151
|
Addressing optimal folate and related B-vitamin status through the lifecycle: health impacts and challenges. Proc Nutr Soc 2019; 78:449-462. [DOI: 10.1017/s0029665119000661] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The functional effects of folate within C1 metabolism involve interrelationships with vitamin B12, vitamin B6 and riboflavin, and related gene–nutrient interactions. These B vitamins have important roles throughout life, from pregnancy, through childhood, to middle and older age. Achieving optimal nutritional status for preventing folate-related disease is challenging, however, primarily as a result of the poor stability and incomplete bioavailability of folate from natural food sources when compared with the synthetic vitamin form, folic acid. Thus, in European countries, measures to prevent neural tube defects (NTD) have been largely ineffective because of the generally poor compliance of women with folic acid supplementation as recommended before and in early pregnancy. In contrast, countries worldwide with mandatory folic acid fortification policies have experienced marked reductions in NTD. Low vitamin B12 status is associated with increased risk of cognitive dysfunction, CVD and osteoporosis. Achieving optimal B12 status can be problematic for older people, however, primarily owing to food-bound B12 malabsorption which leads to sub-clinical deficiency even with high dietary B12 intakes. Optimising B-vitamin intake may be particularly important for sub-populations with impaired folate metabolism owing to genetic characteristics, most notably the 677C→T variant in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR). This common folate polymorphism is linked with several adverse health outcomes, including stroke, however, recent evidence has identified its novel interaction with riboflavin (the MTHFR cofactor) in relation to blood pressure and risk of developing hypertension. This review addresses why and how the optimal status of folate-related B vitamins should be achieved through the lifecycle.
Collapse
|
152
|
Manosroi W, Williams GH. Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocr Rev 2019; 40:825-856. [PMID: 30590482 PMCID: PMC6936319 DOI: 10.1210/er.2018-00071] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Increasingly, primary hypertension is being considered a syndrome and not a disease, with the individual causes (diseases) having a common sign-an elevated blood pressure. To determine these causes, genetic tools are increasingly employed. This review identified 62 proposed genes. However, only 21 of them met our inclusion criteria: (i) primary hypertension, (ii) two or more supporting cohorts from different publications or within a single publication or one supporting cohort with a confirmatory genetically modified animal study, and (iii) 600 or more subjects in the primary cohort; when including our exclusion criteria: (i) meta-analyses or reviews, (ii) secondary and monogenic hypertension, (iii) only hypertensive complications, (iv) genes related to blood pressure but not hypertension per se, (v) nonsupporting studies more common than supporting ones, and (vi) studies that did not perform a Bonferroni or similar multiassessment correction. These 21 genes were organized in a four-tiered structure: distant phenotype (hypertension); intermediate phenotype [salt-sensitive (18) or salt-resistant (0)]; subintermediate phenotypes under salt-sensitive hypertension [normal renin (4), low renin (8), and unclassified renin (6)]; and proximate phenotypes (specific genetically driven hypertensive subgroup). Many proximate hypertensive phenotypes had a substantial endocrine component. In conclusion, primary hypertension is a syndrome; many proposed genes are likely to be false positives; and deep phenotyping will be required to determine the utility of genetics in the treatment of hypertension. However, to date, the positive genes are associated with nearly 50% of primary hypertensives, suggesting that in the near term precise, mechanistically driven treatment and prevention strategies for the specific primary hypertension subgroups are feasible.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Endocrinology and Metabolism, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gordon H Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
153
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
154
|
Hollister BM, Farber-Eger E, Aldrich MC, Crawford DC. A Social Determinant of Health May Modify Genetic Associations for Blood Pressure: Evidence From a SNP by Education Interaction in an African American Population. Front Genet 2019; 10:428. [PMID: 31134134 PMCID: PMC6523518 DOI: 10.3389/fgene.2019.00428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
African Americans experience the highest burden of hypertension in the United States compared with other groups. Genetic contributions to this complex condition are now emerging in this as well as other populations through large-scale genome-wide association studies (GWAS) and meta-analyses. Despite these recent discovery efforts, relatively few large-scale studies of blood pressure have considered the joint influence of genetics and social determinants of health despite extensive evidence supporting their impact on hypertension. To identify these expected interactions, we accessed a subset of the Vanderbilt University Medical Center (VUMC) biorepository linked to de-identified electronic health records (EHRs) of adult African Americans genotyped using the Illumina Metabochip (n = 2,577). To examine potential interactions between education, a recognized social determinant of health, and genetic variants contributing to blood pressure, we used linear regression models to investigate two-way interactions for systolic and diastolic blood pressure (DBP). We identified a two-way interaction between rs6687976 and education affecting DBP (p = 0.052). Individuals homozygous for the minor allele and having less than a high school education had higher DBP compared with (1) individuals homozygous for the minor allele and high school education or greater and (2) individuals not homozygous for the minor allele and less than a high school education. To our knowledge, this is the first EHR -based study to suggest a gene-environment interaction for blood pressure in African Americans, supporting the hypothesis that genetic contributions to hypertension may be modulated by social factors.
Collapse
Affiliation(s)
- Brittany M Hollister
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Melinda C Aldrich
- Department of Thoracic Surgery, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
155
|
Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, Egan BM, Flack JM, Gidding SS, Judd E, Lackland DT, Laffer CL, Newton-Cheh C, Smith SM, Taler SJ, Textor SC, Turan TN, White WB. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association. Hypertension 2019; 72:e53-e90. [PMID: 30354828 DOI: 10.1161/hyp.0000000000000084] [Citation(s) in RCA: 664] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resistant hypertension (RH) is defined as above-goal elevated blood pressure (BP) in a patient despite the concurrent use of 3 antihypertensive drug classes, commonly including a long-acting calcium channel blocker, a blocker of the renin-angiotensin system (angiotensin-converting enzyme inhibitor or angiotensin receptor blocker), and a diuretic. The antihypertensive drugs should be administered at maximum or maximally tolerated daily doses. RH also includes patients whose BP achieves target values on ≥4 antihypertensive medications. The diagnosis of RH requires assurance of antihypertensive medication adherence and exclusion of the "white-coat effect" (office BP above goal but out-of-office BP at or below target). The importance of RH is underscored by the associated risk of adverse outcomes compared with non-RH. This article is an updated American Heart Association scientific statement on the detection, evaluation, and management of RH. Once antihypertensive medication adherence is confirmed and out-of-office BP recordings exclude a white-coat effect, evaluation includes identification of contributing lifestyle issues, detection of drugs interfering with antihypertensive medication effectiveness, screening for secondary hypertension, and assessment of target organ damage. Management of RH includes maximization of lifestyle interventions, use of long-acting thiazide-like diuretics (chlorthalidone or indapamide), addition of a mineralocorticoid receptor antagonist (spironolactone or eplerenone), and, if BP remains elevated, stepwise addition of antihypertensive drugs with complementary mechanisms of action to lower BP. If BP remains uncontrolled, referral to a hypertension specialist is advised.
Collapse
|
156
|
Li XC, Soleimani M, Zhu D, Rubera I, Tauc M, Zheng X, Zhang J, Chen X, Zhuo JL. Proximal Tubule-Specific Deletion of the NHE3 (Na +/H + Exchanger 3) Promotes the Pressure-Natriuresis Response and Lowers Blood Pressure in Mice. Hypertension 2019; 72:1328-1336. [PMID: 30571224 DOI: 10.1161/hypertensionaha.118.10884] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study directly tested the hypothesis that deletion of the NHE3 (Na+/H+ exchanger 3) selectively in the proximal tubules of the kidney lowers basal blood pressure by increasing the pressure-natriuresis response in mice. Adult male and female, age-matched wild-type (WT) littermates and proximal tubule-specific NHE3 knockout mice (PT- Nhe3-/-; n=6-16 per group) were studied for (1) basal phenotypes of electrolytes and pH, blood pressure, and kidney function; (2) the pressure-natriuresis response using the mesenteric, celiac, and abdominal arterial occlusion technique; and (3) the natriuretic responses to acute saline expansion (0.9% NaCl, 10% body weight, intraperitoneal) or 2-week of 2% NaCl diet. Under basal conditions, PT- Nhe3-/- mice showed significantly lower systolic, diastolic, and mean arterial blood pressure ( P<0.01) than WT mice ( P<0.01). PT- Nhe3-/- mice also exhibited significantly greater diuretic ( P<0.01) and natriuretic responses than WT mice ( P<0.01), without altering 24-hour fecal Na+ excretion, plasma pH, Na+, and bicarbonate levels. In response to increased renal perfusion pressure by 30 mm Hg, the pressure-natriuresis response increased 5-fold in WT mice ( P<0.01), but it increased 8-fold in PT- Nhe3-/- mice ( P<0.01). In response to 10% acute saline expansion or 2-week 2% NaCl diet, more pronounced natriuretic responses were demonstrated in PT- Nhe3-/- than WT mice ( P<0.01). Our results support the scientific premise and physiological relevance that NHE3 in the proximal tubules plays an essential role in maintaining basal blood pressure homeostasis, and genetic deletion of NHE3 selectively in the proximal tubules of the kidney lowers blood pressure by increasing the pressure natriuretic response.
