151
|
Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T, Engelman A. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 2005; 102:17308-13. [PMID: 16260736 PMCID: PMC1297672 DOI: 10.1073/pnas.0506924102] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Indexed: 12/17/2022] Open
Abstract
Integrase (IN) is an essential retroviral enzyme, and human transcriptional coactivator p75, which is also referred to as lens epithelium-derived growth factor (LEDGF), is the dominant cellular binding partner of HIV-1 IN. Here, we report the crystal structure of the dimeric catalytic core domain of HIV-1 IN complexed to the IN-binding domain of LEDGF. Previously identified LEDGF hotspot residues anchor the protein to both monomers at the IN dimer interface. The principal structural features of IN that are recognized by the host factor are the backbone conformation of residues 168-171 from one monomer and a hydrophobic patch that is primarily comprised of alpha-helices 1 and 3 of the second IN monomer. Inspection of diverse retroviral primary and secondary sequence elements helps to explain the apparent lentiviral tropism of the LEDGF-IN interaction. Because the lethal phenotypes of HIV-1 mutant viruses unable to interact with LEDGF indicate that IN function is highly sensitive to perturbations of the structure around the LEDGF-binding site, we propose that small molecule inhibitors of the protein-protein interaction might similarly disrupt HIV-1 replication.
Collapse
Affiliation(s)
- Peter Cherepanov
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
152
|
Wang LD, Liu CL, Chen WZ, Wang CX. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase–DNA complex. Biochem Biophys Res Commun 2005; 337:313-9. [PMID: 16188234 DOI: 10.1016/j.bbrc.2005.08.274] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 11/27/2022]
Abstract
HIV-1 integrase (IN) is essential for the replication of HIV-1 in human cells. At present, the complete structure of complex IN-DNA has not been resolved. In this paper, a HIV-1 IN tetramer model was built with homology modeling and molecular dynamics simulation approach, in which two Mg2+ ions were reasonably located in each catalytic core domain. Moreover, it was found that the AB and CD chains of HIV-1 IN tetramer were different in the structures and metal ions of HIV-1 IN tetramer might have great influences on DNA locating on IN. These findings may provide a more complete structural basis for guiding drug discovery and revealing integration mechanism.
Collapse
Affiliation(s)
- Li-Dong Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100022, China
| | | | | | | |
Collapse
|
153
|
Lu R, Vandegraaff N, Cherepanov P, Engelman A. Lys-34, dispensable for integrase catalysis, is required for preintegration complex function and human immunodeficiency virus type 1 replication. J Virol 2005; 79:12584-91. [PMID: 16160186 PMCID: PMC1211547 DOI: 10.1128/jvi.79.19.12584-12591.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1(K46A) grew like the wild type, HIV-1(K34A) was dead. Yet recombinant IN(K34A) protein functioned in in vitro integration assays, and Vpr-IN(K34A) efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1(K34A) was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1(K34A) and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.
Collapse
Affiliation(s)
- Richard Lu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
154
|
Lu R, Ghory HZ, Engelman A. Genetic analyses of conserved residues in the carboxyl-terminal domain of human immunodeficiency virus type 1 integrase. J Virol 2005; 79:10356-68. [PMID: 16051828 PMCID: PMC1182625 DOI: 10.1128/jvi.79.16.10356-10368.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 05/02/2005] [Indexed: 12/26/2022] Open
Abstract
Results of in vitro assays identified residues in the C-terminal domain (CTD) of human immunodeficiency virus type 1 (HIV-1) integrase (IN) important for IN-IN and IN-DNA interactions, but the potential roles of these residues in virus replication were mostly unknown. Sixteen CTD residues were targeted here, generating 24 mutant viruses. Replication-defective mutants were typed as class I (blocked at integration) or class II (additional reverse transcription and/or assembly defects). Most defective viruses (15 of 17) displayed reverse transcription defects. In contrast, replication-defective HIV-1(E246K) synthesized near-normal cDNA levels but processing of Pr55(gag) was largely inhibited in virus-producing cells. Because single-round HIV-1(E246K.Luc(R-)) transduced cells at approximately 8% of the wild-type level, we concluded that the late-stage processing defect contributed significantly to the overall replication defect of HIV-1(E246K). Results of complementation assays revealed that the CTD could function in trans to the catalytic core domain (CCD) in in vitro assays, and we since determined that certain class I and class II mutants defined a novel genetic complementation group that functioned in cells independently of IN domain boundaries. Seven of eight novel Vpr-IN mutant proteins efficiently trans-complemented class I active-site mutant virus, demonstrating catalytically active CTD mutant proteins during infection. Because most of these mutants inefficiently complemented a class II CCD mutant virus, the majority of CTD mutants were likely more defective for interactions with cellular and/or viral components that affected reverse transcription and/or preintegration trafficking than the catalytic activity of the IN enzyme.
Collapse
Affiliation(s)
- Richard Lu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
155
|
Karki RG, Tang Y, Burke TR, Nicklaus MC. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. J Comput Aided Mol Des 2005; 18:739-60. [PMID: 16075307 DOI: 10.1007/s10822-005-0365-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/07/2004] [Indexed: 10/25/2022]
Abstract
We report structural models of the full-length integrase enzyme (IN) of the human immunodeficiency virus type 1 (HIV-1) and its complex with viral and human DNA. These were developed by means of molecular modeling techniques using all available experimental evidence, including X-ray crystallographic and NMR structures of portions of the full-length protein. Special emphasis was placed on obtaining a model of the enzyme's active site with the viral DNA apposed to it, based on the hypothesis that such a model would allow structure-based design of inhibitors that retain activity in vivo. This was because bound DNA might be present in vivo after 3'-processing but before strand transfer. These structural models were used to study the potential binding modes of various diketo-acid HIV-1 IN inhibitors (many of them preferentially inhibiting strand transfer) for which no experimentally derived complexed structures are available. The results indicate that the diketo-acid IN inhibitors probably chelate the metal ion in the catalytic site and also prevent the exposure of the 3'-processed end of the viral DNA to human DNA.
Collapse
Affiliation(s)
- Rajeshri G Karki
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
156
|
Brigo A, Lee KW, Fogolari F, Mustata GI, Briggs JM. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: Binding modes and drug resistance to a diketo acid inhibitor. Proteins 2005; 59:723-41. [PMID: 15815973 DOI: 10.1002/prot.20447] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 IN is an essential enzyme for viral replication and an interesting target for the design of new pharmaceuticals for use in multidrug therapy of AIDS. L-731,988 is one of the most active molecules of the class of beta-diketo acids. Individual and combined mutations of HIV-1 IN at residues T66, S153, and M154 confer important degrees of resistance to one or more inhibitors belonging to this class. In an effort to understand the molecular mechanism of the resistance of T66I/M154I IN to the inhibitor L-731,988 and its specific binding modes, we have carried out docking studies, explicit solvent MD simulations, and binding free energy calculations. The inhibitor was docked against different protein conformations chosen from prior MD trajectories, resulting in 2 major orientations within the active site. MD simulations have been carried out for the T66I/M154I DM IN, DM IN in complex with L-731,988 in 2 different orientations, and 1QS4 IN in complex with L-731,988. The results of these simulations show a similar dynamical behavior between T66I/M154I IN alone and in complex with L-731,988, while significant differences are observed in the mobility of the IN catalytic loop (residues 138-149). Water molecules bridging the inhibitor to residues from the active site have been identified, and residue Gln62 has been found to play an important role in the interactions between the inhibitor and the protein. This work provides information about the binding modes of L-731,988, as well as insight into the mechanism of inhibitor-resistance in HIV-1 integrase.
