151
|
Buhigas C, Warren AY, Leung WK, Whitaker HC, Luxton HJ, Hawkins S, Kay J, Butler A, Xu Y, Woodcock DJ, Merson S, Frame FM, Sahli A, Abascal F, Martincorena I, Bova GS, Foster CS, Campbell P, Maitland NJ, Neal DE, Massie CE, Lynch AG, Eeles RA, Cooper CS, Wedge DC, Brewer DS. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Mol Cancer 2022; 21:183. [PMID: 36131292 PMCID: PMC9494848 DOI: 10.1186/s12943-022-01644-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/17/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.
Collapse
Affiliation(s)
- Claudia Buhigas
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Wing-Kit Leung
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Hayley C Whitaker
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Hayley J Luxton
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Steve Hawkins
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Molecular Diagnostics and Therapeutics Group, Division of Surgery and Interventional Sciences University College London, London, W1W 7TS, UK
| | - Adam Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Yaobo Xu
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Dan J Woodcock
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Sue Merson
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - Atef Sahli
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - G Steven Bova
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, 33014, Tampere, FI, Finland
| | | | - Peter Campbell
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1RQ, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, YO10 5DD, North Yorkshire, UK
| | - David E Neal
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - Charlie E Massie
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge Institute, Cambridge, CB2 0RE, UK
- School of Medicine/School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - Rosalind A Eeles
- The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, SM2 5PT, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- The Institute of Cancer Research, London, SW7 3RP, UK
| | - David C Wedge
- Oxford Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, M20 4GJ, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
- Earlham Institute, Norwich, NR4 7UZ, UK.
| |
Collapse
|
152
|
Ren P, Dong X, Vijg J. Age-related somatic mutation burden in human tissues. FRONTIERS IN AGING 2022; 3:1018119. [PMID: 36213345 PMCID: PMC9534562 DOI: 10.3389/fragi.2022.1018119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
The genome of multicellular organisms carries the hereditary information necessary for the development of all organs and tissues and to maintain function in adulthood. To ensure the genetic stability of the species, genomes are protected against changes in sequence information. However, genomes are not static. De novo mutations in germline cells are passed on to offspring and generate the variation needed in evolution. Moreover, postzygotic mutations occur in all somatic cells during development and aging. These somatic mutations remain limited to the individual, generating tissues that are genome mosaics. Insight into such mutations and their consequences has been limited due to their extremely low abundance, with most mutations unique for each cell. Recent advances in sequencing, including whole genome sequencing at the single-cell level, have now led to the first insights into somatic mutation burdens in human tissues. Here, we will first briefly describe the latest methodology for somatic mutation analysis, then review our current knowledge of somatic mutation burden in human tissues and, finally, briefly discuss the possible functional impact of somatic mutations on the aging process and age-related diseases, including cancer and diseases other than cancer.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Peijun Ren, ; Xiao Dong, ; Jan Vijg, ,
| | - Xiao Dong
- Department of Genetics, Cell Biology and Development, Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Peijun Ren, ; Xiao Dong, ; Jan Vijg, ,
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Genetics, Albert Einstein College of Medicine, New York City, NY, United States,*Correspondence: Peijun Ren, ; Xiao Dong, ; Jan Vijg, ,
| |
Collapse
|
153
|
Hirose W, Horiuchi M, Li D, Motoike IN, Zhang L, Nishi H, Taniyama Y, Kamei T, Suzuki M, Kinoshita K, Katsuoka F, Taguchi K, Yamamoto M. Selective Elimination of NRF2-Activated Cells by Competition With Neighboring Cells in the Esophageal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 15:153-178. [PMID: 36115578 PMCID: PMC9672893 DOI: 10.1016/j.jcmgh.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS NF-E2-related factor 2 (NRF2) is a transcription factor that regulates cytoprotective gene expression in response to oxidative and electrophilic stresses. NRF2 activity is mainly controlled by Kelch-like ECH-associated protein 1 (KEAP1). Constitutive NRF2 activation by NRF2 mutations or KEAP1 dysfunction results in a poor prognosis for esophageal squamous cell carcinoma (ESCC) through the activation of cytoprotective functions. However, the detailed contributions of NRF2 to ESCC initiation or promotion have not been clarified. Here, we investigated the fate of NRF2-activated cells in the esophageal epithelium. METHODS We generated tamoxifen-inducible, squamous epithelium-specific Keap1 conditional knockout (Keap1-cKO) mice in which NRF2 was inducibly activated in a subset of cells at the adult stage. Histologic, quantitative reverse-transcription polymerase chain reaction, single-cell RNA-sequencing, and carcinogen experiments were conducted to analyze the Keap1-cKO esophagus. RESULTS KEAP1-deleted/NRF2-activated cells and cells with normal NRF2 expression (KEAP1-normal cells) coexisted in the Keap1-cKO esophageal epithelium in approximately equal numbers, and NRF2-activated cells formed dysplastic lesions. NRF2-activated cells exhibited weaker attachment to the basement membrane and gradually disappeared from the epithelium. In contrast, neighboring KEAP1-normal cells exhibited accelerated proliferation and started dominating the epithelium but accumulated DNA damage that triggered carcinogenesis upon carcinogen exposure. CONCLUSIONS Constitutive NRF2 activation promotes the selective elimination of epithelial cells via cell competition, but this competition induces DNA damage in neighboring KEAP1-normal cells, which predisposes them to chemical-induced ESCC.
