151
|
Liu Y, Neely E, Simmons Z, Connor JR. Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu. J Neurosci Res 2015; 93:766-76. [DOI: 10.1002/jnr.23541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Yiting Liu
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - Elizabeth Neely
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - Zachary Simmons
- Department of Neurology; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| | - James R. Connor
- Department of Neurosurgery; Pennsylvania State University, M.S. Hershey Medical Center; Hershey Pennsylvania
| |
Collapse
|
152
|
Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 2014; 262 Pt B:91-101. [DOI: 10.1016/j.expneurol.2014.04.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022]
|
153
|
Novel compound heterozygous ALS2 mutations in two Chinese siblings with infantile ascending hereditary spastic paralysis. Neurol Sci 2014; 36:1279-80. [PMID: 25433428 DOI: 10.1007/s10072-014-2018-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
|
154
|
Williams UE, Philip-Ephraim EE, Oparah SK. Multidisciplinary Interventions in Motor Neuron Disease. JOURNAL OF NEURODEGENERATIVE DISEASES 2014; 2014:435164. [PMID: 26317009 PMCID: PMC4437278 DOI: 10.1155/2014/435164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2-4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease.
Collapse
Affiliation(s)
- U. E. Williams
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| | - E. E. Philip-Ephraim
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| | - S. K. Oparah
- Internal Medicine Department, University of Calabar, Calabar, Cross River State 540242, Nigeria
| |
Collapse
|
155
|
THEME 10IN VIVOEXPERIMENTAL MODELS. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15 Suppl 1:179-96. [DOI: 10.3109/21678421.2014.960187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
156
|
He J, Mangelsdorf M, Fan D, Bartlett P, Brown MA. Amyotrophic Lateral Sclerosis Genetic Studies: From Genome-wide Association Mapping to Genome Sequencing. Neuroscientist 2014; 21:599-615. [PMID: 25378359 DOI: 10.1177/1073858414555404] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of obscure etiology. Multiple genetic studies have been conducted to advance our understanding of the disease, employing a variety of techniques such as linkage mapping in families, to genome-wide association studies and sequencing based approaches such as whole exome sequencing and whole genome sequencing and a few epigenetic analyses. While major progress has been made, the majority of the genetic variation involved in ALS is yet to be undefined. The optimal study designs to investigate ALS depend on the genetic model for the disease, and it is likely that different approaches will be required to map genes involved in familial and sporadic disease. The potential approaches and their strengths and weaknesses are discussed.
Collapse
Affiliation(s)
- Ji He
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia Department of Neurology, Peking University Third Hospital, Beijing, China University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Marie Mangelsdorf
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Perry Bartlett
- Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Australia
| | - Matthew A Brown
- University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| |
Collapse
|
157
|
Lu HP, Gan SR, Chen S, Li HF, Liu ZJ, Ni W, Wang N, Wu ZY. Intermediate-length polyglutamine in ATXN2 is a possible risk factor among Eastern Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2014; 36:1603.e11-4. [PMID: 25457026 DOI: 10.1016/j.neurobiolaging.2014.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
An effective treatment for amyotrophic lateral sclerosis (ALS) has not yet been found because the pathogenesis of this fatal disease is not well understood. A number of previous studies demonstrated that intermediate-length polyglutamine repeats within the ataxin-2 gene (ATXN2) might be a risk factor among patients with ALS in Western countries. Here, we aim to determine whether this sequence is a risk factor in Eastern Chinese ALS patients. Therefore, 379 unrelated sporadic ALS patients, 15 unrelated familial ALS patients, and 900 neurologically normal controls were studied. The ATXN2 CAG repeats were amplified using polymerase chain reaction. The products were separated on an 8% polyacrylamide gel and confirmed using Sanger sequencing. The results were evaluated using SPSS 17.0. We found that ATXN2 intermediate-length polyglutamine expansions greater than 24 and 27 repeats were associated with sporadic ALS. Our finding supports the hypothesis that ATXN2 plays an important role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Hai-Peng Lu
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Neurology, Jinhua Hospital, Zhejiang University, Jinhua, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Fu Li
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Jun Liu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wang Ni
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Institute of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
158
|
VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation. Neurobiol Aging 2014; 36:1604.e1-6. [PMID: 25457024 DOI: 10.1016/j.neurobiolaging.2014.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/12/2014] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has proven that mutations in the VCP gene encoding valosin-containing protein (VCP) cause inclusion body myopathy with Paget disease of the bone and frontotemporal dementia. This gene was later found to be causative for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, occurring typically in elderly persons. We thus sequenced the VCP gene in 75 Japanese patients with sporadic ALS negative for mutations in other genes causative for ALS and found a novel mutation, p.Arg487His, in 1 patient. The newly identified mutant as well as known mutants rendered neuronal cells susceptible to oxidative stress. The presence of the mutation in the Japanese population extends the geographic region for involvement of the VCP gene in sporadic ALS to East Asia.