Collapse
Affiliation(s)
- Alessandro Brigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
157
|
Maertens G, Vercammen J, Debyser Z, Engelborghs Y. Measuring protein‐protein interactions inside living cells using single color fluorescence correlation spectroscopy. Application to human immunodeficiency virus type 1 integrase and LEDGF/p75. FASEB J 2005; 19:1039-41. [PMID: 15788449 DOI: 10.1096/fj.04-3373fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently we described the interaction of human immunodeficiency virus type 1 (HIV-1)1 integrase (IN) with a cellular protein, lens epithelium-derived growth factor/transcription co-activator p75 (LEDGF/p75). We now present the study of the diffusion behavior of the three independent domains of IN and LEDGF/p75 using fluorescence correlation microscopy (FCM). We show that diffusion in the cell of the different enhanced green fluorescent protein (EGFP) fusion proteins is described by two components with different fractions and that the average parameters in the nucleus are comparable with those in the cytoplasm. In addition, we demonstrate that specific interaction between EGFP-fused HIV-1 IN and LEDGF/p75 results in a shift in diffusion coefficient (D). The opposite shift was observed in an IN-deletion mutant that does not exhibit LEDGF/p75 binding or in a LEDGF/p75 knock-down experiment using siRNA. We thus demonstrate that protein-protein interactions can be studied in living cells, using single-color FCM (scFCM).
Collapse
Affiliation(s)
- Goedele Maertens
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
158
|
Brigo A, Lee KW, Iurcu Mustata G, Briggs JM. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Biophys J 2005; 88:3072-82. [PMID: 15764656 PMCID: PMC1305459 DOI: 10.1529/biophysj.104.050286] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
HIV-1 integrase (IN) is an essential enzyme for the viral replication and an interesting target for the design of new pharmaceuticals for multidrug therapy of AIDS. Single and multiple mutations of IN at residues T66, S153, or M154 confer degrees of resistance to several inhibitors that prevent the enzyme from performing its normal strand transfer activity. Four different conformations of IN were chosen from a prior molecular dynamics (MD) simulation on the modeled IN T66I/M154I catalytic core domain as starting points for additional MD studies. The aim of this article is to understand the dynamic features that may play roles in the catalytic activity of the double mutant enzyme in the absence of any inhibitor. Moreover, we want to verify the influence of using different starting points on the MD trajectories and associated dynamical properties. By comparison of the trajectories obtained from these MD simulations we have demonstrated that the starting point does not affect the conformational space explored by this protein and that the time of the simulation is long enough to achieve convergence for this system.
Collapse
Affiliation(s)
- Alessandro Brigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, 35131 Padova, Italy
| | | | | | | |
Collapse
|
159
|
Ton-Hoang B, Turlan C, Chandler M. Functional domains of the IS1 transposase: analysis in vivo and in vitro. Mol Microbiol 2005; 53:1529-43. [PMID: 15387827 DOI: 10.1111/j.1365-2958.2004.04223.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The IS1 bacterial insertion sequence family, considered to be restricted to Enterobacteria, has now been extended to other Eubacteria and to Archaebacteria, reviving interest in its study. To analyse the functional domains of the InsAB' transposase of IS1A, a representative of this family, we used an in vivo system which measures IS1-promoted rescue of a temperature-sensitive pSC101 plasmid by fusion with a pBR322::IS1 derivative. We also describe the partial purification of the IS1 transposase and the development of several in vitro assays for transposase activity. These included a DNA band shift assay, a transposase-mediated cleavage assay and an integration assay. Alignments of IS family members (http://www-is.biotoul.fr) not only confirmed the presence of an N-terminal helix-turn-helix and a C-terminal DDE motif in InsAB', but also revealed a putative N-terminal zinc finger. We have combined the in vitro and in vivo tests to carry out a functional analysis of InsAB' using a series of site-directed InsAB' mutants based on these alignments. The results demonstrate that appropriate mutations in the zinc finger and helix-turn-helix motifs result in loss of binding activity to the ends of IS1 whereas mutations in the DDE domain are affected in subsequent transposition steps but not in end binding.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS, 118 route de Narbonne, 31062, Toulouse Cedex, France.
| | | | | |
Collapse
|
160
|
Phan AT, Kuryavyi V, Ma JB, Faure A, Andréola ML, Patel DJ. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Proc Natl Acad Sci U S A 2005; 102:634-9. [PMID: 15637158 PMCID: PMC545538 DOI: 10.1073/pnas.0406278102] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K+ solution. Within each 16-nt monomer subunit, which contains one A.(G.G.G.G) pentad sandwiched between two G.G.G.G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G.G.G.G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A.(G.G.G.G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
161
|
Lewinski MK, Bushman FD. Retroviral DNA integration--mechanism and consequences. ADVANCES IN GENETICS 2005; 55:147-81. [PMID: 16291214 DOI: 10.1016/s0065-2660(05)55005-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integration of retroviral cDNA into the host cell chromosome is an essential step in its replication. This process is catalyzed by the retroviral integrase protein, which is conserved among retroviruses and retrotransposons. Integrase binds viral and host DNA in a complex, called the preintegration complex (PIC), with other viral and cellular proteins. While the PIC is capable of directing integration of the viral DNA into any chromosomal location, different retroviruses have clear preferences for integration in or near particular chromosomal features. The determinants of integration site selection are under investigation but may include retrovirus-specific interactions between integrase and tethering factors bound to the host cell chromosomes. Research into the mechanisms of retroviral integration site selection has shed light on the phenomena of insertional mutagenesis and viral latency.
Collapse
Affiliation(s)
- Mary K Lewinski
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92186, USA
| | | |
Collapse
|
162
|
Williams KL, Zhang Y, Shkriabai N, Karki RG, Nicklaus MC, Kotrikadze N, Hess S, Le Grice SFJ, Craigie R, Pathak VK, Kvaratskhelia M. Mass spectrometric analysis of the HIV-1 integrase-pyridoxal 5'-phosphate complex reveals a new binding site for a nucleotide inhibitor. J Biol Chem 2004; 280:7949-55. [PMID: 15615720 DOI: 10.1074/jbc.m413579200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 integrase (IN) is an important target for designing new antiviral therapies. Screening of potential inhibitors using recombinant IN-based assays has revealed a number of promising leads including nucleotide analogs such as pyridoxal 5'-phosphate (PLP). Certain PLP derivatives were shown to also exhibit antiviral activities in cell-based assays. To identify an inhibitory binding site of PLP to IN, we used the intrinsic chemical property of this compound to form a Schiff base with a primary amine in the protein at the nucleotide binding site. The amino acid affected was then revealed by mass spectrometric analysis of the proteolytic peptide fragments of IN. We found that an IC(50) concentration (15 mum) of PLP modified a single IN residue, Lys(244), located in the C-terminal domain. In fact, we observed a correlation between interaction of PLP with Lys(244) and the compound's ability to impair formation of the IN.DNA complex. Site-directed mutagenesis studies confirmed an essential role of Lys(244) for catalytic activities of recombinant IN and viral replication. Molecular modeling revealed that Lys(244) together with several other DNA binding residues provides a plausible pocket for a nucleotide inhibitor-binding site. To our knowledge, this is the first report indicating that a small molecule inhibitor can impair IN activity through its binding to the protein C terminus. At the same time, our findings highlight the importance of structural analysis of the full-length protein.