Collapse
Affiliation(s)
- Wataru Hirose
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Horiuchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Donghan Li
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ikuko N. Motoike
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Lin Zhang
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Hafumi Nishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Taniyama
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Graduate School of Information Sciences, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| |
Collapse
|
154
|
Go S, Lee DY, Choi WI, Jeong J. Association between use of antacid medications (proton pump inhibitors and histamine-2 receptor antagonists) and the incidence of lung cancer: A population-based cohort analysis. Medicine (Baltimore) 2022; 101:e30399. [PMID: 36086741 PMCID: PMC10980457 DOI: 10.1097/md.0000000000030399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
This study investigated the association between antacid administration and lung cancer incidence in a real-world setting. This was a nationwide, retrospective cohort study. The cohort comprised random samples (n = 1,031,392) from the entire South Korean population in 2002. The duration of antacid administration between January 2006 and December 2010 was recorded for each participant. Newly developed lung cancers were counted during the 5-year observation period (January 1, 2006 to December 31, 2010). A total of 437,370 participants aged ≥ 40 years were included, of whom 301,201 (68.9%) had antacid exposure before the diagnosis of lung cancer. A total of 1230 (0.28%) antacid-exposed patients developed lung cancer. Among patients with no antacid exposure or underexposure (n = 136,171), 597 (0.44%) developed lung cancer. In the multivariable analysis, antacid exposure before the diagnosis of lung cancer was independently associated with a reduced incidence of lung cancer (hazard ratio: 0.64; 95% confidence interval: 0.55-0.74; P < .001). Antacid use might be independently associated with a decreased risk of lung cancer development in this cohort study.
Collapse
Affiliation(s)
- Subin Go
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Dong Yoon Lee
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Il Choi
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Jihyeon Jeong
- Department of Statistics, Kyungpook National University, Bukgu, Daegu, Republic of Korea
| |
Collapse
|
155
|
Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics. Nat Commun 2022; 13:5268. [PMID: 36071046 PMCID: PMC9452532 DOI: 10.1038/s41467-022-32962-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is the major pathologic type of esophageal cancer in Asian population. To systematically evaluate the mutational features underlying clinical characteristics, we establish the integrated dataset of ESCC-META that consists of 1930 ESCC genomes from 33 datasets. The data process pipelines lead to well homogeneity of this integrated cohort for further analysis. We identified 11 mutational signatures in ESCC, some of which are related to clinical features, and firstly detect the significant mutated hotspots in TGFBR2 and IRF2BPL. We screen the survival related mutational features and found some genes had different prognostic impacts between early and late stage, such as PIK3CA and NFE2L2. Based on the results, an applicable approach of mutational score is proposed and validated to predict prognosis in ESCC. As an open-sourced, quality-controlled and updating mutational landscape, the ESCC-META dataset could facilitate further genomic and translational study in this field.
Collapse
|
156
|
Zhang L, Hsu JI, Goodell MA. PPM1D in Solid and Hematologic Malignancies: Friend and Foe? Mol Cancer Res 2022; 20:1365-1378. [PMID: 35657598 PMCID: PMC9437564 DOI: 10.1158/1541-7786.mcr-21-1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
In the face of constant genomic insults, the DNA damage response (DDR) is initiated to preserve genome integrity; its disruption is a classic hallmark of cancer. Protein phosphatase Mg2+/Mn2+-dependent 1D (PPM1D) is a central negative regulator of the DDR that is mutated or amplified in many solid cancers. PPM1D overexpression is associated with increased proliferative and metastatic behavior in multiple solid tumor types and patients with PPM1D-mutated malignancies have poorer prognoses. Recent findings have sparked an interest in the role of PPM1D in hematologic malignancies. Acquired somatic mutations may provide hematopoietic stem cells with a competitive advantage, leading to a substantial proportion of mutant progeny in the peripheral blood, an age-associated phenomenon termed "clonal hematopoiesis" (CH). Recent large-scale genomic studies have identified PPM1D to be among the most frequently mutated genes found in individuals with CH. While PPM1D mutations are particularly enriched in patients with therapy-related myeloid neoplasms, their role in driving leukemic transformation remains uncertain. Here, we examine the mechanisms through which PPM1D overexpression or mutation may drive malignancy by suppression of DNA repair, cell-cycle arrest, and apoptosis. We also discuss the divergent roles of PPM1D in the oncogenesis of solid versus hematologic cancers with a view to clinical implications and new therapeutic avenues.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Margaret A. Goodell
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Margaret A. Goodell, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030. E-mail:
| |
Collapse
|
157
|
Rahal Z, Sinjab A, Wistuba II, Kadara H. Game of clones: Battles in the field of carcinogenesis. Pharmacol Ther 2022; 237:108251. [PMID: 35850404 PMCID: PMC10249058 DOI: 10.1016/j.pharmthera.2022.108251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
Recent advances in bulk sequencing approaches as well as genomic decoding at the single-cell level have revealed surprisingly high somatic mutational burdens in normal tissues, as well as increased our understanding of the landscape of "field cancerization", that is, molecular and immune alterations in mutagen-exposed normal-appearing tissues that recapitulated those present in tumors. Charting the somatic mutational landscapes in normal tissues can have strong implications on our understanding of how tumors arise from mutagenized epithelium. Making sense of those mutations to understand the progression along the pathologic continuum of normal epithelia, preneoplasias, up to malignant tissues will help pave way for identification of ideal targets that can guide new strategies for preventing or eliminating cancers at their earliest stages of development. In this review, we will provide a brief history of field cancerization and its implications on understanding early stages of cancer pathogenesis and deviation from the pathologically "normal" state. The review will provide an overview of how mutations accumulating in normal tissues can lead to a patchwork of mutated cell clones that compete while maintaining an overall state of functional homeostasis. The review also explores the role of clonal competition in directing the fate of normal tissues and summarizes multiple mechanisms elicited in this phenomenon and which have been linked to cancer development. Finally, we highlight the importance of understanding mutations in normal tissues, as well as clonal competition dynamics (in both the epithelium and the microenvironment) and their significance in exploring new approaches to combatting cancer.