Collapse
|
159
|
Couthouis J, Raphael AR, Daneshjou R, Gitler AD. Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet 2014; 10:e1004704. [PMID: 25299611 PMCID: PMC4191946 DOI: 10.1371/journal.pgen.1004704] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive degeneration of motor neurons, ultimately leading to paralysis and death. Approximately 10% of ALS cases are familial, with the remaining 90% of cases being sporadic. Genetic studies in familial cases of ALS have been extremely informative in determining the causative mutations behind ALS, especially as the same mutations identified in familial ALS can also cause sporadic disease. However, the cause of ALS in approximately 30% of familial cases and in the majority of sporadic cases remains unknown. Sporadic ALS cases represent an underutilized resource for genetic information about ALS; therefore, we undertook a targeted sequencing approach of 169 known and candidate ALS disease genes in 242 sporadic ALS cases and 129 matched controls to try to identify novel variants linked to ALS. We found a significant enrichment in novel and rare variants in cases versus controls, indicating that we are likely identifying disease associated mutations. This study highlights the utility of next generation sequencing techniques combined with functional studies and rare variant analysis tools to provide insight into the genetic etiology of a heterogeneous sporadic disease. Amyotrophic lateral sclerosis (ALS), also known as Charcot disease or Lou Gehrig's disease, is one of the most common neuromuscular diseases worldwide. This disease is characterized by a progressive degeneration of motor neurons, leading to patient death within a few years after onset. Despite the fact that most ALS cases are sporadic, most of the ALS genetic studies have focused on familial forms, leading to the genetic determination of cause for 70% of cases of familial ALS but for only 10% of sporadic ALS cases. This, coupled with the dearth of families available for study, suggests that researchers should begin tapping into the relatively untouched reservoir of available sporadic samples to identify novel genetic causes of sporadic ALS. Here we take advantage of high-throughput target sequencing techniques to test four different hypotheses about the genetic causes of ALS in sporadic ALS and uncover new candidate genes and pathways implicated in ALS.
Collapse
Affiliation(s)
- Julien Couthouis
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alya R. Raphael
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roxana Daneshjou
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
160
|
Casci I, Pandey UB. A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 2014; 1607:47-74. [PMID: 25289585 DOI: 10.1016/j.brainres.2014.09.064] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/11/2022]
Abstract
For over a century Drosophila melanogaster, commonly known as the fruit fly, has been instrumental in genetics research and disease modeling. In more recent years, it has been a powerful tool for modeling and studying neurodegenerative diseases, including the devastating and fatal amyotrophic lateral sclerosis (ALS). The success of this model organism in ALS research comes from the availability of tools to manipulate gene/protein expression in a number of desired cell-types, and the subsequent recapitulation of cellular and molecular phenotypic features of the disease. Several Drosophila models have now been developed for studying the roles of ALS-associated genes in disease pathogenesis that allowed us to understand the molecular pathways that lead to motor neuron degeneration in ALS patients. Our primary goal in this review is to highlight the lessons we have learned using Drosophila models pertaining to ALS research. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Ian Casci
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Human Genetics Graduate Program, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children׳s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA.
| |
Collapse
|
161
|
Alsin related disorders: literature review and case study with novel mutations. Case Rep Genet 2014; 2014:691515. [PMID: 25302125 PMCID: PMC4180207 DOI: 10.1155/2014/691515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in the ALS2 gene cause three distinct disorders: infantile ascending hereditary spastic paraplegia, juvenile primary lateral sclerosis, and autosomal recessive juvenile amyotrophic lateral sclerosis. We present a review of the literature and the case of a 16-year-old boy who is, to the best of our knowledge, the first Portuguese case with infantile ascending hereditary spastic paraplegia. Clinical investigations included sequencing analysis of the ALS2 gene, which revealed a heterozygous mutation in exon 5 (c.1425_1428del p.G477Afs*19) and a heterozygous and previously unreported variant in exon 3 (c.145G>A p.G49R). We also examined 42 reported cases on the clinical characteristics and neurophysiological and imaging studies of patients with known ALS2 gene mutations sourced from PubMed. This showed that an overlap of phenotypic manifestations can exist in patients with infantile ascending hereditary spastic paraplegia, juvenile primary lateral sclerosis, and juvenile amyotrophic lateral sclerosis.
Collapse
|
162
|
Droppelmann CA, Campos-Melo D, Volkening K, Strong MJ. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases. Front Cell Neurosci 2014; 8:282. [PMID: 25309324 PMCID: PMC4159981 DOI: 10.3389/fncel.2014.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3' untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss.
Collapse
Affiliation(s)
- Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Western University London, ON, Canada ; Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University London, ON, Canada
| |
Collapse
|
163
|
Gianforcaro A, Hamadeh MJ. Vitamin D as a potential therapy in amyotrophic lateral sclerosis. CNS Neurosci Ther 2014; 20:101-11. [PMID: 24428861 DOI: 10.1111/cns.12204] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 09/30/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
Vitamin D has been demonstrated to influence multiple aspects of amyotrophic lateral sclerosis (ALS) pathology. Both human and rodent central nervous systems express the vitamin D receptor (VDR) and/or its enzymatic machinery needed to fully activate the hormone. Clinical research suggests that vitamin D treatment can improve compromised human muscular ability and increase muscle size, supported by loss of motor function and muscle mass in animals following VDR knockout, as well as increased muscle protein synthesis and ATP production following vitamin D supplementation. Vitamin D has also been shown to reduce the expression of biomarkers associated with oxidative stress and inflammation in patients with multiple sclerosis, rheumatoid arthritis, congestive heart failure, Parkinson's disease and Alzheimer's disease; diseases that share common pathophysiologies with ALS. Furthermore, vitamin D treatment greatly attenuates hypoxic brain damage in vivo and reduces neuronal lethality of glutamate insult in vitro; a hallmark trait of ALS glutamate excitotoxicity. We have recently shown that high-dose vitamin D3 supplementation improved, whereas vitamin D3 restriction worsened, functional capacity in the G93A mouse model of ALS. In sum, evidence demonstrates that vitamin D, unlike the antiglutamatergic agent Riluzole, affects multiple aspects of ALS pathophysiology and could provide a greater cumulative effect.