Collapse
Affiliation(s)
- Kerry L Williams
- Ohio State University Health Sciences Center, College of Pharmacy, Center for Retrovirus Research and Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Snásel J, Krejcík Z, Jencová V, Rosenberg I, Ruml T, Alexandratos J, Gustchina A, Pichová I. Integrase of Mason-Pfizer monkey virus. FEBS J 2004; 272:203-16. [PMID: 15634344 DOI: 10.1111/j.1432-1033.2004.04386.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gene encoding an integrase of Mason-Pfizer monkey virus (M-PMV) is located at the 3'-end of the pol open reading frame. The M-PMV integrase has not been previously isolated and characterized. We have now cloned, expressed, isolated, and characterized M-PMV integrase and compared its activities and primary structure with those of HIV-1 and other retroviral integrases. M-PMV integrase prefers untranslated 3'-region-derived long-terminal repeat sequences in both the 3'-processing and the strand transfer activity assays. While the 3'-processing reaction catalyzed by M-PMV integrase was significantly increased in the presence of Mn(2+) and Co(2+) and was readily detectable in the presence of Mg(2+) and Ni(2+) cations, the strand transfer activity was strictly dependent only on Mn(2+). M-PMV integrase displays more relaxed substrate specificity than HIV-1 integrase, catalyzing the cleavage and the strand transfer of M-PMV and HIV-1 long-terminal repeat-derived substrates with similar efficiency. The structure-based sequence alignment of M-PMV, HIV-1, SIV, and ASV integrases predicted critical amino acids and motifs of M-PMV integrase for metal binding, interaction with nucleic acids, dimerization, protein structure maintenance and function, as well as for binding of human immunodeficiency virus type 1 and Rous avian sarcoma virus integrase inhibitors 5-CI-TEP, DHPTPB and Y-3.
Collapse
Affiliation(s)
- Jan Snásel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Ikeda T, Nishitsuji H, Zhou X, Nara N, Ohashi T, Kannagi M, Masuda T. Evaluation of the functional involvement of human immunodeficiency virus type 1 integrase in nuclear import of viral cDNA during acute infection. J Virol 2004; 78:11563-73. [PMID: 15479797 PMCID: PMC523288 DOI: 10.1128/jvi.78.21.11563-11573.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear import of viral cDNA is a critical step for establishing the proviral state of human immunodeficiency virus type 1 (HIV-1). The contribution of HIV-1 integrase (IN) to the nuclear import of viral cDNA is controversial, partly due to a lack of identification of its bona fide nuclear localization signal. In this study, to address this putative function of HIV-1 IN, the effects of mutations at key residues for viral cDNA recognition (PYNP at positions 142 to 145, K156, K159, and K160) were evaluated in the context of viral replication. During acute infection, some mutations (N144Q, PYNP>KL, and KKK>AAA) severely reduced viral gene expression to less than 1% the wild-type (WT) level. None of the mutations affected the synthesis of viral cDNA. Meanwhile, the levels of integrated viral cDNA produced by N144Q, PYNP>KL, and KKK>AAA mutants were severely reduced to less than 1% the WT level. Quantitative PCR analysis of viral cDNA in nuclei and fluorescence in situ hybridization analysis showed that these mutations significantly reduced the level of viral cDNA accumulation in nuclei. Further analysis revealed that IN proteins carrying the N144Q, PYNP>KL, and KKK>AAA mutations showed severely reduced binding to viral cDNA but kept their karyophilic properties. Taken together, these results indicate that mutations that reduced the binding of IN to viral cDNA resulted in severe impairment of virus infectivity, most likely by affecting the nuclear import of viral cDNA that proceeds integration. These results suggest that HIV-1 IN may be one of the critical constituents for the efficient nuclear import of viral cDNA.
Collapse
Affiliation(s)
- Tamako Ikeda
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Gao K, Wong S, Bushman F. Metal binding by the D,DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+ in vitro. J Virol 2004; 78:6715-22. [PMID: 15194746 PMCID: PMC421655 DOI: 10.1128/jvi.78.13.6715-6722.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The D,DX(35)E motif characteristic of retroviral integrase enzymes (INs) is expected to bind the required metal cofactors (Mg(2+) or Mn(2+)), but direct evidence for a catalytic role has been lacking. Here we used a metal rescue strategy to investigate metal binding. We established conditions for analysis of an activity of IN, disintegration, in both Mg(2+) and Mn(2+), and tested IN mutants with cysteine substitutions in each acidic residue of the D,DX(35)E motif. Mn(2+) but not Mg(2+) can bind tightly to Cys, so if metal binding at the acidic residues is mechanistically important, it is expected that the Cys-substituted enzymes would be active in the presence of Mn(2+) only. Of the three acidic residues, a strong metal rescue effect was obtained for D116C, a weaker rescue was seen for D64C, and no rescue was seen with E152C. Modest rescue could also be detected for D116C in normal integration in vitro. Comparison to Ser and Ala substitutions at D116 established that the rescue was selective for Cys. Further studies of the response to pH suggest that the metal cofactor may stabilize the deprotonated nucleophile active in catalysis, and studies of the response to NaCl titrations disclose an additional role for the metal cofactor in stabilizing the IN-DNA complex.
Collapse
Affiliation(s)
- Kui Gao
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6076, USA.
| | | | | |
Collapse
|
166
|
Shkriabai N, Patil SS, Hess S, Budihas SR, Craigie R, Burke TR, Le Grice SFJ, Kvaratskhelia M. Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Proc Natl Acad Sci U S A 2004; 101:6894-9. [PMID: 15118107 PMCID: PMC406438 DOI: 10.1073/pnas.0400873101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report a methodology that combines affinity acetylation with MS analysis for accurate mapping of an inhibitor-binding site to a target protein. For this purpose, we used a known HIV-1 integrase inhibitor containing aryl di-O-acetyl groups (Acetylated-Inhibitor). In addition, we designed a control compound (Acetylated-Control) that also contained an aryl di-O-acetyl group but did not inhibit HIV-1 integrase. Examination of the reactivity of these compounds with a model peptide library, which collectively contained all 20 natural amino acids, revealed that aryl di-O-acetyl compounds effectively acetylate Cys, Lys, and Tyr residues. Acetylated-Inhibitor and Acetylated-Control exhibited comparable chemical reactivity with respect to these small peptides. However, these two compounds differed markedly in their interactions with HIV-1 integrase. In particular, Acetylated-Inhibitor specifically acetylated K173 at its inhibitory concentration (3 microM) whereas this site remained unrecognized by Acetylated-Control. Our data enabled creation of a detailed model for the integrase:Acetylated-Inhibitor complex, which indicated that the inhibitor selectively binds at an architecturally critical region of the protein. The methodology reported herein has a generic application for systems involving a variety of ligand-protein interactions.
Collapse
Affiliation(s)
- Nick Shkriabai
- Ohio State University Health Sciences Center, College of Pharmacy, Center for Retrovirus Research and Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
De Luca L, Pedretti A, Vistoli G, Barreca ML, Villa L, Monforte P, Chimirri A. Analysis of the full-length integrase-DNA complex by a modified approach for DNA docking. Biochem Biophys Res Commun 2003; 310:1083-8. [PMID: 14559226 DOI: 10.1016/j.bbrc.2003.09.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A model of the full-length HIV-1 integrase dimer was constructed assembling the experimentally determined structures of the single domains. Subsequently, the three-domain protein-viral DNA complex was generated for the first time through an automated docking algorithm, obtained modifying the ESCHER program, a well-known method for protein-protein docking. A detailed study of the contacts established with DNA by the enzyme revealed that the predicted model reproduced the results of mutagenesis and cross-linking experiments, confirming the validity of our docking approach in predicting the base specificity in the DNA-protein interaction.