Collapse
Affiliation(s)
- Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, USA.
| |
Collapse
|
158
|
Raja Arul GL, Toruner MD, Gatenby RA, Carr RM. Ecoevolutionary biology of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:730-740. [PMID: 35821188 DOI: 10.1016/j.pan.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, is an aggressive disease predicted to be the 2nd cause of cancer mortality in the US by 2040. While first-line therapy has improved, 5-year overall survival has only increased from 5 to ∼10%, and surgical resection is only available for ∼20% of patients as most present with advanced disease, which is invariably lethal. PDAC has well-established highly recurrent mutations in four driver genes including KRAS, TP53, CDKN2A, and SMAD4. Unfortunately, these genetic drivers are not currently therapeutically actionable. Despite extensive sequencing efforts, few additional significantly recurrent and druggable drivers have been identified. In the absence of targetable mutations, chemotherapy remains the mainstay of treatment for most patients. Further, the role of the above driver mutations on PDAC initiation and early development is well-established. However, these mutations alone cannot account for PDAC heterogeneity nor discern early from advanced disease. Taken together, management of PDAC is an example highlighting the shortcomings of the current precision medicine paradigm. PDAC, like other malignancies, represents an ecoevolutionary process. Better understanding the disease through this lens can facilitate the development of novel therapeutic strategies to better control and cure PDAC. This review aims to integrate the current understanding of PDAC pathobiology into an ecoevolutionary framework.
Collapse
Affiliation(s)
| | - Merih D Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ryan M Carr
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
159
|
Abstract
Many cancers show an increase in incidence with age, and age is the biggest single risk factor for many cancers. However, the molecular basis of this relationship is poorly understood. Through a collection of review articles, our thematic issue discusses the link between aging and cancer in aspects including somatic mutations, proteostasis, mitochondria, metabolism, senescence, epigenetic regulation, immune regulation, DNA damage, and telomere function.
Collapse
Affiliation(s)
- Aaron Havas
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - P. D. Adams
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
160
|
Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia. Nat Commun 2022; 13:4501. [PMID: 36042201 PMCID: PMC9427775 DOI: 10.1038/s41467-022-32266-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
KMT2A-rearranged infant acute lymphoblastic leukemia (ALL) represents the most refractory type of childhood leukemia. To uncover the molecular heterogeneity of this disease, we perform RNA sequencing, methylation array analysis, whole exome and targeted deep sequencing on 84 infants with KMT2A-rearranged leukemia. Our multi-omics clustering followed by single-sample and single-cell inference of hematopoietic differentiation establishes five robust integrative clusters (ICs) with different master transcription factors, fusion partners and corresponding stages of B-lymphopoietic and early hemato-endothelial development: IRX-type differentiated (IC1), IRX-type undifferentiated (IC2), HOXA-type MLLT1 (IC3), HOXA-type MLLT3 (IC4), and HOXA-type AFF1 (IC5). Importantly, our deep mutational analysis reveals that the number of RAS pathway mutations predicts prognosis and that the most refractory subgroup of IC2 possesses 100% frequency and the heaviest burden of RAS pathway mutations. Our findings highlight the previously under-appreciated intra- and inter-patient heterogeneity of KMT2A-rearranged infant ALL and provide a rationale for the future development of genomics-guided risk stratification and individualized therapy.
Collapse
|
161
|
Homeostasis limits keratinocyte evolution. Proc Natl Acad Sci U S A 2022; 119:e2006487119. [PMID: 35998218 PMCID: PMC9436311 DOI: 10.1073/pnas.2006487119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human skin is riddled with mutations creating subclones of variable sizes. Some of these mutations are driver mutations, implicated in cancer development and progression, that appear to be under positive selection due to their relative sizes. We show how these driver and nondriver “passenger” mutations encode their history of division and loss within the tissue using a simple model combined with realistic mutation tracking. Using a three-dimensional in silico homeostatic epidermis model, we reveal that many mutations likely lack functional heterogeneity and are, instead, simply those that arise earlier in life within the basal layer. We use our model to reveal how functional differences conveyed by driver mutations could lead to a persistence phenotype while maintaining homeostasis. Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are “passengers” whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.
Collapse
|
162
|
Ogasawara T, Fujii Y, Kakiuchi N, Shiozawa Y, Sakamoto R, Ogawa Y, Ootani K, Ito E, Tanaka T, Watanabe K, Yoshida Y, Kimura N, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S. Genetic Analysis of Pheochromocytoma and Paraganglioma Complicating Cyanotic Congenital Heart Disease. J Clin Endocrinol Metab 2022; 107:2545-2555. [PMID: 35730597 DOI: 10.1210/clinem/dgac362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pheochromocytoma and paraganglioma (PPGL) may appear as a complication of cyanotic congenital heart disease (CCHD-PPGL) with frequent EPAS1 mutations, suggesting a close link between EPAS1 mutations and tissue hypoxia in CCHD-PPGL pathogenesis. OBJECTIVE Our aim is to further investigate the role of EPAS1 mutations in the hypoxia-driven mechanism of CCHD-PPGL pathogenesis, particularly focusing on metachronous and/or multifocal CCHD-PPGL tumors. METHODS We performed whole-exome sequencing (WES) for somatic and germline mutations in 15 PPGL samples from 7 CCHD patients, including 3 patients with metachronous and/or multifocal tumors, together with an adrenal medullary hyperplasia (AMH) sample. RESULTS We detected EPAS1 mutations in 15 out of 16 PPGL/AMH samples from 7 cases. Conspicuously, all EPAS1 mutations in each of 3 cases with multifocal or metachronous tumors were mutually independent and typical examples of parallel evolution, which is suggestive of strong positive selection of EPAS1-mutated clones. Compared to 165 The Cancer Genome Atlas non-CCHD-PPGL samples, CCHD-PPGL/AMH samples were enriched for 11p deletions (13/16) and 2p amplifications (4/16). Of particular note, the multiple metachronous PPGL tumors with additional copy number abnormalities developed 18 to 23 years after the resolution of hypoxemia, suggesting that CCHD-induced hypoxic environments are critical for positive selection of EPAS1 mutants in early life, but may no longer be required for development of PPGL in later life. CONCLUSION Our results highlight a key role of activated hypoxia-inducible factor 2α due to mutated EPAS1 in positive selection under hypoxic environments, although hypoxemia itself may not necessarily be required for the EPAS1-mutated clones to progress to PPGL.
