151
|
Thorolfsdottir RB, Sveinbjornsson G, Sulem P, Helgadottir A, Gretarsdottir S, Benonisdottir S, Magnusdottir A, Davidsson OB, Rajamani S, Roden DM, Darbar D, Pedersen TR, Sabatine MS, Jonsdottir I, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. A Missense Variant in PLEC Increases Risk of Atrial Fibrillation. J Am Coll Cardiol 2017; 70:2157-2168. [PMID: 29050564 PMCID: PMC5704994 DOI: 10.1016/j.jacc.2017.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have yielded variants at >30 loci that associate with atrial fibrillation (AF), including rare coding mutations in the sarcomere genes MYH6 and MYL4. OBJECTIVES The aim of this study was to search for novel AF associations and in doing so gain insights into the mechanisms whereby variants affect AF risk, using electrocardiogram (ECG) measurements. METHODS The authors performed a GWAS of 14,255 AF cases and 374,939 controls, using whole-genome sequence data from the Icelandic population, and tested novel signals in 2,002 non-Icelandic cases and 12,324 controls. They then tested the AF variants for effect on cardiac electrical function by using measurements in 289,297 ECGs from 62,974 individuals. RESULTS The authors discovered 2 novel AF variants, the intergenic variant rs72700114, between the genes LINC01142 and METTL11B (risk allele frequency = 8.1%; odds ratio [OR]: 1.26; p = 3.1 × 10-18), and the missense variant p.Gly4098Ser in PLEC (frequency = 1.2%; OR: 1.55; p = 8.0 × 10-10), encoding plectin, a cytoskeletal cross-linking protein that contributes to integrity of cardiac tissue. The authors also confirmed 29 reported variants. p.Gly4098Ser in PLEC significantly affects various ECG measurements in the absence of AF. Other AF variants have diverse effects on the conduction system, ranging from none to extensive. CONCLUSIONS The discovery of a missense variant in PLEC affecting AF combined with recent discoveries of variants in the sarcomere genes MYH6 and MYL4 points to an important role of myocardial structure in the pathogenesis of the disease. The diverse associations between AF variants and ECG measurements suggest fundamentally different categories of mechanisms contributing to the development of AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Terje R Pedersen
- Center For Preventive Medicine, Oslo University Hospital and Medical Faculty, University of Oslo, Oslo, Norway
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
152
|
van den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li-Gao R, Pistis G, Shah N, Brody JA, Müller-Nurasyid M, Lin H, Mei H, Smith AV, Lyytikäinen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kähönen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orrú M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Völker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimäki T, et alvan den Berg ME, Warren HR, Cabrera CP, Verweij N, Mifsud B, Haessler J, Bihlmeyer NA, Fu YP, Weiss S, Lin HJ, Grarup N, Li-Gao R, Pistis G, Shah N, Brody JA, Müller-Nurasyid M, Lin H, Mei H, Smith AV, Lyytikäinen LP, Hall LM, van Setten J, Trompet S, Prins BP, Isaacs A, Radmanesh F, Marten J, Entwistle A, Kors JA, Silva CT, Alonso A, Bis JC, de Boer R, de Haan HG, de Mutsert R, Dedoussis G, Dominiczak AF, Doney ASF, Ellinor PT, Eppinga RN, Felix SB, Guo X, Hagemeijer Y, Hansen T, Harris TB, Heckbert SR, Huang PL, Hwang SJ, Kähönen M, Kanters JK, Kolcic I, Launer LJ, Li M, Yao J, Linneberg A, Liu S, Macfarlane PW, Mangino M, Morris AD, Mulas A, Murray AD, Nelson CP, Orrú M, Padmanabhan S, Peters A, Porteous DJ, Poulter N, Psaty BM, Qi L, Raitakari OT, Rivadeneira F, Roselli C, Rudan I, Sattar N, Sever P, Sinner MF, Soliman EZ, Spector TD, Stanton AV, Stirrups KE, Taylor KD, Tobin MD, Uitterlinden A, Vaartjes I, Hoes AW, van der Meer P, Völker U, Waldenberger M, Xie Z, Zoledziewska M, Tinker A, Polasek O, Rosand J, Jamshidi Y, van Duijn CM, Zeggini E, Jukema JW, Asselbergs FW, Samani NJ, Lehtimäki T, Gudnason V, Wilson J, Lubitz SA, Kääb S, Sotoodehnia N, Caulfield MJ, Palmer CNA, Sanna S, Mook-Kanamori DO, Deloukas P, Pedersen O, Rotter JI, Dörr M, O'Donnell CJ, Hayward C, Arking DE, Kooperberg C, van der Harst P, Eijgelsheim M, Stricker BH, Munroe PB. Discovery of novel heart rate-associated loci using the Exome Chip. Hum Mol Genet 2017; 26:2346-2363. [PMID: 28379579 PMCID: PMC5458336 DOI: 10.1093/hmg/ddx113] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/18/2017] [Indexed: 01/06/2023] Open
Abstract
Resting heart rate is a heritable trait, and an increase in heart rate is associated with increased mortality risk. Genome-wide association study analyses have found loci associated with resting heart rate, at the time of our study these loci explained 0.9% of the variation. This study aims to discover new genetic loci associated with heart rate from Exome Chip meta-analyses.Heart rate was measured from either elecrtrocardiograms or pulse recordings. We meta-analysed heart rate association results from 104 452 European-ancestry individuals from 30 cohorts, genotyped using the Exome Chip. Twenty-four variants were selected for follow-up in an independent dataset (UK Biobank, N = 134 251). Conditional and gene-based testing was undertaken, and variants were investigated with bioinformatics methods.We discovered five novel heart rate loci, and one new independent low-frequency non-synonymous variant in an established heart rate locus (KIAA1755). Lead variants in four of the novel loci are non-synonymous variants in the genes C10orf71, DALDR3, TESK2 and SEC31B. The variant at SEC31B is significantly associated with SEC31B expression in heart and tibial nerve tissue. Further candidate genes were detected from long-range regulatory chromatin interactions in heart tissue (SCD, SLF2 and MAPK8). We observed significant enrichment in DNase I hypersensitive sites in fetal heart and lung. Moreover, enrichment was seen for the first time in human neuronal progenitor cells (derived from embryonic stem cells) and fetal muscle samples by including our novel variants.Our findings advance the knowledge of the genetic architecture of heart rate, and indicate new candidate genes for follow-up functional studies.
Collapse
Affiliation(s)
- Marten E van den Berg
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Niek Verweij
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Borbala Mifsud
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nathan A Bihlmeyer
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205
| | - Yi-Ping Fu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA.,Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Nabi Shah
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1 9SY, UK.,Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MI, USA
| | - Albert V Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D339, P.O. Box 100, FI-33014 Tampere, Finland
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Jessica van Setten
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands.,Department of Gerontology and Geriatrics, Leiden university Medical Center, Leiden, the Netherlands
| | - Bram P Prins
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10 1SA.,Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Dept. of Biochemistry, Maastricht University, Universiteitssingel 60, 6229 ER Maastricht, NL
| | - Farid Radmanesh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Aiman Entwistle
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jan A Kors
- Department of Medical Informatics Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Claudia T Silva
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL.,Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia.,GENIUROS Group, Genetics and Genomics Research Center CIGGUR, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Rudolf de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens 17671, Greece
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alex S F Doney
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ruben N Eppinga
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Stephan B Felix
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Yanick Hagemeijer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, 1730 Minor Ave, Suite 1600, Seattle, WA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, NHLBI, NIH, Bethesda MD, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Finn-Medi 1, 3th floor, P.O. Box 2000, FI-33521 Tampere, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Kolcic
- Faculty of Medicine, University of Split, Split, Croatia
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Man Li
- Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84109, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simin Liu
- Brown University School of Public Health, Providence, Rhode Island 02912, USA
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen AB25?2ZD, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Marco Orrú
- Unita Operativa Complessa di Cardiologia, Presidio Ospedaliero Oncologico Armando Businco Cagliari , Azienda Ospedaliera Brotzu Cagliari, Caglliari, Italy
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12 8TA, UK
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - David J Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4?2XU, UK
| | - Neil Poulter
- School of Public Health, Imperial College London, W2?1PG, UK
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Health Services, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA.,Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Lihong Qi
- University of California Davis, One Shields Ave Ms1c 145, Davis, CA 95616 USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, P.O. Box 52, FI-20521 Turku, Finland
| | - Fernando Rivadeneira
- Human Genomics Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Carolina Roselli
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8?9AG, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, Glasgow G12?8TA, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, W2?1PG, UK
| | - Moritz F Sinner
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Kathleen E Stirrups
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Genomic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.,Departments of Pediatrics, Medicine, and Human Genetics, UCLA, Los Angeles, CA, USA
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester LE1?7RH, UK
| | - André Uitterlinden
- Human Genotyping Facility Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center, PO Box 85500, 3508 GA Utrecht, the Netherlands
| | - Arno W Hoes
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter van der Meer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics; University Medicine and Ernst-Moritz-Arndt-University Greifswald; Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Zhijun Xie
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| | | | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia.,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142
| | - Yalda Jamshidi
- Cardiogenetics Lab, Genetics and Molecular Cell Sciences Research Centre, Cardiovascular and Cell Sciences Institute, St George's, University of London, Cranmer Terrace, London, SW17?0RE, UK
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Dept. of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, NL
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom, CB10?1SA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, 2300 RC, Leiden, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.,NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Arvo, D338, P.O. Box 100, FI-33014 Tampere, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland.,Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - James Wilson
- Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Steven A Lubitz
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stefan Kääb
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, 1730 Minor Ave, Suite 1360, Seattle, WA 98101, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Colin N A Palmer
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, DD1?9SY, UK
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, Italy
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Panos Deloukas
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
| | - Marcus Dörr
- Department of Internal Medicine B - Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine; University Medicine Greifswald; Greifswald, 17475, Germany & DZHK (German Centre for Cardiovascular Research); partner site Greifswald; Greifswald, 17475, Germany
| | | | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4?2XU, UK
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21205 and
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pim van der Harst
- University Medical Center Groningen, University of Groningen, Department of Cardiology, the Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology Erasmus MC - University Medical Center Rotterdam, P.O. Box 2040, 3000CA, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK.,NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
153
|
Ikram MA, Brusselle GGO, Murad SD, van Duijn CM, Franco OH, Goedegebure A, Klaver CCW, Nijsten TEC, Peeters RP, Stricker BH, Tiemeier H, Uitterlinden AG, Vernooij MW, Hofman A. The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 2017; 32:807-850. [PMID: 29064009 PMCID: PMC5662692 DOI: 10.1007/s10654-017-0321-4] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1500 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Guy G O Brusselle
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sarwa Darwish Murad
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Gastro-Enterology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otolaryngology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
154
|
Zhao G, Zhou J, Gao J, Liu Y, Gu S, Zhang X, Su P. Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol Med Rep 2017; 16:5505-5514. [DOI: 10.3892/mmr.2017.7221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
|
155
|
Qiao Y, Lipovsky C, Hicks S, Bhatnagar S, Li G, Khandekar A, Guzy R, Woo KV, Nichols CG, Efimov IR, Rentschler S. Transient Notch Activation Induces Long-Term Gene Expression Changes Leading to Sick Sinus Syndrome in Mice. Circ Res 2017; 121:549-563. [PMID: 28674041 DOI: 10.1161/circresaha.116.310396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Notch signaling programs cardiac conduction during development, and in the adult ventricle, injury-induced Notch reactivation initiates global transcriptional and epigenetic changes. OBJECTIVE To determine whether Notch reactivation may stably alter atrial ion channel gene expression and arrhythmia inducibility. METHODS AND RESULTS To model an injury response and determine the effects of Notch signaling on atrial electrophysiology, we transiently activate Notch signaling within adult myocardium using a doxycycline-inducible genetic system (inducible Notch intracellular domain [iNICD]). Significant heart rate slowing and frequent sinus pauses are observed in iNICD mice when compared with controls. iNICD mice have structurally normal atria and preserved sinus node architecture, but expression of key transcriptional regulators of sinus node and atrial conduction, including Nkx2-5 (NK2 homeobox 5), Tbx3, and Tbx5 are dysregulated. To determine whether the induced electrical changes are stable, we transiently activated Notch followed by a prolonged washout period and observed that, in addition to decreased heart rate, atrial conduction velocity is persistently slower than control. Consistent with conduction slowing, genes encoding molecular determinants of atrial conduction velocity, including Scn5a (Nav1.5) and Gja5 (connexin 40), are persistently downregulated long after a transient Notch pulse. Consistent with the reduction in Scn5a transcript, Notch induces global changes in the atrial action potential, including a reduced dVm/dtmax. In addition, programmed electrical stimulation near the murine pulmonary vein demonstrates increased susceptibility to atrial arrhythmias in mice where Notch has been transiently activated. Taken together, these results suggest that transient Notch activation persistently alters ion channel gene expression and atrial electrophysiology and predisposes to an arrhythmogenic substrate. CONCLUSIONS Our data provide evidence that Notch signaling regulates transcription factor and ion channel gene expression within adult atrial myocardium. Notch reactivation induces electrical changes, resulting in sinus bradycardia, sinus pauses, and a susceptibility to atrial arrhythmias, which contribute to a phenotype resembling sick sinus syndrome.