Collapse
Affiliation(s)
- Laura De Luca
- Dipartimento Farmaco-Chimico, Università di Messina,Viale Annunziata, I-98168 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
168
|
Marchand C, Johnson AA, Karki RG, Pais GCG, Zhang X, Cowansage K, Patel TA, Nicklaus MC, Burke TR, Pommier Y. Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol 2003; 64:600-9. [PMID: 12920196 DOI: 10.1124/mol.64.3.600] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The beta-diketo acids (DKAs) represent a major advance for anti-HIV-1 integrase drug development. We compared the inhibition of HIV-1 integrase by six DKA derivatives using the wild-type enzyme or the double-mutant F185K/C280S, which has been previously used for crystal structure determinations. With the wild-type enzyme, we found that DKAs could be classified into two groups: those similarly potent in the presence of magnesium and manganese and those potent in manganese and relatively ineffective in the presence of magnesium. Both the aromatic and the carboxylic or tetrazole functions of DKAs determined their metal selectivity. The F185K/C280S enzyme was markedly more active in the presence of manganese than magnesium. The F185K/C280S integrase was also relatively resistant to the same group of DKAs that were potent in the presence of magnesium with the wild-type enzyme. Resistance was caused by a synergistic effect from both the F185K and C280S mutations. Molecular modeling and docking suggested metal-dependent differences for binding of DKAs. Molecular modeling also indicated that the tetrazole or the azido groups of some derivatives could directly chelate magnesium or manganese in the integrase catalytic site. Together, these experiments suggest that DKAs recognize conformational differences between wild-type and the double-mutant HIV-1 integrase, because they chelate the magnesium or manganese in the enzyme active site and compete for DNA binding.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, Bldg. 37, Rm. 5068, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003; 278:33528-39. [PMID: 12796494 DOI: 10.1074/jbc.m303594200] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have reported that human immunodeficiency virus type 1 (HIV-1) integrase (IN) forms a specific nuclear complex with human lens epithelium-derived growth factor/transcription co-activator p75 (LEDGF/p75) protein. We now studied the IN-LEDGF/p75 interaction and nuclear import of IN in living cells using fusions of IN and LEDGF/p75 with enhanced green fluorescent protein and far-red fluorescent protein HcRed1. We show that both the N-terminal zinc binding domain and the central core domains of IN are involved in the interaction with LEDGF/p75. Both domains are essential for nuclear localization of IN as well as for the association of IN with condensed chromosomes during mitosis. However, upon overexpression of LEDGF/p75, the core domain fragment of IN was recruited to the nuclei and mitotic chromosomes with a distribution pattern characteristic of the full-length protein, indicating that it harbors the main determinant for interaction with LEDGF/p75. Although the C-terminal domain of IN was dispensable for nuclear/chromosomal localization, a fusion of the C-terminal IN fragment with enhanced green fluorescent protein was found exclusively in the nucleus, with a diffuse nuclear/nucleolar distribution, suggesting that the C-terminal domain may also play a role in the nuclear import of IN. In contrast to LEDGF/p75, its alternative splice variant, p52, did not interact with HIV-1 IN in vitro and in living cells. Finally, RNA interference-mediated knock-down of endogenous LEDGF/p75 expression abolished nuclear/chromosomal localization of IN. We conclude, therefore, that the interaction with LEDGF/p75 accounts for the karyophilic properties and chromosomal targeting of HIV-1 IN.
Collapse
Affiliation(s)
- Goedele Maertens
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
170
|
Priet S, Navarro JM, Quérat G, Sire J. Reversion of the lethal phenotype of an HIV-1 integrase mutant virus by overexpression of the same integrase mutant protein. J Biol Chem 2003; 278:20724-30. [PMID: 12670953 DOI: 10.1074/jbc.m301768200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for integration of viral DNA into host cell chromatin. We have reported previously (Priet, S., Navarro, J. M., Gros, N., Querat, G., and Sire, J. (2003) J. Biol. Chem. 278, 4566-4571) that IN also plays a role in the packaging of the host uracil DNA glycosylase UNG2 into viral particles and that the region of IN encompassing residues 170-180 was responsible for the interaction with UNG2 and for its packaging into virions. In this work, we aimed to investigate the replication of HIV-1 viruses rendered deficient in virion-associated UNG2 by single or double point mutations in the region 170-180 of IN. We show that the L172A/K173A IN mutant virus was deficient for UNG2 packaging and was defective for replication because of a blockage at the stage of proviral DNA integration in host cell DNA. In vitro assays using long term repeat mimics, however, demonstrate that the L172A/K173A IN mutant was catalytically active. Moreover, trans-complementation experiments show that the viral propagation of L172A/K173A viruses could be rescued by the overexpression of Vpr.L172A/K173A IN fusion protein in a dose-dependent manner and that this rescue is independent of UNG2 packaging. Altogether, our data indicate that L172A/K173A mutations of IN induce a subtle defect in the function of IN, which nevertheless dramatically impairs viral replication. Unexpectedly, this blockage of replication could be overcome by forcing the packaging of higher amounts of this same mutated integrase. This is the first study reporting that blockage of the integration process of HIV-1 provirus carrying a mutation of IN could be alleviated by increasing amounts of IN even carrying the same mutations.
Collapse
Affiliation(s)
- Stéphane Priet
- Pathogénie des Infections à Lentivirus, INSERM U372, 163 Avenue de Luminy, BP 178, 13276 Marseille-Cedex 9, France
| | | | | | | |
Collapse
|
171
|
Zargarian L, Benleumi MS, Renisio JG, Merad H, Maroun RG, Wieber F, Mauffret O, Porumb H, Troalen F, Fermandjian S. Strategy to discriminate between high and low affinity bindings of human immunodeficiency virus, type 1 integrase to viral DNA. J Biol Chem 2003; 278:19966-73. [PMID: 12626494 DOI: 10.1074/jbc.m211711200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures. Spectroscopic (circular dichroism, NMR, and fluorescence anisotropy) techniques and biochemical (enzymatic and filter binding) assays clearly indicated that the amphipathic helix alpha4, located at the catalytic domain surface, is responsible for the specific high affinity binding of the enzyme to viral DNA. Analogues of the alpha4 peptide having increased helicity and still bearing the biologically relevant lysines 156 and 159 on the DNA binding face, and oligonucleotides conserving an intact attachment site, are required to achieve high affinity complexes (Kd of 1.5 nm). Data corroborate previous in vivo results obtained with mutated viruses.
Collapse
Affiliation(s)
- Loussinée Zargarian
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS, Institut Gustave Roussy, Villejuif 94805 and Ecole Normale Supérieure de Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Woodward CL, Wang Y, Dixon WJ, Htun H, Chow SA. Subcellular localization of feline immunodeficiency virus integrase and mapping of its karyophilic determinant. J Virol 2003; 77:4516-27. [PMID: 12663758 PMCID: PMC152119 DOI: 10.1128/jvi.77.8.4516-4527.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV), like other members of the lentivirus subfamily, such as human immunodeficiency virus type 1 (HIV-1), can infect nondividing and terminally differentiated cells. The transport of the preintegration complex into the nucleus is cell cycle-independent, but the mechanism is not well understood. Integrase is a key component of the complex and has been suggested to play a role in nuclear import during HIV-1 replication. To determine its karyophilic property, FIV integrase fused with glutathione S-transferase and enhanced green fluorescent protein was expressed in various feline and human cells and the subcellular localization was visualized by fluorescence microscopy. Wild-type FIV integrase was karyophilic in all cell lines tested and capable of targeting the fusion protein to the nuclei of transfected cells. Analysis of deletion and point mutation variants of FIV integrase failed to reveal any canonical nuclear localization signal, and the karyophilic determinant was mapped to the highly conserved N-terminal zinc-binding HHCC motif. A region near the C-terminal domain enriched with basic amino acid residues also affected the nuclear import of integrase. However, the role of this region is only modulatory in comparison to that of the zinc-binding domain. The N-terminal zinc-binding domain does not bind DNA and instead is essential in integrase multimerization. We therefore postulate that the karyophilic property of FIV integrase requires subunit multimerization promoted by the HHCC motif. Alternatively, the HHCC motif may directly promote interaction between FIV integrase and cellular proteins involved in nuclear import.