Collapse
Affiliation(s)
- Xiao C Li
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Manoocher Soleimani
- Division of Nephrology and Hypertension, Department of Internal Medicine, The University of Cincinnati College of Medicine, OH (M.S.)
| | - Dongmin Zhu
- Department of Outpatients, Guangxi Science and Technology University No. 1 Affiliated Hospital, Liuzhou, China (D.Z.)
| | - Isabelle Rubera
- Laboratoire Centre National de la Recherche Scientifique (CNRS) 3472 LP2M, Université de Nice Sophia Antipolis, Nice Cedex 2, France (I.R., M.T.)
| | - Michel Tauc
- Laboratoire Centre National de la Recherche Scientifique (CNRS) 3472 LP2M, Université de Nice Sophia Antipolis, Nice Cedex 2, France (I.R., M.T.)
| | - Xiaowen Zheng
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.).,Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X.Z., J.Z.)
| | - Jianfeng Zhang
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Xu Chen
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.)
| | - Jia L Zhuo
- From the Division of Nephrology, Department of Pharmacology and Toxicology and Department of Medicine, University of Mississippi Medical Center, Jackson (X.C.L., X.Z., J.Z., X.C., J.L.Z.).,Department of Emergency Medicine, Second Affiliated Hospital, Guangxi Medical University, Nanning, China (X.Z., J.Z.)
| |
Collapse
|
157
|
Laarman MD, Geeven G, Barnett P, Rinkel GJE, de Laat W, Ruigrok YM, Bakkers J. Chromatin Conformation Links Putative Enhancers in Intracranial Aneurysm-Associated Regions to Potential Candidate Genes. J Am Heart Assoc 2019; 8:e011201. [PMID: 30994044 PMCID: PMC6512097 DOI: 10.1161/jaha.118.011201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background We previously showed that intracranial aneurysm (IA)–associated single‐nucleotide polymorphisms are enriched in promoters and putative enhancers identified in the human circle of Willis, on which IAs develop, suggesting a role for promoters and enhancers in IAs. We further investigated the role of putative enhancers in the pathogenesis of IA by identifying their potential target genes and validating their regulatory activity. Methods and Results Using our previously published circle of Willis chromatin immunoprecipitation and sequencing data, we selected 34 putative enhancers in IA‐associated regions from genome‐wide association studies. We then used a chromatin conformation capture technique to prioritize target genes and found that 15 putative enhancers interact with the promoters of 6 target genes: SOX17,CDKN2B,MTAP,CNNM2,RPEL1, and GATA6. Subsequently, we assessed the activity of these putative enhancers in vivo in zebrafish embryos and confirmed activity for 8 putative enhancers. Last, we found that all 6 target genes are expressed in the circle of Willis, on the basis of RNA sequencing data and in situ hybridization. Furthermore, in situ hybridization showed that these genes are expressed in multiple cell types in the circle of Willis. Conclusions In 4 of 6 IA‐associated genome‐wide association study regions, we identified 8 putative enhancers that are active in vivo and interact with 6 nearby genes, suggesting that these genes are regulated by the identified putative enhancers. These genes, SOX17,CDKN2B,MTAP,CNNM2,RPEL1, and GATA6, are therefore potential candidate genes involved in IA pathogenesis and should be studied using animal models in the future.
Collapse
Affiliation(s)
- Melanie D Laarman
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands.,2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Geert Geeven
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Phil Barnett
- 4 Department of Medical Biology Academic Medical Center University of Amsterdam the Netherlands
| | -
- 5 Netherlands Institute for Neuroscience Amsterdam the Netherlands
| | - Gabriël J E Rinkel
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands
| | - Wouter de Laat
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands
| | - Ynte M Ruigrok
- 1 Department of Neurology and Neurosurgery Brain Center Rudolf Magnus University Medical Center, Utrecht the Netherlands
| | - Jeroen Bakkers
- 2 Hubrecht Institute (Royal Netherlands Academy of Arts and Sciences (KNAW)) University Medical Center, Utrecht the Netherlands.,3 Division of Heart and Lungs Department of Medical Physiology University Medical Center, Utrecht the Netherlands
| |
Collapse
|
158
|
Simonyte S, Kuciene R, Dulskiene V, Lesauskaite V. Associations of the adrenomedullin gene polymorphism with prehypertension and hypertension in Lithuanian children and adolescents: a cross-sectional study. Sci Rep 2019; 9:6807. [PMID: 31048758 PMCID: PMC6497928 DOI: 10.1038/s41598-019-43287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to evaluate the association of ADM genetic variant and HBP among Lithuanian adolescents aged 12-15 years. This is a cross-sectional study of a randomly selected sample of 675 12-15-years-old schoolchildren who were surveyed during November 2010 to April 2012 in the baseline survey. Single-nucleotide polymorphism (SNP) of ADM gene (rs7129220) was evaluated using real-time PCR. Logistic regression analyses were used to test the associations of ADM (rs7129220) polymorphism with HBP under four inheritance models based on the Akaike Information Criterion (AIC) and to calculate the odds ratios. In the multivariate analysis, boys carrying ADM AG genotype (vs. carriers of ADM GG genotype), ADM AG + AA genotype (vs. carriers of ADM GG genotype) and ADM AG genotype (vs. carriers of ADM GG + AA genotype) had higher odds of having hypertension in codominant, dominant, and overdominant inheritance models. Girls with ADM AG + AA had increased odds of prehypertension compared to girls with the ADM GG genotype carriers in dominant inheritance model. Significant associations were observed in additive models separately for boys (hypertension) and girls (prehypertension). Our results indicate that ADM gene polymorphism was significantly associated with higher odds of HBP in Lithuanian adolescents aged 12-15 years.
Collapse
Affiliation(s)
- Sandrita Simonyte
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Sukileliu 15, LT-50161, Kaunas, Lithuania.
| | - Renata Kuciene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Sukileliu 15, LT-50161, Kaunas, Lithuania
| | - Virginija Dulskiene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Sukileliu 15, LT-50161, Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Sukileliu 15, LT-50161, Kaunas, Lithuania
| |
Collapse
|
159
|
Hindy G, Åkesson KE, Melander O, Aragam KG, Haas ME, Nilsson PM, Kadam UT, Orho-Melander M. Cardiometabolic Polygenic Risk Scores and Osteoarthritis Outcomes: A Mendelian Randomization Study Using Data From the Malmö Diet and Cancer Study and the UK Biobank. Arthritis Rheumatol 2019; 71:925-934. [PMID: 30615301 PMCID: PMC6563114 DOI: 10.1002/art.40812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Objective To investigate the causal role of cardiometabolic risk factors in osteoarthritis (OA) using associated genetic variants. Methods We studied 27,691 adults from the Malmö Diet and Cancer Study (MDCS) and replicated novel findings among 376,435 adults from the UK Biobank. Trait‐specific polygenic risk scores for low‐density lipoprotein (LDL) and high‐density lipoprotein (HDL) cholesterol levels, triglyceride levels, body mass index (BMI), fasting plasma glucose (FPG) levels, and systolic blood pressure (BP) were used to test the associations of genetically predicted elevations in each trait with incident OA diagnosis (n = 3,559), OA joint replacement (n = 2,780), or both (total OA; n = 4,226) in Mendelian randomization (MR) analyses in the MDCS, and with self‐reported and/or hospital‐diagnosed OA (n = 65,213) in the UK Biobank. Multivariable MR, MR‐Egger, and weighted median MR were used to adjust for potential pleiotropic biases. Results In the MDCS, genetically predicted elevation in LDL cholesterol level was associated with a lower risk of OA diagnosis (odds ratio [OR] 0.83 [95% confidence interval (95% CI) 0.73–0.95] per 1SD increase) and total OA (OR 0.87 [95% CI 0.78–0.98]), which was supported by multivariable MR for OA diagnosis (OR 0.84 [95% CI 0.75–0.95]) and total OA (0.87 [95% CI 0.78–0.97]), and by conventional 2‐sample MR for OA diagnosis (OR 0.86 [95% CI 0.75–0.98]). MR‐Egger indicated no pleiotropic bias. Genetically predicted elevation in BMI was associated with an increased risk of OA diagnosis (OR 1.65 [95% CI 1.14–2.41]), while MR‐Egger indicated pleiotropic bias and a larger association with OA diagnosis (OR 3.25 [1.26–8.39]), OA joint replacement (OR 3.81 [95% CI 1.39–10.4]), and total OA (OR 3.41 [95% CI 1.43–8.15]). No associations were observed between genetically predicted HDL cholesterol level, triglyceride level, FPG level, or systolic BP and OA outcomes. The associations with LDL cholesterol levels were replicated in the UK Biobank (OR 0.95 [95% CI 0.93–0.98]). Conclusion Our MR study provides evidence of a causal role of lower LDL cholesterol level and higher BMI in OA.
Collapse
Affiliation(s)
- George Hindy
- Lund University, Lund, Sweden, and Broad Institute, Cambridge, Massachusetts
| | | | | | - Krishna G Aragam
- Broad Institute, Cambridge, Massachusetts, and Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
160
|
Patel AP, Natarajan P. Completing the genetic spectrum influencing coronary artery disease: from germline to somatic variation. Cardiovasc Res 2019; 115:830-843. [PMID: 30789660 PMCID: PMC6452301 DOI: 10.1093/cvr/cvz032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/11/2023] Open
Abstract
Genetic and environmental factors influence the development of coronary artery disease (CAD). Genetic analyses of families and the population continue to yield important fundamental insights for CAD. For the past four decades, CAD human genetic research focused largely on the study of germline genetic variation in CAD and its risk factors. The first genes associated with CAD were discovered using basic Mendelian principles and pedigree analysis. Mapping of the human genome and advancement in sequencing technology sparked further discovery of novel genetic associations through exome sequencing and genome wide association analysis in increasingly larger populations. While prior work implicated in situ DNA damage as a feature of atherosclerosis, more recently, somatic mutagenesis in and clonal expansion of haematopoietic stem cells was found to influence risk of CAD. Mutations observed for this condition, termed clonal haematopoiesis of indeterminate potential, frequently occur within epigenetic regulator genes (e.g. DNMT3A, TET2, ASXL1, etc.), which are also implicated in leukaemogenesis. Hypercholesterolaemic mice with Tet2 bone marrow deficiency are predisposed to the development of atherosclerosis that may be partly related to inflammatory cytokines. As the genetic basis of CAD expands from the germline to somatic genome, our fundamental understanding of CAD continues to evolve; these new discoveries represent new opportunities for risk prediction and prevention, and a new facet of cardio-oncology.
Collapse
Affiliation(s)
- Aniruddh P Patel
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge St, CPZN 3.184, Boston, MA, USA
- Program in Population and Medical Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge St, CPZN 3.184, Boston, MA, USA
- Program in Population and Medical Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
161
|
Abstract
AbstractThe WHO reported that high blood pressure (BP) is one of the primary causes of death worldwide. Hypertension (HPT) is a major risk factor for CVD and related diseases as well as for diseases, leading to a considerable increase in cardiovascular risk. Since BP response could also be influenced by caffeine, which is widely consumed with coffee and other items, it is important to define the possible effects associated with caffeine intake. The most recent findings aimed at clarifying the role of caffeine consumption on BP and HPT risk/incidence are conflicting and difficult to interpret. Therefore, in the present narrative review, we aimed to examine various methodological inaccuracies/aspects and factors that make studies difficult to be compared, in order to obtain a single consensus on the effects of caffeine intake on the risk of BP and HPT. We observed that this heterogeneity in results could be due to the presence of: (i) several variables affecting BP (such as age, sex, genetic and lifestyle aspects); (ii) different caffeine content of food and beverages; and (iii) caffeine metabolism. Moreover, different methodological aspects in the evaluation of daily dietary caffeine intake and in the BP measurement could add some other bias in the interpretation of results. Therefore, it is mandatory to consider all methodological aspects and confounding factors to generate a standardised methodology in order to increase cross-study consistency and minimise confounding effects of different variables on the relationship between BP response and HPT risk/incidence after caffeine intake.