Collapse
Affiliation(s)
- Tatsuki Ogasawara
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuki Ootani
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562,Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562,Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Yusaku Yoshida
- Department of Endocrine Surgery, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Noriko Kimura
- Department of Clinical Research Pathology Division, National Hospital Organization Hakodate Hospital, Hakodate 041-8512, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 14157, Sweden
| |
Collapse
|
163
|
Nair VS, Hui ABY, Chabon JJ, Esfahani MS, Stehr H, Nabet BY, Zhou L, Chaudhuri AA, Benson J, Ayers K, Bedi H, Ramsey M, Van Wert R, Antic S, Lui N, Backhus L, Berry M, Sung AW, Massion PP, Shrager JB, Alizadeh AA, Diehn M. Genomic Profiling of Bronchoalveolar Lavage Fluid in Lung Cancer. Cancer Res 2022; 82:2838-2847. [PMID: 35748739 PMCID: PMC9379362 DOI: 10.1158/0008-5472.can-22-0554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Genomic profiling of bronchoalveolar lavage (BAL) samples may be useful for tumor profiling and diagnosis in the clinic. Here, we compared tumor-derived mutations detected in BAL samples from subjects with non-small cell lung cancer (NSCLC) to those detected in matched plasma samples. Cancer Personalized Profiling by Deep Sequencing (CAPP-Seq) was used to genotype DNA purified from BAL, plasma, and tumor samples from patients with NSCLC. The characteristics of cell-free DNA (cfDNA) isolated from BAL fluid were first characterized to optimize the technical approach. Somatic mutations identified in tumor were then compared with those identified in BAL and plasma, and the potential of BAL cfDNA analysis to distinguish lung cancer patients from risk-matched controls was explored. In total, 200 biofluid and tumor samples from 38 cases and 21 controls undergoing BAL for lung cancer evaluation were profiled. More tumor variants were identified in BAL cfDNA than plasma cfDNA in all stages (P < 0.001) and in stage I to II disease only. Four of 21 controls harbored low levels of cancer-associated driver mutations in BAL cfDNA [mean variant allele frequency (VAF) = 0.5%], suggesting the presence of somatic mutations in nonmalignant airway cells. Finally, using a Random Forest model with leave-one-out cross-validation, an exploratory BAL genomic classifier identified lung cancer with 69% sensitivity and 100% specificity in this cohort and detected more cancers than BAL cytology. Detecting tumor-derived mutations by targeted sequencing of BAL cfDNA is technically feasible and appears to be more sensitive than plasma profiling. Further studies are required to define optimal diagnostic applications and clinical utility. SIGNIFICANCE Hybrid-capture, targeted deep sequencing of lung cancer mutational burden in cell-free BAL fluid identifies more tumor-derived mutations with increased allele frequencies compared with plasma cell-free DNA. See related commentary by Rolfo et al., p. 2826.
Collapse
Affiliation(s)
- Viswam S. Nair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Pulmonary, Critical Care & Sleep Medicine, University of Washington School of Medicine, Seattle, Washington
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Angela Bik-Yu Hui
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Jacob J. Chabon
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Mohammad S. Esfahani
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Barzin Y. Nabet
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Li Zhou
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Jalen Benson
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Kelsey Ayers
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Harmeet Bedi
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Meghan Ramsey
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Ryan Van Wert
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Sanja Antic
- Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Natalie Lui
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Leah Backhus
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Mark Berry
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Arthur W. Sung
- Division of Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| | - Pierre P. Massion
- Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joseph B. Shrager
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ash A. Alizadeh
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
164
|
A quantification method of somatic mutations in normal tissues and their accumulation in pediatric patients with chemotherapy. Proc Natl Acad Sci U S A 2022; 119:e2123241119. [PMID: 35895679 PMCID: PMC9351471 DOI: 10.1073/pnas.2123241119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Somatic mutations are accumulated in normal human tissues with aging and exposure to carcinogens. If we can accurately count any passenger mutations in any single DNA molecule, since their quantity is much larger than driver mutations, we can sensitively detect mutation accumulation in polyclonal normal tissues. Duplex sequencing, which tags both DNA strands in one DNA molecule, enables accurate count of such mutations, but requires a very large number of sequencing reads for each single sample of human-genome size. Here, we reduced the genome size to 1/90 using the BamHI restriction enzyme and established a cost-effective pipeline. The enzymatically cleaved and optimal sequencing (EcoSeq) method was able to count somatic mutations in a single DNA molecule with a sensitivity of as low as 3 × 10-8 per base pair (bp), as assessed by measuring artificially prepared mutations. Taking advantages of EcoSeq, we analyzed normal peripheral blood cells of pediatric sarcoma patients who received chemotherapy (n = 10) and those who did not (n = 10). The former had a mutation frequency of 31.2 ± 13.4 × 10-8 per base pair while the latter had 9.0 ± 4.5 × 10-8 per base pair (P < 0.001). The increase in mutation frequency was confirmed by analysis of the same patients before and after chemotherapy, and increased mutation frequencies persisted 46 to 64 mo after chemotherapy, indicating that the mutation accumulation constitutes a risk of secondary leukemia. EcoSeq has the potential to reveal accumulation of somatic mutations and exposure to environmental factors in any DNA samples and will contribute to cancer risk estimation.