Collapse
Affiliation(s)
- Cora L Woodward
- Department of Molecular and Medical Pharmacology, Molecular Biology Institute and AIDS Institute, School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
173
|
Zhao L, O'Reilly MK, Shultz MD, Chmielewski J. Interfacial peptide inhibitors of HIV-1 integrase activity and dimerization. Bioorg Med Chem Lett 2003; 13:1175-7. [PMID: 12643937 DOI: 10.1016/s0960-894x(03)00040-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptides derived from the interfacial region of dimeric HIV-1 integrase were evaluated as inhibitors of integrase's 3'-endonuclease activity. Three peptides were found to be moderately potent inhibitors with IC(50) values in the low micromolar range. The mode of inhibition was probed through protein crosslinking experiments. Active interfacial peptides were found to inhibit crosslinking of the dimeric form of integrase. Interfacial peptides that were poor inhibitors had no effect on integrase crosslinking.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
174
|
Barreca ML, Lee KW, Chimirri A, Briggs JM. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Biophys J 2003; 84:1450-63. [PMID: 12609852 PMCID: PMC1302719 DOI: 10.1016/s0006-3495(03)74958-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the virus and is an attractive target for the development of new drugs useful in acquired immunodeficiency syndrome multidrug therapy. Starting from the crystal structure of the 5CITEP inhibitor bound to the active site in the catalytic domain of the HIV-1 IN, two different molecular dynamics simulations in water have been carried out. In the first simulation the wild-type IN was used, whereas in the second one the double mutation T66I/M154I, described to lead to drug resistance, was introduced in the protein. Compelling differences have been observed in these two structures during analyses of the molecular dynamics trajectories, particularly in the inhibitor binding modes and in the conformational flexibility of the loop (residues 138-149) located near the three catalytic residues in the active site (Asp(64), Asp(116), Glu(152)). Because the conformational flexibility of this region is important for efficient biological activity and its behavior is quite different in the two models, we suggest a hypothetical mechanism for the inhibition and drug resistance of HIV-1 IN. These results can be useful for the rational design of more potent and selective integrase inhibitors and may allow for the design of inhibitors that will be more robust against known resistance mutations.
Collapse
|
175
|
Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 2003; 31:532-50. [PMID: 12527760 PMCID: PMC140525 DOI: 10.1093/nar/gkg161] [Citation(s) in RCA: 654] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Revised: 09/13/2002] [Accepted: 11/18/2002] [Indexed: 11/13/2022] Open
Abstract
Zinc fingers are small protein domains in which zinc plays a structural role contributing to the stability of the domain. Zinc fingers are structurally diverse and are present among proteins that perform a broad range of functions in various cellular processes, such as replication and repair, transcription and translation, metabolism and signaling, cell proliferation and apoptosis. Zinc fingers typically function as interaction modules and bind to a wide variety of compounds, such as nucleic acids, proteins and small molecules. Here we present a comprehensive classification of zinc finger spatial structures. We find that each available zinc finger structure can be placed into one of eight fold groups that we define based on the structural properties in the vicinity of the zinc-binding site. Three of these fold groups comprise the majority of zinc fingers, namely, C2H2-like finger, treble clef finger and the zinc ribbon. Evolutionary relatedness of proteins within fold groups is not implied, but each group is divided into families of potential homologs. We compare our classification to existing groupings of zinc fingers and find that we define more encompassing fold groups, which bring together proteins whose similarities have previously remained unappreciated. We analyze functional properties of different zinc fingers and overlay them onto our classification. The classification helps in understanding the relationship between the structure, function and evolutionary history of these domains. The results are available as an online database of zinc finger structures.
Collapse
Affiliation(s)
- S Sri Krishna
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.
| | | | | |
Collapse
|
176
|
Bischerour J, Leh H, Deprez E, Brochon JC, Mouscadet JF. Disulfide-linked integrase oligomers involving C280 residues are formed in vitro and in vivo but are not essential for human immunodeficiency virus replication. J Virol 2003; 77:135-41. [PMID: 12477818 PMCID: PMC140589 DOI: 10.1128/jvi.77.1.135-141.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 integrase (IN) forms an oligomer that integrates both ends of the viral DNA. The nature of the active oligomer is unclear. Recombinant IN obtained under reducing conditions is always in the form of noncovalent oligomers. However, disulfide-linked oligomers of IN were recently observed within viral particles. We show that IN produced from a baculovirus expression system can form disulfide-linked oligomers. We investigated which residues are responsible for the disulfide bridges and the relationship between the ability to form covalent dimers and IN activity. Only the mutation of residue C280 was sufficient to prevent the formation of intermolecular disulfide bridges in oligomers of recombinant IN. IN activity was studied under and versus nonreducing conditions: the formation of disulfide bridges was not required for the in vitro activities of the enzyme. Moreover, the covalent dimer does not dissociate into individual protomers on disulfide bridge reduction. Instead, IN undergoes a spontaneous multimerization process that yields a homogenous noncovalent tetramer. The C280S mutation also completely abolished the formation of disulfide bonds in the context of the viral particle. Finally, the replication of the mutant virus was investigated in replicating and arrested cells. The infectivity of the virus was not affected by the C280S IN mutation in either dividing or nondividing cells. The disulfide-linked form of the IN oligomers observed in the viral particles is thus not required for viral replication.
Collapse
|
177
|
Hazuda DJ, Young SD. Inhibitors of human immunodeficiency virus integration. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1075-8593(03)04002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
178
|
Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Biopolymers 2003; 68:110-20. [PMID: 12579583 DOI: 10.1002/bip.10217] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a model structure of a candidate tetramer for HIV-1 integrase. The model was built in three steps using data from fluorescence anisotropy, structures of the individual integrase domains, cross-linking data, and other biochemical data. First, the structure of the full-length integrase monomer was modeled using the individual domain structures and the hydrodynamic properties of the full-length protein that were recently measured by fluorescence depolarization. We calculated the rotational correlation times for different arrangements of three integrase domains, revealing that only structures with close proximity among the domains satisfied the experimental data. The orientations of the domains were constrained by iterative tests against the data on cross-linking and footprinting in integrase-DNA complexes. Second, the structure of an integrase dimer was obtained by joining the model monomers in accordance with the available dimeric crystal structures of the catalytic core. The hydrodynamic properties of the dimer were in agreement with the experimental values. Third, the active sites of the two model dimers were placed in agreement with the spacing between the sites of integration on target DNA as well as the integrase-DNA cross-linking data, resulting in twofold symmetry of a tetrameric complex. The model is consistent with the experimental data indicating that the F185K substitution, which is found in the model at a tetramerization interface, selectively disrupts correct complex formation in vitro and HIV replication in vivo. Our model of the integrase tetramer bound to DNA may help to design anti-integrase inhibitors.