Collapse
Affiliation(s)
- Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | |
Collapse
|
164
|
D'Ambrosi N, Rossi S, Gerbino V, Cozzolino M. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2014; 8:279. [PMID: 25249940 PMCID: PMC4157560 DOI: 10.3389/fncel.2014.00279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory function of both actin and microtubule cytoskeletal dynamics and thus it is central to axonal growth and stability, as well as dendrite and spine structural plasticity. Rac1 is also a crucial regulator of NADPH-dependent membrane oxidase (NOX), a prominent source of reactive oxygen species (ROS), thus having a central role in the inflammatory response and neurotoxicity mediated by microglia cells in the nervous system. As such, alterations in Rac1 activity might well be involved in the processes that give rise to Amyotrophic Lateral Sclerosis (ALS), a complex syndrome where cytoskeletal disturbances in motor neurons and redox alterations in the inflammatory compartment play pivotal and synergic roles in the final disease outcomes. Here we will discuss the genetic and mechanistic evidence indicating the relevance of Rac1 dysregulation in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Simona Rossi
- National Research Council, Institute of Translational Pharmacology Rome, Italy ; Fondazione Santa Lucia IRCCS Rome, Italy
| | - Valeria Gerbino
- Fondazione Santa Lucia IRCCS Rome, Italy ; Department of Biology, Università di Roma Tor Vergata Rome, Italy
| | - Mauro Cozzolino
- National Research Council, Institute of Translational Pharmacology Rome, Italy
| |
Collapse
|
165
|
Gentil BJ, McLean JR, Xiao S, Zhao B, Durham HD, Robertson J. A two-hybrid screen identifies an unconventional role for the intermediate filament peripherin in regulating the subcellular distribution of the SNAP25-interacting protein, SIP30. J Neurochem 2014; 131:588-601. [DOI: 10.1111/jnc.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit J. Gentil
- Montreal Neurological Institute and Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| | - Jesse R. McLean
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Beibei Zhao
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Heather D. Durham
- Montreal Neurological Institute and Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
166
|
Tan W, Pasinelli P, Trotti D. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1295-301. [PMID: 24568860 PMCID: PMC4074562 DOI: 10.1016/j.bbadis.2014.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an adult onset characterized by loss of both upper and lower motor neurons. In ~10% of cases, patients developed ALS with an apparent genetic linkage (familial ALS or fALS). Approximately 20% of fALS displays mutations in the SOD1 gene encoding superoxide dismutase 1. There are many proposed cellular and molecular mechanisms among which, mitochondrial dysfunctions occur early, prior to symptoms occurrence. In this review, we modeled the effect of mutant SOD1 protein via the formation of a toxic complex with Bcl2 on mitochondrial bioenergetics. Furthermore, we discuss that the shutdown of ATP permeation through mitochondrial outer membrane could lead to both respiration inhibition and temporary mitochondrial hyperpolarization. Moreover, we reviewed mitochondrial calcium signaling, oxidative stress, fission and fusion, autophagy and apoptosis in mutant SOD1-linked ALS. Functional defects in mitochondria appear early before symptoms are manifested in ALS. Therefore, mitochondrial dysfunction is a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Wenzhi Tan
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Frances and Joseph Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
167
|
Nonsense-mediated decay in genetic disease: friend or foe? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:52-64. [PMID: 25485595 DOI: 10.1016/j.mrrev.2014.05.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target.
Collapse
|
168
|
Maximino JR, de Oliveira GP, Alves CJ, Chadi G. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 2014; 8:148. [PMID: 24904291 PMCID: PMC4033281 DOI: 10.3389/fncel.2014.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Collapse
Affiliation(s)
- Jessica R Maximino
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Chrystian J Alves
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
169
|
Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, Mahy N, Vidal-Taboada JM. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 2014; 9:e96528. [PMID: 24806473 PMCID: PMC4013026 DOI: 10.1371/journal.pone.0096528] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/09/2014] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to investigate the association of functional variants of the human CX3CR1 gene (Fractalkine receptor) with the risk of Amyotrophic Lateral Sclerosis (ALS), the survival and the progression rate of the disease symptoms in a Spanish ALS cohort. 187 ALS patients (142 sporadic [sALS] and 45 familial) and 378 controls were recruited. We investigated CX3CR1 V249I (rs3732379) and T280M (rs3732378) genotypes and their haplotypes as predictors of survival, the progression rate of the symptoms (as measured by ALSFRS-R and FVC decline) and the risk of suffering ALS disease. The results indicated that sALS patients with CX3CR1 249I/I or 249V/I genotypes presented a shorter survival time (42.27±4.90) than patients with 249V/V genotype (67.65±7.42; diff −25.49 months 95%CI [−42.79,−8.18]; p = 0.004; adj-p = 0.018). The survival time was shorter in sALS patients with spinal topography and CX3CR1 249I alleles (diff = −29.78 months; 95%CI [−49.42,−10.14]; p = 0.003). The same effects were also observed in the spinal sALS patients with 249I–280M haplotype (diff = −27.02 months; 95%CI [−49.57, −4.48]; p = 0.019). In the sALS group, the CX3CR1 249I variant was associated with a faster progression of the disease symptoms (OR = 2.58; 95IC% [1.32, 5.07]; p = 0.006; adj-p = 0.027). There was no evidence for association of these two CX3CR1 variants with ALS disease risk. The association evidenced herein is clinically relevant and indicates that CX3CR1 could be a disease-modifying gene in sALS. The progression rate of the disease's symptoms and the survival time is affected in patients with one or two copies of the CX3CR1 249I allele. The CX3CR1 is the most potent ALS survival genetic factor reported to date. These results reinforce the role of the immune system in ALS pathogenesis.