Collapse
|
165
|
Xiong X, Ke X, Wang L, Lin Y, Wang S, Yao Z, Li K, Luo Y, Liu F, Pan Y, Yeung SJ, Helfrich W, Zhang H. Neoantigen-based cancer vaccination using chimeric RNA-loaded dendritic cell-derived extracellular vesicles. J Extracell Vesicles 2022; 11:e12243. [PMID: 35927827 PMCID: PMC9451527 DOI: 10.1002/jev2.12243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer vaccines critically rely on the availability of targetable immunogenic cancer-specific neoepitopes. However, mutation-based immunogenic neoantigens are rare or even non-existent in subgroups of cancer types. To address this issue, we exploited a cancer-specific aberrant transcription-induced chimeric RNA, designated A-Pas chiRNA, as a possible source of clinically relevant and targetable neoantigens. A-Pas chiRNA encodes a recently discovered cancer-specific chimeric protein that comprises full-length astrotactin-2 (ASTN2) C-terminally fused in-frame to the antisense sequence of the 18th intron of pregnancy-associated plasma protein-A (PAPPA). We used extracellular vesicles (EVs) from A-Pas chiRNA-transfected dendritic cells (DCs) to produce the cell-free anticancer vaccine DEXA-P . Treatment of immunocompetent cancer-bearing mice with DEXA-P inhibited tumour growth and prolonged animal survival. In summary, we demonstrate for the first time that cancer-specific transcription-induced chimeric RNAs can be exploited to produce a cell-free cancer vaccine that induces potent CD8+ T cell-mediated anticancer immunity. Our novel approach may be particularly useful for developing cancer vaccines to treat malignancies with low mutational burden or without mutation-based antigens. Moreover, this cell-free anticancer vaccine approach may offer several practical advantages over cell-based vaccines, such as ease of scalability and genetic modifiability as well as enhanced shelf life.
Collapse
Affiliation(s)
- Xiao Xiong
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Xiurong Ke
- Department of SurgeryLaboratory for Translational Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Shantou University Medical CollegeShantouGuangdongChina
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Yusheng Lin
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
- Shantou University Medical CollegeShantouGuangdongChina
- Department of HematologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Shuhong Wang
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Zhimeng Yao
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Yichen Luo
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Fan Liu
- Institute of Precision Cancer Medicine and Pathology, and Department of PathologySchool of Medicineand Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityJinan UniversityGuangzhouGuangdongChina
| | - Yunlong Pan
- Department of General SurgeryThe First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and PathologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
| | - Sai‐Ching J. Yeung
- Department of Emergency MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Endocrine Neoplasia and Hormonal DisordersUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Wijnand Helfrich
- Department of SurgeryLaboratory for Translational Surgical OncologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Hao Zhang
- Department of General SurgeryThe First Affiliated Hospital of Jinan University, and Institute of Precision Cancer Medicine and PathologySchool of MedicineJinan UniversityGuangzhouGuangdongChina
- Minister of Education Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
166
|
Shalabi SF, LaBarge MA. Cellular and molecular mechanisms of breast cancer susceptibility. Clin Sci (Lond) 2022; 136:1025-1043. [PMID: 35786748 DOI: 10.1042/cs20211158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
There is a plethora of recognized risk factors for breast cancer (BC) with poorly understood or speculative biological mechanisms. The lack of prevention options highlights the importance of understanding the mechanistic basis of cancer susceptibility and finding new targets for breast cancer prevention. Until now, we have understood risk and cancer susceptibility primarily through the application of epidemiology and assessing outcomes in large human cohorts. Relative risks are assigned to various human behaviors and conditions, but in general the associations are weak and there is little understanding of mechanism. Aging is by far the greatest risk factor for BC, and there are specific forms of inherited genetic risk that are well-understood to cause BC. We propose that bringing focus to the biology underlying these forms of risk will illuminate biological mechanisms of BC susceptibility.
Collapse
Affiliation(s)
- Sundus F Shalabi
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Medical Research Center, Al-Quds University, Jerusalem, Palestine
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA, U.S.A
- Center for Cancer Biomarkers Research (CCBIO), Bergen, Norway
| |
Collapse
|
167
|
Manders F, van Boxtel R, Middelkamp S. The Dynamics of Somatic Mutagenesis During Life in Humans. FRONTIERS IN AGING 2022; 2:802407. [PMID: 35822044 PMCID: PMC9261377 DOI: 10.3389/fragi.2021.802407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
From conception to death, human cells accumulate somatic mutations in their genomes. These mutations can contribute to the development of cancer and non-malignant diseases and have also been associated with aging. Rapid technological developments in sequencing approaches in the last few years and their application to normal tissues have greatly advanced our knowledge about the accumulation of these mutations during healthy aging. Whole genome sequencing studies have revealed that there are significant differences in mutation burden and patterns across tissues, but also that the mutation rates within tissues are surprisingly constant during adult life. In contrast, recent lineage-tracing studies based on whole-genome sequencing have shown that the rate of mutation accumulation is strongly increased early in life before birth. These early mutations, which can be shared by many cells in the body, may have a large impact on development and the origin of somatic diseases. For example, cancer driver mutations can arise early in life, decades before the detection of the malignancy. Here, we review the recent insights in mutation accumulation and mutagenic processes in normal tissues. We compare mutagenesis early and later in life and discuss how mutation rates and patterns evolve during aging. Additionally, we outline the potential impact of these mutations on development, aging and disease.