Collapse
Affiliation(s)
- Yun Qiao
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Catherine Lipovsky
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stephanie Hicks
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Somya Bhatnagar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Gang Li
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Aditi Khandekar
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Robert Guzy
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Kel Vin Woo
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Colin G Nichols
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Igor R Efimov
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.)
| | - Stacey Rentschler
- From the Department of Medicine, Cardiovascular Division (Y.Q., C.L., S.H., S.B., G.L., A.K., S.R.), Department of Biomedical Engineering (Y.Q., G.L., S.R.), Department of Developmental Biology (C.L., S.B., S.R.), Department of Pediatrics (K.V.W.), and Department of Cell Biology (C.G.N.), Washington University in St Louis, MO; Department of Medicine, University of Chicago, IL (R.G.); and Department of Biomedical Engineering, The George Washington University, Science and Engineering Hall, Washington DC (Y.Q., I.R.E.).
| |
Collapse
|
156
|
Wang F, Zhang SJ, Yao X, Tian DM, Zhang KQ, She DM, Guo FF, Zhai QW, Ying H, Xue Y. Circulating microRNA-1a is a biomarker of Graves' disease patients with atrial fibrillation. Endocrine 2017; 57:125-137. [PMID: 28547036 DOI: 10.1007/s12020-017-1331-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE It has been increasingly suggested that specific microRNAs expression profiles in the circulation and atrial tissue are associated with the susceptibility to atrial fibrillation. Nonetheless, the role of circulating microRNAs in Graves' disease patients with atrial fibrillation has not yet been well described. The objective of the study was to identify the role of circulating microRNAs as specific biomarkers for the diagnosis of Graves' disease with atrial fibrillation. METHODS The expression profiles of eight serum microRNAs, which are found to be critical in the pathogenesis of atrial fibrillation, were determined in patients with Graves' disease with or without atrial fibrillation. MicroRNA expression analysis was performed by real-time PCR in normal control subjects (NC; n = 17), patients with Graves' disease without atrial fibrillation (GD; n = 29), patients with Graves' disease with atrial fibrillation (GD + AF; n = 14), and euthyroid patients with atrial fibrillation (AF; n = 22). RESULTS Three of the eight serum microRNAs,i.e., miR-1a, miR-26a, and miR-133, had significantly different expression profiles among the four groups. Spearman's correlation analysis showed that the relative expression level of miR-1a was positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and negatively related to thyroid stimulating hormone. Spearman's correlations analysis also revealed that the level of miR-1a was negatively correlated with a critical echocardiographic parameter (left atrial diameter), which was dramatically increased in GD + AF group compared to GD group. Furthermore, the receiver-operating characteristic curve analysis indicated that, among the eight microRNAs, miR-1a had the largest area under the receiver-operating characteristic curves not only for discriminating between individuals with and without Graves' disease, but also for predicting the presence of atrial fibrillation in patients with Graves' disease. CONCLUSIONS Our findings showed that the levels of serum miR-1a were significantly decreased in GD + AF group compared with GD group, suggesting that serum miR-1a might serve as a novel biomarker for diagnosis of atrial fibrillation in patients with Graves' disease.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, People's Hospital of Shanghai Putuo District, Shanghai, 200060, China
| | - Sheng-Jie Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong-Mei Tian
- Department of Endocrinology, People's Hospital of Shanghai Putuo District, Shanghai, 200060, China
| | - Ke-Qin Zhang
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Dun-Min She
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Fei-Fan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi-Wei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Xue
- Department of Endocrinology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
157
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
158
|
Nolte IM, Munoz ML, Tragante V, Amare AT, Jansen R, Vaez A, von der Heyde B, Avery CL, Bis JC, Dierckx B, van Dongen J, Gogarten SM, Goyette P, Hernesniemi J, Huikari V, Hwang SJ, Jaju D, Kerr KF, Kluttig A, Krijthe BP, Kumar J, van der Laan SW, Lyytikäinen LP, Maihofer AX, Minassian A, van der Most PJ, Müller-Nurasyid M, Nivard M, Salvi E, Stewart JD, Thayer JF, Verweij N, Wong A, Zabaneh D, Zafarmand MH, Abdellaoui A, Albarwani S, Albert C, Alonso A, Ashar F, Auvinen J, Axelsson T, Baker DG, de Bakker PIW, Barcella M, Bayoumi R, Bieringa RJ, Boomsma D, Boucher G, Britton AR, Christophersen I, Dietrich A, Ehret GB, Ellinor PT, Eskola M, Felix JF, Floras JS, Franco OH, Friberg P, Gademan MGJ, Geyer MA, Giedraitis V, Hartman CA, Hemerich D, Hofman A, Hottenga JJ, Huikuri H, Hutri-Kähönen N, Jouven X, Junttila J, Juonala M, Kiviniemi AM, Kors JA, Kumari M, Kuznetsova T, Laurie CC, Lefrandt JD, Li Y, Li Y, Liao D, Limacher MC, Lin HJ, Lindgren CM, Lubitz SA, Mahajan A, McKnight B, zu Schwabedissen HM, Milaneschi Y, Mononen N, Morris AP, Nalls MA, Navis G, Neijts M, Nikus K, North KE, O'Connor DT, Ormel J, Perz S, Peters A, Psaty BM, et alNolte IM, Munoz ML, Tragante V, Amare AT, Jansen R, Vaez A, von der Heyde B, Avery CL, Bis JC, Dierckx B, van Dongen J, Gogarten SM, Goyette P, Hernesniemi J, Huikari V, Hwang SJ, Jaju D, Kerr KF, Kluttig A, Krijthe BP, Kumar J, van der Laan SW, Lyytikäinen LP, Maihofer AX, Minassian A, van der Most PJ, Müller-Nurasyid M, Nivard M, Salvi E, Stewart JD, Thayer JF, Verweij N, Wong A, Zabaneh D, Zafarmand MH, Abdellaoui A, Albarwani S, Albert C, Alonso A, Ashar F, Auvinen J, Axelsson T, Baker DG, de Bakker PIW, Barcella M, Bayoumi R, Bieringa RJ, Boomsma D, Boucher G, Britton AR, Christophersen I, Dietrich A, Ehret GB, Ellinor PT, Eskola M, Felix JF, Floras JS, Franco OH, Friberg P, Gademan MGJ, Geyer MA, Giedraitis V, Hartman CA, Hemerich D, Hofman A, Hottenga JJ, Huikuri H, Hutri-Kähönen N, Jouven X, Junttila J, Juonala M, Kiviniemi AM, Kors JA, Kumari M, Kuznetsova T, Laurie CC, Lefrandt JD, Li Y, Li Y, Liao D, Limacher MC, Lin HJ, Lindgren CM, Lubitz SA, Mahajan A, McKnight B, zu Schwabedissen HM, Milaneschi Y, Mononen N, Morris AP, Nalls MA, Navis G, Neijts M, Nikus K, North KE, O'Connor DT, Ormel J, Perz S, Peters A, Psaty BM, Raitakari OT, Risbrough VB, Sinner MF, Siscovick D, Smit JH, Smith NL, Soliman EZ, Sotoodehnia N, Staessen JA, Stein PK, Stilp AM, Stolarz-Skrzypek K, Strauch K, Sundström J, Swenne CA, Syvänen AC, Tardif JC, Taylor KD, Teumer A, Thornton TA, Tinker LE, Uitterlinden AG, van Setten J, Voss A, Waldenberger M, Wilhelmsen KC, Willemsen G, Wong Q, Zhang ZM, Zonderman AB, Cusi D, Evans MK, Greiser HK, van der Harst P, Hassan M, Ingelsson E, Järvelin MR, Kääb S, Kähönen M, Kivimaki M, Kooperberg C, Kuh D, Lehtimäki T, Lind L, Nievergelt CM, O'Donnell CJ, Oldehinkel AJ, Penninx B, Reiner AP, Riese H, van Roon AM, Rioux JD, Rotter JI, Sofer T, Stricker BH, Tiemeier H, Vrijkotte TGM, Asselbergs FW, Brundel BJJM, Heckbert SR, Whitsel EA, den Hoed M, Snieder H, de Geus EJC. Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nat Commun 2017; 8:15805. [PMID: 28613276 PMCID: PMC5474732 DOI: 10.1038/ncomms15805] [Show More Authors] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74
Collapse
Affiliation(s)
- Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - M. Loretto Munoz
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Vinicius Tragante
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Azmeraw T. Amare
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
- Department of Epidemiology, School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Rick Jansen
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam 1081 BT, The Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Benedikt von der Heyde
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75237, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
| | - Christy L. Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98104, USA
| | - Bram Dierckx
- Department of Child and Adolescent Psychiatry/Psychology, Department of Child and Adolescent Psychiatry, PO Box 2060, Rotterdam 3000 CB, The Netherlands
- The Generation R Study Group, Erasmus MC, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
| | - Stephanie M. Gogarten
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | | | - Jussi Hernesniemi
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
- Department of Cardiology, Heart Hospital, Tampere University Hospital, Tampere 33521, Finland
| | - Ville Huikari
- Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, Massachusetts 01702, USA
- Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Deepali Jaju
- Department of Clinical Physiology, Sultan Qaboos University Hospital, Muscat—Al Khoudh 123, Sultanate of Oman
| | - Kathleen F. Kerr
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) 06097, Germany
| | - Bouwe P. Krijthe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Jitender Kumar
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75237, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
| | - Sander W. van der Laan
- Laboratory of Experimental Cardiology, Department of Heart and Lung, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
- Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
- Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Peter J. van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- Department of Medicine, University Hospital Munich, Ludwig-Maximilians-University, Munich 80539, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich 80336, Germany
| | - Michel Nivard
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Erika Salvi
- Department of Health Sciences, University of Milano, Milano 20122, Italy
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Julian F. Thayer
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, Ohio 43210, USA
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing, University College London, 33 Bedford Place, London WC1B 5JU, UK
| | - Delilah Zabaneh
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
- University College London Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mohammad H. Zafarmand
- Department of Public Health, Academic Medical Center (AMC), University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
- Department of Obstetrics and Gynaecology, Academic Medical Centre, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Sulayma Albarwani
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat Al-Khoudh 123, Sultanate of Oman
| | - Christine Albert
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Foram Ashar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Juha Auvinen
- Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu 90220, Finland
| | - Tomas Axelsson
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala 75237, Sweden
| | - Dewleen G. Baker
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
- Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Paul I. W. de Bakker
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matteo Barcella
- Department of Health Sciences, University of Milano, Milano 20122, Italy
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University, PO Box 505055, Dubai Healthcare City, United Arab Emirates
| | - Rob J. Bieringa
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Dorret Boomsma
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | | | - Annie R. Britton
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Ingrid Christophersen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02114, USA
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Rud 1346, Norway
| | - Andrea Dietrich
- Department of Child- and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - George B. Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Geneva 1211, Switzerland
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02114, USA
- Cardiac Arrhythmia Service & Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Markku Eskola
- Department of Cardiology, Heart Hospital, Tampere University Hospital, Tampere 33521, Finland
- Department of Cardiology, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Janine F. Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada M5S
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Peter Friberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Maaike G. J. Gademan
- Department of Public Health, Academic Medical Center (AMC), University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Mark A. Geyer
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Uppsala University, Uppsala 75237, Sweden
| | - Catharina A. Hartman
- Interdisciplinary Center Psychopathology and Emotion regulation, Department of Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Daiane Hemerich
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Heikki Huikuri
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland
- Department of Pediatrics, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Xavier Jouven
- INSERM U970, Paris Descartes University, Paris 75006, France
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku 20520, Finland
- Division of Medicine, Turku University Hospital, Turku 20521, Finland
| | - Antti M. Kiviniemi
- Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90220, Finland
| | - Jan A. Kors
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Meena Kumari
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
- ISER, Essex University, Colchester, Essex CO4 3SQ, UK
| | - Tatiana Kuznetsova
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Joop D. Lefrandt
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Yong Li
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Marian C. Limacher
- Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, Florida 32611, USA
| | - Henry J. Lin
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Cecilia M. Lindgren
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford OX3 7BN, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02114, USA
- Cardiac Arrhythmia Service & Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Barbara McKnight
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98104, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam 1081 BT, The Netherlands
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Andrew P. Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Melanie Neijts
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Kjell Nikus
- Department of Cardiology, Heart Hospital, Tampere University Hospital, Tampere 33521, Finland
- Department of Cardiology, University of Tampere, School of Medicine, Tampere 33014, Finland
| | - Kari E. North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Daniel T. O'Connor
- Department of Medicine, University of California, San Diego, San Diego, California 92093, USA
| | - Johan Ormel
- Interdisciplinary Center Psychopathology and Emotion regulation, Department of Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Siegfried Perz
- Institute of Epidemiology II, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich 80336, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98104, USA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, Washington 98195, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
| | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Victoria B. Risbrough
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
- Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Moritz F. Sinner
- Department of Medicine, University Hospital Munich, Ludwig-Maximilians-University, Munich 80539, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich 80336, Germany
| | - David Siscovick
- The New York Academy of Medicine, New York, New York 10029, USA
| | - Johannes H. Smit
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam 1081 BT, The Netherlands
| | - Nicholas L. Smith
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington 98195, USA
- Seattle Epidemiologic Research and Information Center, Veterans Affairs Office of Research and Development, Seattle, Washington 98108, USA
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington 98101, USA
| | - Jan A. Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Phyllis K. Stein
- Heart Rate Variability Lab, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Adrienne M. Stilp
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Cracow 31-008, Poland
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Johan Sundström
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Cees A. Swenne
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine, Uppsala University, Uppsala 75237, Sweden
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8
- Université de Montréal, Montreal, Quebec, Canada H3T IJ4
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Timothy A. Thornton
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Lesley E. Tinker
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging NCHA), Leiden 2300 RC, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Andreas Voss
- Institute of Innovative Health Technologies—IGHT Jena Ernst-Abbe-Hochschule Jena, Jena 07745, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Kirk C. Wilhelmsen
- Departments of Genetics and Neurology University of North Carolina, Chapel Hill, North Carolina 27599, USA
- The Renaissance Computing Institute, Chapel Hill, North Carolina 27599, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Zhu-Ming Zhang
- Epidemiological Cardiology Research Center (EPICARE), Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Daniele Cusi
- Institute of Biomedical Technologies, CNR—Italian National Research Council, Milan 20090, Italy
- KOS Genetic SRL, Bresso (Milano) 20091, Italy
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Halina K. Greiser
- German Cancer Research Centre, Division of Cancer Epidemiology, Heidelberg 69210, Germany
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Mohammad Hassan
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat Al-Khoudh 123, Sultanate of Oman
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75237, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu 90220, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, St Mary’s campus, Imperial College London, London W2 1PG, UK
- Biocenter Oulu University of Oulu, Oulu 90014, Finland
| | - Stefan Kääb
- Department of Medicine, University Hospital Munich, Ludwig-Maximilians-University, Munich 80539, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich 80336, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland
- Department of Clinical Physiology, University of Tampere, School of Medicine, Tampere 33014, Finland
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London WC1E 6BT, UK
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, University College London, 33 Bedford Place, London WC1B 5JU, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala 751 85, Sweden
| | - Caroline M. Nievergelt
- Department of Psychiatry, University of California, San Diego, San Diego, California 92093, USA
- Center for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Chris J. O'Donnell
- Framingham Heart Study, Framingham, Massachusetts 01702, USA
- Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
- Cardiology Section, Boston Veteran’s Administration Healthcare, Boston, Maryland 02132, USA
| | - Albertine J. Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion regulation, Department of Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Brenda Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ inGeest, Amsterdam 1081 BT, The Netherlands
| | - Alexander P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Harriëtte Riese
- Interdisciplinary Center Psychopathology and Emotion regulation, Department of Psychiatry, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Arie M. van Roon
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - John D. Rioux
- Montreal Heart Institute, Montreal, Quebec, Canada H1T 1C8
- Université de Montréal, Montreal, Quebec, Canada H3T IJ4
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | - Tamar Sofer
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Bruno H. Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
- Inspectorate for Health Care, The Hague 2511 VX, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Department of Child and Adolescent Psychiatry, PO Box 2060, Rotterdam 3000 CB, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2060, Rotterdam 3000 CB, The Netherlands
| | - Tanja G. M. Vrijkotte
- Department of Public Health, Academic Medical Center (AMC), University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Folkert W. Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
- Institute of Cardiovascular Science, University College London, 222 Euston Road, London NW1 2DA, UK
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht 3501 DG, The Netherlands
| | - Bianca J. J. M. Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1118, Amsterdam 1081 HV, The Netherlands
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Marcel den Hoed
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala 75237, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala 75237, Sweden
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Behavioral and Movement Sciences, VU University, Amsterdam 1081 BT, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University & VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
159
|
Dietary adaptation of FADS genes in Europe varied across time and geography. Nat Ecol Evol 2017; 1:167. [PMID: 29094686 PMCID: PMC5672832 DOI: 10.1038/s41559-017-0167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/18/2017] [Indexed: 11/08/2022]
Abstract
Fatty acid desaturase (FADS) genes encode rate-limiting enzymes for the biosynthesis of omega-6 and omega-3 long chain polyunsaturated fatty acids (LCPUFAs). This biosynthesis is essential for individuals subsisting on LCPUFAs-poor diets (e.g. plant-based). Positive selection on FADS genes has been reported in multiple populations, but its presence and pattern in Europeans remain elusive. Here, using ancient and modern DNA, we demonstrate that positive selection acted on the same FADS variants both before and after the advent of farming in Europe, but on opposite (i.e. alternative) alleles. Selection in recent farmers also varied geographically, with the strongest signal in Southern Europe. These varying selection patterns concur with anthropological evidence of varying diets, and with the association of farming-adaptive alleles with higher FADS1 expression and thus enhanced LCPUFAs biosynthesis. Genome-wide association studies reveal that farming-adaptive alleles not only increase LCPUFAs, but also affect other lipid levels and protect against several inflammatory diseases.