Collapse
Affiliation(s)
- Alan Lopez-Lopez
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine - IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Josep Gamez
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron - VHIR. Autonomous University of Barcelona, Barcelona, Spain
- * E-mail: (JG); (JMVT)
| | - Emilio Syriani
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron - VHIR. Autonomous University of Barcelona, Barcelona, Spain
- Synaptic Structural Plasticity Lab, CIBIR, Logroño, Spain
| | - Miguel Morales
- Synaptic Structural Plasticity Lab, CIBIR, Logroño, Spain
| | - Maria Salvado
- ALS Unit, Neurology Department, Hospital Universitari Vall d'Hebron - VHIR. Autonomous University of Barcelona, Barcelona, Spain
| | - Manuel J. Rodríguez
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine - IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Nicole Mahy
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine - IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
| | - Jose M. Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Physiological Sciences I, Faculty of Medicine - IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Barcelona, Spain
- * E-mail: (JG); (JMVT)
| |
Collapse
|
170
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
171
|
Affiliation(s)
- Laura K. Wood
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Steven J. Langford
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
172
|
Su XW, Broach JR, Connor JR, Gerhard GS, Simmons Z. Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research. Muscle Nerve 2014; 49:786-803. [DOI: 10.1002/mus.24198] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaowei W. Su
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Broach
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - James R. Connor
- Department of Neurosurgery; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Glenn S. Gerhard
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University College of Medicine; Hershey Pennsylvania USA
| | - Zachary Simmons
- Department of Neurology; Penn State Milton S. Hershey Medical Center; 30 Hope Drive (Suite EC037) Hershey Pennsylvania 17033 USA
| |
Collapse
|
173
|
Racis L, Tessa A, Pugliatti M, Storti E, Agnetti V, Santorelli FM. Infantile-onset ascending hereditary spastic paralysis: a case report and brief literature review. Eur J Paediatr Neurol 2014; 18:235-9. [PMID: 24144828 DOI: 10.1016/j.ejpn.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a rare, early-onset autosomal recessive motor neuron disease associated with mutations in ALS2. AIM We studied a 17-year-old boy who had features of IAHSP. We also reviewed the current literature on ALS2-related syndromes. METHODS Clinical and neuroimaging studies were performed. Blood DNA analyses were combined with mRNA studies in cultured skin fibroblasts. RESULTS Like previously described cases, the patient presented with severe spastic paraparesis and showed rapid progression of paresis to the upper limbs. He also developed bulbar involvement and severe scoliosis during childhood. In blood DNA we identified a novel splice-site homozygous mutation in ALS2 (c.3836+1G > T), producing exon skipping in fibroblast mRNA and predicting premature protein truncation. CONCLUSIONS This case adds to the allelic heterogeneity of IAHSP. Review of the pertinent literature indicates a fairly homogeneous clinical picture in IAHSP that should facilitate molecular confirmation and prevention of long-term complications.
Collapse
Affiliation(s)
- Loretta Racis
- Department of Clinical and Experimental Medicine, Sassari, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maura Pugliatti
- Department of Clinical and Experimental Medicine, Sassari, Italy
| | | | - Virgilio Agnetti
- Department of Clinical and Experimental Medicine, Sassari, Italy
| | | |
Collapse
|
174
|
May C, Nordhoff E, Casjens S, Turewicz M, Eisenacher M, Gold R, Brüning T, Pesch B, Stephan C, Woitalla D, Penke B, Janáky T, Virók D, Siklós L, Engelhardt JI, Meyer HE. Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array. PLoS One 2014; 9:e89596. [PMID: 24586901 PMCID: PMC3935926 DOI: 10.1371/journal.pone.0089596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.
Collapse
Affiliation(s)
- Caroline May
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Eckhard Nordhoff
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Swaantje Casjens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of Ruhr-University Bochum, Bochum, Germany
| | - Michael Turewicz
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Martin Eisenacher
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of Ruhr-University Bochum, Bochum, Germany
| | - Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of Ruhr-University Bochum, Bochum, Germany
| | - Christian Stephan
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Dirk Woitalla
- St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Dezső Virók
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | - Helmut E. Meyer
- Department of Medical Proteomics/Bioanalytics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| |
Collapse
|
175
|
Sheerin UM, Schneider SA, Carr L, Deuschl G, Hopfner F, Stamelou M, Wood NW, Bhatia KP. ALS2 mutations: juvenile amyotrophic lateral sclerosis and generalized dystonia. Neurology 2014; 82:1065-7. [PMID: 24562058 PMCID: PMC3962990 DOI: 10.1212/wnl.0000000000000254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype.
Collapse
Affiliation(s)
- Una-Marie Sheerin
- From the Department of Molecular Neuroscience (U.-M.S.) and Sobell Department of Motor Neuroscience and Movement Disorders (M.S., K.P.B.), UCL Institute of Neurology, London, UK; University of Kiel (S.A.S., G.D., F.H.), Movement Disorders Clinic, Germany; Department of Paediatrics (L.C.), Great Ormond Street Hospital, London, UK; Second Department of Neurology (M.S.), University of Athens, Greece; and UCL Department of Molecular Neuroscience and UCL Genetics Institute (N.W.W.), University College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Droppelmann CA, Campos-Melo D, Ishtiaq M, Volkening K, Strong MJ. RNA metabolism in ALS: When normal processes become pathological. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:321-36. [DOI: 10.3109/21678421.2014.881377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
177
|
Bruijn LI, Cudkowicz M. Therapeutic targets for amyotrophic lateral sclerosis: current treatments and prospects for more effective therapies. Expert Rev Neurother 2014; 6:417-28. [PMID: 16533145 DOI: 10.1586/14737175.6.3.417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although amyotrophic lateral sclerosis (ALS) was described more than 130 years ago, the cause(s) of most cases of this adult motor neuron disease remains a mystery. With the discovery of mutations in one gene (Cu/Zn superoxide dismutase) as a primary cause of some forms of ALS, model systems have been developed that have helped us begin to understand mechanisms involved in motor neuron death and enabled testing of potential new therapies. Several other genes have been implicated as risk factors in motor neuron diseases, including neurofilaments, cytoplasmic dynein and dynactin, vascular endothelial growth factor, and angiogenin. With advances in the basic research of the disease, many hypotheses accounting for motor neuron death are being explored, including loss of trophic support, protein mishandling, mitochondrial dysfunction, excitotoxicity, axonal abnormalities and inflammation. Many of these mechanisms are the focus of research in other neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's disease.