Collapse
Affiliation(s)
- Freek Manders
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| | - Sjors Middelkamp
- Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
168
|
Xie W, Yang T, Zuo J, Ma Z, Yu W, Hu Z, Song Z. Chinese and Global Burdens of Gastrointestinal Cancers From 1990 to 2019. Front Public Health 2022; 10:941284. [PMID: 35910886 PMCID: PMC9326121 DOI: 10.3389/fpubh.2022.941284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Gastrointestinal (GI) cancers are an important component of the tumor. This study aimed to investigate the burden of six major GI cancers in China and globally from 1990 to 2019. Methods We conducted a cross-sectional study based on the Global Burden of Disease Study (GBD) 2019. Indicators on incidence, deaths, disability-adjusted life-years (DALYs), and risk factors for esophageal, stomach, liver, pancreatic, colon and rectum, and gallbladder and biliary tract cancers were collected and analyzed for time trends. The contribution of each cancer and the proportion of cases in China among global cases were further reported. Results Global incidence cases, death cases, and DALYs of GI cancers showed an overall ascending trend over the past 30 years, but there was temporal and geographical variation across cancer types. By 2019, colon and rectum cancer had overtaken stomach cancer as the most burdensome GI cancer globally. However, stomach cancer narrowly continued to be the most burdensome GI in China. In addition, the proportion of incidence and death cases of stomach, pancreatic, colon and rectum, and gallbladder and biliary tract cancers among global cases had further increased. It was noteworthy that the burden of liver cancer in China has been alleviated significantly. Conclusion GI cancers remain a major public health problem in China and globally. Despite the temporal and geographic diversity of different cancers, targeted primary and secondary prevention are still necessary for the future to face these unknown challenges.
Collapse
Affiliation(s)
- Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jieliang Zuo
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weidi Yu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengyu Hu
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Surgery, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Zhenshun Song
| |
Collapse
|
169
|
Shirai T, Sekai M, Kozawa K, Sato N, Tanimura N, Kon S, Matsumoto T, Murakami T, Ito S, Tilston-Lunel A, Varelas X, Fujita Y. Basal extrusion of single-oncogenic mutant cells induces dome-like structures with altered microenvironments. Cancer Sci 2022; 113:3710-3721. [PMID: 35816400 PMCID: PMC9633292 DOI: 10.1111/cas.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
At the initial stage of carcinogenesis, oncogenic transformation occurs in single cells within epithelial layers. However, the behavior and fate of the newly emerging transformed cells remain enigmatic. Here, using originally established mouse models, we investigate the fate of RasV12‐transformed cells that appear in a mosaic manner within epithelial tissues. In the lung bronchial epithelium, most majority of RasV12‐transformed cells are apically extruded, whereas noneliminated RasV12 cells are often basally delaminated leading to various noncell‐autonomous changes in surrounding environments; macrophages and activated fibroblasts are accumulated, and normal epithelial cells overlying RasV12 cells overproliferate and form a convex multilayer, which is termed a ‘dome‐like structure’. In addition, basally extruded RasV12 cells acquire certain features of epithelial–mesenchymal transition (EMT). Furthermore, the expression of COX‐2 is profoundly elevated in RasV12 cells in dome‐like structures, and treatment with the COX inhibitor ibuprofen suppresses the recruitment of activated fibroblasts and moderately diminishes the formation of dome‐like structures. Therefore, basal extrusion of single‐oncogenic mutant cells can induce a tumor microenvironment and EMT and generate characteristic precancerous lesions, providing molecular insights into the earlier steps of cancer development.
Collapse
Affiliation(s)
- Takanobu Shirai
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Miho Sekai
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,KAN Research Institute, Inc., Kobe, Japan
| | - Kei Kozawa
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nanami Sato
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Tanimura
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Tomohiro Matsumoto
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| | - Takeru Murakami
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shoko Ito
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,KAN Research Institute, Inc., Kobe, Japan
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, Japan
| |
Collapse
|
170
|
Galeota-Sprung B, Sniegowski P. Aging: Lifespan and the evolution of somatic mutation rates. Curr Biol 2022; 32:R753-R755. [PMID: 35820389 DOI: 10.1016/j.cub.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new study finds an inverse correlation between lifespan and somatic mutation rate in mammals. This suggests an evolutionary relationship between aging and somatic mutation rates, perhaps mediated by selection against noncancerous selfish lineages.
Collapse
Affiliation(s)
- Ben Galeota-Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA.
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19063, USA
| |
Collapse
|
171
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
172
|
Effect of chemoradiation on the development of second primary cancers after endoscopic resection of T1 esophageal squamous cell carcinoma. Esophagus 2022; 19:469-476. [PMID: 35320430 DOI: 10.1007/s10388-022-00917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/10/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Patients with early esophageal squamous cell carcinoma (ESCC) may develop multiple second primary ESCC and cancers in other organs even after curative endoscopic resection (ER). We investigated whether administration of chemoradiotherapy (CRT) after ER decreases the incidence of second primary cancers. METHODS We conducted a post hoc analysis of the prospective study. Among the registered 170 patients with clinical submucosal ESCC, 74 underwent ER alone, and 96 underwent ER followed by CRT (ER + CRT) because of pathological results of submucosal or lympho-vascular invasion. We compared the incidence of second primary cancers in esophagus and in other organs between two treatment groups. A univariate analysis was performed to investigate the related risk factors. All patients were followed up with esophagogastroduodenoscopy and CT every 4 months for the first 3 years and every 6 months thereafter. RESULTS Sixty-one ESCC were detected in 32 patients, and the 3-year cumulative incidence of multiple ESCCs was not different between ER + CRT and ER alone (10.4% vs. 13.5%). Sixty-three second primary cancers in other organs were detected in 45 patients, and there was no difference in the cumulative incidence between two groups. The risk factors for multiple ESCCs were high alcohol consumption and grade C multiple Lugol-voiding lesions. Heavy drinker or patients with grade C multiple Lugol-voiding lesion rather than CRT were at risk for second primary ESCC. CONCLUSION CRT after ER did not decrease the cumulative incidence of second primary ESCC nor cancers in other organs comparing with ER alone.
