151
|
Hemelaar SR, de Boer P, Chipaux M, Zuidema W, Hamoh T, Martinez FP, Nagl A, Hoogenboom JP, Giepmans BNG, Schirhagl R. Nanodiamonds as multi-purpose labels for microscopy. Sci Rep 2017; 7:720. [PMID: 28389652 PMCID: PMC5429637 DOI: 10.1038/s41598-017-00797-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 11/09/2022] Open
Abstract
Nanodiamonds containing fluorescent nitrogen-vacancy centers are increasingly attracting interest for use as a probe in biological microscopy. This interest stems from (i) strong resistance to photobleaching allowing prolonged fluorescence observation times; (ii) the possibility to excite fluorescence using a focused electron beam (cathodoluminescence; CL) for high-resolution localization; and (iii) the potential use for nanoscale sensing. For all these schemes, the development of versatile molecular labeling using relatively small diamonds is essential. Here, we show the direct targeting of a biological molecule with nanodiamonds as small as 70 nm using a streptavidin conjugation and standard antibody labelling approach. We also show internalization of 40 nm sized nanodiamonds. The fluorescence from the nanodiamonds survives osmium-fixation and plastic embedding making them suited for correlative light and electron microscopy. We show that CL can be observed from epon-embedded nanodiamonds, while surface-exposed nanoparticles also stand out in secondary electron (SE) signal due to the exceptionally high diamond SE yield. Finally, we demonstrate the magnetic read-out using fluorescence from diamonds prior to embedding. Thus, our results firmly establish nanodiamonds containing nitrogen-vacancy centers as unique, versatile probes for combining and correlating different types of microscopy, from fluorescence imaging and magnetometry to ultrastructural investigation using electron microscopy.
Collapse
Affiliation(s)
- S R Hemelaar
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - P de Boer
- Groningen University, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - M Chipaux
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - W Zuidema
- Delft University of Technology, Dept. Imaging Physics, Lorentzweg 1, 2628, CJ, Delft, The Netherlands
| | - T Hamoh
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - F Perona Martinez
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - A Nagl
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - J P Hoogenboom
- Delft University of Technology, Dept. Imaging Physics, Lorentzweg 1, 2628, CJ, Delft, The Netherlands
| | - B N G Giepmans
- Groningen University, University Medical Center Groningen, Department of Cell Biology, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - R Schirhagl
- Groningen University, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands.
| |
Collapse
|
152
|
Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J. Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat Commun 2017; 8:14701. [PMID: 28317922 PMCID: PMC5364376 DOI: 10.1038/ncomms14701] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid nanoscale sensor that can be adjusted to directly monitor physiological species through a proposed sensing scheme based on NV spin relaxometry. We adopt a single-step method to measure spin relaxation rates enabling time-dependent measurements on changes in pH or redox potential at a submicrometre-length scale in a microfluidic channel that mimics cellular environments. Our experimental data are reproduced by numerical simulations of the NV spin interaction with gadolinium complexes covering the NDs. Considering the versatile engineering options provided by polymer chemistry, the underlying mechanism can be expanded to detect a variety of physiologically relevant species and variables.
Collapse
Affiliation(s)
- Torsten Rendler
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jitka Neburkova
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague 2, Czech Republic
| | - Ondrej Zemek
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Jan Kotek
- Faculty of Science, Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Andrea Zappe
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Zhiqin Chu
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
153
|
Hemelaar SR, Nagl A, Bigot F, Rodríguez-García MM, de Vries MP, Chipaux M, Schirhagl R. The interaction of fluorescent nanodiamond probes with cellular media. Mikrochim Acta 2017; 184:1001-1009. [PMID: 28344361 PMCID: PMC5346409 DOI: 10.1007/s00604-017-2086-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/10/2017] [Indexed: 01/01/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are promising tools to image cells, bioanalytes and physical quantities such as temperature, pressure, and electric or magnetic fields with nanometer resolution. To exploit their potential for intracellular applications, the FNDs have to be brought into contact with cell culture media. The interactions between the medium and the diamonds crucially influence sensitivity as well as the ability to enter cells. The authors demonstrate that certain proteins and salts spontaneously adhere to the FNDs and may cause aggregation. This is a first investigation on the fundamental questions on how (a) FNDs interact with the medium, and (b) which proteins and salts are being attracted. A differentiation between strongly binding and weakly binding proteins is made. Not all proteins participate in the formation of FND aggregates. Surprisingly, some main components in the medium seem to play no role in aggregation. Simple strategies to prevent aggregation are discussed. These include adding the proteins, which are naturally present in the cell culture to the diamonds first and then inserting them in the full medium. Graphical abstractSchematic of the interaction of nanodiamonds with cell culture medium. Certain proteins and salts adhere to the diamond surface and lead to aggregation or to formation of a protein corona.
Collapse
Affiliation(s)
- Simon R. Hemelaar
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Andreas Nagl
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - François Bigot
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Melissa M. Rodríguez-García
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Marcel P. de Vries
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Mayeul Chipaux
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering Antonius Deusinglaan 1, University Medical Center Groningen, Groningen University, 9713 AW Groningen, Netherlands
| |
Collapse
|
154
|
Stimulated emission from nitrogen-vacancy centres in diamond. Nat Commun 2017; 8:14000. [PMID: 28128228 PMCID: PMC5290152 DOI: 10.1038/ncomms14000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 11/21/2016] [Indexed: 11/14/2022] Open
Abstract
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively charged nitrogen-vacancy (NV−) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV− to date. Here we show both theoretical and experimental evidence for stimulated emission from NV− using light in the phonon sidebands around 700 nm. Furthermore, we show the transition from stimulated emission to photoionization as the stimulating laser wavelength is reduced from 700 to 620 nm. While lasing at the zero-phonon line is suppressed by ionization, our results open the possibility of diamond lasers based on NV− centres, tuneable over the phonon sideband. This broadens the applications of NV− magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system. Here Jeske et al. show both theoretical and experimental evidence for stimulated emission from negatively charged nitrogen vacancy centres using light in the phonon sidebands around 700 nm, demonstrating its suitability as a laser medium.