Collapse
|
162
|
Kolifarhood G, Daneshpour MS, Khayat BS, Saadati HM, Guity K, Khosravi N, Akbarzadeh M, Sabour S. Generality of genomic findings on blood pressure traits and its usefulness in precision medicine in diverse populations: A systematic review. Clin Genet 2019; 96:17-27. [PMID: 30820929 DOI: 10.1111/cge.13527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Remarkable findings from genome-wide association studies (GWAS) on blood pressure (BP) traits have made new insights for developing precision medicine toward more effective screening measures. However, generality of GWAS findings in diverse populations is hampered by some technical limitations. There is no comprehensive study to evaluate source(s) of the non-generality of GWAS results on BP traits, so to fill the gap, this systematic review study was carried out. Using MeSH terms, 1545 records were detected through searching in five databases and 49 relevant full-text articles were included in our review. Overall, 749 unique variants were reported, of those, majority of variants have been detected in Europeans and were associated to systolic and diastolic BP traits. Frequency of genetic variants with same position was low in European and non-European populations (n = 38). However, more than 200 (>25%) single nucleotide polymorphisms were found on same loci or linkage disequilibrium blocks (r2 ≥ 80%). Investigating for locus position and linkage disequilibrium of infrequent unique variants showed modest to high reproducibility of findings in Europeans that in some extent was generalizable in other populations. Beyond theoretical limitations, our study addressed other possible sources of non-generality of GWAS findings for BP traits in the same and different origins.
Collapse
Affiliation(s)
- Goodarz Kolifarhood
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh S Khayat
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein M Saadati
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Guity
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khosravi
- Department of Community Health Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
163
|
Wang Y, Wang JG. Genome-Wide Association Studies of Hypertension and Several Other Cardiovascular Diseases. Pulse (Basel) 2019; 6:169-186. [PMID: 31049317 PMCID: PMC6489084 DOI: 10.1159/000496150] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/07/2018] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have greatly expanded our understanding of the genetic architecture of cardiovascular diseases in the past decade. They have revealed hundreds of suggestive genetic loci that replicate known biological candidate genes and indicate the existence of a previously unsuspected new biology relevant to cardiovascular disorders. These data have been used successfully to create genetic risk scores that may improve risk prediction and the identification of susceptive individuals. Furthermore, these GWAS-identified novel pathways may herald a new era of novel drug development and stratification of patients. In this review, we will briefly summarize the literature on the candidate genes and signals discovered by GWAS on hypertension and coronary artery disease and discuss their implications on clinical medicine.
Collapse
Affiliation(s)
| | - Ji-Guang Wang
- Shanghai Key Laboratory of Hypertension, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
164
|
Taylor EB, Wolf VL, Dent E, Ryan MJ. Mechanisms of hypertension in autoimmune rheumatic diseases. Br J Pharmacol 2019; 176:1897-1913. [PMID: 30714094 PMCID: PMC6534791 DOI: 10.1111/bph.14604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with autoimmune rheumatic diseases including rheumatoid arthritis and systemic lupus erythematosus have an increased prevalence of hypertension. There is now a large body of evidence showing that the immune system is a key mediator in both human primary hypertension and experimental models. Many of the proposed immunological mechanisms leading to primary hypertension are paralleled in autoimmune rheumatic disorders. Therefore, examining the link between autoimmunity and hypertension can be informative for understanding primary hypertension. This review examines the prevalent hypertension, the immune mediators that contribute to the prevalent hypertension and their impact on renal function and how the risk of hypertension is potentially influenced by common hormonal changes that are associated with autoimmune rheumatic diseases. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Victoria L Wolf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Elena Dent
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
165
|
Allum F, Hedman ÅK, Shao X, Cheung WA, Vijay J, Guénard F, Kwan T, Simon MM, Ge B, Moura C, Boulier E, Rönnblom L, Bernatsky S, Lathrop M, McCarthy MI, Deloukas P, Tchernof A, Pastinen T, Vohl MC, Grundberg E. Dissecting features of epigenetic variants underlying cardiometabolic risk using full-resolution epigenome profiling in regulatory elements. Nat Commun 2019; 10:1209. [PMID: 30872577 PMCID: PMC6418220 DOI: 10.1038/s41467-019-09184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.
Collapse
Affiliation(s)
- Fiona Allum
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Åsa K Hedman
- Department of Medicine Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Xiaojian Shao
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Warren A Cheung
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA
| | - Jinchu Vijay
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Marie-Michelle Simon
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Cristiano Moura
- Department of Epidemiology, McGill University, Montréal, QC, H3A 1A2, Canada
| | - Elodie Boulier
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Lars Rönnblom
- Department of Medical Sciences, Uppsala University, Uppsala, 751 85, Sweden
| | - Sasha Bernatsky
- Department of Epidemiology, McGill University, Montréal, QC, H3A 1A2, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Old Road, Headington, Oxford, OX3 7LJ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - André Tchernof
- Québec Heart and Lung Institute, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada.
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada.
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA.
| |
Collapse
|
166
|
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019; 42:1099-1113. [PMID: 30867575 DOI: 10.1038/s41440-019-0248-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Essential hypertension (EH) is a multifactorial disease of the cardiovascular system that is influenced by the interplay of genetic, epigenetic, and environmental factors. The molecular dynamics underlying EH etiopathogenesis is unknown; however, earlier studies have revealed EH-associated genetic variants. Nevertheless, this finding alone is not sufficient to explain the variability in blood pressure, suggesting that other risk factors are involved, such as epigenetic modifications. Therefore, this review highlights the potential contribution of well-defined epigenetic mechanisms in EH, specifically, DNA methylation, post-translational histone modifications, and microRNAs. We further emphasize global and gene-specific DNA methylation as one of the most well-studied hallmarks among all epigenetic modifications in EH. In addition, post-translational histone modifications, such as methylation, acetylation, and phosphorylation, are described as important epigenetic markers associated with EH. Finally, we discuss microRNAs that affect blood pressure by regulating master genes such as those implicated in the renin-angiotensin-aldosterone system. These epigenetic modifications, which appear to contribute to various cardiovascular diseases, including EH, may be a promising research area for the development of novel future strategies for EH prevention and therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA.,Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Richard C Becker
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Elaine M Urbina
- Division of Preventive Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
167
|
Wei CJ, Cui P, Li H, Lang WJ, Liu GY, Ma XF. Shared genes between Alzheimer's disease and ischemic stroke. CNS Neurosci Ther 2019; 25:855-864. [PMID: 30859738 PMCID: PMC6630005 DOI: 10.1111/cns.13117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Aims Although converging evidence from experimental and epidemiological studies indicates Alzheimer's disease (AD) and ischemic stroke (IS) are related, the genetic basis underlying their links is less well characterized. Traditional SNP‐based genome‐wide association studies (GWAS) have failed to uncover shared susceptibility variants of AD and IS. Therefore, this study was designed to investigate whether pleiotropic genes existed between AD and IS to account for their phenotypic association, although this was not reported in previous studies. Methods Taking advantage of large‐scale GWAS summary statistics of AD (17,008 AD cases and 37,154 controls) and IS (10,307 IS cases and 19,326 controls), we performed gene‐based analysis implemented in VEGAS2 and Fisher's meta‐analysis of the set of overlapped genes of nominal significance in both diseases. Subsequently, gene expression analysis in AD‐ or IS‐associated expression datasets was conducted to explore the transcriptional alterations of pleiotropic genes identified. Results 16 AD‐IS pleiotropic genes surpassed the cutoff for Bonferroni‐corrected significance. Notably, MS4A4A and TREM2, two established AD‐susceptibility genes showed remarkable alterations in the spleens and brains afflicted by IS, respectively. Among the prioritized genes identified by virtue of literature‐based knowledge, most are immune‐relevant genes (EPHA1, MS4A4A, UBE2L3 and TREM2), implicating crucial roles of the immune system in the pathogenesis of AD and IS. Conclusions The observation that AD and IS had shared disease‐associated genes offered mechanistic insights into their common pathogenesis, predominantly involving the immune system. More importantly, our findings have important implications for future research directions, which are encouraged to verify the involvement of these candidates in AD and IS and interpret the exact molecular mechanisms of action.
Collapse
Affiliation(s)
- Chang-Juan Wei
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Pan Cui
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - He Li
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Wen-Jing Lang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| | - Gui-You Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiao-Feng Ma
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
| |
Collapse
|
168
|
Kim HJ, Seo YS, Sung J, Son HY, Yun JM, Kwon H, Cho B, Kim JI, Park JH. Interactions of CDH13 gene polymorphisms and ambient PM 10 air pollution exposure with blood pressure and hypertension in Korean men. CHEMOSPHERE 2019; 218:292-298. [PMID: 30476760 DOI: 10.1016/j.chemosphere.2018.11.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Associations between air pollution and blood pressure (BP) traits can be modified by several candidate genes, which might explain differences in individual genetic susceptibility. Based on recent evidence hypothesized to link air pollution and BP traits, we examined whether the polymorphisms of CDH13-a candidate gene-would modify the relationship between them in adult Korean men. A total of 1816 subjects were included. We divided them into two groups of high or low to moderate exposure using the annual average concentration of particulate matter with an aerodynamic diameter ≤10 μm (PM10). We conducted an interaction analysis of PM10 exposure using 200 single-nucleotide polymorphisms (SNPs), located within CDH13, in subjects with regard to BP traits and hypertension. The rs7500599 intronic SNP of CDH13 had the strongest signals for all BP traits including systolic blood pressure (SBP), diastolic blood pressure, and hypertension, by interacting with PM10 exposure. An additional stratified analysis showed that the effects of PM10 exposure on elevated BP and hypertension increased gradually in proportion to the number of minor alleles in this SNP. In addition, PM10 exposure in the TT or GT genotype groups did not show significant associations with BP traits, whereas in a homozygous risk allele (GG) group, PM10 exposure was significantly associated with BP traits and hypertension. For SBP, these patterns were reproducible at two independent sampling sites. This CDH13 polymorphism amplifies the negative associations of PM10 exposure and elevated BP or hypertension in Korean men.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Yong-Seok Seo
- Disaster Management Research Center, Seoul, South Korea
| | - Joohon Sung
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ho-Young Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
169
|
Rubattu S, Forte M, Marchitti S, Volpe M. Molecular Implications of Natriuretic Peptides in the Protection from Hypertension and Target Organ Damage Development. Int J Mol Sci 2019; 20:E798. [PMID: 30781751 PMCID: PMC6412747 DOI: 10.3390/ijms20040798] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | | | | | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
170
|
Smith C, Swart A. Aspalathus linearis (Rooibos) - a functional food targeting cardiovascular disease. Food Funct 2019; 9:5041-5058. [PMID: 30183052 DOI: 10.1039/c8fo01010b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing consumer bias toward natural products and the considerable wealth of indigenous knowledge has precipitated an upturn in market-driven research into potentially beneficial medicinal plants. In this context, Aspalathus linearis (Rooibos) has been identified to be a promising candidate which may impact cardiovascular disease (CVD), which is one of the most widely studied chronic diseases of modern times. Despite these efforts, ischemic heart disease remains the number one cause of mortality globally. Apart from genetic predisposition and other aetiological mechanisms specific to particular types of CVD, co-factors from interlinked systems contribute significantly to disease development and the severity of its clinical manifestation. The bioactivity of Rooibos is directed towards multiple therapeutic targets. Experimental data to date include antioxidant, anti-inflammatory and anti-diabetic effects, as well as modulatory effects in terms of the immune system, adrenal steroidogenesis and lipid metabolism. This review integrates relevant literature on the therapeutic potential of Rooibos in the context of CVD, which is currently the most common of non-communicable diseases. The therapeutic value of whole plant extracts versus isolated active ingredients are addressed, together with the potential for overdose or herb-drug interaction. The body of research undertaken to date clearly underlines the benefits of Rooibos as both preventative and complementary therapeutic functional food in the context of CVD.