Collapse
Affiliation(s)
- Alexei A Podtelezhnikov
- Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0365, USA.
| | | | | | | |
Collapse
|
179
|
Affiliation(s)
- Michael S Chapman
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
180
|
Sluis-Cremer N, Tachedjian G. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5103-11. [PMID: 12392542 DOI: 10.1046/j.1432-1033.2002.03216.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The efficacy of antiretroviral agents approved for the treatment of HIV-1 infection is limited by the virus's ability to develop resistance. As such there is an urgent need for new ways of thinking about anti-HIV drug development, and accordingly novel viral and cellular targets critical to HIV-1 replication need to be explored and exploited. The retroviral RNA genome encodes for three enzymes essential for viral replication: HIV-1 protease (PR), HIV-1 reverse transcriptase (RT) and HIV-1 integrase (IN). The enzymatic functioning of each of these enzymes is entirely dependent on their oligomeric structures, suggesting that inhibition of subunit-subunit assembly or modulation of their quaternary structures provide alternative targets for HIV-1 inhibition. This review discusses the recent advances in the design and/or identification of synthetic peptides and small molecules that specifically target the subunit-subunit interfaces of these retroviral enzymes, resulting in the inactivation of their enzymatic functioning.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
181
|
Vercammen J, Maertens G, Gerard M, De Clercq E, Debyser Z, Engelborghs Y. DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy. J Biol Chem 2002; 277:38045-52. [PMID: 12147698 DOI: 10.1074/jbc.m205842200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase is essential for viral replication. Integrase inserts the viral DNA into the host DNA. We studied the association of integrase to fluorescently labeled oligonucleotides using fluorescence correlation spectroscopy. The binding of integrase to the fluorescent oligonucleotides resulted in the appearance of bright spikes during fluorescence correlation spectroscopy measurements. These spikes arise from the formation of high molecular mass protein-DNA complexes. The fluorescence of the free DNA was separated from the spikes with a statistical method. From the decrease of the concentration of free oligonucleotides, a site association constant was determined. The DNA-protein complexes were formed rapidly in a salt-dependent manner with site association constants ranging between 5 and 40 microm(-1) under different conditions. We also analyzed the kinetics of the DNA-protein complex assembly and the effect of different buffer components. The formation of the fluorescent protein-DNA complex was inhibited by guanosine quartets, and the inhibition constant was determined at 1.8 +/- 0.6 x 10(8) m(-1). Displacement of bound DNA with G-quartets allowed the determination of the dissociation rate constant and proves the reversibility of the association process.
Collapse
Affiliation(s)
- Jo Vercammen
- Laboratory of Biomolecular Dynamics, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
182
|
Yao JC, Huang W, Li B, Gou S, Xu Y. A novel one-dimensional single helix derived from 2,2′-bipyridine based Zn(II) species directed self-assembly with 1,2-benzenedicarboxylate. INORG CHEM COMMUN 2002. [DOI: 10.1016/s1387-7003(02)00548-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
183
|
de Soultrait VR, Caumont A, Durrens P, Calmels C, Parissi V, Recordon P, Bon E, Desjobert C, Tarrago-Litvak L, Fournier M. HIV-1 integrase interacts with yeast microtubule-associated proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1575:40-8. [PMID: 12020817 DOI: 10.1016/s0167-4781(02)00241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) mediates the insertion of viral DNA into the human genome. In addition to IN, cellular and viral proteins are associated to proviral DNA in the so-called preintegration complex (PIC). We previously reported that the expression of HIV-1 IN in yeast leads to the emergence of a lethal phenotype. This effect may be linked to the IN activity on infected human cells where integration requires the cleavage of genomic DNA. To isolate and characterize potential cellular partners of HIV-1 IN, we used it as a bait in a two-hybrid system with a yeast genomic library. IN interacted with proteins belonging to the microtubule network, or involved in the protein synthesis apparatus. We focused our interest on one of the selected inserts, L2, which corresponds to the C-end half of the yeast STU2p, a microtubule-associated protein (MAP). STU2p is an essential component of the yeast spindle pole body (SPB), which is able to bind microtubules in vitro. After expressing and purifying L2 as a recombinant protein, we showed its binding to IN by ELISA immunodetection. L2 was also able to inhibit IN activity in vitro. In addition, the effect of L2 was tested using the "lethal yeast phenotype". The coexpression of IN and the L2 peptide abolished the lethal phenotype, thus showing important in vivo interactions between IN and L2. The identification of components of the microtubule network associated with IN suggest a role of this complex in the transport of HIV-1 IN present in the PIC to the nucleus, as already described for other human viruses.
Collapse
Affiliation(s)
- Vaea Richard de Soultrait
- UMR 5097 CNRS-Université Victor Segalen Bordeaux 2, BP 103, Bat. 3A-3 Etage, 146 rue Léo Saignat, 33076 Bordeaux X Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
McClure MA, Donaldson E, Corro S. Potential multiple endonuclease functions and a ribonuclease H encoded in retroposon genomes. Virology 2002; 296:147-58. [PMID: 12036326 DOI: 10.1006/viro.2002.1392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the retroposons, the source of the endonuclease activity is known to be variable and can be provided as either a retroviral-like integrase or a protein similar to the cellular apurinic-apyrimidinic endonuclease. It has also been reported that other retroposon and retrointron sequences have limited similarity to various eubacterial endonucleases. We investigated whether any retroposon genomes possibly encode multiple endonuclease functions. Amino acid alignments were generated and analyzed for the presence of the characterized ordered-series-of-motifs (OSM) representative of four different endonuclease functions. The results indicate that SLACS, CZAR, CRE1, CRE2, and some Trypanosoma brucei retroposon sequences encode multiple putative endonuclease functions. Interestingly, one of the endonuclease functions is embedded within the potential ribonuclease H sequence found in SLACS, CZAR, CRE1, CRE2, and R2BM retroposons.
Collapse
Affiliation(s)
- Marcella A McClure
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | | | |
Collapse
|
185
|
de Soultrait VR, Caumont A, Parissi V, Morellet N, Ventura M, Lenoir C, Litvak S, Fournier M, Roques B. A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase. J Mol Biol 2002; 318:45-58. [PMID: 12054767 DOI: 10.1016/s0022-2836(02)00033-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The retroviral encoded protein integrase (IN) is required for the insertion of the human immunodeficiency virus type 1 (HIV-1) proviral DNA into the host genome. In spite of the crucial role played by IN in the retroviral life cycle, which makes this enzyme an attractive target for the development of new anti-AIDS agents, very few inhibitors have been described and none seems to have a potential use in anti-HIV therapy. To obtain potent and specific IN inhibitors, we used the two-hybrid system to isolate short peptides. Using HIV-1 IN as a bait and a yeast genomic library as the source of inhibitory peptides (prey), we isolated a 33-mer peptide (I33) that bound tightly to the enzyme. I33 inhibited both in vitro IN activities, i.e. 3' end processing and strand transfer. Further analysis led us to select a shorter peptide, EBR28, corresponding to the N-terminal region of I33. Truncated variants showed that EBR28 interacted with the catalytic domain of IN interfering with the binding of the DNA substrate. Alanine single substitution of each EBR28 residue (alanine scanning) allowed the identification of essential amino acids involved in the inhibition. The EBR28 NMR structure shows that this peptide adopts an alpha-helical conformation with amphipathic properties. Additionally, EBR28 showed a significant antiviral effect when assayed on HIV-1 infected human cells. Thus, this potentially important short lead peptide may not only be helpful to design new anti-HIV agents, but also could prove very useful in further studies of the structural and functional characteristics of HIV-1 IN.
