.,College of Health Sciences, Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Joseph Lutaakome
- Uganda Virus Research Institute/MRC Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children's Foundation-Uganda, Mulago Hospital, Kampala, Uganda
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Moira J Spyer
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Jane R Deayton
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.,Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Magdalena Glass
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun Min Geum
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Claire Pardieu
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Diana M Gibb
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Thaddeus J Edens
- Devil's Staircase Consulting, West Vancouver, British Columbia V7T 1V7, Canada
| | - A Sarah Walker
- MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| | - Amee R Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.,MRC Clinical Trials Unit at University College London, London WC1V 6LJ, UK
| |
Collapse
|
198
|
Antibiotic-induced microbiome perturbations are associated with significant alterations to colonic mucosal immunity in rhesus macaques. Mucosal Immunol 2020; 13:471-480. [PMID: 31797911 PMCID: PMC7183431 DOI: 10.1038/s41385-019-0238-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in the stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities associated with specific alterations in mucosal and systemic immunity.
Collapse
|
199
|
Blum FC, Hardy BL, Bishop-Lilly KA, Frey KG, Hamilton T, Whitney JB, Lewis MG, Merrell DS, Mattapallil JJ. Microbial Dysbiosis During Simian Immunodeficiency Virus Infection is Partially Reverted with Combination Anti-retroviral Therapy. Sci Rep 2020; 10:6387. [PMID: 32286417 PMCID: PMC7156522 DOI: 10.1038/s41598-020-63196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is characterized by a massive loss of CD4 T cells in the gastrointestinal tract (GIT) that is accompanied by changes in the gut microbiome and microbial translocation that contribute to inflammation and chronic immune activation. Though highly active antiretroviral therapy (HAART) has led to better long-term outcomes in HIV infected patients, it has not been as effective at reverting pathogenesis in the GIT. Using the simian immunodeficiency virus (SIV) infection model, we show that combination antiretroviral therapy (c-ART) partially reverted microbial dysbiosis observed during SIV infection. Though the relative abundance of bacteria, their richness or diversity did not significantly differ between infected and treated animals, microbial dysbiosis was evident via multiple beta diversity metrics: Jaccard similarity coefficient, Bray-Curtis similarity coefficient, and Yue & Clayton theta similarity coefficient. Principal coordinates analysis (PCoA) clustered SIV-infected untreated animals away from healthy and treated animals that were clustered closely, indicating that c-ART partially reversed the gut dysbiosis associated with SIV infection. Metastats analysis identified specific operational taxonomic units (OTUs) falling within the Streptococcus, Prevotella, Acinetobacter, Treponema, and Lactobacillus genera that were differentially represented across the three groups. Our results suggest that complete viral suppression with c-ART could potentially revert microbial dysbiosis observed during SIV and HIV infections.
Collapse
Affiliation(s)
- Faith C Blum
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Britney L Hardy
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Kimberly A Bishop-Lilly
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - Kenneth G Frey
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - Theron Hamilton
- Genomics & Bioinformatics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, United States
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | | | - D Scott Merrell
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States.
| | - Joseph J Mattapallil
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
200
|
Ryder MI, Shiboski C, Yao TJ, Moscicki AB. Current trends and new developments in HIV research and periodontal diseases. Periodontol 2000 2020; 82:65-77. [PMID: 31850628 DOI: 10.1111/prd.12321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advent of combined antiretroviral therapies, the face of HIV infection has changed dramatically from a disease with almost certain mortality from serious comorbidities, to a manageable chronic condition with an extended lifespan. In this paper we present the more recent investigations into the epidemiology, microbiology, and pathogenesis of periodontal diseases in patients with HIV, and the effects of combined antiretroviral therapies on the incidence and progression of these diseases both in adults and perinatally infected children. In addition, comparisons and potential interactions between the HIV-associated microbiome, host responses, and pathogenesis in the oral cavity with the gastrointestinal tract and other areas of the body are presented. Also, the effects of HIV and combined antiretroviral therapies on comorbidities such as hyposalivation, dementia, and osteoporosis on periodontal disease progression are discussed.
Collapse
Affiliation(s)
- Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, Los Angeles, California, USA
| |
Collapse
|