Collapse
|
155
|
Barnard AS. Heterogeneous PEGylation of diamond nanoparticles. NANOSCALE 2017; 9:70-74. [PMID: 27910975 DOI: 10.1039/c6nr08315c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coating the surfaces of inorganic nanoparticles with polyethylene glycol (PEG) is an important step in the development of many nanoparticle-based drug delivery systems. The efficiency with which drug molecules can be loaded on to nanoparticle surfaces is contingent on the concentration, distribution and stability of the PEG coating. In this study the distribution and relative stability of PEG on diamond nanoparticles is predicted, for clean and passivated surface structures, in 3D. This is an ideal exemplar, since PEGylated diamond nanoparticles are already being trialed as carriers for doxorubicin (DOX). The results show that PEGylation is favorable near the {100} facets regardless of surface reconstructions or pre-treatment, but pre-treatment is required to increase the probability of stable and homogeneous PEGylation on other facets.
Collapse
|
156
|
Jensen K, Kehayias P, Budker D. Magnetometry with Nitrogen-Vacancy Centers in Diamond. SMART SENSORS, MEASUREMENT AND INSTRUMENTATION 2017. [DOI: 10.1007/978-3-319-34070-8_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
157
|
Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 2017; 46:734-760. [DOI: 10.1039/c6cs00109b] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the superior properties of diamond nanoparticles and vertically aligned diamond nanoneedles and their applications in biosensing, bioimaging and drug delivery.
Collapse
Affiliation(s)
- Xianfeng Chen
- Institute for Bioengineering
- School of Engineering
- The University of Edinburgh
- Edinburgh EH9 3JL
- UK
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
158
|
Rej E, Gaebel T, Waddington DEJ, Reilly DJ. Hyperpolarized Nanodiamond Surfaces. J Am Chem Soc 2016; 139:193-199. [PMID: 28009158 DOI: 10.1021/jacs.6b09293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The widespread use of nanodiamond as a biomedical platform for drug-delivery, imaging, and subcellular tracking applications stems from its nontoxicity and unique quantum mechanical properties. Here, we extend this functionality to the domain of magnetic resonance, by demonstrating that the intrinsic electron spins on the nanodiamond surface can be used to hyperpolarize adsorbed liquid compounds at low fields and room temperature. By combining relaxation measurements with hyperpolarization, spins on the surface of the nanodiamond can be distinguished from those in the bulk liquid. These results are likely of use in signaling the controlled release of pharmaceutical payloads.
Collapse
Affiliation(s)
- Ewa Rej
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Torsten Gaebel
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - David E J Waddington
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - David J Reilly
- ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
159
|
Ge Z, Wang Y. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. J Phys Chem B 2016; 121:3394-3402. [PMID: 28423901 DOI: 10.1021/acs.jpcb.6b08589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σeff), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.
Collapse
Affiliation(s)
- Zhenpeng Ge
- Department of Physics, The Chinese University of Hong Kong , Shatin, N.T., Hong Kong
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, N.T., Hong Kong
| |
Collapse
|
160
|
Affiliation(s)
- Christopher S Wood
- Departments of Materials and Bioengineering, and at the Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Departments of Materials and Bioengineering, and at the Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
161
|
Yu CJ, Graham MJ, Zadrozny JM, Niklas J, Krzyaniak MD, Wasielewski MR, Poluektov OG, Freedman DE. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. J Am Chem Soc 2016; 138:14678-14685. [PMID: 27797487 DOI: 10.1021/jacs.6b08467] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time (T2), the lifetime of the qubit, and the spin-lattice relaxation time (T1), the thermally defined upper limit of T2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d20)2[V(C8S8)3], a vanadium-based qubit, demonstrate that millisecond T2 times are achievable in transition metal complexes with nuclear spin-free environments. Applying these principles to vanadyl complexes offers a route to combine the previously established surface compatibility of the flatter vanadyl structures with a long T2. Toward those ends, we investigated a series of four qubits, (Ph4P)2[VO(C8S8)2] (1), (Ph4P)2[VO(β-C3S5)2] (2), (Ph4P)2[VO(α-C3S5)2] (3), and (Ph4P)2[VO(C3S4O)2] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1-4 in SO2, a uniquely polar nuclear spin-free solvent, reveal T2 values of up to 152(6) μs, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in T1, attributed to stronger solute-solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spin-free ligand, which served to shield the vanadium centers against solvent nuclear spins. Our results highlight new design principles for long T1 and T2 times by demonstrating the efficacy of ligand-based tuning of solute-solvent interactions.
Collapse
Affiliation(s)
- Chung-Jui Yu
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael J Graham
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Joseph M Zadrozny
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Danna E Freedman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
162
|
Kianinia M, Shimoni O, Bendavid A, Schell AW, Randolph SJ, Toth M, Aharonovich I, Lobo CJ. Robust, directed assembly of fluorescent nanodiamonds. NANOSCALE 2016; 8:18032-18037. [PMID: 27735962 DOI: 10.1039/c6nr05419f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.
Collapse
Affiliation(s)
- Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 Australia. Charlene Lobo,
| | - Olga Shimoni
- School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 Australia. Charlene Lobo,
| | - Avi Bendavid
- CSIRO Manufacturing, Lindfield, NSW 2070, Australia
| | - Andreas W Schell
- Department of Electronic Science and Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan
| | | | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 Australia. Charlene Lobo,
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 Australia. Charlene Lobo,
| | - Charlene J Lobo
- School of Mathematical and Physical Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 Australia. Charlene Lobo,
| |
Collapse
|
163
|
Liu W, Naydenov B, Chakrabortty S, Wuensch B, Hübner K, Ritz S, Cölfen H, Barth H, Koynov K, Qi H, Leiter R, Reuter R, Wrachtrup J, Boldt F, Scheuer J, Kaiser U, Sison M, Lasser T, Tinnefeld P, Jelezko F, Walther P, Wu Y, Weil T. Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging. NANO LETTERS 2016; 16:6236-6244. [PMID: 27629492 DOI: 10.1021/acs.nanolett.6b02456] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.