Collapse
|
160
|
Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 2017; 108:73-85. [PMID: 28546098 DOI: 10.1016/j.yjmcc.2017.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/01/2023]
Abstract
Electrical remodeling has been reported to play a major role in the initiation and maintenance of atrial fibrillation (AF). Long non-coding RNAs (lncRNAs) have been increasingly recognized as contributors to the pathology of heart diseases. However, the roles and mechanisms of lncRNAs in electrical remodeling during AF remain unknown. In this study, the lncRNA expression profiles of right atria were investigated in AF and non-AF rabbit models by using RNA sequencing technique and validated using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 99,843 putative new lncRNAs were identified, in which 1220 differentially expressed transcripts exhibited >2-fold change. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. On the basis of a series of filtering pipelines, one lncRNA, TCONS_00075467, was selected to explore its effects and mechanisms on electrical remodeling. The atrial effective refractory period was shortened in vivo and the L-type calcium current and action potential duration were decreased in vitro by silencing of TCONS_00075467 with lentiviruses. Besides, the expression of miRNA-328 was negatively correlated with TCONS_00075467. We further demonstrated that TCONS_00075467 could sponge miRNA-328 in vitro and in vivo to regulate the downstream protein coding gene CACNA1C. In addition, miRNA-328 could partly reverse the effects of TCONS_00075467 on electrical remodeling. In summary, dysregulated lncRNAs may play important roles in modulating electrical remodeling during AF. Our study may facilitate the mechanism studies of lncRNAs in AF pathogenesis and provide potential therapeutic targets for AF.
Collapse
|
161
|
Yu R, Fan XF, Chen C, Liu ZH. Whole‑exome sequencing identifies a novel mutation (R367G) in SCN5A to be associated with familial cardiac conduction disease. Mol Med Rep 2017; 16:410-414. [PMID: 28534967 DOI: 10.3892/mmr.2017.6592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 03/16/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiac conduction disease is a primary cause of sudden cardiac death. Sodium voltage‑gated channel‑α subunit 5 (SCN5A) mutations have been reported to underlie a variety of inherited arrhythmias. Numerous disease‑causing mutations of SCN5A have been identified in patients with ≥10 different conditions, including type 3 long‑QT syndrome and Brugada syndrome. The present study investigated a family with a history of arrhythmia, with the proband having a history of arrhythmia and syncope. Whole‑exome sequencing was applied in order to detect the disease‑causing mutation in this family, and Sanger sequencing was used to confirm the co‑segregation among the family members. A missense mutation (c.1099C>G/p.R367G) of SCN5A was identified in the family and was observed to be co‑segregated in all affected members of the family. The missense mutation results in a substitution of glycine for arginine, which may affect sodium transmembrane transport. The present study provides an accurate genetic test which may be used in individuals who exhibit no clinical symptoms.
Collapse
Affiliation(s)
- Rong Yu
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xue-Feng Fan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410010, P.R. China
| | - Chan Chen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng-Hua Liu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
162
|
Jansen R, Hottenga JJ, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, Wright FA, Penninx BWJH, Boomsma DI. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum Mol Genet 2017; 26:1444-1451. [PMID: 28165122 DOI: 10.1093/hmg/ddx043] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/27/2017] [Indexed: 11/14/2022] Open
Abstract
In recent years, multiple eQTL (expression quantitative trait loci) catalogs have become available that can help understand the functionality of complex trait-related single nucleotide polymorphisms (SNPs). In eQTL catalogs, gene expression is often strongly associated with multiple SNPs, which may reflect either one or multiple independent associations. Conditional eQTL analysis allows a distinction between dependent and independent eQTLs. We performed conditional eQTL analysis in 4,896 peripheral blood microarray gene expression samples. Our analysis showed that 35% of genes with a cis eQTL have at least two independent cis eQTLs; for several genes up to 13 independent cis eQTLs were identified. Also, 12% (671) of the independent cis eQTLs identified in conditional analyses were not significant in unconditional analyses. The number of GWAS catalog SNPs identified as eQTL in the conditional analyses increases with 24% as compared to unconditional analyses. We provide an online conditional cis eQTL mapping catalog for whole blood (https://eqtl.onderzoek.io/), which can be used to lookup eQTLs more accurately than in standard unconditional whole blood eQTL databases.
Collapse
Affiliation(s)
- Rick Jansen
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Abdel Abdellaoui
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Bram Laport
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eco J de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, Bioinformatics Research Center, North Carolina State University, NC, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam, The Netherlands
| |
Collapse
|
163
|
Lodder EM, Verkerk AO, Bezzina CR. Pacing Discovery: G-Protein β Subunit Mutations in Sinus Node Dysfunction. Circ Res 2017; 120:1524-1526. [PMID: 28495981 DOI: 10.1161/circresaha.117.310953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elisabeth M Lodder
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Arie O Verkerk
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- From the Heart Center, Department of Clinical and Experimental Cardiology (E.M.L., A.O.V., C.R.B.) and Department of Medical Biology (A.O.V.), Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
164
|
Noordam R, Sitlani CM, Avery CL, Stewart JD, Gogarten SM, Wiggins KL, Trompet S, Warren HR, Sun F, Evans DS, Li X, Li J, Smith AV, Bis JC, Brody JA, Busch EL, Caulfield MJ, Chen YDI, Cummings SR, Cupples LA, Duan Q, Franco OH, Méndez-Giráldez R, Harris TB, Heckbert SR, van Heemst D, Hofman A, Floyd JS, Kors JA, Launer LJ, Li Y, Li-Gao R, Lange LA, Lin HJ, de Mutsert R, Napier MD, Newton-Cheh C, Poulter N, Reiner AP, Rice KM, Roach J, Rodriguez CJ, Rosendaal FR, Sattar N, Sever P, Seyerle AA, Slagboom PE, Soliman EZ, Sotoodehnia N, Stott DJ, Stürmer T, Taylor KD, Thornton TA, Uitterlinden AG, Wilhelmsen KC, Wilson JG, Gudnason V, Jukema JW, Laurie CC, Liu Y, Mook-Kanamori DO, Munroe PB, Rotter JI, Vasan RS, Psaty BM, Stricker BH, Whitsel EA. A genome-wide interaction analysis of tricyclic/tetracyclic antidepressants and RR and QT intervals: a pharmacogenomics study from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. J Med Genet 2017; 54:313-323. [PMID: 28039329 PMCID: PMC5406254 DOI: 10.1136/jmedgenet-2016-104112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Increased heart rate and a prolonged QT interval are important risk factors for cardiovascular morbidity and mortality, and can be influenced by the use of various medications, including tricyclic/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the association between TCA use and RR and QT intervals. METHODS AND RESULTS We conducted race/ethnic-specific genome-wide interaction analyses (with HapMap phase II imputed reference panel imputation) of TCAs and resting RR and QT intervals in cohorts of European (n=45 706; n=1417 TCA users), African (n=10 235; n=296 TCA users) and Hispanic/Latino (n=13 808; n=147 TCA users) ancestry, adjusted for clinical covariates. Among the populations of European ancestry, two genome-wide significant loci were identified for RR interval: rs6737205 in BRE (β=56.3, pinteraction=3.9e-9) and rs9830388 in UBE2E2 (β=25.2, pinteraction=1.7e-8). In Hispanic/Latino cohorts, rs2291477 in TGFBR3 significantly modified the association between TCAs and QT intervals (β=9.3, pinteraction=2.55e-8). In the meta-analyses of the other ethnicities, these loci either were excluded from the meta-analyses (as part of quality control), or their effects did not reach the level of nominal statistical significance (pinteraction>0.05). No new variants were identified in these ethnicities. No additional loci were identified after inverse-variance-weighted meta-analysis of the three ancestries. CONCLUSIONS Among Europeans, TCA interactions with variants in BRE and UBE2E2 were identified in relation to RR intervals. Among Hispanic/Latinos, variants in TGFBR3 modified the relation between TCAs and QT intervals. Future studies are required to confirm our results.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Fangui Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - Joshua C Bis
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan L Busch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institue on Aging, Bethesda, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institue on Aging, Bethesda, MD, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie D Napier
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher Newton-Cheh
- Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Research Center & Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, W2 1PG, UK
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeffrey Roach
- Research Computing Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos J Rodriguez
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, W2 1PG, UK
| | - Amanda A Seyerle
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - P Eline Slagboom
- Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nona Sotoodehnia
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- The Renaissance Computing Institute, Chapel Hill, NC, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
- Department of BESC, Epidemiology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institue, Group Health Cooperative, Seattle, WA, USA
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Inspectorate of Health Care, Utrecht, the Netherlands
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
165
|
Surkova E, Badano LP, Bellu R, Aruta P, Sambugaro F, Romeo G, Migliore F, Muraru D. Left bundle branch block: from cardiac mechanics to clinical and diagnostic challenges. Europace 2017; 19:1251-1271. [DOI: 10.1093/europace/eux061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
|
166
|
Nolte IM, van der Most PJ, Alizadeh BZ, de Bakker PI, Boezen HM, Bruinenberg M, Franke L, van der Harst P, Navis G, Postma DS, Rots MG, Stolk RP, Swertz MA, Wolffenbuttel BH, Wijmenga C, Snieder H. Missing heritability: is the gap closing? An analysis of 32 complex traits in the Lifelines Cohort Study. Eur J Hum Genet 2017; 25:877-885. [PMID: 28401901 DOI: 10.1038/ejhg.2017.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the recent explosive rise in number of genetic markers for complex disease traits identified in genome-wide association studies, there is still a large gap between the known heritability of these traits and the part explained by these markers. To gauge whether this 'heritability gap' is closing, we first identified genome-wide significant SNPs from the literature and performed replication analyses for 32 highly relevant traits from five broad disease areas in 13 436 subjects of the Lifelines Cohort. Next, we calculated the variance explained by multi-SNP genetic risk scores (GRSs) for each trait, and compared it to their broad- and narrow-sense heritabilities captured by all common SNPs. The majority of all previously-associated SNPs (median=75%) were significantly associated with their respective traits. All GRSs were significant, with unweighted GRSs generally explaining less phenotypic variance than weighted GRSs, for which the explained variance was highest for height (15.5%) and varied between 0.02 and 6.7% for the other traits. Broad-sense common-SNP heritability estimates were significant for all traits, with the additive effect of common SNPs explaining 48.9% of the variance for height and between 5.6 and 39.2% for the other traits. Dominance effects were uniformly small (0-1.5%) and not significant. On average, the variance explained by the weighted GRSs accounted for only 10.7% of the common-SNP heritability of the 32 traits. These results indicate that GRSs may not yet be ready for accurate personalized prediction of complex disease traits limiting widespread adoption in clinical practice.