Collapse
|
178
|
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease. ALS is a fatal neurodegenerative disease and clinical diagnosis typically takes many months to complete. Early disease diagnosis through the use of biomarkers may aid in correct clinical management of patients and possibly delay time to ventilator and morbidity. This review explores the progress of biomarker discovery efforts for ALS and the many challenges that remain. Included are different technologies utilized in biomarker discovery efforts (proteomic, genomic and metabolomic) and putative biomarkers uncovered using these techniques. These studies have discovered genetic mutations leading to familial forms of ALS, and specific protein alterations that occur in biological fluids (cerebrospinal fluid and blood) and/or tissues of ALS subjects. More recent high-throughput technologies have revealed panels of proteomic or metabolic biomarkers that can discriminate between ALS and control groups. The identification of disease-specific biomarkers will provide opportunities to develop early diagnostic measures as well as surrogate markers to monitor disease progression and test drug efficacy in clinical trials.
Collapse
Affiliation(s)
- Robert Bowser
- University of Pittsburgh, Department of Pathology, School of Medicine, ST S-420, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
179
|
Neefjes J, van der Kant R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci 2014; 37:66-76. [PMID: 24411104 DOI: 10.1016/j.tins.2013.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022]
Abstract
The past decade has seen an explosion of DNA sequencing activities and many mutations and genetic variances underlying neurological and neurodegenerative diseases have been determined. This wealth of genetic data is now placed in molecular pathways revealing the nodes that underlie the disrupted processes. Many mutations in neurological diseases affect proteins controlling endosomal/lysosomal transport. Although the age of onset of these diseases range from juvenile [i.e., Niemann-Pick type C (NPC) and Charcot-Marie-Tooth (CMT) disease] to late onset (Parkinson's and Alzheimer's disease), deregulation of endosomal transport is a common theme. This review summarizes how elucidating the genetic basis for the various neurological diseases has advanced our understanding of the endo-lysosomal system and why the various mutations all translate into similar disease phenotypes.
Collapse
Affiliation(s)
- Jacques Neefjes
- Division of Cell Biology, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands.
| | - Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
180
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|
181
|
|
182
|
Valori CF, Brambilla L, Martorana F, Rossi D. The multifaceted role of glial cells in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014; 71:287-97. [PMID: 23912896 PMCID: PMC11113174 DOI: 10.1007/s00018-013-1429-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/11/2022]
Abstract
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.
Collapse
Affiliation(s)
- Chiara F. Valori
- Department of Neuropathology, German Center for Neurodegenerative Diseases (DZNE), Paul-Ehrlich-Strasse 17, 72076, Tübingen, Germany
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Francesca Martorana
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, IRCCS Fondazione Salvatore Maugeri, Via Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
183
|
Sreedharan J, Brown RH. Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol 2013; 74:309-16. [PMID: 24038380 DOI: 10.1002/ana.24012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal degenerative disorder of motoneurons, which may occur concurrently with frontotemporal dementia. Genetic analyses of the ∼10% of ALS cases that are dominantly inherited provide insight into ALS pathobiology. Two broad themes are evident. One, prompted by investigations of the SOD1 gene, is that conformational instability of proteins triggers downstream neurotoxic processes. The second, from studies of the TDP43, FUS, and C9orf72 genes, is that perturbations of RNA processing can be highly adverse in motoneurons. Several investigations support the concept that non-neuronal cells (microglia, astroglia, oligodendroglia) participate in the degenerative process in ALS. Recent data also emphasize the importance of molecular events in the axon and distal motoneuron terminals. Only 1 compound, riluzole, is approved by the US Food and Drug Administration for ALS; several therapies are in clinical trials, including 2 mesenchymal stem cell trials. The challenges and unmet needs in ALS emphasize the importance of new research directions: high-throughput sequencing of large DNA sets of familial and sporadic ALS, which will define scores of candidate ALS genes and pathways and facilitate studies of epistasis and epigenetics; infrastructures for candidate gene validation, including in vitro and in vivo modeling; valid biomarkers that elucidate causative molecular events and accelerate clinical trials; and in the long term, methods to identify environmental toxins. The unprecedented intensity of research in ALS and the advent of extraordinary technologies (rapid, inexpensive DNA sequencing; stem cell production from skin-derived fibroblasts; silencing of miscreant mutant genes) bode well for discovery of innovative ALS therapies.
Collapse
Affiliation(s)
- Jemeen Sreedharan
- Babraham Institute, Cambridge, United Kingdom; Department of Neurology, University of Massachusetts Medical School, Worcester, MA; Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA
| | | |
Collapse
|
184
|
Wakil SM, Ramzan K, Abuthuraya R, Hagos S, Al-Dossari H, Al-Omar R, Murad H, Chedrawi A, Al-Hassnan ZN, Finsterer J, Bohlega S. Infantile-onset ascending hereditary spastic paraplegia with bulbar involvement due to the novel ALS2 mutation c.2761C>T. Gene 2013; 536:217-20. [PMID: 24315819 DOI: 10.1016/j.gene.2013.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
Recessive mutations in the alsin gene cause three clinically distinct motor neuron diseases: juvenile amyotrophic lateral sclerosis (ALS2), juvenile primary lateral sclerosis (JPLS) and infantile-onset ascending hereditary spastic paraplegia (IAHSP). A total of 23 different ALS2 mutations have been described for the three disorders so far. Most of these mutations result in a frameshift leading to a premature truncation of the alsin protein. We report the novel ALS2 truncating mutation c.2761C>T; p.R921X detected by homozygosity mapping and sequencing in two infants affected by IAHSP with bulbar involvement. The mutation c.2761C>T resides in the pleckstrin domain, a characteristic segment of guanine nucleotide exchange factors of the Rho GTPase family, which is involved in the overall neuronal development or maintenance. This study highlights the importance of using homozygosity mapping combined with candidate gene analysis to identify the underlying genetic defect as in this Saudi consanguineous family.