Collapse
Affiliation(s)
- Weina Liu
- Department of Organic Chemistry III/Macromolecular Chemistry, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Boris Naydenov
- Institute for Quantum Optics, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sabyasachi Chakrabortty
- Department of Organic Chemistry III/Macromolecular Chemistry, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Bettina Wuensch
- NanoBioSciences Group, Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Pockelsstrasse 14, 38106 Braunschweig, Germany
| | - Kristina Hübner
- NanoBioSciences Group, Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Pockelsstrasse 14, 38106 Braunschweig, Germany
| | - Sandra Ritz
- Institute of Molecular Biology (IMB) GmbH , Ackermannweg 4, 55128 Mainz, Germany
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz , Universitätsstraße 10, 78457 Konstanz, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Haoyuan Qi
- Central Facility for Electron Microscopy, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Robert Leiter
- Central Facility for Electron Microscopy, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Rolf Reuter
- Institute of Physics, University of Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jörg Wrachtrup
- Institute of Physics, University of Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Felix Boldt
- Department of Organic Chemistry III/Macromolecular Chemistry, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Jonas Scheuer
- Institute for Quantum Optics, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Miguel Sison
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne , BM 5143, Station 17, CH-1015 Lausanne, Switzerland
| | - Theo Lasser
- Laboratoire d'Optique Biomédicale, École Polytechnique Fédérale de Lausanne , BM 5143, Station 17, CH-1015 Lausanne, Switzerland
| | - Philip Tinnefeld
- NanoBioSciences Group, Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology , Pockelsstrasse 14, 38106 Braunschweig, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yuzhou Wu
- Department of Organic Chemistry III/Macromolecular Chemistry, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , 430074 Wuhan, P. R. China
| | - Tanja Weil
- Department of Organic Chemistry III/Macromolecular Chemistry, Ulm University , Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
164
|
Gorrini F, Cazzanelli M, Bazzanella N, Edla R, Gemmi M, Cappello V, David J, Dorigoni C, Bifone A, Miotello A. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep 2016; 6:35244. [PMID: 27731385 PMCID: PMC5059669 DOI: 10.1038/srep35244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 11/08/2022] Open
Abstract
Nanodiamonds are the subject of active research for their potential applications in nano-magnetometry, quantum optics, bioimaging and water cleaning processes. Here, we present a novel thermodynamic model that describes a graphite-liquid-diamond route for the synthesis of nanodiamonds. Its robustness is proved via the production of nanodiamonds powders at room-temperature and standard atmospheric pressure by pulsed laser ablation of pyrolytic graphite in water. The aqueous environment provides a confinement mechanism that promotes diamond nucleation and growth, and a biologically compatible medium for suspension of nanodiamonds. Moreover, we introduce a facile physico-chemical method that does not require harsh chemical or temperature conditions to remove the graphitic byproducts of the laser ablation process. A full characterization of the nanodiamonds by electron and Raman spectroscopies is reported. Our model is also corroborated by comparison with experimental data from the literature.
Collapse
Affiliation(s)
- F. Gorrini
- Laboratorio IdEA, Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (TN) Italy
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, corso Bettini 31 Rovereto (TN) Italy
| | - M. Cazzanelli
- Laboratorio IdEA, Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (TN) Italy
| | - N. Bazzanella
- Laboratorio IdEA, Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (TN) Italy
| | - R. Edla
- Laboratorio IdEA, Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (TN) Italy
| | - M. Gemmi
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation, piazza San Silvestro, 12 Pisa, Italy
| | - V. Cappello
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation, piazza San Silvestro, 12 Pisa, Italy
| | - J. David
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation, piazza San Silvestro, 12 Pisa, Italy
| | - C. Dorigoni
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, corso Bettini 31 Rovereto (TN) Italy
| | - A. Bifone
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, corso Bettini 31 Rovereto (TN) Italy
| | - A. Miotello
- Laboratorio IdEA, Dipartimento di Fisica, Università degli Studi di Trento, via Sommarive 14, I-38123 Povo (TN) Italy
| |
Collapse
|
165
|
Shimoni O, Shi B, Adlard PA, Bush AI. Delivery of Fluorescent Nanoparticles to the Brain. J Mol Neurosci 2016; 60:405-409. [DOI: 10.1007/s12031-016-0833-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
|
166
|
Knowles HS, Kara DM, Atatüre M. Demonstration of a Coherent Electronic Spin Cluster in Diamond. PHYSICAL REVIEW LETTERS 2016; 117:100802. [PMID: 27636464 DOI: 10.1103/physrevlett.117.100802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 06/06/2023]
Abstract
An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.
Collapse
Affiliation(s)
- Helena S Knowles
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Dhiren M Kara
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
167
|
Moore L, Yang J, Lan TTH, Osawa E, Lee DK, Johnson WD, Xi J, Chow EKH, Ho D. Biocompatibility Assessment of Detonation Nanodiamond in Non-Human Primates and Rats Using Histological, Hematologic, and Urine Analysis. ACS NANO 2016; 10:7385-400. [PMID: 27439019 DOI: 10.1021/acsnano.6b00839] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Detonation nanodiamonds (DNDs) have been widely explored for biomedical applications ranging from cancer therapy to magnetic resonance imaging due to several promising properties. These include faceted surfaces that mediate potent drug binding and water coordination that have resulted in marked enhancements to the efficacy and safety of drug delivery and imaging. In addition, scalable processing of DNDs yields uniform particles. Furthermore, a broad spectrum of biocompatibility studies has shown that DNDs appear to be well-tolerated. Prior to the clinical translation of DNDs for indications that are addressed via intravenous administration, comprehensive assessment of DND safety in both small and large animal preclinical models is needed. This article reports the results of a DND biocompatibility study in both non-human primates and rats. The rat study was performed as a multiple dose subacute investigation in two cohorts that lasted for 2 weeks and included histological, serum, and urine analysis. The non-human primate study was performed as a dual gender, multiple dose, and long-term investigation in both standard/clinically relevant and elevated dosing cohorts that lasted for 6 months and included comprehensive serum, urine, histological, and body weight analysis. The results from these studies indicate that NDs are well-tolerated at clinically relevant doses. Examination of dose-dependent changes in biomarker levels provides important guidance for the downstream in-human validation of DNDs for clinical drug delivery and imaging.