Collapse
Affiliation(s)
- Ilja M Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter J van der Most
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Behrooz Z Alizadeh
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul Iw de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Marike Boezen
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirkje S Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Department of Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ronald P Stolk
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bruce Hr Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
167
|
Sonoda K, Ohno S, Otuki S, Kato K, Yagihara N, Watanabe H, Makiyama T, Minamino T, Horie M. Quantitative analysis of PKP2 and neighbouring genes in a patient with arrhythmogenic right ventricular cardiomyopathy caused by heterozygous PKP2 deletion. Europace 2017; 19:644-650. [PMID: 28431057 DOI: 10.1093/europace/euw038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/02/2016] [Indexed: 10/13/2023] Open
Abstract
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disease mainly caused by desmosome gene mutations. The genetic culprit, however, remains elusive in ∼50% of ARVC patients. One of the reasons for missing genetic abnormalities is the difficulty in detecting large deletions/duplications, which are called as copy number variation (CNV) by the Sanger sequencing method. This study aimed to identify CNVs in PKP2 and a part of other desmosome genes in ARVC patients. METHODS AND RESULTS The study cohort consisted of 71 ARVC probands who were diagnosed as definite or borderline cases based on 2010 Task Force Criteria. Among them, 32 (45%) carried at least one mutation in desmosome genes detected by the Sanger method. Using the multiplex ligation-dependent probe amplification method, we identified a male proband (1.4%) with a complete deletion of all PKP2 coding exons. He was 31 years old and showed exercise-induced sustained ventricular tachycardia with superior axis and left bundle-branch block pattern. His cardiac magnetic resonance imaging and computed tomography showed right ventricular dilatation and reduced ejection fraction. His 12-lead electrocardiogram showed T-wave inversion in V1-V3, and late potentials were positive, indicating definite ARVC. To confirm the precise location of the deletion, we performed relative quantitative PCR. We found complete deletion of both SYT10 and ALG10 located in 3' of PKP2; the total deletion size was at least 1.23 Mb. CONCLUSION Screening for CNVs in desmosome genes is useful to identify the genetic basis of disease in clinically suspected ARVC patients.
Collapse
Affiliation(s)
- Keiko Sonoda
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sou Otuki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Kato
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| | - Nobue Yagihara
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Watanabe
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Tsukiwa-cho, Seta, Otsu 520-2192, Japan
| |
Collapse
|
168
|
Klassen MP, Peters CJ, Zhou S, Williams HH, Jan LY, Jan YN. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 2017; 6. [PMID: 28328397 PMCID: PMC5362267 DOI: 10.7554/elife.20851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022] Open
Abstract
While the signals and complexes that coordinate the heartbeat are well established, how the heart maintains its electromechanical rhythm over a lifetime remains an open question with significant implications to human health. Reasoning that this homeostatic challenge confronts all pulsatile organs, we developed a high resolution imaging and analysis toolset for measuring cardiac function in intact, unanesthetized Drosophila melanogaster. We demonstrate that, as in humans, normal aging primarily manifests as defects in relaxation (diastole) while preserving contractile performance. Using this approach, we discovered that a pair of two-pore potassium channel (K2P) subunits, largely dispensable early in life, are necessary for terminating contraction (systole) in aged animals, where their loss culminates in fibrillatory cardiac arrest. As the pumping function of its heart is acutely dispensable for survival, Drosophila represents a uniquely accessible model for understanding the signaling networks maintaining cardiac performance during normal aging.
Collapse
Affiliation(s)
- Matthew P Klassen
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christian J Peters
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shiwei Zhou
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Hannah H Williams
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
169
|
Pan G, Ameur A, Enroth S, Bysani M, Nord H, Cavalli M, Essand M, Gyllensten U, Wadelius C. PATZ1 down-regulates FADS1 by binding to rs174557 and is opposed by SP1/SREBP1c. Nucleic Acids Res 2017; 45:2408-2422. [PMID: 27932482 PMCID: PMC5389558 DOI: 10.1093/nar/gkw1186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/24/2016] [Indexed: 11/14/2022] Open
Abstract
The FADS1 and FADS2 genes in the FADS cluster encode the rate-limiting enzymes in the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs). Genetic variation in this region has been associated with a large number of diseases and traits many of them correlated to differences in metabolism of PUFAs. However, the causative variants leading to these associations have not been identified. Here we find that the multiallelic rs174557 located in an AluYe5 element in intron 1 of FADS1 is functional and lies within a PATZ1 binding site. The derived allele of rs174557, which is the common variant in most populations, diminishes binding of PATZ1, a transcription factor conferring allele-specific downregulation of FADS1. The PATZ1 binding site overlaps with a SP1 site. The competitive binding between the suppressive PATZ1 and the activating complex of SP1 and SREBP1c determines the enhancer activity of this region, which regulates expression of FADS1.
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Stefan Enroth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Madhusudhan Bysani
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Helena Nord
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Magnus Essand
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75237, Sweden
| |
Collapse
|
170
|
Nagy R, Boutin TS, Marten J, Huffman JE, Kerr SM, Campbell A, Evenden L, Gibson J, Amador C, Howard DM, Navarro P, Morris A, Deary IJ, Hocking LJ, Padmanabhan S, Smith BH, Joshi P, Wilson JF, Hastie ND, Wright AF, McIntosh AM, Porteous DJ, Haley CS, Vitart V, Hayward C. Exploration of haplotype research consortium imputation for genome-wide association studies in 20,032 Generation Scotland participants. Genome Med 2017; 9:23. [PMID: 28270201 PMCID: PMC5339960 DOI: 10.1186/s13073-017-0414-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/09/2017] [Indexed: 01/31/2023] Open
Abstract
Background The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based population cohort with DNA, biological samples, socio-demographic, psychological and clinical data from approximately 24,000 adult volunteers across Scotland. Although data collection was cross-sectional, GS:SFHS became a prospective cohort due to of the ability to link to routine Electronic Health Record (EHR) data. Over 20,000 participants were selected for genotyping using a large genome-wide array. Methods GS:SFHS was analysed using genome-wide association studies (GWAS) to test the effects of a large spectrum of variants, imputed using the Haplotype Research Consortium (HRC) dataset, on medically relevant traits measured directly or obtained from EHRs. The HRC dataset is the largest available haplotype reference panel for imputation of variants in populations of European ancestry and allows investigation of variants with low minor allele frequencies within the entire GS:SFHS genotyped cohort. Results Genome-wide associations were run on 20,032 individuals using both genotyped and HRC imputed data. We present results for a range of well-studied quantitative traits obtained from clinic visits and for serum urate measures obtained from data linkage to EHRs collected by the Scottish National Health Service. Results replicated known associations and additionally reveal novel findings, mainly with rare variants, validating the use of the HRC imputation panel. For example, we identified two new associations with fasting glucose at variants near to Y_RNA and WDR4 and four new associations with heart rate at SNPs within CSMD1 and ASPH, upstream of HTR1F and between PROKR2 and GPCPD1. All were driven by rare variants (minor allele frequencies in the range of 0.08–1%). Proof of principle for use of EHRs was verification of the highly significant association of urate levels with the well-established urate transporter SLC2A9. Conclusions GS:SFHS provides genetic data on over 20,000 participants alongside a range of phenotypes as well as linkage to National Health Service laboratory and clinical records. We have shown that the combination of deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out association studies to gain insight into the genetic architecture of complex traits. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0414-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reka Nagy
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Thibaud S Boutin
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Jonathan Marten
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Jennifer E Huffman
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Shona M Kerr
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Louise Evenden
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jude Gibson
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Carmen Amador
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - David M Howard
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Pau Navarro
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew Morris
- Farr Institute of Health Informatics Research, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lynne J Hocking
- Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Sandosh Padmanabhan
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Blair H Smith
- Medical Research Institute, University of Dundee, Dundee, UK
| | - Peter Joshi
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - James F Wilson
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Nicholas D Hastie
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Alan F Wright
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Chris S Haley
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
171
|
The UK Biobank Cardio-metabolic Traits Consortium Blood Pressure Working Group, Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Segura Lepe MP, O’Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Mägi R, Stanton A, Connell J, Bakker SJL, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton-Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JMM, Tobin MD, Munroe PB, Ehret GB, Wain LV, Barnes MR, Tzoulaki I, Caulfield MJ, Elliott P, collaboration with The International Consortium of Blood Pressure #, (ICBP) 1000G Analyses, The CHD Exome+ Consortium, The ExomeBP Consortium, The T2D-GENES Consortium, The GoT2DGenes Consortium, The Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, The International Genomics of Blood Pressure (iGEN-BP) Consortium. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49:403-415. [PMID: 28135244 PMCID: PMC5972004 DOI: 10.1038/ng.3768] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
Abstract
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chunyu Liu
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO, USA
| | - Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Marcelo P Segura Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Bayer Pharma AG, Berlin, Germany
| | - Paul F O’Reilly
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joanne Knight
- Data Science Institute, Lancester University, Lancaster, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Neil Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Denis C Shields
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Simon Thom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Morris Brown
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, USA
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Public Health and Primary Care, University of Cambridge, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jaspal S Kooner
- Imperial College Healthcare NHS Trust, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK
- National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hemingway H, Feder GS, Fitzpatrick NK, Denaxas S, Shah AD, Timmis AD. Using nationwide ‘big data’ from linked electronic health records to help improve outcomes in cardiovascular diseases: 33 studies using methods from epidemiology, informatics, economics and social science in the ClinicAl disease research using LInked Bespoke studies and Electronic health Records (CALIBER) programme. PROGRAMME GRANTS FOR APPLIED RESEARCH 2017. [DOI: 10.3310/pgfar05040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BackgroundElectronic health records (EHRs), when linked across primary and secondary care and curated for research use, have the potential to improve our understanding of care quality and outcomes.ObjectiveTo evaluate new opportunities arising from linked EHRs for improving quality of care and outcomes for patients at risk of or with coronary disease across the patient journey.DesignEpidemiological cohort, health informatics, health economics and ethnographic approaches were used.Setting230 NHS hospitals and 226 general practices in England and Wales.ParticipantsUp to 2 million initially healthy adults, 100,000 people with stable coronary artery disease (SCAD) and up to 300,000 patients with acute coronary syndrome.Main outcome measuresQuality of care, fatal and non-fatal cardiovascular disease (CVD) events.Data platform and methodsWe created a novel research platform [ClinicAl disease research using LInked Bespoke studies and Electronic health Records (CALIBER)] based on linkage of four major sources of EHR data in primary care and national registries. We carried out 33 complementary studies within the CALIBER framework. We developed a web-based clinical decision support system (CDSS) in hospital chest pain clinics. We established a novel consented prognostic clinical cohort of SCAD patients.ResultsCALIBER was successfully established as a valid research platform based on linked EHR data in nearly 2 million adults with > 600 EHR phenotypes implemented on the web portal (seehttps://caliberresearch.org/portal). Despite national guidance, key opportunities for investigation and treatment were missed across the patient journey, resulting in a worse prognosis for patients in the UK compared with patients in health systems in other countries. Our novel, contemporary, high-resolution studies showed heterogeneous associations for CVD risk factors across CVDs. The CDSS did not alter the decision-making behaviour of clinicians in chest pain clinics. Prognostic models using real-world data validly discriminated risk of death and events, and were used in cost-effectiveness decision models.ConclusionsEmerging ‘big data’ opportunities arising from the linkage of records at different stages of a patient’s journey are vital to the generation of actionable insights into the diagnosis, risk stratification and cost-effective treatment of people at risk of, or with, CVD.Future workThe vast majority of NHS data remain inaccessible to research and this hampers efforts to improve efficiency and quality of care and to drive innovation. We propose three priority directions for further research. First, there is an urgent need to ‘unlock’ more detailed data within hospitals for the scale of the UK’s 65 million population. Second, there is a need for scaled approaches to using EHRs to design and carry out trials, and interpret the implementation of trial results. Third, large-scale, disease agnostic genetic and biological collections linked to such EHRs are required in order to deliver precision medicine and to innovate discovery.Study registrationCALIBER studies are registered as follows: study 2 – NCT01569139, study 4 – NCT02176174 and NCT01164371, study 5 – NCT01163513, studies 6 and 7 – NCT01804439, study 8 – NCT02285322, and studies 26–29 – NCT01162187. Optimising the Management of Angina is registered as Current Controlled Trials ISRCTN54381840.FundingThe National Institute for Health Research (NIHR) Programme Grants for Applied Research programme (RP-PG-0407-10314) (all 33 studies) and additional funding from the Wellcome Trust (study 1), Medical Research Council Partnership grant (study 3), Servier (study 16), NIHR Research Methods Fellowship funding (study 19) and NIHR Research for Patient Benefit (study 33).
Collapse
Affiliation(s)
- Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Gene S Feder
- Centre for Academic Primary Care, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Natalie K Fitzpatrick
- Institute of Health Informatics, University College London, London, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Anoop D Shah
- Institute of Health Informatics, University College London, London, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Adam D Timmis
- Farr Institute of Health Informatics Research, University College London, London, UK
- Barts Health NHS Trust, London, UK
- Farr Institute of Health Informatics Research, Queen Mary University of London, London, UK
| |
Collapse
|
173
|
Eppinga RN, Hagemeijer Y, Burgess S, Hinds DA, Stefansson K, Gudbjartsson DF, van Veldhuisen DJ, Munroe PB, Verweij N, van der Harst P. Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality. Nat Genet 2016; 48:1557-1563. [PMID: 27798624 DOI: 10.1038/ng.3708] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Resting heart rate is a heritable trait correlated with life span. Little is known about the genetic contribution to resting heart rate and its relationship with mortality. We performed a genome-wide association discovery and replication analysis starting with 19.9 million genetic variants and studying up to 265,046 individuals to identify 64 loci associated with resting heart rate (P < 5 × 10-8); 46 of these were novel. We then used the genetic variants identified to study the association between resting heart rate and all-cause mortality. We observed that a genetically predicted resting heart rate increase of 5 beats per minute was associated with a 20% increase in mortality risk (hazard ratio 1.20, 95% confidence interval 1.11-1.28, P = 8.20 × 10-7) translating to a reduction in life expectancy of 2.9 years for males and 2.6 years for females. Our findings provide evidence for shared genetic predictors of resting heart rate and all-cause mortality.