Collapse
Affiliation(s)
- Carine Smith
- Dept Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.
| | | |
Collapse
|
171
|
Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects. Nat Commun 2019; 10:339. [PMID: 30664634 PMCID: PMC6341104 DOI: 10.1038/s41467-018-08000-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Body mass and body fat composition are of clinical interest due to their links to cardiovascular- and metabolic diseases. Fat stored in the trunk has been suggested to be more pathogenic compared to fat stored in other compartments. In this study, we perform genome-wide association studies (GWAS) for the proportion of body fat distributed to the arms, legs and trunk estimated from segmental bio-electrical impedance analysis (sBIA) for 362,499 individuals from the UK Biobank. 98 independent associations with body fat distribution are identified, 29 that have not previously been associated with anthropometric traits. A high degree of sex-heterogeneity is observed and the effects of 37 associated variants are stronger in females compared to males. Our findings also implicate that body fat distribution in females involves mesenchyme derived tissues and cell types, female endocrine tissues as well as extracellular matrix maintenance and remodeling. Obesity and the distribution of fat within the body are risk factors for cardiometabolic diseases. Here, Rask-Andersen et al. perform GWAS for bio-electrical impedance measurements in UK Biobank participants and identify 29 novel independent loci for fat distribution and a high degree of sex-heterogeneity.
Collapse
Affiliation(s)
- Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 256, 751 05, Uppsala, Sweden.
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 256, 751 05, Uppsala, Sweden
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 256, 751 05, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 256, 751 05, Uppsala, Sweden.
| |
Collapse
|
172
|
Tagetti A, Bonafini S, Ohlsson T, Engström G, Almgren P, Minuz P, Smith G, Melander O, Fava C. A genetic risk score for hypertension is associated with risk of thoracic aortic aneurysm. J Hum Hypertens 2019; 33:658-663. [PMID: 30659280 DOI: 10.1038/s41371-018-0159-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/17/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022]
Abstract
A genetic risk score (GRS) based on 29 single nucleotide polymorpysms (SNPs) associated with high blood pressure (BP) was prospectively associated with development of hypertension, stroke and cardiovascular events. The aim of the present study was to evaluate the impact of this GRS on the incidence of aortic disease, including aortic dissection (AD), rupture or surgery of a thoracic (TAA) or abdominal (AAA) aortic aneurysm. More than 25,000 people from the Swedish Malmo Diet and Cancer Study had information on at least 24 SNPs and were followed up for a median ≥ 18 years. The number of BP elevating alleles of each SNPs, weighted by their effect size in the discovery studies, was summed into a BP-GRS. In Cox regression models, adjusted for traditional cardiovascular risk factors including hypertension, we found significant associations of the BP-GRS, prospectively, with incident TAA (hazard ratio (HR) 1.64 (95% confidence interval (CI) 1.081-2.475 comparing the third vs. the first tertile; p = 0.020) but not with either AAA or aortic dissection. Calibration, discrimination and reclassification analyses show modest improvement in prediction using the BP-GRS in addition to the model which used only traditional risk factors. A GRS for hypertension associates with TAA suggesting a link between genetic determinants of BP and aortic disease. The effect size is small but the addition of more SNPs to the GRS might improve its discriminatory capability.
Collapse
Affiliation(s)
- A Tagetti
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - S Bonafini
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - T Ohlsson
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - G Engström
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Almgren
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - P Minuz
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy
| | - G Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
| | - O Melander
- Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden
| | - C Fava
- Department of Medicine, University of Verona, Section of General Medicine and Hypertension, Verona, Italy. .,Department of Clinical Sciences, Lund University, University Hospital of Malmö, Verona, Sweden.
| |
Collapse
|
173
|
Rodriguez-Iturbe B, Johnson RJ. Genetic Polymorphisms in Hypertension: Are We Missing the Immune Connection? Am J Hypertens 2019; 32:113-122. [PMID: 30418477 DOI: 10.1093/ajh/hpy168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Renal Hospital Universitario, Universidad del Zulia, Maracaibo, Zulia, Venezuela
- Instituto Venezolano de Investigaciones Científicas (IVIC)-Zulia, Maracaibo, Zulia, Venezuela
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
174
|
Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, Torstenson ES, Kovesdy CP, Sun YV, Wilson OD, Robinson-Cohen C, Roumie CL, Chung CP, Birdwell KA, Damrauer SM, DuVall SL, Klarin D, Cho K, Wang Y, Evangelou E, Cabrera CP, Wain LV, Shrestha R, Mautz BS, Akwo EA, Sargurupremraj M, Debette S, Boehnke M, Scott LJ, Luan J, Zhao JH, Willems SM, Thériault S, Shah N, Oldmeadow C, Almgren P, Li-Gao R, Verweij N, Boutin TS, Mangino M, Ntalla I, Feofanova E, Surendran P, Cook JP, Karthikeyan S, Lahrouchi N, Liu C, Sepúlveda N, Richardson TG, Kraja A, Amouyel P, Farrall M, Poulter NR, Laakso M, Zeggini E, Sever P, Scott RA, Langenberg C, Wareham NJ, Conen D, Palmer CNA, Attia J, Chasman DI, Ridker PM, Melander O, Mook-Kanamori DO, Harst PVD, Cucca F, Schlessinger D, Hayward C, Spector TD, Jarvelin MR, Hennig BJ, Timpson NJ, Wei WQ, Smith JC, Xu Y, Matheny ME, Siew EE, Lindgren C, Herzig KH, Dedoussis G, Denny JC, Psaty BM, Howson JMM, Munroe PB, Newton-Cheh C, Caulfield MJ, Elliott P, Gaziano JM, Concato J, Wilson PWF, Tsao PS, Velez Edwards DR, Susztak K, O'Donnell CJ, Hung AM, Edwards TL. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet 2019; 51:51-62. [PMID: 30578418 PMCID: PMC6365102 DOI: 10.1038/s41588-018-0303-9] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
In this trans-ethnic multi-omic study, we reinterpret the genetic architecture of blood pressure to identify genes, tissues, phenomes and medication contexts of blood pressure homeostasis. We discovered 208 novel common blood pressure SNPs and 53 rare variants in genome-wide association studies of systolic, diastolic and pulse pressure in up to 776,078 participants from the Million Veteran Program (MVP) and collaborating studies, with analysis of the blood pressure clinical phenome in MVP. Our transcriptome-wide association study detected 4,043 blood pressure associations with genetically predicted gene expression of 840 genes in 45 tissues, and mouse renal single-cell RNA sequencing identified upregulated blood pressure genes in kidney tubule cells.
Collapse
Affiliation(s)
- Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Jacklyn N Hellwege
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Jacob M Keaton
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Eric S Torstenson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Otis D Wilson
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christianne L Roumie
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
| | - Cecilia P Chung
- Division of Rheumatology and Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly A Birdwell
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Nephrology, Department of Medicine, Nashville Veteran Affairs Hospital, Nashville, TN, USA
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Derek Klarin
- VA Boston Health Care System, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Rojesh Shrestha
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian S Mautz
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Elvis A Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jing-Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sébastien Thériault
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Nabi Shah
- Division of Molecular and Clinical Medicine, Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | | | - Peter Almgren
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ruifang Li-Gao
- Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena Feofanova
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Praveen Surendran
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Savita Karthikeyan
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nuno Sepúlveda
- Immunology and Infection Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Aldi Kraja
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Philippe Amouyel
- Risk Factors and Molecular Determinants of Aging-Related Diseases (RID-AGE), University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167, Lille, France
| | - Martin Farrall
- Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Neil R Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Markku Laakso
- University of Eastern Finland, School of Medicine, Kuopio, Finland
| | | | - Peter Sever
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, UK
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Colin Neil Alexander Palmer
- Division of Molecular and Clinical Medicine, Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John Attia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Daniel I Chasman
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Marjo-Riitta Jarvelin
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Branwen J Hennig
- Wellcome Trust, London, UK
- MRC Unit The Gambia, Atlantic Boulevard, Fajara, Banjul, The Gambia
- London School of Hygiene & Tropical Medicine, London, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Smith
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael E Matheny
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edward E Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN, USA
| | - Cecilia Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Biocenter of Oulu, Medical Research Center, Oulu University and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M Psaty
- Departments of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, University of Washington, Seattle, WA, USA
- Departments of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Joanna M M Howson
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Christopher Newton-Cheh
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Paul Elliott
- MRC-PHE Centre for Environment & Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Concato
- Clinical Epidemiology Research Center (CERC), VA Cooperative Studies Program, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Peter W F Wilson
- Atlanta VA Medical Center, Atlanta, GA, USA
- Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Digna R Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Boston, MA, USA
| | - Adriana M Hung
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA.
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Todd L Edwards
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA.