Collapse
Affiliation(s)
- Laura Moore
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Junyu Yang
- Department of Biomedical Engineering, Peking University , Beijing, China 100871
| | - Thanh T Ha Lan
- Alverno Clinical Laboratories , Hammond, Indiana 46324, United States
| | - Eiji Osawa
- NanoCarbon Research Institute, Asama Research Extension Centre, Shinshu University , Ueda, Nagano 386-8567, Japan
| | | | - William D Johnson
- Life Sciences Group, IIT Research Institute , Chicago, Illinois 60616, United States
| | - Jianzhong Xi
- Department of Biomedical Engineering, Peking University , Beijing, China 100871
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117599
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore 117600
| | | |
Collapse
|
168
|
High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution. Cell Biochem Biophys 2016; 75:151-157. [DOI: 10.1007/s12013-016-0739-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
|
169
|
Petrakova V, Benson V, Buncek M, Fiserova A, Ledvina M, Stursa J, Cigler P, Nesladek M. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. NANOSCALE 2016; 8:12002-12. [PMID: 27240633 DOI: 10.1039/c6nr00610h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nanodiamonds by using nitrogen-vacancy color centers, providing stable non-blinking luminescence. The device is used for monitoring NA transfection and the payload release in cells. The unpacking of NAs from a poly(ethyleneimine)-terminated nanodiamond surface is monitored using the color shift of nitrogen-vacancy centers in the diamond, which serve as a nanoscopic electric charge sensor. The proposed device innovates the strategies for NA imaging and delivery, by providing detection of the intracellular release of non-labeled NAs without affecting cellular processing of the NAs. Our system highlights the potential of nanodiamonds to act not merely as labels but also as non-toxic and non-photobleachable fluorescent biosensors reporting complex molecular events.
Collapse
Affiliation(s)
- V Petrakova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Physics AS CR, v.v.i, Na Slovance 1999/2, 182 21 Prague 8, Czech Republic
| | - V Benson
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Microbiology AS CR, v.v.i, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - M Buncek
- Generi Biotech Ltd., Machkova 587, 500 11 Hradec Kralove, Czech Republic
| | - A Fiserova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Microbiology AS CR, v.v.i, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - M Ledvina
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - J Stursa
- Nuclear Physics Institute AS CR, v.v.i., 250 68, Rez near Prague, Czech Republic
| | - P Cigler
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| | - M Nesladek
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic and IMEC Division IMOMEC, Hasselt University, Wetenschapspark 1, B-3590, Diepenbeek, Belgium and Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
170
|
Lim DG, Kim KH, Kang E, Lim SH, Ricci J, Sung SK, Kwon MT, Jeong SH. Comprehensive evaluation of carboxylated nanodiamond as a topical drug delivery system. Int J Nanomedicine 2016; 11:2381-95. [PMID: 27307736 PMCID: PMC4887070 DOI: 10.2147/ijn.s104859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The best strategy in the development of topical drug delivery systems may be to facilitate the permeation of drugs without any harmful effects, while staying on the skin surface and maintaining stability of the system. Nanodiamonds (NDs) play a key role with their excellent physicochemical properties, including high biocompatibility, physical adsorption, reactive oxygen species (ROS) scavenging capability, and photostabilizing activity. Z-average sizes of carboxylated ND (ND–COOH) agglutinate decreased significantly as the pH increased. Fluorescein-conjugated ND was observed only on the stratum corneum, and no sample diffused into the dermal layer even after 48 hours. Moreover, ND–COOH and ND–COOH/eugenol complex did not show significant toxic effects on murine macrophage cells. ND improved in vitro skin permeation >50% acting as a “drug reservoir” to maintain a high drug concentration in the donor chamber, which was supported by quartz crystal microbalance results. Moreover, ND–COOH could adsorb a drug amount equivalent to 80% of its own weight. A photostability study showed that ND–COOH increased the photostability ~47% with regard to rate constant of the eugenol itself. A significant decrease in ROS was observed in the ND–COOH and ND–COOH/eugenol complex compared with the negative control during intracellular ROS assay. Moreover, ROS and cupric reducing antioxidant capacity evaluation showed that ND–COOH had synergistic effects of antioxidation with eugenol. Therefore, ND–COOH could be used as an excellent topical drug delivery system with improved permeability, higher stability, and minimized safety issue.
Collapse
Affiliation(s)
- Dae Gon Lim
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi, Republic of Korea
| | - Ki Hyun Kim
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi, Republic of Korea
| | - Eunah Kang
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Hee Lim
- NanoResource Co. Ltd., Seoul, Republic of Korea
| | | | | | | | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi, Republic of Korea
| |
Collapse
|
171
|
Wu Y, Jelezko F, Plenio MB, Weil T. Diamond Quantum Devices in Biology. Angew Chem Int Ed Engl 2016; 55:6586-98. [DOI: 10.1002/anie.201506556] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Yuzhou Wu
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Fedor Jelezko
- Institut für Quantenoptik; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Martin B Plenio
- Institut für Theoretische Physik; Albert-Einstein-Allee 11 89069 Ulm Deutschland
| | - Tanja Weil
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
172
|
Affiliation(s)
- Yuzhou Wu
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Fedor Jelezko
- Institut für Quantenoptik; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Martin B Plenio
- Institut für Theoretische Physik; Albert-Einstein-Allee 11 89069 Ulm Deutschland
| | - Tanja Weil
- Institut für Organische Chemie III; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
173
|
Akiel RD, Zhang X, Abeywardana C, Stepanov V, Qin PZ, Takahashi S. Investigating Functional DNA Grafted on Nanodiamond Surface Using Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2016; 120:4003-8. [PMID: 27058261 DOI: 10.1021/acs.jpcb.6b00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanodiamonds (NDs) are a new and attractive class of materials for sensing and delivery in biological systems. Methods for functionalizing ND surfaces are highly valuable in these applications, yet reported approaches for covalent modification with biological macromolecules are still limited, and characterizing behaviors of ND-tethered biomolecules is difficult. Here we demonstrated the use of copper-free click chemistry to covalently attach DNA strands at ND surfaces. Using site-directed spin labeling and electron paramagnetic resonance spectroscopy, we demonstrated that the tethered DNA strands maintain the ability to undergo repetitive hybridizations and behave similarly to those in solutions, maintaining a large degree of mobility with respect to the ND. The work established a method to prepare and characterize an easily addressable identity tag for NDs. This will open up future applications such as targeted ND delivery and developing sensors for investigating biomolecules.