Collapse
Affiliation(s)
- Ruben N Eppinga
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Yanick Hagemeijer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
174
|
Zheng L, Li QF, Ni L, Wang H, Ruan XC, Wu XS. Lifetime regular exercise affects the incident of different arrhythmias and improves organismal health in aging female Drosophila melanogaster. Biogerontology 2016; 18:97-108. [PMID: 27787741 DOI: 10.1007/s10522-016-9665-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
We used Drosophila melanogaster as an animal model system to study the impact of exercise training initiated early in life on cardiac function using a well-established model of inherent myogenic properties of the heart and discussed the changes on myosin, a myocardial contractile protein. We also explored the effect of early physical exercise on organismal aging by analyzing the wake-sleep pattern using a Drosophila activity monitor system. We found that a variety of arrhythmias are part of the heart spectrum in old flies after a lifetime of physical exercise as evidenced by reducing the incidence of fibrillations and increasing the occurrence of bradycardias. Maintenance of myocardial myosin levels may be an underlying contributor to these exercise-induced improvements in cardiac function at an advanced age. Moreover, we found that exercise training resulted in improved sleep quality by ameliorating age-related sleep inefficiency, fragmentation and sleep consolidation.
Collapse
Affiliation(s)
- Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China.
| | - Qiu Fang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Liu Ni
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Hui Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Xiang Cheng Ruan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan Province, China
| | - Xiu Shan Wu
- Heart Development Center, Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
175
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
176
|
Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Fallgaard Nielsen S, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, de Craen AJM, Trompet S, Luan J, Scott RA, Harris SE, Liewald DCM, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, CHARGE-Heart Failure Consortium, Uria-Nickelsen M, Malarstig A, Reily DF, Hoek M, Vogt T, Lin H, Lieb W, EchoGen Consortium, Traylor M, Markus HF, METASTROKE Consortium, Highland HM, Justice AE, Marouli E, GIANT Consortium, et alSurendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, Grarup N, Sim X, Barnes DR, Witkowska K, Staley JR, Tragante V, Tukiainen T, Yaghootkar H, Masca N, Freitag DF, Ferreira T, Giannakopoulou O, Tinker A, Harakalova M, Mihailov E, Liu C, Kraja AT, Fallgaard Nielsen S, Rasheed A, Samuel M, Zhao W, Bonnycastle LL, Jackson AU, Narisu N, Swift AJ, Southam L, Marten J, Huyghe JR, Stančáková A, Fava C, Ohlsson T, Matchan A, Stirrups KE, Bork-Jensen J, Gjesing AP, Kontto J, Perola M, Shaw-Hawkins S, Havulinna AS, Zhang H, Donnelly LA, Groves CJ, Rayner NW, Neville MJ, Robertson NR, Yiorkas AM, Herzig KH, Kajantie E, Zhang W, Willems SM, Lannfelt L, Malerba G, Soranzo N, Trabetti E, Verweij N, Evangelou E, Moayyeri A, Vergnaud AC, Nelson CP, Poveda A, Varga TV, Caslake M, de Craen AJM, Trompet S, Luan J, Scott RA, Harris SE, Liewald DCM, Marioni R, Menni C, Farmaki AE, Hallmans G, Renström F, Huffman JE, Hassinen M, Burgess S, Vasan RS, Felix JF, CHARGE-Heart Failure Consortium, Uria-Nickelsen M, Malarstig A, Reily DF, Hoek M, Vogt T, Lin H, Lieb W, EchoGen Consortium, Traylor M, Markus HF, METASTROKE Consortium, Highland HM, Justice AE, Marouli E, GIANT Consortium, Lindström J, Uusitupa M, Komulainen P, Lakka TA, Rauramaa R, Polasek O, Rudan I, Rolandsson O, Franks PW, Dedoussis G, Spector TD, EPIC-InterAct Consortium, Jousilahti P, Männistö S, Deary IJ, Starr JM, Langenberg C, Wareham NJ, Brown MJ, Dominiczak AF, Connell JM, Jukema JW, Sattar N, Ford I, Packard CJ, Esko T, Mägi R, Metspalu A, de Boer RA, van der Meer P, van der Harst P, Lifelines Cohort Study, Gambaro G, Ingelsson E, Lind L, de Bakker PIW, Numans ME, Brandslund I, Christensen C, Petersen ERB, Korpi-Hyövälti E, Oksa H, Chambers JC, Kooner JS, Blakemore AIF, Franks S, Jarvelin MR, Husemoen LL, Linneberg A, Skaaby T, Thuesen B, Karpe F, Tuomilehto J, Doney ASF, Morris AD, Palmer CNA, Holmen OL, Hveem K, Willer CJ, Tuomi T, Groop L, Käräjämäki A, Palotie A, Ripatti S, Salomaa V, Alam DS, Shafi Majumder AA, Di Angelantonio E, Chowdhury R, McCarthy MI, Poulter N, Stanton AV, Sever P, Amouyel P, Arveiler D, Blankenberg S, Ferrières J, Kee F, Kuulasmaa K, Müller-Nurasyid M, Veronesi G, Virtamo J, Deloukas P, Wellcome Trust Case Control Consortium, Elliott P, Understanding Society Scientific Group, Zeggini E, Kathiresan S, Melander O, Kuusisto J, Laakso M, Padmanabhan S, Porteous D, Hayward C, Scotland G, Collins FS, Mohlke KL, Hansen T, Pedersen O, Boehnke M, Stringham HM, EPIC-CVD Consortium, Frossard P, Newton-Cheh C, CHARGE+ Exome Chip Blood Pressure Consortium, Tobin MD, Nordestgaard BG, T2D-GENES Consortium, GoT2DGenes Consortium, ExomeBP Consortium, CHD Exome+ Consortium, Caulfield MJ, Mahajan A, Morris AP, Tomaszewski M, Samani NJ, Saleheen D, Asselbergs FW, Lindgren CM, Danesh J, Wain LV, Butterworth AS, Howson JMM, Munroe PB. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 2016; 48:1151-1161. [PMID: 27618447 PMCID: PMC5056636 DOI: 10.1038/ng.3654] [Show More Authors] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/02/2016] [Indexed: 11/08/2022]
Abstract
High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
Collapse
Affiliation(s)
- Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fotios Drenos
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building University College London, London, UK
| | - Robin Young
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Helen Warren
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - James P Cook
- Department of Health Sciences, University of Leicester, Leicester, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Alisa K Manning
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xueling Sim
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore
| | - Daniel R Barnes
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kate Witkowska
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - James R Staley
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Vinicius Tragante
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Taru Tukiainen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Nicholas Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease, Leicester, UK
| | - Daniel F Freitag
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Teresa Ferreira
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Olga Giannakopoulou
- Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrew Tinker
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
- Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Magdalena Harakalova
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Chunyu Liu
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Maria Samuel
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Anne U Jackson
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Amy J Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jeroen R Huyghe
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Cristiano Fava
- University of Lund, Department of Clinical Sciences, Malmö, Sweden
- University of Verona, Department of Medicine, Verona, Italy
| | - Therese Ohlsson
- University of Lund, Department of Clinical Sciences, Malmö, Sweden
| | - Angela Matchan
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Kathleen E Stirrups
- Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette P Gjesing
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jukka Kontto
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Institute of Molecular Medicine FIMM, University of Helsinki, Finland
| | - Susan Shaw-Hawkins
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aki S Havulinna
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Louise A Donnelly
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrianos M Yiorkas
- Section of Investigative Medicine, Imperial College London, London, UK
- Department of Life Sciences, Brunel University London, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Eero Kajantie
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynaecology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Sara M Willems
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Giovanni Malerba
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicole Soranzo
- Department of Haematology, University of Cambridge, Cambridge, UK
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Elisabetta Trabetti
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Niek Verweij
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- University Medical Center Groningen, University of Groningen, Department of Cardiology, The Netherlands
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Alireza Moayyeri
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Farr Institute of Health Informatics Research, Institute of Health Informatics, University College London, London, UK
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease, Leicester, UK
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | | | - Anton JM de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Mr. De Craen suddenly passed away January 2016
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jian’an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Robert A Scott
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - David CM Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Jennifer E Huffman
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maija Hassinen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Stephen Burgess
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Cardiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
- Sections of Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, Massachusetts, USA
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Dermot F Reily
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, Massachusetts, USA
| | - Maarten Hoek
- Merck Research Laboratories, Cardiometabolic Disease, Kenilworth, New Jersey, USA
| | - Thomas Vogt
- Merck Research Laboratories, Cardiometabolic Disease, Kenilworth, New Jersey, USA
- CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - EchoGen Consortium
- A full list of members and affiliations appears in the Supplementary Note
| | - Matthew Traylor
- Neurology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugh F Markus
- Neurology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Heather M Highland
- University of North Carolina at Chapel Hill, Department of Epidemiology, Chapel Hill, North Carolina, USA
| | - Anne E Justice
- University of North Carolina at Chapel Hill, Department of Epidemiology, Chapel Hill, North Carolina, USA
| | - Eirini Marouli
- Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - GIANT Consortium
- A full list of members and affiliations appears in the Supplementary Note
| | - Jaana Lindström
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
| | | | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Faculty of Medicine, University of Split, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, UK
| | | | - Pekka Jousilahti
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Satu Männistö
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Nick J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John M Connell
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian Ford
- University of Glasgow, Glasgow, UK
| | | | - Tõnu Esko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Internal Medicine and Medical Specialties, Columbus - Gemelli University Hospital, Catholic University, Rome, Italy
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Paul IW de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mattijs E Numans
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Eva RB Petersen
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | | | - Heikki Oksa
- Tampere University Hospital, Tampere, Finland
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexandra IF Blakemore
- Section of Investigative Medicine, Imperial College London, London, UK
- Department of Life Sciences, Brunel University London, London, UK
| | - Steve Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Medical Research Council Public Health England Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, London, UK
- Centre for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Lise L Husemoen
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Experimental Research, Glostrup University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tea Skaaby
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Betina Thuesen
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | - Jaakko Tuomilehto
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
- Dasman Diabetes Institute, Dasman, Kuwait
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alex SF Doney
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Andrew D Morris
- School of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh, UK
| | - Colin NA Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Oddgeir Lingaas Holmen
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
- St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord- Trøndelag Health Trust, Levanger, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland; Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland University of Helsinki, Helsinki, Finland
| | - Leif Groop
- Institute for Molecular Medicine Finland University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Aarno Palotie
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute for Molecular Medicine Finland University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samuli Ripatti
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
- Institute for Molecular Medicine Finland University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | - Emanuele Di Angelantonio
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, UK
| | - Alice V Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, UK
| | - Philippe Amouyel
- University of Lille, UMR1167, Risk Factors and Molecular Determinants of aging-related diseases, Lille, France
- Inserm, Lille, France
- Centre Hospitalier Universitaire Lille, Public Health, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Dominique Arveiler
- Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Strasbourg, France
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Ferrières
- Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse, France
| | - Frank Kee
- Director, UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
| | - Kari Kuulasmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
| | - Jarmo Virtamo
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Panos Deloukas
- Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Paul Elliott
- Department of Epidemiology and Biostatistics, Medical Research Council Public Health England Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, London, UK
| | | | | | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Olle Melander
- University of Lund, Department of Clinical Sciences, Malmö, Sweden
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Generation Scotland
- A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Boehnke
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heather M Stringham
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Christopher Newton-Cheh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - ExomeBP Consortium
- A full list of members and affiliations appears in the Supplementary Note
| | | | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maciej Tomaszewski
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease, Leicester, UK
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease, Leicester, UK
| | - Danish Saleheen
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - John Danesh
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Adam S Butterworth
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- The National Institute for Health Research Blood and Transplant Research
| | - Joanna MM Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| |
Collapse
|
177
|
GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability. Am J Hum Genet 2016; 99:704-710. [PMID: 27523599 DOI: 10.1016/j.ajhg.2016.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022] Open
Abstract
GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.
Collapse
|
178
|
Skov MW, Bachmann TN, Rasmussen PV, Olesen MS, Pietersen A, Graff C, Lind B, Struijk JJ, Køber L, Haunsø S, Svendsen JH, Gerds TA, Holst AG, Nielsen JB. Association Between Heart Rate at Rest and Incident Atrial Fibrillation (from the Copenhagen Electrocardiographic Study). Am J Cardiol 2016; 118:708-13. [PMID: 27394409 DOI: 10.1016/j.amjcard.2016.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022]
Abstract
Heart rate (HR) at rest is a well-known marker of cardiovascular morbidity and mortality. Results on the association between HR and incident atrial fibrillation (AF) have, however, been conflicting. Using digital electrocardiograms from 281,451 primary care patients, we aimed to describe the association between HR at rest and the hazards of incident AF. Secondary end points were death from all causes and pacemaker implantation. Data on drug use, co-morbidity, and outcomes were collected from nationwide administrative health care registries. During a median follow-up time of 8.4 years, 15,666 subjects were observed to develop AF, of which 1,631 were lone AF. A HR at rest from 30 to 51 beats/min was associated with an adjusted hazard ratio of 1.16 (95% CI 1.06 to 1.27) for AF compared with the reference group (66 to 72 beats/min). From 72 beats/min and upward, the hazard ratio of AF increased in a dose-response manner, reaching an adjusted hazard ratio of 1.36 (95% CI 1.26 to 1.46) for HR between 95 and 120 beats/min. Both for low and high HR, the associations were accentuated for the outcome lone AF (adjusted hazard ratios of 1.48, 95% CI 1.19 to 1.84 and 1.84, 95% CI 1.47 to 2.30 for HR between 30 to 51 and 95 to 120 beats/min, respectively). For death from all causes, the hazard increased almost linearly with increasing HR. A HR at rest from 30 to 51 beats/min was associated with an adjusted hazard ratio of 1.80 (95% CI 1.46 to 2.21) for pacemaker implantation. In conclusion, a U-shaped association was found between HR at rest and incident AF, and this association was strongest for the outcome lone AF.