Collapse
|
173
|
Maslov PZ, Sabharwal B, Ahmadi A, Baliga R, Narula J. Religious Fasting and the Vascular Health. Indian Heart J 2022; 74:270-274. [PMID: 35917971 PMCID: PMC9453020 DOI: 10.1016/j.ihj.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
174
|
Mustjoki S. Somatic mutations in "benign" blood diseases. Semin Hematol 2022; 59:121-122. [PMID: 36115687 DOI: 10.1053/j.seminhematol.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
175
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
176
|
Luijts T, Elliott K, Siaw JT, Van de Velde J, Beyls E, Claeys A, Lammens T, Larsson E, Willaert W, Vral A, Van den Eynden J. A clinically annotated post-mortem approach to study multi-organ somatic mutational clonality in normal tissues. Sci Rep 2022; 12:10322. [PMID: 35725896 PMCID: PMC9209481 DOI: 10.1038/s41598-022-14240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Recent research on normal human tissues identified omnipresent clones of cells, driven by somatic mutations known to be responsible for carcinogenesis (e.g., in TP53 or NOTCH1). These new insights are fundamentally changing current tumor evolution models, with broad oncological implications. Most studies are based on surgical remnant tissues, which are not available for many organs and rarely in a pan-organ setting (multiple organs from the same individual). Here, we describe an approach based on clinically annotated post-mortem tissues, derived from whole-body donors that are routinely used for educational purposes at human anatomy units. We validated this post-mortem approach using UV-exposed and unexposed epidermal skin tissues and confirm the presence of positively selected NOTCH1/2-, TP53- and FAT1-driven clones. No selection signals were detected in a set of immune genes or housekeeping genes. Additionally, we provide the first evidence for smoking-induced clonal changes in oral epithelia, likely underlying the origin of head and neck carcinogenesis. In conclusion, the whole-body donor-based approach provides a nearly unlimited healthy tissue resource to study mutational clonality and gain fundamental mutagenic insights in the presumed earliest stages of tumor evolution.
Collapse
Affiliation(s)
- Tom Luijts
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerryn Elliott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joris Van de Velde
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Elien Beyls
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Arne Claeys
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Cancer Research Institute Ghent, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wouter Willaert
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
177
|
Kadian LK, Arora M, Prasad CP, Pramanik R, Chauhan SS. Signaling pathways and their potential therapeutic utility in esophageal squamous cell carcinoma. Clin Transl Oncol 2022; 24:1014-1032. [PMID: 34990001 DOI: 10.1007/s12094-021-02763-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is a complex gastrointestinal malignancy with an extremely poor outcome. Approximately 80% of cases of this malignancy in Asian countries including India are of squamous cell origin, termed Esophageal Squamous Cell Carcinoma (ESCC).The five-year survival rate in ESCC patients is less than 20%. Neo-adjuvant chemo-radiotherapy (NACRT) followed by surgical resection remains the major therapeutic strategy for patients with operable ESCC. However, resistance to NACRT and local recurrence after initial treatment are the leading cause of dismal outcomes in these patients. Therefore, an alternative strategy to promote response to the therapy and reduce the post-operative disease recurrence is highly needed. At the molecular level, wide variations have been observed in tumor characteristics among different populations, nevertheless, several common molecular features have been identified which orchestrate disease progression and clinical outcome in the malignancy. Therefore, determination of candidate molecular pathways for targeted therapy remains the mainstream idea of focus in ESCC research. In this review, we have discussed the key signaling pathways associated with ESCC, i.e., Notch, Wnt, and Nrf2 pathways, and their crosstalk during disease progression. We further discuss the recent developments of novel agents to target these pathways in the context of targeted cancer therapy. In-depth research of the signaling pathways, gene signatures, and a combinatorial approach may help in discovering targeted therapy for ESCC.