Collapse
Affiliation(s)
- Rana D Akiel
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| | - Xiaojun Zhang
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| | - Chathuranga Abeywardana
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| | - Viktor Stepanov
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| | - Peter Z Qin
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| | - Susumu Takahashi
- Department of Chemistry, ‡Department of Physics, and §Center for Quantum Information Science and Technology (CQIST), University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
174
|
Modulation of nitrogen vacancy charge state and fluorescence in nanodiamonds using electrochemical potential. Proc Natl Acad Sci U S A 2016; 113:3938-43. [PMID: 27035935 DOI: 10.1073/pnas.1504451113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
Collapse
|
175
|
Bradac C, Say JM, Rastogi ID, Cordina NM, Volz T, Brown LJ. Nano-assembly of nanodiamonds by conjugation to actin filaments. JOURNAL OF BIOPHOTONICS 2016; 9:296-304. [PMID: 26296437 DOI: 10.1002/jbio.201500167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed.
Collapse
Affiliation(s)
- Carlo Bradac
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jana M Say
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ishan D Rastogi
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nicole M Cordina
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas Volz
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, 2109, Australia
| | - Louise J Brown
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
176
|
Kim SW, Kwak JI, An YJ. Fluorescent approach for visually observing quantum dot uptake in living organisms. CHEMOSPHERE 2016; 144:1763-1770. [PMID: 26524145 DOI: 10.1016/j.chemosphere.2015.10.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
This study examines the in vivo uptake and internalization of fluorescent quantum dots (QDs) in Escherichia coli and Caenorhabditis elegans models. E. coli cells were directly exposed to QDs of different concentrations (up to 20 nM), and the uptake or sorption of QDs was monitored by flow cytometry. We observed a concentration-dependent increase in QD fluorescence with no changes in the forward or side scatter for any QD concentration, likely because the QDs are very small. Furthermore, QD uptake/adsorption did not significantly affect E. coli viability assessed by colony formation and size. QD-exposed E. coli were then fed to C. elegans to monitor the localization and effects of QDs. In our study, QDs had no observable effect on the viability or reproduction of C. elegans. We visualized QD incorporation and biodistribution by using confocal laser scanning microscopy (CLSM) with z-stacks, lambda scanning, and linear unmixing techniques, which allowed us to observe QDs in vivo and deconvolute QD fluorescence from autofluorescence. CLSM z-stacks with 10-μm depth revealed that the QDs exclusively localized to the gut and intestine with no transfer to other tissues. The combination of these techniques for in vivo imaging of QDs and other fluorescent nanoparticles will be a powerful tool for future studies examining the uptake and biodistribution of nanoparticles.
Collapse
Affiliation(s)
- Shin Woong Kim
- Department of Environmental Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Jin Il Kwak
- Department of Environmental Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
177
|
Tripathi KM, Sonker AK, Bhati A, Bhuyan J, Singh A, Singh A, Sarkar S, Sonkar SK. Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. NEW J CHEM 2016. [DOI: 10.1039/c5nj02037a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A high-yield synthesis of water-soluble photoluminescent carbon nanorods is described. The wsCNRs were used for the selective determination of DNA molecules via a fluorescent turn-off/turn-on mechanism.
Collapse
Affiliation(s)
| | - Amit Kumar Sonker
- Department of Materials Science & Engineering
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Anshu Bhati
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| | - Jagannath Bhuyan
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Anupriya Singh
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| | - Ajay Singh
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur-208016
- India
| | - Sabyasachi Sarkar
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah-711103
- India
| | - Sumit Kumar Sonkar
- Department of Chemistry
- Malaviya National Institute of Technology
- Jaipur-302017
- India
| |
Collapse
|
178
|
Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/978-3-319-22861-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
179
|
GENJO T, SOTOMA S, TANABE R, IGARASHI R, SHIRAKAWA M. A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament. ANAL SCI 2016; 32:1165-1170. [DOI: 10.2116/analsci.32.1165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takuya GENJO
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Shingo SOTOMA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- Institute of Atomic and Molecular Sciences, Academia Sinica
| | - Ryotaro TANABE
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Ryuji IGARASHI
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- PRESTO, Japan Science and Technology Agency
| | - Masahiro SHIRAKAWA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
- CREST
| |
Collapse
|
180
|
Feng Z, Yang B, Lin Y, Su D. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy. J Chem Phys 2015; 143:211102. [PMID: 26646862 DOI: 10.1063/1.4935886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.