Collapse
Affiliation(s)
- Morten W Skov
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Troels N Bachmann
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter V Rasmussen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Adrian Pietersen
- Copenhagen General Practitioners' Laboratory, Copenhagen, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bent Lind
- Copenhagen General Practitioners' Laboratory, Copenhagen, Denmark
| | - Johannes J Struijk
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lars Køber
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig Haunsø
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper H Svendsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerds
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Anders G Holst
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jonas B Nielsen
- Laboratory for Molecular Cardiology, Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
179
|
Tanboğa İH, Topçu S, Aksakal E, Gulcu O, Aksakal E, Aksu U, Oduncu V, Ulusoy FR, Sevimli S, Kaymaz C. The Risk of Atrial Fibrillation With Ivabradine Treatment: A Meta-analysis With Trial Sequential Analysis of More Than 40000 Patients. Clin Cardiol 2016; 39:615-620. [PMID: 27511965 DOI: 10.1002/clc.22578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023] Open
Abstract
Recent trials reported that risk of atrial fibrillation (AF) is increased in patients using ivabradine compared with controls. We performed this meta-analysis to investigate the risk of AF association with ivabradine treatment on the basis of data obtained from randomized controlled trials (RCTs). We searched PubMed, EMBASE, Scopus, and the Cochrane Library for RCTs that comprised >100 patients. The incidence of AF was assessed. We obtained data from European Medicines Agency (EMA) scientific reports for the RCTs in which the incidence of AF was not reported. We used trial sequential analysis (TSA) to provide information on when we had reached firm evidence of new AF based on a 15% relative risk increase (RRI) in ivabradine treatment. Three RCTs and 1 EMA overall oral safety set (OOSS) pooled analysis (included 5 RCTs) were included in the meta-analysis (N = 40 437). The incidence of AF was 5.34% in patients using ivabradine and 4.56% in placebo. There was significantly higher incidence of AF (24% RRI) in the ivabradine group when compared with placebo before (RR: 1.24, 95% confidence interval: 1.08-1.42, P = 0.003, I 1980 = 53%) and after excluding OOSS (RR: 1.24, 95% confidence interval: 1.06-1.44, P = 0.008). In the TSA, the cumulative z-curve crossed both the traditional boundary (P = 0.05) and the trial sequential monitoring boundary, indicating firm evidence for ≥15% increase in ivabradine treatment when compared with placebo. Study results indicate that AF is more common in the ivabradine group (24% RRI) than in controls.
Collapse
Affiliation(s)
- İbrahim Halil Tanboğa
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey. .,Department of Biostatistics, Medical School, Atatürk University, Erzurum, Turkey.
| | - Selim Topçu
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey.,Department of Biostatistics, Medical School, Atatürk University, Erzurum, Turkey
| | - Enbiya Aksakal
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey
| | - Oktay Gulcu
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey
| | - Emrah Aksakal
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey
| | - Uğur Aksu
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey
| | - Vecih Oduncu
- Department of Cardiology, Medical School, Bahçeşehir University, Istanbul, Turkey
| | | | - Serdar Sevimli
- Department of Cardiology, Medical School, Atatürk University, Erzurum, Turkey
| | - Cihangir Kaymaz
- Department of Cardiology, Kosuyolu Heart Hospital, Istanbul, Turkey
| |
Collapse
|
180
|
Abstract
Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal variants and genes and gain further insights into the biological mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Tuomas O Kilpeläinen
- The Novo Nordisk Foundation center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
181
|
Yu CC, Chia-Ti T, Chen PL, Wu CK, Chiu FC, Chiang FT, Chen PS, Chen CL, Lin LY, Juang JM, Ho LT, Lai LP, Yang WS, Lin JL. KCNN2 polymorphisms and cardiac tachyarrhythmias. Medicine (Baltimore) 2016; 95:e4312. [PMID: 27442679 PMCID: PMC5265796 DOI: 10.1097/md.0000000000004312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD.
Collapse
Affiliation(s)
- Chih-Chieh Yu
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
| | - Tsai Chia-Ti
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
| | - Pei-Lung Chen
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Department of Medical Genetics, National Taiwan University Hospital
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei
| | - Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital
| | - Fu-Chun Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, National Taiwan University Hospital
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lian-Yu Lin
- Department of Internal Medicine, National Taiwan University Hospital
| | - Jyh-Ming Juang
- Department of Internal Medicine, National Taiwan University Hospital
| | - Li-Ting Ho
- Department of Internal Medicine, National Taiwan University Hospital
| | - Ling-Ping Lai
- Department of Internal Medicine, National Taiwan University Hospital
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei
- Correspondence: Jiunn-Lee Lin, Wei-Shiung Yang, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung San South Road, Taipei City 100, Taiwan (R.O.C.) (e-mail: , )
| | - Jiunn-Lee Lin
- Department of Internal Medicine, National Taiwan University Hospital
- Correspondence: Jiunn-Lee Lin, Wei-Shiung Yang, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung San South Road, Taipei City 100, Taiwan (R.O.C.) (e-mail: , )
| |
Collapse
|
182
|
Scott RA, Freitag DF, Li L, Chu AY, Surendran P, Young R, Grarup N, Stancáková A, Chen Y, Varga TV, Yaghootkar H, Luan J, Zhao JH, Willems SM, Wessel J, Wang S, Maruthur N, Michailidou K, Pirie A, van der Lee SJ, Gillson C, Al Olama AA, Amouyel P, Arriola L, Arveiler D, Aviles-Olmos I, Balkau B, Barricarte A, Barroso I, Garcia SB, Bis JC, Blankenberg S, Boehnke M, Boeing H, Boerwinkle E, Borecki IB, Bork-Jensen J, Bowden S, Caldas C, Caslake M, Cupples LA, Cruchaga C, Czajkowski J, den Hoed M, Dunn JA, Earl HM, Ehret GB, Ferrannini E, Ferrieres J, Foltynie T, Ford I, Forouhi NG, Gianfagna F, Gonzalez C, Grioni S, Hiller L, Jansson JH, Jørgensen ME, Jukema JW, Kaaks R, Kee F, Kerrison ND, Key TJ, Kontto J, Kote-Jarai Z, Kraja AT, Kuulasmaa K, Kuusisto J, Linneberg A, Liu C, Marenne G, Mohlke KL, Morris AP, Muir K, Müller-Nurasyid M, Munroe PB, Navarro C, Nielsen SF, Nilsson PM, Nordestgaard BG, Packard CJ, Palli D, Panico S, Peloso GM, Perola M, Peters A, Poole CJ, Quirós JR, Rolandsson O, Sacerdote C, Salomaa V, Sánchez MJ, Sattar N, Sharp SJ, Sims R, Slimani N, Smith JA, Thompson DJ, Trompet S, Tumino R, et alScott RA, Freitag DF, Li L, Chu AY, Surendran P, Young R, Grarup N, Stancáková A, Chen Y, Varga TV, Yaghootkar H, Luan J, Zhao JH, Willems SM, Wessel J, Wang S, Maruthur N, Michailidou K, Pirie A, van der Lee SJ, Gillson C, Al Olama AA, Amouyel P, Arriola L, Arveiler D, Aviles-Olmos I, Balkau B, Barricarte A, Barroso I, Garcia SB, Bis JC, Blankenberg S, Boehnke M, Boeing H, Boerwinkle E, Borecki IB, Bork-Jensen J, Bowden S, Caldas C, Caslake M, Cupples LA, Cruchaga C, Czajkowski J, den Hoed M, Dunn JA, Earl HM, Ehret GB, Ferrannini E, Ferrieres J, Foltynie T, Ford I, Forouhi NG, Gianfagna F, Gonzalez C, Grioni S, Hiller L, Jansson JH, Jørgensen ME, Jukema JW, Kaaks R, Kee F, Kerrison ND, Key TJ, Kontto J, Kote-Jarai Z, Kraja AT, Kuulasmaa K, Kuusisto J, Linneberg A, Liu C, Marenne G, Mohlke KL, Morris AP, Muir K, Müller-Nurasyid M, Munroe PB, Navarro C, Nielsen SF, Nilsson PM, Nordestgaard BG, Packard CJ, Palli D, Panico S, Peloso GM, Perola M, Peters A, Poole CJ, Quirós JR, Rolandsson O, Sacerdote C, Salomaa V, Sánchez MJ, Sattar N, Sharp SJ, Sims R, Slimani N, Smith JA, Thompson DJ, Trompet S, Tumino R, van der A DL, van der Schouw YT, Virtamo J, Walker M, Walter K, Abraham JE, Amundadottir LT, Aponte JL, Butterworth AS, Dupuis J, Easton DF, Eeles RA, Erdmann J, Franks PW, Frayling TM, Hansen T, Howson JMM, Jørgensen T, Kooner J, Laakso M, Langenberg C, McCarthy MI, Pankow JS, Pedersen O, Riboli E, Rotter JI, Saleheen D, Samani NJ, Schunkert H, Vollenweider P, O'Rahilly S, Deloukas P, Danesh J, Goodarzi MO, Kathiresan S, Meigs JB, Ehm MG, Wareham NJ, Waterworth DM. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci Transl Med 2016; 8:341ra76. [PMID: 27252175 PMCID: PMC5219001 DOI: 10.1126/scitranslmed.aad3744] [Show More Authors] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.
Collapse
Affiliation(s)
- Robert A Scott
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | - Daniel F Freitag
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK. The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Li Li
- Statistical Genetics, Projects, Clinical Platforms, and Sciences (PCPS), GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Praveen Surendran
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Robin Young
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alena Stancáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, SE-205 Malmö, Sweden
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Jian'an Luan
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Jing Hua Zhao
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Sara M Willems
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, 3000 CE Rotterdam, Netherlands
| | - Jennifer Wessel
- Department of Epidemiology, Fairbanks School of Public Health, Indianapolis, IN 46202, USA. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nisa Maruthur
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD 21205, USA. Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Ailith Pirie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Christopher Gillson
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Philippe Amouyel
- University of Lille, INSERM, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur de Lille, UMR 1167, RID-AGE, F-59000 Lille, France
| | - Larraitz Arriola
- Public Health Division of Gipuzkoa, San Sebastian 20013, Spain. Instituto BIO-Donostia, Basque Government, San Sebastian 20014, Spain. CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain
| | - Dominique Arveiler
- Department of Epidemiology and Public Health (EA3430), University of Strasbourg, 67085 Strasbourg, France
| | - Iciar Aviles-Olmos
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Beverley Balkau
- INSERM, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), 94807 Villejuif, France. Univeristy of Paris-Sud, F-94805 Villejuif, France
| | - Aurelio Barricarte
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain. Navarre Public Health Institute (ISPN), Pamplona 31003, Spain
| | - Inês Barroso
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK. University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Sara Benlloch Garcia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Heiner Boeing
- German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77025, USA. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingrid B Borecki
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sarah Bowden
- Cancer Research UK Clinical Trials Unit, Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702-5827, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacek Czajkowski
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Marcel den Hoed
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Janet A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Helena M Earl
- University of Cambridge and National Institute of Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge CB2 0QQ, UK
| | - Georg B Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ele Ferrannini
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Jean Ferrieres
- Department of Epidemiology, UMR 1027, INSERM, Centre Hospitalier Universitaire (CHU) de Toulouse, 31000 Toulouse, France
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Ian Ford
- University of Glasgow, Glasgow G12 8QQ, UK
| | - Nita G Forouhi
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Francesco Gianfagna
- Department of Clinical and Experimental Medicine, Research Centre in Epidemiology and Preventive Medicine, University of Insubria, 21100 Varese, Italy. Department of Epidemiology and Prevention, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Mediterraneo Neuromed, 86077 Pozzilli, Italy
| | | | - Sara Grioni
- Epidemiology and Prevention Unit, 20133 Milan, Italy
| | - Louise Hiller
- Warwick Clinical Trials Unit, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jan-Håkan Jansson
- Research Unit, 931 41 Skellefteå, Sweden. Department of Public Health & Clinical Medicine, Umeå University, 901 85 Umeå, Sweden
| | - Marit E Jørgensen
- Steno Diabetes Center, 2820 Gentofte, Denmark. National Institute of Public Health, Southern Denmark University, DK-1353 Odense, Denmark
| | - J Wouter Jukema
- Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rudolf Kaaks
- German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Frank Kee
- UK Clinical Research Collaboration (UKCRC) Centre of Excellence for Public Health, Queen's University Belfast, Northern Ireland, Belfast BT12 6BJ, UK
| | - Nicola D Kerrison
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | | | - Jukka Kontto
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | | | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland. Kuopio University Hospital, FL 70029 Kuopio, Finland
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region, DK-2600 Copenhagen, Denmark. Department of Clinical Experimental Research, Rigshospitalet, 2100 Glostrup, Denmark. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Chunyu Liu
- Framingham Heart Study, Population Sciences Branch, NHLBI/National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Gaëlle Marenne
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool L69 3GL, UK. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kenneth Muir
- Centre for Epidemiology, Institute of Population Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK. University of Warwick, Coventry CV4 7AL, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany. Department of Medicine I, Ludwig Maximilians University Munich, 80336 Munich, Germany. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Carmen Navarro
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia 30008, Spain
| | - Sune F Nielsen
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
| | | | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, University of Copenhagen, 2730 Copenhagen, Denmark
| | | | - Domenico Palli
- Cancer Research and Prevention Institute (ISPO), 50141 Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131 Naples, Italy
| | - Gina M Peloso
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Markus Perola
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland. Institute of Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014 Helsinki, Finland
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany. Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Christopher J Poole
- University of Warwick, Coventry CV4 7AL, UK. Department of Medical Oncology, Arden Cancer Centre, University Hospital Coventry and Warwickshire, West Midlands CV2 2DX, UK
| | - J Ramón Quirós
- Public Health Directorate, 33006 Oviedo, Asturias, Spain
| | | | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin, 10126 Torino, Italy. Center for Cancer Prevention (CPO), 10126 Torino, Italy. Human Genetics Foundation, 10126 Torino, Italy
| | - Veikko Salomaa
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - María-José Sánchez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain. Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada 18012, Spain
| | | | - Stephen J Sharp
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Rebecca Sims
- Institute of Psychological Medicine and Clinical Neuroscience, MRC Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Nadia Slimani
- International Agency for Research on Cancer, 69372 Lyon, France
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Stella Trompet
- Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic-M.P. Arezzo" Hospital, ASP Ragusa, 97100 Ragusa, Italy
| | - Daphne L van der A
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | | | - Jarmo Virtamo
- National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Klaudia Walter
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Jean E Abraham
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jennifer L Aponte
- Genetics, PCPS, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Adam S Butterworth
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Rosalind A Eeles
- The Institute of Cancer Research, London SM2 5NG, UK. Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey SW3 6JJ, UK
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, 23562 Lübeck, Germany
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, SE-205 Malmö, Sweden. Department of Public Health & Clinical Medicine, Umeå University, 901 85 Umeå, Sweden. Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joanna M M Howson
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Torben Jørgensen
- Research Centre for Prevention and Health, DK-2600 Capital Region, Denmark. Department of Public Health, Institute of Health Science, University of Copenhagen, 1014 Copenhagen, Denmark. Faculty of Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Jaspal Kooner
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK. Imperial College Healthcare NHS Trust, London W2 1NY, UK. Ealing Hospital NHS Trust, Middlesex UB1 3HW, UK
| | - Markku Laakso
- Department of Medicine, University of Kuopio, FI-70211 Kuopio, Finland
| | - Claudia Langenberg
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK. Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, UK
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455-0381, USA
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elio Riboli
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, Torrance, CA 90502, USA
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK. National Institute for Health Research, Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Heribert Schunkert
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany. Deutsches Herzzentrum München, Technische Universität München, 80636 Munich, Germany
| | - Peter Vollenweider
- Department of Internal Medicine, BH10-462, Internal Medicine, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK. MRC Metabolic Diseases Unit, Cambridge CB2 0QQ, UK. National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John Danesh
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK. The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sekar Kathiresan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Cardiology Division, Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James B Meigs
- Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret G Ehm
- Genetics, PCPS, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Nicholas J Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
183
|
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development 2016; 143:197-210. [PMID: 26786210 DOI: 10.1242/dev.124883] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cardiac conduction system (CCS) consists of distinctive components that initiate and conduct the electrical impulse required for the coordinated contraction of the cardiac chambers. CCS development involves complex regulatory networks that act in stage-, tissue- and dose-dependent manners, and recent findings indicate that the activity of these networks is sensitive to common genetic variants associated with cardiac arrhythmias. Here, we review how these findings have provided novel insights into the regulatory mechanisms and transcriptional networks underlying CCS formation and function.