Collapse
Affiliation(s)
- Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rula Abuthuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Samya Hagos
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Haya Al-Dossari
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rana Al-Omar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hatem Murad
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
185
|
Mok K, Laaksovirta H, Tienari PJ, Peuralinna T, Myllykangas L, Chiò A, Traynor BJ, Nalls MA, Gurunlian N, Shatunov A, Restagno G, Mora G, Nigel Leigh P, Shaw CE, Morrison KE, Shaw PJ, Al-Chalabi A, Hardy J, Orrell RW. Homozygosity analysis in amyotrophic lateral sclerosis. Eur J Hum Genet 2013; 21:1429-35. [PMID: 23612577 PMCID: PMC3829775 DOI: 10.1038/ejhg.2013.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) may appear to be familial or sporadic, with recognised dominant and recessive inheritance in a proportion of cases. Sporadic ALS may be caused by rare homozygous recessive mutations. We studied patients and controls from the UK and a multinational pooled analysis of GWAS data on homozygosity in ALS to determine any potential recessive variant leading to the disease. Six-hundred and twenty ALS and 5169 controls were studied in the UK cohort. A total of 7646 homozygosity segments with length >2 Mb were identified, and 3568 rare segments remained after filtering 'common' segments. The mean total of the autosomal genome with homozygosity segments was longer in ALS than in controls (unfiltered segments, P=0.05). Two-thousand and seventeen ALS and 6918 controls were studied in the pooled analysis. There were more regions of homozygosity segments per case (P=1 × 10(-5)), a greater proportion of cases harboured homozygosity (P=2 × 10(-5)), a longer average length of segment (P=1 × 10(-5)), a longer total genome coverage (P=1 × 10(-5)), and a higher rate of these segments overlapped with RefSeq gene regions (P=1 × 10(-5)), in ALS patients than controls. Positive associations were found in three regions. The most significant was in the chromosome 21 SOD1 region, and also chromosome 1 2.9-4.8 Mb, and chromosome 5 in the 65 Mb region. There are more than twenty potential genes in these regions. These findings point to further possible rare recessive genetic causes of ALS, which are not identified as common variants in GWAS.
Collapse
Affiliation(s)
- Kin Mok
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, and Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Hannu Laaksovirta
- Helsinki University Central Hospital, Department of Neurology, Molecular Neurology Research Program, Biomedicum, University of Helsinki, Helsinki, Finland
- Molecular Genetics Section and Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Pentti J Tienari
- Molecular Genetics Section and Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Terhi Peuralinna
- Molecular Genetics Section and Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Liisa Myllykangas
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, and Folkhalsan Institute of Genetics, Helsinki, Finland
| | - Adriano Chiò
- Department of Neuroscience, University of Turin and Azienda Ospedaliera Universitaria San Giovanni Battista, Turin, Italy
| | - Bryan J Traynor
- Molecular Genetics Section and Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Michael A Nalls
- Molecular Genetics Section and Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Nicole Gurunlian
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, and Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Aleksey Shatunov
- Medical Research Council Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK
| | - Gabriella Restagno
- Molecular Genetics Laboratory, Azienda Ospedaliera OIRM-Sant'Anna, Turin, Italy
| | - Gabriele Mora
- Fondazione Salvatore Mangeri, IRCCS Scientific Institute of Milan, Milan, Italy
| | - P Nigel Leigh
- Brighton and Sussex Medical School, Trafford Centre for Biomedical Research, University of Sussex, Falmer, UK
| | - Chris E Shaw
- Medical Research Council Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK
| | - Karen E Morrison
- School of Clinical and Experimental Medicine, University of Birmingham and Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Pamela J Shaw
- Department of Neuroscience, The Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Ammar Al-Chalabi
- Medical Research Council Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, and Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Richard W Orrell
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, and Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
186
|
Lyon AN, Pineda RH, Hao LT, Kudryashova E, Kudryashov DS, Beattie CE. Calcium binding is essential for plastin 3 function in Smn-deficient motoneurons. Hum Mol Genet 2013; 23:1990-2004. [PMID: 24271012 DOI: 10.1093/hmg/ddt595] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin-binding and bundling protein, plastin 3 (PLS3), was identified as a protective modifier of spinal muscular atrophy (SMA) in some patient populations and as a disease modifier in animal models of SMA. How it functions in this process, however, is not known. Because PLS3 is an actin-binding/bundling protein, we hypothesized it would likely act via modification of the actin cytoskeleton in axons and neuromuscular junctions to protect motoneurons in SMA. To test this, we examined the ability of other known actin cytoskeleton organizing proteins to modify motor axon outgrowth phenotypes in an smn morphant zebrafish model of SMA. While PLS3 can fully compensate for low levels of smn, cofilin 1, profilin 2 and α-actinin 1 did not affect smn morphant motor axon outgrowth. To determine how PLS3 functions in SMA, we generated deletion constructs of conserved PLS3 structural domains. The EF hands were essential for PLS3 rescue of smn morphant phenotypes, and mutation of the Ca(2+)-binding residues within the EF hands resulted in a complete loss of PLS3 rescue. These results indicate that Ca(2+) regulation is essential for the function of PLS3 in motor axons. Remarkably, PLS3 mutants lacking both actin-binding domains were still able to rescue motor axons in smn morphants, although not as well as full-length PLS3. Therefore, PLS3 function in this process may have an actin-independent component.