Collapse
|
186
|
Yi J, Cheng H, Andrake MD, Dunbrack RL, Roder H, Skalka AM. Mapping the epitope of an inhibitory monoclonal antibody to the C-terminal DNA-binding domain of HIV-1 integrase. J Biol Chem 2002; 277:12164-74. [PMID: 11805085 DOI: 10.1074/jbc.m105072200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrase (IN) catalyzes the insertion of retroviral DNA into chromosomal DNA of a host cell and is one of three virus-encoded enzymes that are required for replication. A library of monoclonal antibodies against human immunodeficiency virus type 1 (HIV-1) IN was raised and characterized in our laboratory. Among them, monoclonal antibody (mAb) 33 and mAb32 compete for binding to the C-terminal domain of the HIV-1 IN protein. Here, we show that mAb33 is a strong inhibitor of IN catalytic activity, whereas mAb32 is only weakly inhibitory. Furthermore, as the Fab fragment of mAb32 had no effect on IN activity, inhibition by this mAb may result solely from its bivalency. In contrast, Fab33 did inhibit IN catalytic activity, although bivalent binding by mAb33 may enhance the inhibition. Interaction with Fab33 also prevented DNA binding to the isolated C-terminal domain of IN. Results from size-exclusion chromatography, gel electrophoresis, and matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses revealed that multiple Fab33 small middle dotIN C-terminal domain complexes exist in solution. Studies using heteronuclear NMR showed a steep decrease in (1)H-(15)N cross-peak intensity for 8 residues in the isolated C-terminal domain upon binding of Fab33, indicating that these residues become immobilized in the complex. Among them, Ala(239) and Ile(251) are buried in the interior of the domain, whereas the remaining residues (Phe(223), Arg(224), Tyr(226), Lys(244), Ile(267), and Ile(268)) form a contiguous, solvent-accessible patch on the surface of the protein likely including the epitope of Fab33. Molecular modeling of Fab33 followed by computer-assisted docking with the IN C-terminal domain suggested a structure for the antibody-antigen complex that is consistent with our experimental data and suggested a potential target for anti-AIDS drug design.
Collapse
Affiliation(s)
- Jizu Yi
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
187
|
Sinha S, Pursley MH, Grandgenett DP. Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 2002; 76:3105-13. [PMID: 11884535 PMCID: PMC136053 DOI: 10.1128/jvi.76.7.3105-3113.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.
Collapse
Affiliation(s)
- Sapna Sinha
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
188
|
Ramboarina S, Srividya N, Atkinson RA, Morellet N, Roques BP, Lefèvre JF, Mély Y, Kieffer B. Effects of temperature on the dynamic behaviour of the HIV-1 nucleocapsid NCp7 and its DNA complex. J Mol Biol 2002; 316:611-27. [PMID: 11866521 DOI: 10.1006/jmbi.2001.5379] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers and is involved in many crucial steps of the virus life-cycle. A large number of physiological rôles of NCp7 involve its binding to single-stranded nucleic acid chains. Several solution structures of NCp7 and its complex with single-stranded RNA or DNA have been reported. We have investigated the changes in the dynamic behaviour experienced by the (12-53)NCp7 peptide upon DNA binding using (15)N heteronuclear relaxation measurements at 293 K and 308 K, and fluorescence spectroscopy. The relaxation data were interpreted using the reduced spectral density approach, which allowed the high-frequency motion, overall tumbling rates and the conformational exchange contributions to be characterized for various states of the peptide without using a specific motional model. Analysis of the temperature-dependent correlation times derived from both NMR and fluorescence data indicated a co-operative change of the molecular shape of apo (12-53)NCp7 around 303 K, leading to an increased hydrodynamic radius at higher temperatures. The binding of (12-53)NCp7 to a single-stranded d(ACGCC) pentanucleotide DNA led to a reduction of the conformational flexibility that characterized the apo peptide. Translational diffusion experiments as well as rotational correlation times indicated that the (12-53)NCp7/d(ACGCC) complex tumbles as a rigid object. The amplitudes of high-frequency motions were restrained in the complex and the occurrence of conformational exchange was displaced from the second zinc finger to the linker residue Ala30.
Collapse
Affiliation(s)
- Stéphanie Ramboarina
- Laboratoire de Génomique Structurale, CNRS UPR 9004 ESBS, Bd Sébastien Brant, Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Debyser Z, Cherepanov P, Van Maele B, De Clercq E, Witvrouw M. In search of authentic inhibitors of HIV-1 integration. Antivir Chem Chemother 2002; 13:1-15. [PMID: 12180645 DOI: 10.1177/095632020201300101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current strategies for the treatment of HIV infection are based on cocktails of drugs that target the viral reverse transcriptase or protease enzymes. At present, the clinical benefit of this combination therapy for HIV-infected patients is considerable, although it is not clear how long this effect will last taking into account the emergence of multiple drug-resistant viral strains. Addition of new anti-HIV drugs targeting additional steps of the viral replication cycle may increase the potency of inhibition and prevent resistance development. During HIV replication, integration of the viral genome into the cellular chromosome is an essential step catalysed by the viral integrase. Although HIV integrase is an attractive target for antiviral therapy, so far all research efforts have led to the identification of only one series of compounds that selectively inhibit the integration step during HIV replication, namely the diketo acids. In this review we try to address the question why it has proven so difficult to find potent and selective integrase inhibitors. We point to potential pitfalls in defining an inhibitor as an authentic integrase inhibitor, and propose new strategies and technologies for the discovery of authentic HIV integration inhibitors.
Collapse
Affiliation(s)
- Zeger Debyser
- Rega Institute for Medical Research, KU Leuven, Flanders, Belgium.
| | | | | | | | | |
Collapse
|
190
|
Wang JY, Ling H, Yang W, Craigie R. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 2001; 20:7333-43. [PMID: 11743009 PMCID: PMC125787 DOI: 10.1093/emboj/20.24.7333] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retroviral integrase, an essential enzyme for replication of human immunodeficiency virus type-1 (HIV-1) and other retroviruses, contains three structurally distinct domains, an N-terminal domain, the catalytic core and a C-terminal domain. To elucidate their spatial arrangement, we have solved the structure of a fragment of HIV-1 integrase comprising the N-terminal and catalytic core domains. This structure reveals a dimer interface between the N-terminal domains different from that observed for the isolated domain. It also complements the previously determined structure of the C-terminal two domains of HIV-1 integrase; superposition of the conserved catalytic core of the two structures results in a plausible full-length integrase dimer. Furthermore, an integrase tetramer formed by crystal lattice contacts bears structural resemblance to a related bacterial transposase, Tn5, and exhibits positively charged channels suitable for DNA binding.
Collapse
Affiliation(s)
| | | | | | - Robert Craigie
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 5 Center Drive MSC 0560, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
191
|
Yang F, Seamon JA, Roth MJ. Mutational analysis of the N-terminus of Moloney murine leukemia virus integrase. Virology 2001; 291:32-45. [PMID: 11878874 DOI: 10.1006/viro.2001.1218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retroviral integrase (IN) carries out the integration of viral DNA into the host genome. The IN protein consists of three domains: the N-terminal HHCC motif, the catalytic core region, and the C-terminus. The Moloney murine leukemia virus (M-MuLV) IN encodes a unique 45-amino-acid domain N-terminal to the HHCC motif. The function of the N-terminus of M-MuLV IN was studied through deletional and mutational analyses. The IN 1-105 domain was dissected into two halves expressing either the unique N-terminus or the HHCC domain. Although the parental IN 1-105 could functionally complement the core-C-terminus for integration reactions, neither half of the N-terminus was sufficient. Partial complementation of strand transfer, but not 3prime prime or minute processing, could be obtained through mixing the two halves. The dimerization of the M-MuLV N-terminus was dependent on the expression of the intact 1-105. Critical basic amino acids within the HHCC domain which are required for 3' processing and strand transfer reactions were identified through alanine mutagenesis. Loss of in vitro strand transfer activity correlated with loss of viral titer in vivo for this cluster of basic amino acids within the HHCC domain.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
192
|
Bertola F, Manigand C, Picard P, Goetz M, Schmitter JM, Precigoux G. N-Terminal domain of HTLV-I integrase. Complexation and conformational studies of the zinc finger. J Pept Sci 2001; 7:588-97. [PMID: 11763363 DOI: 10.1002/psc.356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The HTLV-I integrase N-terminal domain [50-residue peptide (IN50)], and a 35-residue truncated peptide formed by residues 9-43 (IN35) have been synthesized by solid-phase peptide synthesis. Formation of the 50-residue zinc finger type structure through a HHCC motif has been proved by UV-visible absorption spectroscopy. Its stability was demonstrated by an original method using RP-HPLC. Similar experiments performed on the 35-residue peptide showed that the truncation does not prevent zinc complex formation but rather that it significantly influences its stability. As evidenced by CD spectroscopy, the 50-residue zinc finger is unordered in aqueous solution but adopts a partially helical conformation when trifluoroethanol is added. These results are in agreement with our secondary structure predictions and demonstrate that the HTLV-I integrase N-terminal domain is likely to be composed of an helical region (residues 28-42) and a beta-strand (residues 20-23), associated with a HHCC zinc-binding motif. Size-exclusion chromatography showed that the structured zinc finger dimerizes through the helical region.