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
175
|
Fu L, Zhang M, Hu YQ, Zhao X, Cheng H, Hou D, Mi J. Gene-gene interactions and associations of six hypertension related single nucleotide polymorphisms with obesity risk in a Chinese children population. Gene 2018; 679:320-327. [PMID: 30217759 DOI: 10.1016/j.gene.2018.09.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk for hypertension. However, the associations between hypertension susceptibility loci and the risk of obesity as well as the effects of gene-gene interactions are unclear, especially in the Chinese children population. Six single nucleotide polymorphisms (SNPs) (ATP2B1 rs17249754, CSK rs1378942, MTHFR rs1801133, CYP17A1 rs1004467, STK39 rs3754777, FGF5 rs16998073) were genotyped for 3503 Chinese children, aged 6-18 years. Of them, 758 obese cases and 2745 controls were identified based on the International Obesity Task Force age- and sex-specific BMI references. Among the six SNPs, three were associated with obesity risk (CSK rs1378942: odds ratio (OR) = 1.20, 95% confidence interval (CI) 1.01-1.43, P = 0.042; MTHFR rs1801133: OR = 1.19, 95% CI 1.05-1.34, P = 0.006; FGF5 rs16998073: OR = 1.14, 95% CI 1.00-1.29, P = 0.047). The genetic risk score (GRS), based on these three SNPs (CSK rs1378942, MTHFR rs1801133, FGF5 rs16998073), showed a positive association with risk of obesity (OR = 1.18, 95% CI 1.09-1.28, P = 7.60 × 10-5). The same association signals were also detected in the subgroups of puberty and inactivity. In addition, interaction analyses among these loci implied a potential gene-gene interaction between MTHFR and FGF5. These findings show a significant association of hypertension susceptibility loci in Chinese children, suggesting a likely influence of genetic and environmental factors on the risk of obesity.
Collapse
Affiliation(s)
- Liwan Fu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China; Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Meixian Zhang
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoyuan Zhao
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Hong Cheng
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Dongqing Hou
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China
| | - Jie Mi
- Department of Epidemiology, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
176
|
Jordheim LP. Expanding the clinical relevance of the 5'-nucleotidase cN-II/NT5C2. Purinergic Signal 2018; 14:321-329. [PMID: 30362044 PMCID: PMC6298924 DOI: 10.1007/s11302-018-9627-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Purine metabolism is depending on a large amount of enzymes to ensure cellular homeostasis. Among these enzymes, we have been interested in the 5'-nucleotidase cN-II and its role in cancer biology and in response of cancer cells to treatments. This protein has been cited and studied in a large number of papers published during the last decade for its involvement in non-cancerous pathologies such as hereditary spastic paraplegia, schizophrenia, and blood pressure regulation. Here, we review these articles in order to give an overview of the recently discovered clinical relevance of cN-II.
Collapse
Affiliation(s)
- Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Faculté Rockefeller, Centre de Recherche en Cancérologie de Lyon, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
177
|
C-src tyrosine kinase gene rs1378942 polymorphism and hypertension in Asians: Review and meta-analysis. Clin Chim Acta 2018; 487:202-209. [DOI: 10.1016/j.cca.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
178
|
Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat Commun 2018; 9:5052. [PMID: 30487518 PMCID: PMC6261994 DOI: 10.1038/s41467-018-07345-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/29/2018] [Indexed: 01/11/2023] Open
Abstract
Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, we perform a multi-stage genome-wide association study for BP (max N = 289,038) principally in East Asians and meta-analysis in East Asians and Europeans. We report 19 new genetic loci and ancestry-specific BP variants, conforming to a common ancestry-specific variant association model. At 10 unique loci, distinct non-rare ancestry-specific variants colocalize within the same linkage disequilibrium block despite the significantly discordant effects for the proxy shared variants between the ethnic groups. The genome-wide transethnic correlation of causal-variant effect-sizes is 0.898 and 0.851 for systolic and diastolic BP, respectively. Some of the ancestry-specific association signals are also influenced by a selective sweep. Our results provide new evidence for the role of common ancestry-specific variants and natural selection in ethnic differences in complex traits such as BP. Blood pressure (BP) is a major risk factor for cardiovascular disease and more than 200 genetic loci associated with BP are known. Here, the authors perform discovery GWAS for BP in East Asians and meta-analysis in East Asians and Europeans and report ancestry-specific BP SNPs and selection signals.
Collapse
|
179
|
Tian FY, Rifas-Shiman SL, Cardenas A, Baccarelli AA, DeMeo DL, Litonjua AA, Rich-Edwards JW, Gillman MW, Oken E, Hivert MF. Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva. Int J Obes (Lond) 2018; 43:1244-1255. [PMID: 30464231 PMCID: PMC6529291 DOI: 10.1038/s41366-018-0249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/22/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
Background: Corticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood. Methods: We investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children’s blood cells collected at mid-childhood (N = 239, age: 6.7–10.3 years) additionally adjusting for the children’s age at blood drawn. Results: Maternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate < 0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30). Conclusion: In our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Janet W Rich-Edwards
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Matthew W Gillman
- Environmental Influences on Child Health Outcomes (ECHO) Office of the Director, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA. .,Diabetes Research Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, USA. .,Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
180
|
Fava C, Bonafini S. Eicosanoids via CYP450 and cardiovascular disease: Hints from genetic and nutrition studies. Prostaglandins Other Lipid Mediat 2018; 139:41-47. [DOI: 10.1016/j.prostaglandins.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/25/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023]
|
181
|
Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs. Sci Rep 2018; 8:15050. [PMID: 30301969 PMCID: PMC6177424 DOI: 10.1038/s41598-018-33420-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNAs (ncRNA) have an essential role in the complex landscape of human genetic regulatory networks. One area that is poorly explored is the effect of genetic variations on the interaction between ncRNA and their targets. By integrating a significant amount of public data, the present study cataloged the vast landscape of the regulatory effect of microRNAs (miRNA) and long intergenic noncoding RNAs (lincRNA) in the human genome. An expression quantitative trait loci (eQTL) analysis was used to identify genetic variants associated with miRNA and lincRNA and whose genotypes affect gene expression. Association networks were built for eQTL associated to traits of clinical and/or pharmacological relevance.
Collapse
|
182
|
Combined linkage and association analysis identifies rare and low frequency variants for blood pressure at 1q31. Eur J Hum Genet 2018; 27:269-277. [PMID: 30262922 DOI: 10.1038/s41431-018-0277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for cardiovascular disease (CVD) and is more prevalent in African Americans as compared to other US groups. Although large, population-based genome-wide association studies (GWAS) have identified over 300 common polymorphisms modulating inter-individual BP variation, largely in European ancestry subjects, most of them do not localize to regions previously identified through family-based linkage studies. This discrepancy has remained unexplained despite the statistical power differences between current GWAS and prior linkage studies. To address this issue, we performed genome-wide linkage analysis of BP traits in African-American families from the Family Blood Pressure Program (FBPP) and genotyped on the Illumina Human Exome BeadChip v1.1. We identified a genomic region on chromosome 1q31 with LOD score 3.8 for pulse pressure (PP), a region we previously implicated in DBP studies of European ancestry families. Although no reported GWAS variants map to this region, combined linkage and association analysis of PP identified 81 rare and low frequency exonic variants accounting for the linkage evidence. Replication analysis in eight independent African ancestry cohorts (N = 16,968) supports this specific association with PP (P = 0.0509). Additional association and network analyses identified multiple potential candidate genes in this region expressed in multiple tissues and with a strong biological support for a role in BP. In conclusion, multiple genes and rare variants on 1q31 contribute to PP variation. Beyond producing new insights into PP, we demonstrate how family-based linkage and association studies can implicate specific rare and low frequency variants for complex traits.
Collapse
|
183
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. Int J Mol Med 2018; 42:2415-2436. [PMID: 30226566 PMCID: PMC6192728 DOI: 10.3892/ijmm.2018.3852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Early-onset cardiovascular and renal diseases have a strong genetic component. In the present study, exome-wide association studies (EWASs) were performed to identify genetic variants that confer susceptibility to early-onset myocardial infarction (MI), hypertension, or chronic kidney disease (CKD) in Japanese individuals. A total of 8,093 individuals aged ≤65 years was enrolled in the study. The EWASs for MI, hypertension, and CKD were performed in 6,926 subjects (1,152 cases, 5,774 controls), 8,080 subjects (3,444 cases, 4,636 controls), and 2,556 subjects (1,051 cases, 1,505 controls), respectively. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The associations of allele frequencies for 31,245, 31,276, or 31,514 SNPs that passed quality control to MI, hypertension, and CKD, respectively, was examined with Fisher's exact test. Bonferroni's correction for statistical significance of association was applied to compensate for multiple comparisons of genotypes with MI, hypertension, or CKD. The EWASs of allele frequencies revealed that 25, 11, and 11 SNPs were significantly associated with MI (P<1.60×10−6), hypertension (P<1.60×10−6), or CKD (P<1.59×10−6), respectively. Multivariable logistic regression analysis with adjustment for covariates showed that all 25, 11, and 11 SNPs were significantly associated with MI (P<0.0005), hypertension (P<0.0011), or CKD (P<0.0011), respectively. On examination of the results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, 11 loci (TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, GOSR2, ZNF77), six loci (MOB3C-TMOD4, COL6A3, COL6A5, CXCL8-MARCH1, NFKBIL1-6p21.3-NCR3, PLCB2-VPS33B), and seven loci (MOB3C-TMOD4, COL6A3, COL6A5, ADGRL3-CXCL8-MARCH1, MUC17, PLCB2-VPS33B, ZNF77) were identified as novel loci significantly associated with MI, hypertension, and CKD, respectively. Furthermore, six genes (TMOD4, COL6A3, CXCL8, MARCH1, PLCB2, VPS33B) were significantly associated with MI, hypertension and CKD; two genes (ADGRL3, ZNF77) with MI and CKD; and two genes (COL6A5, MOB3C) with hypertension and CKD. Therefore, 13 novel loci (MOB3C-TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP- GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, ZNF77, COL6A5, NFKBIL1-NCR3, MUC17) were identified that confer susceptibility to early-onset MI, hypertension, or CKD. The determination of genotypes for the SNPs at these loci may provide informative for assessment of the genetic risk for MI, hypertension, or CKD.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507‑8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511‑0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| |
Collapse
|
184
|
Miller WL. MECHANISMS IN ENDOCRINOLOGY: Rare defects in adrenal steroidogenesis. Eur J Endocrinol 2018; 179:R125-R141. [PMID: 29880708 DOI: 10.1530/eje-18-0279] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of genetic disorders of adrenal steroidogenesis that impair cortisol synthesis, with compensatory increases in ACTH leading to hyperplastic adrenals. The term 'CAH' is generally used to mean 'steroid 21-hydroxylase deficiency' (21OHD) as 21OHD accounts for about 95% of CAH in most populations; the incidences of the rare forms of CAH vary with ethnicity and geography. These forms of CAH are easily understood on the basis of the biochemistry of steroidogenesis. Defects in the steroidogenic acute regulatory protein, StAR, disrupt all steroidogenesis and are the second-most common form of CAH in Japan and Korea; very rare defects in the cholesterol side-chain cleavage enzyme, P450scc, are clinically indistinguishable from StAR defects. Defects in 3β-hydroxysteroid dehydrogenase, which also causes disordered sexual development, were once thought to be fairly common, but genetic analyses show that steroid measurements are generally unreliable for this disorder. Defects in 17-hydroxylase/17,20-lyase ablate synthesis of sex steroids and also cause mineralocorticoid hypertension; these are common in Brazil and in China. Isolated 17,20-lyase deficiency can be caused by rare mutations in at least three different proteins. P450 oxidoreductase (POR) is a co-factor used by 21-hydroxylase, 17-hydroxylase/17,20-lyase and aromatase; various POR defects, found in different populations, affect these enzymes differently. 11-Hydroxylase deficiency is the second-most common form of CAH in European populations but the retention of aldosterone synthesis distinguishes it from 21OHD. Aldosterone synthase deficiency is a rare salt-losing disorder. Mild, 'non-classic' defects in all of these factors have been described. Both the severe and non-classic disorders can be treated if recognized.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute of Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
185
|
Taneja TK, Ma D, Kim BY, Welling PA. Golgin-97 Targets Ectopically Expressed Inward Rectifying Potassium Channel, Kir2.1, to the trans-Golgi Network in COS-7 Cells. Front Physiol 2018; 9:1070. [PMID: 30123141 PMCID: PMC6085455 DOI: 10.3389/fphys.2018.01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022] Open
Abstract
The inward rectifying potassium channel, Kir2.1, is selected as cargo at the trans-Golgi network (TGN) for export to the cell surface through a unique signal-dependent interaction with the AP1 clathrin-adaptor, but it is unknown how the channel is targeted at earlier stages in the secretory pathway for traffic to the TGN. Here we explore a mechanism. A systematic screen of Golgi tethers identified Golgin-97 as a Kir2.1 binding partner. In vitro protein-interaction studies revealed the interaction is direct, occurring between the GRIP domain of Golgin-97 and the cytoplasmic domain of Kir2.1. Imaging and interaction studies in COS-7 cells suggest that Golgi-97 binds to the channel en route through the Golgi. RNA interference-mediated knockdown of Golgin-97 prevented exit of Kir2.1 from the Golgi. These observations identify Golgin-97 as a Kir2.1 binding partner that is required for targeting the channel to the TGN. Based on our studies in COS-7 cells, we propose Golgi-97 facilitates formation of AP1-dependent export carriers for Kir2.1 by coupling anterograde delivery of Kir2.1 with retrograde recycling of AP-1 containing endosomes to the TGN.