Collapse
Affiliation(s)
- Alison N Lyon
- Department of Neuroscience, The Ohio State University, 132 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA and
| | | | | | | | | | | |
Collapse
|
187
|
THEME 9IN VIVOEXPERIMENTAL MODELS. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
188
|
Keifer OP, O'Connor DM, Boulis NM. Gene and protein therapies utilizing VEGF for ALS. Pharmacol Ther 2013; 141:261-71. [PMID: 24177067 DOI: 10.1016/j.pharmthera.2013.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is usually fatal within 2-5years. Unfortunately, the only treatment currently available is riluzole, which has a limited efficacy. As a redress, there is an expanding literature focusing on other potential treatments. One such potential treatment option utilizes the vascular endothelial growth factor (VEGF) family, which includes factors that are primarily associated with angiogenesis but are now increasingly recognized to have neurotrophic effects. Reduced expression of a member of this family, VEGF-A, in mice results in neurodegeneration similar to that of ALS, while treatment of animal models of ALS with either VEGF-A gene therapy or VEGF-A protein has yielded positive therapeutic outcomes. These basic research findings raise the potential for a VEGF therapy to be translated to the clinic for the treatment of ALS. This review covers the VEGF family, its receptors and neurotrophic effects as well as VEGF therapy in animal models of ALS and advances towards clinical trials.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States.
| |
Collapse
|
189
|
Cereda C, Leoni E, Milani P, Pansarasa O, Mazzini G, Guareschi S, Alvisi E, Ghiroldi A, Diamanti L, Bernuzzi S, Ceroni M, Cova E. Altered intracellular localization of SOD1 in leukocytes from patients with sporadic amyotrophic lateral sclerosis. PLoS One 2013; 8:e75916. [PMID: 24155874 PMCID: PMC3796534 DOI: 10.1371/journal.pone.0075916] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/17/2013] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence support the hypothesis of a toxic role played by wild type SOD1 (WT-SOD1) in the pathogenesis of sporadic amyotrophic lateral sclerosis (SALS). In this study we investigated both distribution and expression profile of WT-SOD1 in leukocytes from 19 SALS patients and 17 healthy individuals. Immunofluorescence experiments by confocal microscopy showed that SOD1 accumulates in the nuclear compartment in a group of SALS subjects. These results were also confirmed by western blot carried out on soluble nuclear and cytoplasmic fractions, with increased nuclear SOD1 level (p<0.05). In addition, we observed the presence of cytoplasmic SOD1 aggregates in agreement with an increased amount of the protein recovered by the insoluble fraction. A further confirmation of the overall increased level of SOD1 has been obtained from single cells analysis using flow cytometry as cells from SALS patients showed an higher SOD1 protein content (p<0.05). These findings add further evidence to the hypothesis of an altered WT-SOD1 expression profile in peripheral blood mononuclear cells (PBMCs) from patients with ALS suggesting that WT-SOD1 species with different degrees of solubility could be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Cristina Cereda
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Emanuela Leoni
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- * E-mail:
| | - Pamela Milani
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Giuliano Mazzini
- IGM-CNR, Histochemistry and Cytometry, Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Stefania Guareschi
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Elena Alvisi
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Andrea Ghiroldi
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
| | - Luca Diamanti
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Stefano Bernuzzi
- Immunohematological and Transfusional Service and Centre of Transplantation Immunology, IRCCS Foundation “San Matteo”, Pavia, Italy
| | - Mauro Ceroni
- Department of Brain and Behavioral Science, University of Pavia, Pavia, Italy
- Division of General Neurology, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Emanuela Cova
- Laboratory of Experimental Neurobiology, “C. Mondino” National Neurological Institute, Pavia, Italy
| |
Collapse
|
190
|
Karle KN, Schüle R, Klebe S, Otto S, Frischholz C, Liepelt-Scarfone I, Schöls L. Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP). Orphanet J Rare Dis 2013; 8:158. [PMID: 24107482 PMCID: PMC3852552 DOI: 10.1186/1750-1172-8-158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.
Collapse
Affiliation(s)
- Kathrin N Karle
- Department of Neurology, Eberhard Karls-University Tübingen, Tübingen 72076, Germany.
| | | | | | | | | | | | | |
Collapse
|
191
|
|
192
|
Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics 2013; 10:722-33. [PMID: 23900692 PMCID: PMC3805862 DOI: 10.1007/s13311-013-0205-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. A diagnosis is fatal owing to degeneration of motor neurons in brain and spinal cord that control swallowing, breathing, and movement. ALS can be inherited, but most cases are not associated with a family history of the disease. The mechanisms causing motor neuron death in ALS are still unknown. Given the suspected complex interplay between multiple genes, the environment, metabolism, and lifestyle in the pathogenesis of ALS, we have hypothesized that the mechanisms of disease in ALS involve epigenetic contributions that can drive motor neuron degeneration. DNA methylation is an epigenetic mechanism for gene regulation engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to carbon-5 in cytosine residues in gene regulatory promoter and nonpromoter regions. Recent genome-wide analyses have found differential gene methylation in human ALS. Neuropathologic assessments have revealed that motor neurons in human ALS show significant abnormalities in Dnmt1, Dnmt3a, and 5-methylcytosine. Similar changes are seen in mice with motor neuron degeneration, and Dnmt3a was found abundantly at synapses and in mitochondria. During apoptosis of cultured motor neuron-like cells, Dnmt1 and Dnmt3a protein levels increase, and 5-methylcytosine accumulates. Enforced expression of Dnmt3a, but not Dnmt1, induces degeneration of cultured neurons. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocks apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with small molecules RG108 and procainamide protects motor neurons from excessive DNA methylation and apoptosis in cell culture and in a mouse model of ALS. Thus, motor neurons can engage epigenetic mechanisms to cause their degeneration, involving Dnmts and increased DNA methylation. Aberrant DNA methylation in vulnerable cells is a new direction for discovering mechanisms of ALS pathogenesis that could be relevant to new disease target identification and therapies for ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA,
| | | |
Collapse
|
193
|
Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis. Neuromolecular Med 2013; 15:760-70. [PMID: 24062161 DOI: 10.1007/s12017-013-8262-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/22/2013] [Indexed: 12/11/2022]
Abstract
Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1, fused in liposarcoma, and TAR DNA-binding protein 43 (TDP-43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity, and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full-length EAAT2 by binding to a regulatory region of its promoter.