Collapse
Affiliation(s)
- Jan Hendrik van Weerd
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
184
|
Hoffmann S, Clauss S, Berger IM, Weiß B, Montalbano A, Röth R, Bucher M, Klier I, Wakili R, Seitz H, Schulze-Bahr E, Katus HA, Flachsbart F, Nebel A, Guenther SP, Bagaev E, Rottbauer W, Kääb S, Just S, Rappold GA. Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Res Cardiol 2016; 111:36. [PMID: 27138930 PMCID: PMC4853439 DOI: 10.1007/s00395-016-0557-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/18/2016] [Indexed: 11/25/2022]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia with a strong genetic component. Molecular pathways involving the homeodomain transcription factor Shox2 control the development and function of the cardiac conduction system in mouse and zebrafish. Here we report the analysis of human SHOX2 as a potential susceptibility gene for early-onset AF. To identify causal variants and define the underlying mechanisms, results from 378 patients with early-onset AF before the age of 60 years were analyzed and compared to 1870 controls or reference datasets. We identified two missense mutations (p.G81E, p.H283Q), that were predicted as damaging. Transactivation studies using SHOX2 targets and phenotypic rescue experiments in zebrafish demonstrated that the p.H283Q mutation severely affects SHOX2 pacemaker function. We also demonstrate an association between a 3'UTR variant c.*28T>C of SHOX2 and AF (p = 0.00515). Patients carrying this variant present significantly longer PR intervals. Mechanistically, this variant creates a functional binding site for hsa-miR-92b-5p. Circulating hsa-miR-92b-5p plasma levels were significantly altered in AF patients carrying the 3'UTR variant (p = 0.0095). Finally, we demonstrate significantly reduced SHOX2 expression levels in right atrial appendages of AF patients compared to patients with sinus rhythm. Together, these results suggest a genetic contribution of SHOX2 in early-onset AF.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Ina M Berger
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Birgit Weiß
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany
| | - Antonino Montalbano
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany
| | - Ralph Röth
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany
| | - Madeline Bucher
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany
| | - Ina Klier
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Hervé Seitz
- Institut de génétique humaine (CNRS UPR 1142), Montpellier, France
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Almut Nebel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Sabina Pw Guenther
- Department of Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Erik Bagaev
- Department of Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | | | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Heidelberg, INF 366, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
185
|
Hamrefors V, Härstedt M, Holmberg A, Rogmark C, Sutton R, Melander O, Fedorowski A. Orthostatic Hypotension and Elevated Resting Heart Rate Predict Low-Energy Fractures in the Population: The Malmö Preventive Project. PLoS One 2016; 11:e0154249. [PMID: 27124658 PMCID: PMC4849675 DOI: 10.1371/journal.pone.0154249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/10/2016] [Indexed: 12/05/2022] Open
Abstract
Background Autonomic disorders of the cardiovascular system, such as orthostatic hypotension and elevated resting heart rate, predict mortality and cardiovascular events in the population. Low-energy-fractures constitute a substantial clinical problem that may represent an additional risk related to such autonomic dysfunction. Aims To test the association between orthostatic hypotension, resting heart rate and incidence of low-energy-fractures in the general population. Methods and Results Using multivariable-adjusted Cox regression models we investigated the association between orthostatic blood pressure response, resting heart rate and first incident low-energy-fracture in a population-based, middle-aged cohort of 33 000 individuals over 25 years follow-up. The median follow-up time from baseline to first incident fracture among the subjects that experienced a low energy fracture was 15.0 years. A 10 mmHg orthostatic decrease in systolic blood pressure at baseline was associated with 5% increased risk of low-energy-fractures (95% confidence interval 1.01–1.10) during follow-up, whereas the resting heart rate predicted low-energy-fractures with an effect size of 8% increased risk per 10 beats-per-minute (1.05–1.12), independently of the orthostatic response. Subjects with a resting heart rate exceeding 68 beats-per-minute had 18% (1.10–1.26) increased risk of low-energy-fractures during follow-up compared with subjects with a resting heart rate below 68 beats-per-minute. When combining the orthostatic response and resting heart rate, there was a 30% risk increase (1.08–1.57) of low-energy-fractures between the extremes, i.e. between subjects in the fourth compared with the first quartiles of both resting heart rate and systolic blood pressure-decrease. Conclusion Orthostatic blood pressure decline and elevated resting heart rate independently predict low-energy fractures in a middle-aged population. These two measures of subclinical cardiovascular dysautonomia may herald increased risks many years in advance, even if symptoms may not be detectable. Although the effect sizes are moderate, the easily accessible clinical parameters of orthostatic blood pressure response and resting heart rate deserve consideration as new risk predictors to yield more accurate decisions on primary prevention of low-energy fractures.
Collapse
Affiliation(s)
- Viktor Hamrefors
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Malmö, Sweden
- * E-mail:
| | - Maria Härstedt
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna Holmberg
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Cecilia Rogmark
- Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Richard Sutton
- National Heart and Lung Institute, Imperial College, St Mary’s Hospital Campus, London, UK
| | - Olle Melander
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Artur Fedorowski
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
186
|
Kirchhof P, Goette A, Näbauer M, Schotten U. [AFNET. A translational research network develops into an academic research organization]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 59:514-22. [PMID: 26979716 DOI: 10.1007/s00103-016-2323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
"The whole is greater than the sum of its parts" (Aristotle).Atrial fibrillation (AF) is the most common sustained arrhythmia and affects 1-2 % of the population in developed countries, especially the elderly. We expect that the prevalence of AF will double in the next few decades. The last decades have seen important improvements in the management of atrial fibrillation, but many questions remain regarding the optimal diagnosis and management of the condition. The German Atrial Fibrillation NETwork (AFNET) was one of three cardiovascular competence networks in medicine funded by the German Ministry of Education and Research between 2003-2014. AFNET has contributed to the understanding of atrial fibrillation, and AFNET-led studies have led to improved clinical practices and practice guidelines in Germany and in Europe. This work has been expanded and is continuing in the AFNET association (AFNET e. V.). The AFNET association, founded in 2010 and continuing to this day, has developed into a small but fully formed academic research organisation that conducts investigator-initiated clinical trials as the responsible sponsor in Germany, Europe, and beyond. The AFNET association currently cooperates with EHRA (The European Heart Rhythm Association), ESC (The European Society of Cardiology) and DZHK (The German Centre for Cardiovascular Research) and receives funding from the European Union to generate evidence that can in the future lead to better prevention and management of AF.
Collapse
Affiliation(s)
- Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham and SWBH and UHB NHS Trusts, B15 2TT, Birmingham, UK.
- Department für Kardiologie und Angiologie, Universitätsklinikum Münster, Münster, Deutschland.
- AFNET e. V., Münster, Deutschland.
- Kompetenznetz Vorhofflimmern, Mendelstraße 11, 48149, Münster, Deutschland.
| | - Andreas Goette
- AFNET e. V., Münster, Deutschland
- Vincenz-Krankenhaus, Paderborn, Deutschland
| | - Michael Näbauer
- AFNET e. V., Münster, Deutschland
- Klinikum der Ludwig Maximilian Universität, München, Deutschland
| | - Ulrich Schotten
- AFNET e. V., Münster, Deutschland
- Department of Physiology, Maastricht University, Maastricht, Niederlande
| |
Collapse
|
187
|
Verweij N, Mateo Leach I, Isaacs A, Arking DE, Bis JC, Pers TH, Van Den Berg ME, Lyytikäinen LP, Barnett P, Wang X, Soliman EZ, Van Duijn CM, Kähönen M, Van Veldhuisen DJ, Kors JA, Raitakari OT, Silva CT, Lehtimäki T, Hillege HL, Hirschhorn JN, Boyer LA, Van Gilst WH, Alonso A, Sotoodehnia N, Eijgelsheim M, De Boer RA, De Bakker PIW, Franke L, Van Der Harst P. Twenty-eight genetic loci associated with ST-T-wave amplitudes of the electrocardiogram. Hum Mol Genet 2016; 25:2093-2103. [PMID: 26962151 PMCID: PMC5062578 DOI: 10.1093/hmg/ddw058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
The ST-segment and adjacent T-wave (ST-T wave) amplitudes of the electrocardiogram are quantitative characteristics of cardiac repolarization. Repolarization abnormalities have been linked to ventricular arrhythmias and sudden cardiac death. We performed the first genome-wide association meta-analysis of ST-T-wave amplitudes in up to 37 977 individuals identifying 71 robust genotype–phenotype associations clustered within 28 independent loci. Fifty-four genes were prioritized as candidates underlying the phenotypes, including genes with established roles in the cardiac repolarization phase (SCN5A/SCN10A, KCND3, KCNB1, NOS1AP and HEY2) and others with as yet undefined cardiac function. These associations may provide insights in the spatiotemporal contribution of genetic variation influencing cardiac repolarization and provide novel leads for future functional follow-up.
Collapse
Affiliation(s)
- Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street, Cambridge, MA 02142, USA Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, The Netherlands
| | - Irene Mateo Leach
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aaron Isaacs
- Department of Epidemiology, Genetic Epidemiology Unit, Rotterdam, The Netherlands CARIM School of Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), and Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Tune H Pers
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, USA Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street, Cambridge, MA 02142, USA
| | - Marten E Van Den Berg
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere 33520, Finland
| | - Phil Barnett
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Xinchen Wang
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Elsayed Z Soliman
- Division of Public Health Sciences, Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Cornelia M Van Duijn
- Department of Epidemiology, Genetic Epidemiology Unit, Rotterdam, The Netherlands
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere 33521, Finland
| | - Dirk J Van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Claudia T Silva
- Department of Epidemiology, Genetic Epidemiology Unit, Rotterdam, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere 33520, Finland
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Trial Coordination Center, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Joel N Hirschhorn
- Division of Endocrinology, Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, USA Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street, Cambridge, MA 02142, USA Department of Genetics, Harvard Medical School, Boston, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wiek H Van Gilst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Alvaro Alonso
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Nona Sotoodehnia
- Division of Cardiology, Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Mark Eijgelsheim
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Paul I W De Bakker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 301 Binney Street, Cambridge, MA 02142, USA Department of Medical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Pim Van Der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, 3511 GC Utrecht, The Netherlands
| |
Collapse
|
188
|
Franco D, Lozano-Velasco E, Aranega A. Gene regulatory networks in atrial fibrillation. World J Med Genet 2016; 6:1-16. [DOI: 10.5496/wjmg.v6.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic syndrome in humans. With an estimate incidence of 1%-2% in the general population, AF raises up to almost 10%-12% in 80+ years. Thus, AF represents nowadays a highly prevalent medical problem generating a large economic burden. At the electrophysiological level, distinct mechanisms have been elucidated. Yet, despite its prevalence, the genetic and molecular culprits of this pandemic cardiac electrophysiological abnormality have remained largely obscure. Molecular genetics of AF familiar cases have demonstrated that single nucleotide mutations in distinct genes encoding for ion channels underlie the onset of AF, albeit such alterations only explain a minor subset of patients with AF. In recent years, analyses by means of genome-wide association studies have unraveled a more complex picture of the etiology of AF, pointing out to distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Furthermore a new layer of regulatory mechanisms have emerged, i.e., post-transcriptional regulation mediated by non-coding RNA, which have been demonstrated to exert pivotal roles in cardiac electrophysiology. In this manuscript, we aim to provide a comprehensive review of the genetic regulatory networks that if impaired exert electrophysiological abnormalities that contribute to the onset, and subsequently, on self-perpetuation of AF.