Collapse
Affiliation(s)
- Tarvinder K Taneja
- Department of Physiology, Maryland Center for Kidney Discovery, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Donghui Ma
- Department of Physiology, Maryland Center for Kidney Discovery, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Bo Y Kim
- Department of Physiology, Maryland Center for Kidney Discovery, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Paul A Welling
- Department of Physiology, Maryland Center for Kidney Discovery, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
186
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
187
|
Nandakumar P, Morrison AC, Grove ML, Boerwinkle E, Chakravarti A. Contributions of rare coding variants in hypotension syndrome genes to population blood pressure variation. Medicine (Baltimore) 2018; 97:e11865. [PMID: 30113482 PMCID: PMC6113003 DOI: 10.1097/md.0000000000011865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rare variants, in particular renal salt handling genes, contribute to monogenic forms of hypertension and hypotension syndromes with electrolyte abnormalities. A study by Ji et al (2008) demonstrated this effect for rare loss-of-function coding variants in SLC12A3 (NCCT), SLC12A1 (NKCC2), and KCNJ1 (ROMK) that led to reduction of ∼6 mm Hg for SBP and ∼3 mm Hg for DBP among carriers in 2492 European ancestry Framingham Heart Study (FHS) subjects. These findings support a potentially large role for these variants in interindividual variation in systolic and diastolic blood pressure (SBP, DBP) in the population. The present study focuses on replicating the analyses completed by Ji et al to identify effects of rare variants in the population-based Atherosclerosis Risk in Communities (ARIC) study.We attempted to replicate the findings by Ji et al by applying their criteria to identify putative loss-of-function variants with allele frequency <0.001 and complete conservation across a set of orthologs, to exome sequencing data from 7444 European ancestry participants of the ARIC study.Although we failed to replicate the previous findings when applying their methods to the ARIC study data, we observed a similar effect when we restricted analyses to the subset of variants they observed.These results simultaneously support the utility of exome sequencing data for studying extremely rare coding variants in hypertension and underscore the need for improved filtering methods for identifying functional variants in human sequences.
Collapse
Affiliation(s)
- Priyanka Nandakumar
- Center for Complex Disease Genomics Predoctoral Training Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD Human Genome Sequencing Center, Baylor College of Medicine Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX. Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY
| | | | | | | | | |
Collapse
|
188
|
Wang Z, Sha Q, Fang S, Zhang K, Zhang S. Testing an optimally weighted combination of common and/or rare variants with multiple traits. PLoS One 2018; 13:e0201186. [PMID: 30048520 PMCID: PMC6062080 DOI: 10.1371/journal.pone.0201186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022] Open
Abstract
Recently, joint analysis of multiple traits has become popular because it can increase statistical power to identify genetic variants associated with complex diseases. In addition, there is increasing evidence indicating that pleiotropy is a widespread phenomenon in complex diseases. Currently, most of existing methods test the association between multiple traits and a single genetic variant. However, these methods by analyzing one variant at a time may not be ideal for rare variant association studies because of the allelic heterogeneity as well as the extreme rarity of rare variants. In this article, we developed a statistical method by testing an optimally weighted combination of variants with multiple traits (TOWmuT) to test the association between multiple traits and a weighted combination of variants (rare and/or common) in a genomic region. TOWmuT is robust to the directions of effects of causal variants and is applicable to different types of traits. Using extensive simulation studies, we compared the performance of TOWmuT with the following five existing methods: gene association with multiple traits (GAMuT), multiple sequence kernel association test (MSKAT), adaptive weighting reverse regression (AWRR), single-TOW, and MANOVA. Our results showed that, in all of the simulation scenarios, TOWmuT has correct type I error rates and is consistently more powerful than the other five tests. We also illustrated the usefulness of TOWmuT by analyzing a whole-genome genotyping data from a lung function study.
Collapse
Affiliation(s)
- Zhenchuan Wang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shurong Fang
- Department of Mathematics and Computer Science, John Carroll University, University Heights, Ohio, United States of America
| | - Kui Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
189
|
Simonyte S, Kuciene R, Dulskiene V, Lesauskaite V. Association between ATP2B1 and CACNB2 polymorphisms and high blood pressure in a population of Lithuanian children and adolescents: a cross-sectional study. BMJ Open 2018; 8:e019902. [PMID: 29982197 PMCID: PMC6042568 DOI: 10.1136/bmjopen-2017-019902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Recently, genome-wide associated studies have identified several genetic loci that are associated with elevated blood pressure and could play a critical role in intracellular calcium homeostasis. The aim of this study was to assess the associations of ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms with high blood pressure (HBP) among Lithuanian children and adolescents aged 12-15 years. STUDY DESIGN AND PARTICIPANTS This was a cross-sectional study of a randomly selected sample of 646 12-15-year-old adolescents who participated in the survey 'The Prevalence and Risk Factors of HBP in 12-15 Year-Old Lithuanian Children and Adolescents (from November 2010 to April 2012)'. Anthropometric parameters and BP were measured. The participants with HBP were screened on two separate occasions. Subjects were genotyped ATP2B1 rs2681472 and CACNB2 rs12258967 gene polymorphisms using real-time PCR method. RESULTS The prevalence of HBP was 36.7%, significantly higher for boys than for girls. In the multivariate analysis, after adjustment for body mass index and waist circumference, boys with CACNB2 CG genotype, CACNB2 GG genotype and CACNB2 CG +GG genotype had higher odds of having HBP in codominant (adjusted OR (aOR)=1.92; 95% CI 1.16 to 3.18, p=0.011; and aOR=2.64; 95% CI 1.19 to 5.90, p=0.018) and in dominant (aOR=2.05; 95% CI 1.27 to 3.30, p=0.003) inheritance models. Girls carrying CACNB2 CG genotype and CACNB2 CG +GG genotype had increased odds of HBP in codominant (aOR=1.82; 95% CI 1.02 to 3.24, p=0.044) and in dominant (aOR=1.89; 95% CI 1.09 to 3.28, p=0.023) inheritance models. Furthermore, significant associations were found in additive models separately for boys (aOR=1.72; 95% CI 1.20 to 2.46, p=0.003) and girls (aOR=1.52; 95% CI 1.05 to 2.20, p=0.027). No significant association was found between ATP2B1 gene polymorphism and the odds of HBP. CONCLUSIONS Our results indicate that CACNB2 gene polymorphism was significantly associated with higher odds of HBP in Lithuanian adolescents aged 12-15 years.
Collapse
Affiliation(s)
- Sandrita Simonyte
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Kuciene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virginija Dulskiene
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Lesauskaite
- Institute of Cardiology of the Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
190
|
Shi J, Liu Y, Liu Y, Li Y, Qiu S, Bai Y, Gu Y, Luo J, Cui H, Li Y, Zhao Q, Zhang K, Cheng Y. Association between ApoE polymorphism and hypertension: A meta-analysis of 28 studies including 5898 cases and 7518 controls. Gene 2018; 675:197-207. [PMID: 30180966 DOI: 10.1016/j.gene.2018.06.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/23/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most common chronic diseases, constituting an independent risk factor for many diseases. Our study aimed to evaluate the association between apolipoprotein E (ApoE) genetic polymorphism and hypertension, and to provide evidence for the etiology of hypertension. Case-control studies of ApoE polymorphism and hypertension, which were included in PubMed, Embase, Web of Science, Medline, WanFang, Vip, and CNKI information databases, were selected and evaluated according to criteria of inclusion and exclusion. Eligible data were extracted and pooled, and were analyzed and assessed using Stata 12.0. Random-effect models were used when heterogeneity existed in between-study, and fixed-effect models were applied otherwise. A total of 28 studies that consisted of 5898 cases with hypertension and 7518 controls were selected. Alleles and genotypes of ApoE between cases and controls were compared. For ApoE alleles, we observed the contrast of ApoE ε2 versus ε3 allele yielded a pooled OR of 0.99 (95% CI: 0.87-1.11; P = 0.823), whereas the contrast of ε4 versus ε3 allele yielded a pooled OR of 1.95 (95% CI: 1.50-2.54; P < 0.001). For ApoE genotypes, compared with ε3/ε3 genotype, genotypes (ε2/ε2 and ε2/ε3) showed a possible association with hypertension (OR = 0.88; 95% CI: 0.79-0.99; P = 0.033), and genotypes (ε3/ε4 and ε4/ε4) had a 2.08-fold risk of developing hypertension (OR = 2.08; 95% CI: 1.58-2.74; P < 0.001). There is the association between ApoE polymorphism and hypertension: the genotypes carrying ε2 allele may be a protective factor, and the ApoE ε4 allele and the genotypes carrying ε4 allele may be risk factors for hypertension.