Collapse
Affiliation(s)
- Zhenbao Feng
- Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, People's Republic of China
| | - Bing Yang
- Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, People's Republic of China
| | - Yangming Lin
- Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, People's Republic of China
| | - Dangsheng Su
- Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, People's Republic of China
| |
Collapse
|
181
|
Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, Shi W, Hong C, Tetradis S, Kim Y, Park NH, Kang MK, Ho D. Nanodiamond-Gutta Percha Composite Biomaterials for Root Canal Therapy. ACS NANO 2015; 9:11490-501. [PMID: 26452304 PMCID: PMC4660386 DOI: 10.1021/acsnano.5b05718] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 05/20/2023]
Abstract
Root canal therapy (RCT) represents a standard of treatment that addresses infected pulp tissue in teeth and protects against future infection. RCT involves removing dental pulp comprising blood vessels and nerve tissue, decontaminating residually infected tissue through biomechanical instrumentation, and root canal obturation using a filler material to replace the space that was previously composed of dental pulp. Gutta percha (GP) is typically used as the filler material, as it is malleable, inert, and biocompatible. While filling the root canal space with GP is the standard of care for endodontic therapies, it has exhibited limitations including leakage, root canal reinfection, and poor mechanical properties. To address these challenges, clinicians have explored the use of alternative root filling materials other than GP. Among the classes of materials that are being explored as novel endodontic therapy platforms, nanodiamonds (NDs) may offer unique advantages due to their favorable properties, particularly for dental applications. These include versatile faceted surface chemistry, biocompatibility, and their role in improving mechanical properties, among others. This study developed a ND-embedded GP (NDGP) that was functionalized with amoxicillin, a broad-spectrum antibiotic commonly used for endodontic infection. Comprehensive materials characterization confirmed improved mechanical properties of NDGP over unmodified GP. In addition, digital radiography and microcomputed tomography imaging demonstrated that obturation of root canals with NDGP could be achieved using clinically relevant techniques. Furthermore, bacterial growth inhibition assays confirmed drug functionality of NDGP functionalized with amoxicillin. This study demonstrates a promising path toward NDGP implementation in future endodontic therapy for improved treatment outcomes.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Sue Vin Kim
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Adelheid Nerisa Limansubroto
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Albert Yen
- Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science, Los Angeles, California 90095, United States
| | - Akrivoula Soundia
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
| | - Wenyuan Shi
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
| | - Christine Hong
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Sotirios Tetradis
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Yong Kim
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
- UCLA Broad Stem Cell Research Center, Box 957357, Los Angeles, California 90095, United States
| | - No-Hee Park
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, United States
| | - Mo K. Kang
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
| | - Dean Ho
- Division of Oral Biology and Medicine, Division of Diagnostic and Surgical Sciences-Section of Oral and Maxillofacial Radiology, Division of Growth & Development-Section of Orthodontics, Laboratory of Stem Cell & Cancer Epigenetic Research, Center for Oral and Head/Neck Oncology Research Center, Division of Oral Biology & Medicine, Division of Constitutive and Regenerative Sciences-Section of Endodontics, Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, and Laboratory Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California 90095, United States
- Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center and California NanoSystems Institute, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
182
|
Liu J, Prezhdo OV. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: time-domain ab initio analysis. J Phys Chem Lett 2015; 6:4463-4469. [PMID: 26505613 DOI: 10.1021/acs.jpclett.5b02355] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rapid development in lead halide perovskites has led to solution-processable thin film solar cells with power conversion efficiencies close to 20%. Nonradiative electron-hole recombination within perovskites has been identified as the main pathway of energy losses, competing with charge transport and limiting the efficiency. Using nonadiabatic (NA) molecular dynamics, combined with time-domain density functional theory, we show that nonradiative recombination happens faster than radiative recombination and long-range charge transfer to an acceptor material. Doping of lead iodide perovskites with chlorine atoms reduces charge recombination. On the one hand, chlorines decrease the NA coupling because they contribute little to the wave functions of the valence and conduction band edges. On the other hand, chlorines shorten coherence time because they are lighter than iodines and introduce high-frequency modes. Both factors favor longer excited-state lifetimes. The simulation shows good agreement with the available experimental data and contributes to the comprehensive understanding of electronic and vibrational dynamics in perovskites. The generated insights into design of higher-efficiency solar cells range from fundamental scientific principles, such as the role of electron-vibrational coupling and quantum coherence, to practical guidelines, such as specific suggestions for chemical doping.
Collapse
Affiliation(s)
- Jin Liu
- Department of Chemical Engineering, University of Rochester , Rochester, New York 14627, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
183
|
Hyperpolarized nanodiamond with long spin-relaxation times. Nat Commun 2015; 6:8459. [PMID: 26450570 PMCID: PMC4633625 DOI: 10.1038/ncomms9459] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/23/2015] [Indexed: 01/18/2023] Open
Abstract
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. Hyperpolarized carbon nuclei are promising contrast agents for magnetic resonance imaging, but typically possess relaxation times below one minute. Here, the authors demonstrate cryogenic and room temperature hyperpolarization of 13C in synthetic nanodiamonds with relaxation times exceeding one hour.
Collapse
|
184
|
Nagl A, Hemelaar SR, Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review. Anal Bioanal Chem 2015; 407:7521-36. [PMID: 26220715 PMCID: PMC4575388 DOI: 10.1007/s00216-015-8849-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 01/06/2023]
Abstract
Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.
Collapse
Affiliation(s)
- Andreas Nagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Simon Robert Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW, Groningen, The Netherlands.
| |
Collapse
|
185
|
Lee S. Sensitive detection of NMR for thin films. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 71:1-10. [PMID: 26549846 DOI: 10.1016/j.ssnmr.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
NMR can provide valuable information about thin films, but its relatively low sensitivity allows data acquisition only from bulk samples. The sensitivity problem is circumvented by detection schemes with higher sensitivity and/or enhanced polarization. In most of these ingenious techniques, electrons play a central role through hyperfine interactions with the nuclei of interest or the conversion of the spin orientation to an electric charge. The state of the art in NMR is the control of a single nuclear spin state, the complete form of which is one of the ultimate goals of nanotechnology.
Collapse
Affiliation(s)
- Soonchil Lee
- Department of Physics, KAIST, 291 Daehakro, Yusongku 305-701, South Korea.
| |
Collapse
|
186
|
Local and bulk (13)C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations. Nat Commun 2015; 6:8456. [PMID: 26404169 PMCID: PMC4598721 DOI: 10.1038/ncomms9456] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/23/2015] [Indexed: 11/30/2022] Open
Abstract
Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron–nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing. Hyperpolarization of nuclear spins for enhancing the sensitivity of magnetic resonance can typically be achieved at low temperatures. Here, the authors demonstrate room-temperature polarization of 13C derived from optically pumped electrons of nitrogen vacancies in diamonds with arbitrary orientations.