Collapse
|
189
|
|
190
|
Dashti HS, Aslibekyan S, Scheer FAJL, Smith CE, Lamon-Fava S, Jacques P, Lai CQ, Tucker KL, Arnett DK, Ordovás JM. Clock Genes Explain a Large Proportion of Phenotypic Variance in Systolic Blood Pressure and This Control Is Not Modified by Environmental Temperature. Am J Hypertens 2016; 29:132-40. [PMID: 26045533 DOI: 10.1093/ajh/hpv082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diurnal variation in blood pressure (BP) is regulated, in part, by an endogenous circadian clock; however, few human studies have identified associations between clock genes and BP. Accounting for environmental temperature may be necessary to correct for seasonal bias. METHODS We examined whether environmental temperature on the day of participants' assessment was associated with BP, using adjusted linear regression models in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) (n = 819) and the Boston Puerto Rican Health Study (BPRHS) (n = 1,248) cohorts. We estimated phenotypic variance in BP by 18 clock genes and examined individual single-nucleotide polymorphism (SNP) associations with BP using an additive genetic model, with further consideration of environmental temperature. RESULTS In GOLDN, each additional 1 °C increase in environmental temperature was associated with 0.18 mm Hg lower systolic BP [SBP; β ± SE = -0.18 ± 0.05 mm Hg; P = 0.0001] and 0.10mm Hg lower diastolic BP [DBP; -0.10 ± 0.03 mm Hg; P = 0.001]. Similar results were seen in the BPRHS for SBP only. Clock genes explained a statistically significant proportion of the variance in SBP [V G/V P ± SE = 0.071 ± 0.03; P = 0.001] in GOLDN, but not in the BPRHS, and we did not observe associations between individual SNPs and BP. Environmental temperature did not influence the identified genetic associations. CONCLUSIONS We identified clock genes that explained a statistically significant proportion of the phenotypic variance in SBP, supporting the importance of the circadian pathway underlying cardiac physiology. Although temperature was associated with BP, it did not affect results with genetic markers in either study. Therefore, it does not appear that temperature measures are necessary for interpreting associations between clock genes and BP. CLINICAL TRIAL REGISTRATION Trials related to this study were registered at clinicaltrials.gov as NCT00083369 (Genetic and Environmental Determinants of Triglycerides) and NCT01231958 (Boston Puerto Rican Health Study).
Collapse
Affiliation(s)
- Hassan S Dashti
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA;
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Paul Jacques
- Nutritional Epidemiology Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | | | - Donna K Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA; Department of Epidemiology, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-FOOD), Madrid, Spain
| |
Collapse
|
191
|
Genetics meets epigenetics: Genetic variants that modulate noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol 2015; 89:27-34. [DOI: 10.1016/j.yjmcc.2015.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
|
192
|
Atanasovska B, Kumar V, Fu J, Wijmenga C, Hofker MH. GWAS as a Driver of Gene Discovery in Cardiometabolic Diseases. Trends Endocrinol Metab 2015; 26:722-732. [PMID: 26596674 DOI: 10.1016/j.tem.2015.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 01/23/2023]
Abstract
Cardiometabolic diseases represent a common complex disorder with a strong genetic component. Currently, genome-wide association studies (GWAS) have yielded some 755 single-nucleotide polymorphisms (SNPs) encompassing 366 independent loci that may help to decipher the molecular basis of cardiometabolic diseases. Going from a disease SNP to the underlying disease mechanisms is a huge challenge because the associated SNPs rarely disrupt protein function. Many disease SNPs are located in noncoding regions, and therefore attention is now focused on linking genetic SNP variation to effects on gene expression levels. By integrating genetic information with large-scale gene expression data, and with data from epigenetic roadmaps revealing gene regulatory regions, we expect to be able to identify candidate disease genes and the regulatory potential of disease SNPs.
Collapse
Affiliation(s)
- Biljana Atanasovska
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Marten H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
193
|
Costain G, Lionel AC, Ogura L, Marshall CR, Scherer SW, Silversides CK, Bassett AS. Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. Int J Cardiol 2015; 204:115-21. [PMID: 26655555 DOI: 10.1016/j.ijcard.2015.11.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Transposition of the great arteries (TGA) is an uncommon but severe congenital heart malformation of unknown etiology. Rare copy number variations (CNVs) have been implicated in other, more common conotruncal heart defects like tetralogy of Fallot (TOF), but there are as yet no CNV studies dedicated to TGA. METHODS Using high-resolution genome-wide microarrays and rigorous methods, we investigated CNVs in a group of prospectively recruited adults with TGA (n=101) from a single center. We compared rare CNV burden to well-matched cohorts of controls and TOF cases, adjudicating rarity using 10,113 independent population-based controls and excluding all subjects with 22q11.2 deletions. We identified candidate genes for TGA based on rare CNVs that overlapped the same gene in unrelated individuals, and pre-existing evidence suggesting a role in cardiac development. RESULTS The TGA group was significantly enriched for large rare CNVs (2.3-fold increase, p=0.04) relative to controls, to a degree comparable with the TOF group. Extra-cardiac features were not reliable predictors of rare CNV burden. Smaller rare CNVs helped to narrow critical regions for conotruncal defects at chromosomes 10q26 and 13q13. Established and novel candidate susceptibility genes identified included ACKR3, IFT57, ITGB8, KL, NF1, NKX1-2, RERE, SLC8A1, SOX18, and ULK1. CONCLUSIONS These data demonstrate a genome-wide role for rare CNVs in genetic risk for TGA. The findings provide further support for a genetically-related spectrum of congenital heart disease that includes TGA and TOF.
Collapse
Affiliation(s)
- Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Medical Genetics Residency Training Program, University of Toronto, and Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucas Ogura
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Candice K Silversides
- The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada.
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
194
|
Wells A, Kopp N, Xu X, O'Brien DR, Yang W, Nehorai A, Adair-Kirk TL, Kopan R, Dougherty JD. The anatomical distribution of genetic associations. Nucleic Acids Res 2015; 43:10804-20. [PMID: 26586807 PMCID: PMC4678833 DOI: 10.1093/nar/gkv1262] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023] Open
Abstract
Deeper understanding of the anatomical intermediaries for disease and other complex genetic traits is essential to understanding mechanisms and developing new interventions. Existing ontology tools provide functional, curated annotations for many genes and can be used to develop mechanistic hypotheses; yet information about the spatial expression of genes may be equally useful in interpreting results and forming novel hypotheses for a trait. Therefore, we developed an approach for statistically testing the relationship between gene expression across the body and sets of candidate genes from across the genome. We validated this tool and tested its utility on three applications. First, we show that the expression of genes in associated loci from GWA studies implicates specific tissues for 57 out of 98 traits. Second, we tested the ability of the tool to identify novel relationships between gene expression and phenotypes. Specifically, we experimentally confirmed an underappreciated prediction highlighted by our tool: that white blood cell count--a quantitative trait of the immune system--is genetically modulated by genes expressed in the skin. Finally, using gene lists derived from exome sequencing data, we show that human genes under selective constraint are disproportionately expressed in nervous system tissues.
Collapse
Affiliation(s)
- Alan Wells
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoxiao Xu
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA
| | - David R O'Brien
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arye Nehorai
- The Preston M. Green Department of Electrical and Systems Engineering, Washington University, St. Louis, MO 63130, USA
| | - Tracy L Adair-Kirk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - J D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
195
|
Abstract
The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over 1200 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy ). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods.
Collapse
|
196
|
Böhm M, Schumacher H, Linz D, Reil JC, Ukena C, Lonn E, Teo K, Sliwa K, Schmieder RE, Sleight P, Yusuf S. Low resting heart rates are associated with new-onset atrial fibrillation in patients with vascular disease: results of the ONTARGET/TRANSCEND studies. J Intern Med 2015; 278:303-12. [PMID: 25872921 DOI: 10.1111/joim.12373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Elevated systolic blood pressure (SBP) and high resting heart rate (HR) are associated with cardiovascular end-points. Although the association between atrial fibrillation (AF) and SBP is well established, the relation between AF and HR remains unclear. METHODS In patients from the ONTARGET and TRANSCEND studies with high cardiovascular disease risk (n = 27 064), new-onset AF was evaluated in relation to mean SBP, visit-to-visit variation in SBP (SBP-CV; i.e. SD/mean × 100%), mean HR and visit-to-visit variation in HR (HR-CV). RESULTS Low mean HR (P < 0.0001) and high SBP (P = 0.0021) were associated with incident AF. High SBP-CV (P = 0.031) and HR-CV (P < 0.0001) were also associated with incident AF. After adjustment for confounders, SBP and SBP-CV were no longer significantly associated with AF. The detrimental effect of low HR was particularly evident in subjects who were not receiving treatment with beta-blockers (P = 0.014 for interaction between beta-blocker use and mean HR). In addition to low HR, high HR-CV and high SBP had additive effects on incident AF. CONCLUSIONS Low mean HR (<60 beats min(-1) ) is independently associated with incident AF, and low HR-CV and high SBP further increase the incidence of new-onset AF in patients at high risk of cardiovascular disease.
Collapse
Affiliation(s)
- M Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | - D Linz
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - J-C Reil
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - C Ukena
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - E Lonn
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - K Teo
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - K Sliwa
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - R E Schmieder
- Department of Nephrology and Hypertension, Friedrich-Alexander University, Erlangen, Germany
| | - P Sleight
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - S Yusuf
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
197
|
Bowles NE, Jou CJ, Arrington CB, Kennedy BJ, Earl A, Matsunami N, Meyers LL, Etheridge SP, Saarel EV, Bleyl SB, Yost HJ, Yandell M, Leppert MF, Tristani-Firouzi M, Gruber PJ. Exome analysis of a family with Wolff-Parkinson-White syndrome identifies a novel disease locus. Am J Med Genet A 2015; 167A:2975-84. [PMID: 26284702 DOI: 10.1002/ajmg.a.37297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene.
Collapse
Affiliation(s)
- Neil E Bowles
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Chuanchau J Jou
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah.,Nora Eccles Cardiovascular Research and Training Institute, Salt Lake City, Utah
| | - Cammon B Arrington
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Brett J Kennedy
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Aubree Earl
- Department of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Norisada Matsunami
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lindsay L Meyers
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Susan P Etheridge
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Elizabeth V Saarel
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Steven B Bleyl
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah.,Clinical Genetics Institute, Intermountain Healthcare, Salt Lake City, Utah
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mark Yandell
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah.,USTAR Center for Genetic Discovery, University of Iowa, Iowa City, Iowa
| | - Mark F Leppert
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Martin Tristani-Firouzi
- Department of Pediatrics, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah.,Nora Eccles Cardiovascular Research and Training Institute, Salt Lake City, Utah
| | - Peter J Gruber
- Department of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
198
|
Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X, Bu L, Wang G, Chen HSV, Zhuang T, Yan J, Geng P, Luo L, Banerjee I, Chen Y, Glass CK, Zambon AC, Chen J, Sun Y, Evans SM. Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest 2015; 125:3256-68. [PMID: 26193633 DOI: 10.1172/jci68257] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/04/2015] [Indexed: 01/29/2023] Open
Abstract
The sinoatrial node (SAN) maintains a rhythmic heartbeat; therefore, a better understanding of factors that drive SAN development and function is crucial to generation of potential therapies, such as biological pacemakers, for sinus arrhythmias. Here, we determined that the LIM homeodomain transcription factor ISL1 plays a key role in survival, proliferation, and function of pacemaker cells throughout development. Analysis of several Isl1 mutant mouse lines, including animals harboring an SAN-specific Isl1 deletion, revealed that ISL1 within SAN is a requirement for early embryonic viability. RNA-sequencing (RNA-seq) analyses of FACS-purified cells from ISL1-deficient SANs revealed that a number of genes critical for SAN function, including those encoding transcription factors and ion channels, were downstream of ISL1. Chromatin immunoprecipitation assays performed with anti-ISL1 antibodies and chromatin extracts from FACS-purified SAN cells demonstrated that ISL1 directly binds genomic regions within several genes required for normal pacemaker function, including subunits of the L-type calcium channel, Ank2, and Tbx3. Other genes implicated in abnormal heart rhythm in humans were also direct ISL1 targets. Together, our results demonstrate that ISL1 regulates approximately one-third of SAN-specific genes, indicate that a combination of ISL1 and other SAN transcription factors could be utilized to generate pacemaker cells, and suggest ISL1 mutations may underlie sick sinus syndrome.
Collapse
|
199
|
Ruan Z, Sun X, Sheng H, Zhu L. Long non-coding RNA expression profile in atrial fibrillation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8402-8410. [PMID: 26339410 PMCID: PMC4555738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
To investigate the expression profiles of long non-coding RNAs (lncRNAs) in atrial fibrillation (AF), atrial tissues from 3 AF patients and 3 non-AF patients that were collected for lncRNA expression microarray analyses to explore the role of lncRNA in the pathogenesis of AF. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and AF-related pathways. A total of 219 lncRNAs was found to be differentially expressed between AFs and controls. Among them, 156 were upregulated and 63 were downregulated. Eight out of 10 dysregulated lncRNAs such as uc001eqh.1 were validated by quantitative real-time PCR. GO categories, pathway analyses, and interaction network showed a consistent result that differentially expressed genes contribute to the pathogenesis of AF. In conclusion, the findings of our study provide a perspective on lncRNA in AF and the foundation for further study of the biological functions of lncRNAs in AF.
Collapse
Affiliation(s)
- Zhongbao Ruan
- Department of Cardiology, Taizhou People’s HospitalTaizhou, Jiangsu, China
| | - Xiaohua Sun
- Department of Cardiology, Taizhou People’s HospitalTaizhou, Jiangsu, China
| | - Haihui Sheng
- CMC Biobank and Translational Medicine InstituteTaizhou, Jiangsu, China
- National Engineering Center for Biochip at ShanghaiShanghai, China
- Taizhou Outdo Clinical LaboratoryTaizhou, Jiangsu, China
| | - Li Zhu
- Department of Cardiology, Taizhou People’s HospitalTaizhou, Jiangsu, China
| |
Collapse
|
200
|
Munroe PB, Tinker A. Genome-wide association studies and contribution to cardiovascular physiology. Physiol Genomics 2015; 47:365-75. [PMID: 26106147 DOI: 10.1152/physiolgenomics.00004.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology.
Collapse
Affiliation(s)
- Patricia B Munroe
- Clinical Pharmacology and The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Andrew Tinker
- Clinical Pharmacology and The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|