Collapse
Affiliation(s)
- Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yunkai Liu
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yong Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Shuang Qiu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Ye Bai
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yulu Gu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Jingjing Luo
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Heran Cui
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Qian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Kaixin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
191
|
Li X, Meng X, Spiliopoulou A, Timofeeva M, Wei WQ, Gifford A, Shen X, He Y, Varley T, McKeigue P, Tzoulaki I, Wright AF, Joshi P, Denny JC, Campbell H, Theodoratou E. MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank. Ann Rheum Dis 2018; 77:1039-1047. [PMID: 29437585 PMCID: PMC6029646 DOI: 10.1136/annrheumdis-2017-212534] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We aimed to investigate the role of serum uric acid (SUA) level in a broad spectrum of disease outcomes using data for 120 091 individuals from UK Biobank. METHODS We performed a phenome-wide association study (PheWAS) to identify disease outcomes associated with SUA genetic risk loci. We then implemented conventional Mendelianrandomisation (MR) analysis to investigate the causal relevance between SUA level and disease outcomes identified from PheWAS. We next applied MR Egger analysis to detect and account for potential pleiotropy, which conventional MR analysis might mistake for causality, and used the HEIDI (heterogeneity in dependent instruments) test to remove cross-phenotype associations that were likely due to genetic linkage. RESULTS Our PheWAS identified 25 disease groups/outcomes associated with SUA genetic risk loci after multiple testing correction (P<8.57e-05). Our conventional MR analysis implicated a causal role of SUA level in three disease groups: inflammatory polyarthropathies (OR=1.22, 95% CI 1.11 to 1.34), hypertensive disease (OR=1.08, 95% CI 1.03 to 1.14) and disorders of metabolism (OR=1.07, 95% CI 1.01 to 1.14); and four disease outcomes: gout (OR=4.88, 95% CI 3.91 to 6.09), essential hypertension (OR=1.08, 95% CI 1.03 to 1.14), myocardial infarction (OR=1.16, 95% CI 1.03 to 1.30) and coeliac disease (OR=1.41, 95% CI 1.05 to 1.89). After balancing pleiotropic effects in MR Egger analysis, only gout and its encompassing disease group of inflammatory polyarthropathies were considered to be causally associated with SUA level. Our analysis highlighted a locus (ATXN2/S2HB3) that may influence SUA level and multiple cardiovascular and autoimmune diseases via pleiotropy. CONCLUSIONS Elevated SUA level is convincing to cause gout and inflammatory polyarthropathies, and might act as a marker for the wider range of diseases with which it associates. Our findings support further investigation on the clinical relevance of SUA level with cardiovascular, metabolic, autoimmune and respiratory diseases.
Collapse
Affiliation(s)
- Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Xiangrui Meng
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aliya Gifford
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xia Shen
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- West China School of Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Tim Varley
- Public Health and Intelligence, NHS National Services Scotland, Edinburgh, UK
| | - Paul McKeigue
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Ioanna Tzoulaki
- Department Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Alan F Wright
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
192
|
Shuey MM, Gandelman JS, Chung CP, Nian H, Yu C, Denny JC, Brown NJ. Characteristics and treatment of African-American and European-American patients with resistant hypertension identified using the electronic health record in an academic health centre: a case-control study. BMJ Open 2018; 8:e021640. [PMID: 29950471 PMCID: PMC6020960 DOI: 10.1136/bmjopen-2018-021640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify patients with hypertension with resistant and controlled blood pressure (BP) using electronic health records (EHRs) in order to elucidate practices in the real-world clinical treatment of hypertension and to enable future genetic studies. DESIGN Using EHRs, we developed and validated algorithms to identify patients with resistant and controlled hypertension. SETTING An academic medical centre in Nashville, Tennessee. POPULATION European-American (EA) and African-American (AA) patients with hypertension. MAIN OUTCOME MEASURES Demographic characteristics: race, age, gender, body mass index, outpatient BPs and the history of diabetes mellitus, chronic kidney disease stage 3, ischaemic heart disease, transient ischaemic attack, atrial fibrillation and sleep apnoea. MEDICATION TREATMENT All antihypertensive medication classes prescribed to a patient at the time of classification and ever prescribed following classification. RESULTS The algorithms had performance metrics exceeding 92%. The prevalence of resistant hypertension in the total hypertensive population was 7.3% in EA and 10.5% in AA. At diagnosis, AA were younger, heavier, more often female and had a higher incidence of type 2 diabetes and higher BPs than EA. AA with resistant hypertension were more likely to be treated with vasodilators, dihydropyridine calcium channel blockers and alpha-2 agonists while EA were more likely to be treated with angiotensin receptor blockers, renin inhibitors and beta blockers. Mineralocorticoid receptor antagonists use was increased in patients treated with more than four antihypertensive medications compared with patients treated with three (12.4% vs 2.6% in EA, p<0.001; 12.3% vs 2.8% in AA, p<0.001). The number of patients treated with a mineralocorticoid receptor antagonist increased to 37.4% in EA and 41.2% in AA over a mean follow-up period of 7.4 and 8.7 years, respectively. CONCLUSIONS Clinical treatment of resistant hypertension differs in EA and AA patients. These results demonstrate the feasibility of identifying resistant hypertension using an EHR.
Collapse
Affiliation(s)
- Megan M Shuey
- Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jocelyn S Gandelman
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Chang Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nancy J Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
193
|
Lieb W, Vasan RS. Scientific Contributions of Population-Based Studies to Cardiovascular Epidemiology in the GWAS Era. Front Cardiovasc Med 2018; 5:57. [PMID: 29930944 PMCID: PMC6001813 DOI: 10.3389/fcvm.2018.00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Longitudinal, well phenotyped, population-based cohort studies offer unique research opportunities in the context of genome-wide association studies (GWAS), including GWAS for new-onset (incident) cardiovascular disease (CVD) events, the assessment of gene x lifestyle interactions, and evaluating the incremental predictive utility of genetic information in apparently healthy individuals. Furthermore, comprehensively phenotyped community-dwelling samples have contributed to GWAS of numerous traits that reflect normal organ function (e.g., cardiac structure and systolic and diastolic function) and for many traits along the CVD continuum (e.g., risk factors, circulating biomarkers, and subclinical disease traits). These GWAS have heretofore identified many genetic loci implicated in normal organ function and different stages of the CVD continuum. Finally, population-based cohort studies have made important contributions to Mendelian Randomization analyses, a statistical approach that uses genetic information to assess observed associations between cardiovascular traits and clinical CVD outcomes for potential causality.
Collapse
Affiliation(s)
- Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Ramachandran S Vasan
- Framingham Heart Study (FHS), Framingham, MA, United States.,Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
194
|
Harris SE, Hagenaars SP, Davies G, David Hill W, Liewald DCM, Ritchie SJ, Marioni RE, Sudlow CLM, Wardlaw JM, McIntosh AM, Gale CR, Deary IJ. Molecular genetic contributions to self-rated health. Int J Epidemiol 2018; 46:994-1009. [PMID: 27864402 PMCID: PMC5837683 DOI: 10.1093/ije/dyw219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Background: Poorer self-rated health (SRH) predicts worse health outcomes, even when adjusted for objective measures of disease at time of rating. Twin studies indicate SRH has a heritability of up to 60% and that its genetic architecture may overlap with that of personality and cognition. Methods: We carried out a genome-wide association study (GWAS) of SRH on 111 749 members of the UK Biobank sample. Univariate genome-wide complex trait analysis (GCTA)-GREML analyses were used to estimate the proportion of variance explained by all common autosomal single nucleotide polymorphisms (SNPs) for SRH. Linkage disequilibrium (LD) score regression and polygenic risk scoring, two complementary methods, were used to investigate pleiotropy between SRH in the UK Biobank and up to 21 health-related and personality and cognitive traits from published GWAS consortia. Results: The GWAS identified 13 independent signals associated with SRH, including several in regions previously associated with diseases or disease-related traits. The strongest signal was on chromosome 2 (rs2360675, P = 1.77 x 10-10) close to KLF7. A second strong peak was identified on chromosome 6 in the major histocompatibility region (rs76380179, P = 6.15 x 10-10). The proportion of variance in SRH that was explained by all common genetic variants was 13%. Polygenic scores for the following traits and disorders were associated with SRH: cognitive ability, education, neuroticism, body mass index (BMI), longevity, attention-deficit hyperactivity disorder (ADHD), major depressive disorder, schizophrenia, lung function, blood pressure, coronary artery disease, large vessel disease stroke and type 2 diabetes. Conclusions: Individual differences in how people respond to a single item on SRH are partly explained by their genetic propensity to many common psychiatric and physical disorders and psychological traits.
Collapse
Affiliation(s)
- Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology.,Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology
| | - David C M Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology
| | - Stuart J Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | - Cathie L M Sudlow
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Catharine R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.,Department of Psychology
| |
Collapse
|
195
|
Abstract
OBJECTIVE To assess whether "center-center" position is ideal starting point for minimum fracture displacement when placing an intramedullary (IM) screw in the ulna. METHODS Thirty-six arms (average age, 82 years) underwent a posterior approach to the olecranon and were randomized into 3 groups: center-center (center in sagittal plane, center in coronal plane), posterior-lateral (posterior in sagittal plane, lateral in coronal plane), and posterior-medial (posterior in sagittal plane, medial in coronal plane). Groups were matched into 18 pairs, and fixation was performed with an IM screw. Primary outcome measure was articular surface displacement on the olecranon. Measurements were compared across each combination of locations using the Kruskal-Wallis rank sums test, and a sign test determined whether each location differed from anatomic reduction. RESULTS Articular step-off measurements were significantly different between center-center (0.6 mm) and posterior-medial (2.1 mm) groups (P = 0.01) and approached significance with posterior-lateral versus posterior-medial (0.9 mm) locations (P = 0.07). No significant difference was found comparing center-center with posterior-lateral locations (P = 0.7). The articular surface (P = 0.04), posterior cortex (P = 0.02), and medial cortex (P = 0.001) measurements for the posterior-medial starting point were all worse compared with anatomic reduction. CONCLUSIONS Malreduction of a simulated olecranon fracture was most significant when the starting point for the IM screw was malpositioned medially. A central or laterally based starting point was more forgiving. Avoiding a medially based starting point is crucial for achieving benefits of fixation with an IM screw and reduces the chance of malreduction after fixation.