Collapse
Affiliation(s)
- F Bertola
- Unité de Biophysique Structurale, UMR 5471 CNRS, Université Bordeaux, France
| | | | | | | | | | | |
Collapse
|
193
|
Schueler-Furman O, Altuvia Y, Margalit H. Examination of possible structural constraints of MHC-binding peptides by assessment of their native structure within their source proteins. Proteins 2001; 45:47-54. [PMID: 11536359 DOI: 10.1002/prot.1122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antigenic peptides bind to major histocompatibility complex (MHC) molecules as a prerequisite for their presentation to T cells. In this study, we investigate possible structural preferences of MHC-binding peptides by examining the conformation space defined by the structures of these peptides within their native source proteins. Comparison of the conformation space of the native structures of MHC-binding nonamers and a corresponding conformation space defined by a random set of nonamers showed no significant difference. This suggests that the environment of the MHC binding groove has evolved to bind peptides with essentially any "structural background." A slight tendency for an extended beta-conformation at positions 8 and 9 was observed for the set of native structures. We suggest that such a preference may facilitate the binding of the C-terminal anchor position of processed peptides into the corresponding specificity pocket. MHC-binding peptides represent examples of short subsequences that are present in two different structural environments: within their native protein and within the MHC binding groove. Comparison of the native and of the bound structure of the peptides showed that peptides up to 14 residues long may adopt different conformations within different protein environments. This has direct implications for structure prediction algorithms.
Collapse
Affiliation(s)
- O Schueler-Furman
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
194
|
Yang F, Roth MJ. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase. J Virol 2001; 75:9561-70. [PMID: 11559787 PMCID: PMC114526 DOI: 10.1128/jvi.75.20.9561-9570.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retroviral integration results in the stable and coordinated insertion of the two termini of the linear viral DNA into the host genome. An in vitro concerted two-end integration reaction catalyzed by the Moloney murine leukemia virus (M-MuLV) integrase (IN) was used to investigate the binding and coordination of the two viral DNA ends. Comparison of the two-end integration and strand transfer assays indicates that zinc is required for efficient concerted integration utilizing plasmid DNA as target. Complementation assays using a pair of nonoverlapping integrase domains, consisting of the HHCC domain and the core/C-terminal region, yielded products containing the correct 4-base target site duplication. The efficiency of the coordinated two-end integration varied depending on the order of addition of the individual protein and DNA components in the complementation assay. Two-end integration was most efficient when the long terminal repeat (LTR) was premixed with either the target DNA or the HHCC domain. The preference for two-end integration through preincubation of the HHCC finger with the viral DNA supports the role of this domain in the recognition and/or positioning of the LTR.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
195
|
Qin J, Vinogradova O, Gronenborn AM. Protein-protein interactions probed by nuclear magnetic resonance spectroscopy. Methods Enzymol 2001; 339:377-89. [PMID: 11462822 DOI: 10.1016/s0076-6879(01)39323-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- J Qin
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
196
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
197
|
Johnson EP, Bushman FD. Paired DNA three-way junctions as scaffolds for assembling integrase complexes. Virology 2001; 286:304-16. [PMID: 11485398 DOI: 10.1006/viro.2001.0978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early steps of retroviral replication involve reverse transcription of the viral RNA genome and integration of the resulting cDNA copy into a chromosome of the host cell. The initial DNA breaking and joining steps of integration are carried out by the virus-encoded integrase enzyme. Integrases bind specifically to the ends of the unintegrated viral cDNA but nonspecifically to target DNA. Conventional assays in vitro reveal primarily the nonspecific DNA binding mode, complicating studies of integrase--DNA complexes. Here, we report an investigation of unconventional DNA structures useful for positioning integrase at predetermined sites. We find that paired DNA three-way junctions can be used to mimic branched DNAs normally formed as reaction intermediates. The three-way junctions differ from authentic intermediates in the connectivity of the DNAs, which, in contrast to the authentic intermediate, allow formation of stable DNA structures under physiological conditions. Assays in vitro showed that integrase can direct hydrolysis at sequences resembling the viral cDNA ends within the three-way junction, but not on junctions with mutant sequences. Changing the spacing between the paired three-way junctions disrupted the cleavage pattern, emphasizing the importance of the correct DNA scaffold. DNase I footprinting studies revealed protection of specific bases at the terminus of the LTR in the three-way junction complex, but not on control linear DNA, specifying the locations of tight interactions between integrase and DNA. Paired DNA three-way junctions are attractive reagents for structural studies of integrase-DNA complexes.
Collapse
Affiliation(s)
- E P Johnson
- Infectious Disease Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
198
|
Gao K, Butler SL, Bushman F. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. EMBO J 2001; 20:3565-76. [PMID: 11432843 PMCID: PMC125503 DOI: 10.1093/emboj/20.13.3565] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Early steps of retroviral replication involve reverse transcription of the viral RNA genome and integration of the resulting cDNA copy into a chromosome of the host cell. The viral-encoded integrase protein carries out the initial DNA breaking and joining reactions that mediate integration. The organization of the active integrase-DNA complex is unknown, though integrase is known to act as a multimer, and high resolution structures of the isolated integrase domains have been determined. Here we use site-specific cross-linking based on disulfide bond formation to map integrase-DNA contacts in active complexes. We establish that the DNA-binding C-terminal domain of one integrase monomer acts with the central catalytic domain from another monomer at each viral cDNA end. These data allow detailed modeling of an integrase tetramer in which pairs of trans interactions link integrase dimers bound to substrate DNA. We also detected a conformational change in integrase- DNA complexes accompanying cleavage of the viral cDNA terminus.
Collapse
Affiliation(s)
| | | | - Frederic Bushman
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
Corresponding author e-mail:
| |
Collapse
|
199
|
Yi J, Skalka AM. Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Biopolymers 2001; 55:308-18. [PMID: 11169922 DOI: 10.1002/1097-0282(2000)55:4<308::aid-bip1004>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monoclonal antibodies (mAbs) have been used extensively in the biochemical analysis of proteins. Molecular identification of a specific epitope can enhance our understanding of the relationship between the structure and function of a protein. We recently developed a protein footprint technique for mapping mAb epitopes that employs limited proteolysis followed by peptide analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Here we describe the rational for the technique and illustrate its use in mapping the epitopes of two mAbs that bind to the C-terminal domain of human immunodeficiency virus type-1 integrase. The results provide a plausible explanation for the fact that one mAb inhibits enzyme activity while the second does not.
Collapse
Affiliation(s)
- J Yi
- Fox Chase Cancer Center, Institute for Cancer Research, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
200
|
Kothekar V, Shankar S. Molecular dynamics studies on the interaction of 4-acetylamino-5-hydroxynapthalene-2,7-disulfonic acid with catalytic domain of avian sarcoma virus integrase dimer. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0166-1280(00)00706-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|