Collapse
|
187
|
230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy. Methods Enzymol 2015; 563:95-118. [PMID: 26478483 DOI: 10.1016/bs.mie.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) spectroscopies are powerful and versatile tools for studying local structures and dynamic properties of biological molecules. Similar to nuclear magnetic resonance (NMR) spectroscopy, EPR/DEER spectroscopies become more advantageous at higher frequencies and higher magnetic fields because of better spectral resolution as well as higher spin polarization. Here, we describe development of a high-frequency (HF) EPR/DEER spectrometer operating in the frequency range of 107-120 and 215-240 GHz and in the magnetic field range of 0-12.1 T, which has unique experimental capabilities such as enabling the complete spin polarization and wide-band DEER spectroscopy. Emphasis is given on the application of HF EPR/DEER techniques, and specific examples of HF EPR spectroscopy to drastically increase spin coherence in nanodiamonds as well as HF DEER spectroscopy to extract spin concentration in a diamond crystal are presented.
Collapse
|
188
|
Petrakova V, Rehor I, Stursa J, Ledvina M, Nesladek M, Cigler P. Charge-sensitive fluorescent nanosensors created from nanodiamonds. NANOSCALE 2015; 7:12307-11. [PMID: 26138745 DOI: 10.1039/c5nr00712g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We show that fluorescent nanodiamonds (FNDs) are among the few types of nanosensors that enable direct optical reading of noncovalent molecular events. The unique sensing mechanism is based on switching between the negatively charged and neutral states of NV centers which is induced by the interaction of the FND surface with charged molecules.
Collapse
Affiliation(s)
- V Petrakova
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna sq. 3105, 272 01 Kladno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
189
|
Ho D, Wang CHK, Chow EKH. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. SCIENCE ADVANCES 2015; 1:e1500439. [PMID: 26601235 PMCID: PMC4643796 DOI: 10.1126/sciadv.1500439] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/20/2015] [Indexed: 05/07/2023]
Abstract
The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine-Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed.
Collapse
Affiliation(s)
- Dean Ho
- Division of Oral Biology and Medicine, University of California, Los Angeles (UCLA) School of Dentistry, Los Angeles, CA 90095, USA
- Department of Bioengineering, UCLA School of Engineering and Applied Science, Los Angeles, CA 90095, USA
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| | | | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 177599, Singapore
- National University Cancer Institute, Singapore, Singapore 119082, Singapore
- Corresponding author. E-mail: (D. H.); (E. K.-H. C.)
| |
Collapse
|
190
|
Sanchez L, Patton P, Anthony SM, Yi Y, Yu Y. Tracking single-particle rotation during macrophage uptake. SOFT MATTER 2015; 11:5346-52. [PMID: 26059797 PMCID: PMC4657870 DOI: 10.1039/c5sm00893j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We investigated the rotational dynamics of single microparticles during their internalization by macrophage cells. The microparticles used were triblock patchy particles that display two fluorescent patches on their two poles. The optical anisotropy made it possible to directly visualize and quantify the orientation and rotation of the particles. We show that particles exhibit a mixture of fast and slow rotation as they are uptaken by macrophages and transiently undergo directional rotation during their entry into the cell. The size of the particles and the surface presentation of ligands exerted a negligible influence on this heterogeneity of particle rotation.
Collapse
Affiliation(s)
- Lucero Sanchez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | | | |
Collapse
|
191
|
Tzeng YK, Tsai PC, Liu HY, Chen OY, Hsu H, Yee FG, Chang MS, Chang HC. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. NANO LETTERS 2015; 15:3945-3952. [PMID: 25951304 DOI: 10.1021/acs.nanolett.5b00836] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Measuring temperature in nanoscale spatial resolution either at or far from equilibrium is of importance in many scientific and technological applications. Although negatively charged nitrogen-vacancy (NV(-)) centers in diamond have recently emerged as a promising nanometric temperature sensor, the technique has been applied only under steady state conditions so far. Here, we present a three-point sampling method that allows real-time monitoring of the temperature changes over ±100 K and a pump-probe-type experiment that enables the study of nanoscale heat transfer with a temporal resolution of better than 10 μs. The utility of the time-resolved luminescence nanothermometry was demonstrated with 100 nm fluorescent nanodiamonds spin-coated on a glass substrate and submerged in gold nanorod solution heated by a near-infrared laser, and the validity of the measurements was verified with finite-element numerical simulations. The combined theoretical and experimental approaches will be useful to implement time-resolved temperature sensing in laser processing of materials and even for devices in operation at the nanometer scale.
Collapse
Affiliation(s)
- Yan-Kai Tzeng
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- ‡Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Chang Tsai
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Hsiou-Yuan Liu
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- §Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Oliver Y Chen
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Hsiang Hsu
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Fu-Goul Yee
- §Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Ming-Shien Chang
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Huan-Cheng Chang
- †Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
- ∥Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
192
|
Wang H, Lee DK, Chen KY, Chen JY, Zhang K, Silva A, Ho CM, Ho D. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology. ACS NANO 2015; 9:3332-3344. [PMID: 25689511 DOI: 10.1021/acsnano.5b00638] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combination chemotherapy can mediate drug synergy to improve treatment efficacy against a broad spectrum of cancers. However, conventional multidrug regimens are often additively determined, which have long been believed to enable good cancer-killing efficiency but are insufficient to address the nonlinearity in dosing. Despite improved clinical outcomes by combination treatment, multi-objective combination optimization, which takes into account tumor heterogeneity and balance of efficacy and toxicity, remains challenging given the sheer magnitude of the combinatorial dosing space. To enhance the properties of the therapeutic agents, the field of nanomedicine has realized novel drug delivery platforms that can enhance therapeutic efficacy and safety. However, optimal combination design that incorporates nanomedicine agents still faces the same hurdles as unmodified drug administration. The work reported here applied a powerful phenotypically driven platform, termed feedback system control (FSC), that systematically and rapidly converges upon a combination consisting of three nanodiamond-modified drugs and one unmodified drug that is simultaneously optimized for efficacy against multiple breast cancer cell lines and safety against multiple control cell lines. Specifically, the therapeutic window achieved from an optimally efficacious and safe nanomedicine combination was markedly higher compared to that of an optimized unmodified drug combination and nanodiamond monotherapy or unmodified drug administration. The phenotypically driven foundation of FSC implementation does not require any cellular signaling pathway data and innately accounts for population heterogeneity and nonlinear biological processes. Therefore, FSC is a broadly applicable platform for both nanotechnology-modified and unmodified therapeutic optimizations that represent a promising path toward phenotypic personalized medicine.