Collapse
|
196
|
A Review on Adducin from Functional to Pathological Mechanisms: Future Direction in Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3465929. [PMID: 29862265 PMCID: PMC5976920 DOI: 10.1155/2018/3465929] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Adducin (ADD) is a family of membrane skeleton proteins including ADD1, ADD2, and ADD3 that are encoded by distinct genes on different chromosomes. Adducin is primarily responsible for the assembly of spectrin-actin network that provides physical support to the plasma membrane and mediates signal transduction in various cellular physiological processes upon regulation by protein kinase C-dependent and calcium/calmodulin-dependent pathways. Abnormal phosphorylation, genetic variations, and alternative splicing of adducin may contribute to alterations in cellular functions involved in pathogenic processes. These alterations are associated with a wide range of diseases including cancer. This paper begins with a discussion on how adducin partakes in the structural formation of membrane skeleton, its regulation, and related functional characteristics, followed by a review on the pathogenesis of hypertension, biliary atresia, and cancer with respect to increased disease susceptibility mediated by adducin polymorphism and/or dysregulation. Given the functional diversity of adducin in different cellular compartments, we aim to provide a knowledge base whereby its pathophysiological roles can be better understood. More importantly, we aim to provide novel insights that may be of significance in turning the adducin model to clinical application.
Collapse
|
197
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of polymorphisms in 12q24.1, ACAD10, and BRAP as novel genetic determinants of blood pressure in Japanese by exome-wide association studies. Oncotarget 2018; 8:43068-43079. [PMID: 28562329 PMCID: PMC5522128 DOI: 10.18632/oncotarget.17474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022] Open
Abstract
We performed exome-wide association studies to identify genetic variants that influence systolic or diastolic blood pressure or confer susceptibility to hypertension in Japanese. The exome-wide association studies were performed with the use of Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays and with 14,678 subjects, including 8215 individuals with hypertension and 6463 controls. The relation of genotypes of 41,843 single nucleotide polymorphisms to systolic or diastolic blood pressure was examined by linear regression analysis. After Bonferroni's correction, 44 and eight polymorphisms were significantly (P < 1.19 × 10−6) associated with systolic or diastolic blood pressure, respectively, with six polymorphisms (rs12229654, rs671, rs11066015, rs2074356, rs3782886, rs11066280) being associated with both systolic and diastolic blood pressure. Examination of the relation of allele frequencies to hypertension with Fisher's exact test revealed that 100 of the 41,843 single nucleotide polymorphisms were significantly (P < 1.19 × 10−6) associated with hypertension. Subsequent multivariable logistic regression analysis with adjustment for age and sex showed that five polymorphisms (rs150854849, rs202069030, rs139012426, rs12229654, rs76974938) were significantly (P < 1.25 × 10−4) associated with hypertension. The polymorphism rs12229654 was thus associated with both systolic and diastolic blood pressure and with hypertension. Six polymorphisms (rs12229654 at 12q24.1, rs671 of ALDH2, rs11066015 of ACAD10, rs2074356 and rs11066280 of HECTD4, and rs3782886 of BRAP) were found to be associated with both systolic and diastolic blood pressure, with those at 12q24.1 or in ACAD10 or BRAP being novel determinants of blood pressure in Japanese.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
198
|
Halladay JR, Lenhart KC, Robasky K, Jones W, Homan WF, Cummings DM, Cené CW, Hinderliter AL, Miller CL, Donahue KE, Garcia BA, Keyserling TC, Ammerman AS, Patterson C, DeWalt DA, Johnston LF, Willis MS, Schisler JC. Applicability of Precision Medicine Approaches to Managing Hypertension in Rural Populations. J Pers Med 2018; 8:E16. [PMID: 29710874 PMCID: PMC6023309 DOI: 10.3390/jpm8020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
As part of the Heart Healthy Lenoir Project, we developed a practice level intervention to improve blood pressure control. The goal of this study was: (i) to determine if single nucleotide polymorphisms (SNPs) that associate with blood pressure variation, identified in large studies, are applicable to blood pressure control in subjects from a rural population; (ii) to measure the association of these SNPs with subjects' responsiveness to the hypertension intervention; and (iii) to identify other SNPs that may help understand patient-specific responses to an intervention. We used a combination of candidate SNPs and genome-wide analyses to test associations with either baseline systolic blood pressure (SBP) or change in systolic blood pressure one year after the intervention in two genetically defined ancestral groups: African Americans (AA) and Caucasian Americans (CAU). Of the 48 candidate SNPs, 13 SNPs associated with baseline SBP in our study; however, one candidate SNP, rs592582, also associated with a change in SBP after one year. Using our study data, we identified 4 and 15 additional loci that associated with a change in SBP in the AA and CAU groups, respectively. Our analysis of gene-age interactions identified genotypes associated with SBP improvement within different age groups of our populations. Moreover, our integrative analysis identified AQP4-AS1 and PADI2 as genes whose expression levels may contribute to the pleiotropy of complex traits involved in cardiovascular health and blood pressure regulation in response to an intervention targeting hypertension. In conclusion, the identification of SNPs associated with the success of a hypertension treatment intervention suggests that genetic factors in combination with age may contribute to an individual's success in lowering SBP. If these findings prove to be applicable to other populations, the use of this genetic variation in making patient-specific interventions may help providers with making decisions to improve patient outcomes. Further investigation is required to determine the role of this genetic variance with respect to the management of hypertension such that more precise treatment recommendations may be made in the future as part of personalized medicine.
Collapse
Affiliation(s)
- Jacqueline R Halladay
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin C Lenhart
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kimberly Robasky
- Q2 Solutions|EA Genomics, Morrisville, North Carolina. 27560, USA.
| | - Wendell Jones
- Q2 Solutions|EA Genomics, Morrisville, North Carolina. 27560, USA.
| | - Wayne F Homan
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Doyle M Cummings
- Department of Family Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Crystal W Cené
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Alan L Hinderliter
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Cassandra L Miller
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Katrina E Donahue
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Beverly A Garcia
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Thomas C Keyserling
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Nutrition, Gillings School of Global Public Health at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Alice S Ammerman
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Nutrition, Gillings School of Global Public Health at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA.
| | - Darren A DeWalt
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Larry F Johnston
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Monte S Willis
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan C Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
199
|
de Denus S, Dubé MP, Fouodjio R, Huynh T, LeBlanc MH, Lepage S, Sheppard R, Giannetti N, Lavoie J, Mansour A, Provost S, Normand V, Mongrain I, Langlois M, O'Meara E, Ducharme A, Racine N, Guertin MC, Turgeon J, Phillips MS, Rouleau JL, Tardif JC, White M. A prospective study of the impact of AGTR1 A1166C on the effects of candesartan in patients with heart failure. Pharmacogenomics 2018; 19:599-612. [PMID: 29701105 DOI: 10.2217/pgs-2018-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To evaluate the impact of AGTR1 A1166C (rs5186) on the response to candesartan in patients with heart failure. MATERIALS & METHODS Prospective, multicentre, open-label study. We studied 299 symptomatic patients with heart failure presenting a left ventricular ejection fraction ≤40%. RESULTS Reductions in the primary end points of natriuretic peptides were not significantly associated with AGTR1 A1166C. Nevertheless, carrying the 1166C allele was associated with a greater compensatory increase in renin activity (p = 0.037) after 16 weeks of treatment with candesartan and a more modest effect on aldosterone concentrations (p = 0.022). CONCLUSION AGTR1 1166C carriers may experience a greater long-term compensatory renin-angiotensin-aldosterone system activation following treatment with candesartan. Whether these associations ultimately influence clinical outcomes requires investigation. Clinicaltrials.gov : NCT00400582.
Collapse
Affiliation(s)
- Simon de Denus
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | - Marie-Pierre Dubé
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - René Fouodjio
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada
| | - Thao Huynh
- McGill Health University, McGill University, Montreal, Canada
| | - Marie-Hélène LeBlanc
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Serge Lepage
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
| | | | - Nadia Giannetti
- Royal-Victoria Hospital, McGill University, Montreal, Canada
| | - Joël Lavoie
- Research Center, Montreal Heart Institute, Montreal, Canada
| | - Asmaa Mansour
- Montreal Health Innovations Coordinating Center, a division of the Montreal Heart Institute, Montreal Canada
| | - Sylvie Provost
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada
| | - Valérie Normand
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada
| | - Ian Mongrain
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada
| | - Mathieu Langlois
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada
| | - Eileen O'Meara
- Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Anique Ducharme
- Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Normand Racine
- Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Marie-Claude Guertin
- Montreal Health Innovations Coordinating Center, a division of the Montreal Heart Institute, Montreal Canada
| | - Jacques Turgeon
- CRCHUM, Research Center, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Jean-Lucien Rouleau
- Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Montreal, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Center, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Michel White
- Research Center, Montreal Heart Institute, Montreal, Canada.,Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
200
|
Anelli L, Zagaria A, Specchia G, Albano F. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random? Int J Mol Sci 2018; 19:ijms19041152. [PMID: 29641446 PMCID: PMC5979434 DOI: 10.3390/ijms19041152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
The germline JAK2 haplotype known as “GGCC or 46/1 haplotype” (haplotypeGGCC_46/1) consists of a combination of single nucleotide polymorphisms (SNPs) mapping in a region of about 250 kb, extending from the JAK2 intron 10 to the Insulin-like 4 (INLS4) gene. Four main SNPs (rs3780367, rs10974944, rs12343867, and rs1159782) generating a “GGCC” combination are more frequently indicated to represent the JAK2 haplotype. These SNPs are inherited together and are frequently associated with the onset of myeloproliferative neoplasms (MPN) positive for both JAK2 V617 and exon 12 mutations. The association between the JAK2 haplotypeGGCC_46/1 and mutations in other genes, such as thrombopoietin receptor (MPL) and calreticulin (CALR), or the association with triple negative MPN, is still controversial. This review provides an overview of the frequency and the role of the JAK2 haplotypeGGCC_46/1 in the pathogenesis of different myeloid neoplasms and describes the hypothetical mechanisms at the basis of the association with JAK2 gene mutations. Moreover, possible clinical implications are discussed, as different papers reported contrasting data about the correlation between the JAK2 haplotypeGGCC_46/1 and blood cell count, survival, or disease progression.
Collapse
Affiliation(s)
- Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|