Collapse
|
194
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
195
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
196
|
Kenna KP, McLaughlin RL, Byrne S, Elamin M, Heverin M, Kenny EM, Cormican P, Morris DW, Donaghy CG, Bradley DG, Hardiman O. Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing. J Med Genet 2013; 50:776-83. [PMID: 23881933 PMCID: PMC3812897 DOI: 10.1136/jmedgenet-2013-101795] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over 100 genes have been implicated in the aetiology of amyotrophic lateral sclerosis (ALS). A detailed understanding of their independent and cumulative contributions to disease burden may help guide various clinical and research efforts. METHODS Using targeted high-throughput sequencing, we characterised the variation of 10 Mendelian and 23 low penetrance/tentative ALS genes within a population-based cohort of 444 Irish ALS cases (50 fALS, 394 sALS) and 311 age-matched and geographically matched controls. RESULTS Known or potential high-penetrance ALS variants were identified within 17.1% of patients (38% of fALS, 14.5% of sALS). 12.8% carried variants of Mendelian disease genes (C9orf72 8.78%; SETX 2.48%; ALS2 1.58%; FUS 0.45%; TARDBP 0.45%; OPTN 0.23%; VCP 0.23%. ANG, SOD1, VAPB 0%), 4.7% carried variants of low penetrance/tentative ALS genes and 9.7% (30% of fALS, 7.1% of sALS) carried previously described ALS variants (C9orf72 8.78%; FUS 0.45%; TARDBP 0.45%). 1.6% of patients carried multiple known/potential disease variants, including all identified carriers of an established ALS variant (p<0.01); TARDBP:c.859G>A(p.[G287S]) (n=2/2 sALS). Comparison of our results with those from studies of other European populations revealed significant differences in the spectrum of disease variation (p=1.7×10(-4)). CONCLUSIONS Up to 17% of Irish ALS cases may carry high-penetrance variants within the investigated genes. However, the precise nature of genetic susceptibility differs significantly from that reported within other European populations. Certain variants may not cause disease in isolation and concomitant analysis of disease genes may prove highly important.
Collapse
Affiliation(s)
- Kevin P Kenna
- Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Loss of vps54 function leads to vesicle traffic impairment, protein mis-sorting and embryonic lethality. Int J Mol Sci 2013; 14:10908-25. [PMID: 23708095 PMCID: PMC3709709 DOI: 10.3390/ijms140610908] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/11/2022] Open
Abstract
The identification of the mutation causing the phenotype of the amyotrophic lateral sclerosis (ALS) model mouse, wobbler, has linked motor neuron degeneration with retrograde vesicle traffic. The wobbler mutation affects protein stability of Vps54, a ubiquitously expressed vesicle-tethering factor and leads to partial loss of Vps54 function. Moreover, the Vps54 null mutation causes embryonic lethality, which is associated with extensive membrane blebbing in the neural tube and is most likely a consequence of impaired vesicle transport. Investigation of cells derived from wobbler and Vps54 null mutant embryos demonstrates impaired retrograde transport of the Cholera-toxin B subunit to the trans-Golgi network and mis-sorting of mannose-6-phosphate receptors and cargo proteins dependent on retrograde vesicle transport. Endocytosis assays demonstrate no difference between wobbler and wild type cells, indicating that the retrograde vesicle traffic to the trans-Golgi network, but not endocytosis, is affected in Vps54 mutant cells. The results obtained on wobbler cells were extended to test the use of cultured skin fibroblasts from human ALS patients to investigate the retrograde vesicle traffic. Analysis of skin fibroblasts of ALS patients will support the investigation of the critical role of the retrograde vesicle transport in ALS pathogenesis and might yield a diagnostic prospect.
Collapse
|
198
|
Lattante S, Rouleau GA, Kabashi E. TARDBPandFUSMutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. Hum Mutat 2013; 34:812-26. [DOI: 10.1002/humu.22319] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Serena Lattante
- Institut du Cerveau et de la Moelle épinière; Centre de Recherche, CHU Pitié-Salpétrière, Inserm, UMR_S975, CRICM, F-75013; UPMC Univ Paris 06, UMR_S975, F-75013; CNRS UMR 7225; F-75013; Paris; France
| | - Guy A. Rouleau
- Montreal Neurological Institute; Department of Neurology and Neurosurgery, McGill University; Montreal; Canada
| | | |
Collapse
|
199
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
200
|
Kumar A, Ghosh D, Singh RL. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach. J Biomark 2013; 2013:538765. [PMID: 26317018 PMCID: PMC4437352 DOI: 10.1155/2013/538765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/02/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3-5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients.
Collapse
Affiliation(s)
- Alok Kumar
- Center for Shock, Trauma and Anesthesiology Research (STAR) and the Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Devlina Ghosh
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - R. L. Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| |
Collapse
|