Collapse
Affiliation(s)
- Hann Wang
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Dong-Keun Lee
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Kai-Yu Chen
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Jing-Yao Chen
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Kangyi Zhang
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Aleidy Silva
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Chih-Ming Ho
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Dean Ho
- †Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, ‡Division of Oral Biology and Medicine, School of Dentistry, §The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, ∥California NanoSystems Institute, ⊥Jonsson Comprehensive Cancer Center, #Department of Chemical and Biomolecular Engineering, and ¶Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
193
|
Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J. Surface charge effects in protein adsorption on nanodiamonds. NANOSCALE 2015; 7:5726-5736. [PMID: 25743890 DOI: 10.1039/c5nr00250h] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.
Collapse
Affiliation(s)
- M Aramesh
- School of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
194
|
Lim K, Ropp C, Shapiro B, Taylor JM, Waks E. Scanning localized magnetic fields in a microfluidic device with a single nitrogen vacancy center. NANO LETTERS 2015; 15:1481-1486. [PMID: 25654268 DOI: 10.1021/nl503280u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitrogen vacancy (NV) color centers in diamond enable local magnetic field sensing with high sensitivity by optical detection of electron spin resonance (ESR). The integration of this capability with microfluidic technology has a broad range of applications in chemical and biological sensing. We demonstrate a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. The device manipulates individual magnetic particles in three dimensions using a combination of flow control and magnetic actuation. We map out the local field distribution of the magnetic particle by manipulating it in the vicinity of a single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 μT Hz(-1/2). Our results enable accurate nanoscale mapping of the magnetic field distribution of a broad range of target objects in a microfluidic device.
Collapse
Affiliation(s)
- Kangmook Lim
- Department of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | |
Collapse
|
195
|
Sotoma S, Igarashi R, Iimura J, Kumiya Y, Tochio H, Harada Y, Shirakawa M. Suppression of Nonspecific Protein–Nanodiamond Adsorption Enabling Specific Targeting of Nanodiamonds to Biomolecules of Interest. CHEM LETT 2015. [DOI: 10.1246/cl.141036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shingo Sotoma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Ryuji Igarashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Jun Iimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Yuta Kumiya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Hidehito Tochio
- Department of Biophysics, Graduate School of Science, Kyoto University
| | - Yoshie Harada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| |
Collapse
|
196
|
Doronina-Amitonova LV, Fedotov IV, Zheltikov AM. Ultrahigh-contrast imaging by temporally modulated stimulated emission depletion. OPTICS LETTERS 2015; 40:725-728. [PMID: 25723417 DOI: 10.1364/ol.40.000725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stimulated emission depletion (STED) is the key optical technology enabling super-resolution microscopy below the diffraction limit. Here, we demonstrate that modulation of STED in the time domain, combined with properly designed lock-in detection, can radically enhance the contrast of fluorescent images of strongly autofluorescent biotissues. In our experiments, the temporally modulated STED technique, implemented with low-intensity continuous-wave laser sources, is shown to provide an efficient all-optical suppression of a broadband fluorescent background, allowing the contrast of fluorescent images of mammal brain tissues tagged with nitrogen-vacancy diamond to be increased by five orders of magnitude.
Collapse
|
197
|
Slegerova J, Hajek M, Rehor I, Sedlak F, Stursa J, Hruby M, Cigler P. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. NANOSCALE 2015; 7:415-20. [PMID: 25132312 DOI: 10.1039/c4nr02776k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.
Collapse
Affiliation(s)
- Jitka Slegerova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
198
|
Colomb W, Sarkar SK. Extracting physics of life at the molecular level: A review of single-molecule data analyses. Phys Life Rev 2015; 13:107-37. [PMID: 25660417 DOI: 10.1016/j.plrev.2015.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.
Collapse
Affiliation(s)
- Warren Colomb
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States
| | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
199
|
Ruan S, Qian J, Shen S, Chen J, Cun X, Zhu J, Jiang X, He Q, Gao H. Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres. RSC Adv 2015. [DOI: 10.1039/c5ra00099h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RGD functionalized carbonaceous dots were prepared and utilized for non-invasive breast cancer imaging.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jun Qian
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Shun Shen
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Jiantao Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Jianhua Zhu
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Xinguo Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University)
- Ministry of Education
- School of Pharmacy
- Fudan University
- Shanghai
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| |
Collapse
|
200
|
Abstract
The advent of cancer nanomedicine has forged new pathways for the enhanced imaging and treatment of a broad range of cancers using new classes of materials. Among the many platforms being developed for drug delivery and imaging, nanodiamonds (NDs) possess several important attributes that may be beneficial toward improving the efficacy and safety of cancer nanomedicine applications. These include the uniquely faceted surfaces of the ND particles that result in electrostatic properties that mediate enhanced interactions with water and loaded therapeutic compounds, scalable processing and synthesis parameters, versatility as platform carriers, and a spectrum of other characteristics. In addition, comprehensive in vitro and in vivo studies have demonstrated that NDs are well tolerated. This chapter will examine several recent studies that have harnessed the ND agent as a foundation for both systemic and localized drug delivery, as well as the marked improvements in magnetic resonance imaging efficiency that has been observed following ND-contrast agent conjugation. In addition, insight into the important steps toward bringing the ND translational pathway to the clinic will be discussed.
Collapse
Affiliation(s)
- Dean Ho
- Division of Oral Biology and Medicine, UCLA School of Dentistry, 10833 Le Conte Avenue, Room B3-068A, Los Angeles, CA, 90095, USA,
| |
Collapse
|