Collapse
Affiliation(s)
- L K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - C P Prasad
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - R Pramanik
- Department of Medical Oncology, Dr. B. R. Ambedkar-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - S S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
178
|
Mitchell E, Spencer Chapman M, Williams N, Dawson KJ, Mende N, Calderbank EF, Jung H, Mitchell T, Coorens THH, Spencer DH, Machado H, Lee-Six H, Davies M, Hayler D, Fabre MA, Mahbubani K, Abascal F, Cagan A, Vassiliou GS, Baxter J, Martincorena I, Stratton MR, Kent DG, Chatterjee K, Parsy KS, Green AR, Nangalia J, Laurenti E, Campbell PJ. Clonal dynamics of haematopoiesis across the human lifespan. Nature 2022; 606:343-350. [PMID: 35650442 PMCID: PMC9177428 DOI: 10.1038/s41586-022-04786-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
Collapse
Affiliation(s)
- Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicole Mende
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F Calderbank
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | | - David H Spencer
- Department of Medicine, McDonnell Genome Institute, Washington University, St Louis, MO, USA
| | | | | | - Megan Davies
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, UK
| | - Daniel Hayler
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Margarete A Fabre
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - George S Vassiliou
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
179
|
Kataoka T, Okudela K, Matsumura M, Baba T, Kitamura H, Arai H, Suzuki T, Koike C, Mutsui H, Sekiya M, Sugiyama M, Takemura T, Iwasawa T, Ogura T, Ohashi K. Significant accumulation of KRAS mutations in bronchiolar metaplasia‑associated honeycomb lesions of interstitial pneumonia. Oncol Lett 2022; 24:225. [PMID: 35720499 PMCID: PMC9185152 DOI: 10.3892/ol.2022.13346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Interstitial pneumonia (IP) is a major risk factor for lung adenocarcinoma (LADC). IP-related LADC predominantly develops in the bronchiolar metaplasia lining in honeycomb lesions. Kirsten rat sarcoma virus (KRAS) is the most common oncogene mutated in IP-related LADC. The present study examined the metaplastic epithelia in honeycomb lesions for KRAS mutations using digital droplet polymerase chain reaction (ddPCR), a sensitive method used to detect infrequent mutations. Significantly higher KRAS mutation variant allele frequencies (VAFs) were detected in the metaplastic lung epithelia from 13 patients with IP compared with those in 46 non-lesioned lung samples from patients without IP (G12V, P=0.0004, G12C, P=0.0181, and G12A, P=0.0234; Mann Whitney U test). Multivariate analyses revealed that higher KRAS G12V (logistic regression model; P=0.0133, odds ratio=7.11) and G12C (P=0.0191, odds ratio=5.81) VAFs in patients with IP were independent of confounding variables, such as smoking and age. In patients with IP, metaplastic epithelia exhibited significantly higher KRAS G12V and G12C VAFs compared with the non-lesioned counterparts (paired t-test; G12V, P=0.0158, G12C, P=0.0465). These results suggested that IP could increase KRAS mutations and supported the hypothesis that bronchiolar metaplasia could be a precursor for IP-related LADC.
Collapse
Affiliation(s)
- Toshiaki Kataoka
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Koji Okudela
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Mai Matsumura
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Tomohisa Baba
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Hideya Kitamura
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Hiromasa Arai
- Division of Surgery, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Takeshisa Suzuki
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Chihiro Koike
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Hideaki Mutsui
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| | - Motoki Sekiya
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Misaki Sugiyama
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Tamiko Takemura
- Division of Pathology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Tae Iwasawa
- Division of Radiology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Takashi Ogura
- Division of Respirology, Kanagawa Prefectural Cardiovascular and Respiratory Center Hospital, Yokohama, Kanagawa 236‑0051, Japan
| | - Kenichi Ohashi
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236‑0004, Japan
| |
Collapse
|
180
|
Liu M, Liu Y, Zhou R, Liu Z, Guo C, Xu R, Li F, Liu A, Yang H, Zhang S, Shen L, Duan L, Wu Q, Zhao M, Su H, Liu F, Pan Y, Cai H, He Z, Ke Y. Absence of NOTCH1 mutation and presence of CDKN2A deletion predict progression of esophageal lesions. J Pathol 2022; 258:38-48. [PMID: 35612571 DOI: 10.1002/path.5970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
Currently surveillance for esophageal squamous cell carcinoma (ESCC) runs a risk of under-estimation of early lesions which show absence of iodine staining, with no or only mild histologic changes. Development of molecular markers which indicate risk of progression is thus warranted. We performed whole exome sequencing (WES) on biopsies from two sequential endoscopies of a single esophageal lesion and matching blood samples. There were 27 pairs of age, gender, pathologic stage and sampling interval matched progressors and non-progressors identified in a prospective community-based ESCC screening trial. Putative molecular progression markers for ESCC were first evaluated by comparing somatic mutation, copy number alteration (CNA) and mutational signature information among progressors and non-progressors. These markers were then validated with another 24 pairs of matched progressors and non-progressors from the same population using gene alteration status identified by target sequencing and quantitative PCR. Progressors had more somatic mutation and CNA burden, as well as apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) and age-related signature weights as compared with non-progressors. A gene score consisting of somatic NOTCH1 mutation and CDKN2A deletion is predictive of risk of progression in lesions which show absence of iodine staining under endoscopy but have no or only mild dysplasia. This gene score was also validated in an external cohort of matched progressors and non-progressors. Absence of NOTCH1 mutation and presence of CDKN2A deletion are markers of progression in squamous lesions of the esophagus. The gene score established in this study would be ideal for assisting the pathologist identifying high-risk individuals who are potentially "missed" or subject to a risk under-estimation by histologic analysis and might improve the performance of ESCC surveillance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengfei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Ren Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Zhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Chuanhai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Ruiping Xu
- Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Fenglei Li
- Hua County People's Hospital, Henan Province, PR China
| | - Anxiang Liu
- Endoscopy Center, Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Haijun Yang
- Department of Pathology, Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Sanshen Zhang
- Department of Pathology, Anyang Cancer Hospital, Anyang, Henan Province, PR China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, PR China
| | - Qi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Meng Zhao
- Novogene Bioinformatics Technology Co., Ltd, Beijing, PR China
| | - Hong Su
- Novogene Bioinformatics Technology Co., Ltd, Beijing, PR China
| | - Fangfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Yaqi Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Hong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Zhonghu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| | - Yang Ke
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics, Peking University Cancer Hospital and Institute, Beijing, PR China
| |
Collapse
|
181
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
182
|
Maheden K, Zhang VW, Shakiba N. The Field of Cell Competition Comes of Age: Semantics and Technological Synergy. Front Cell Dev Biol 2022; 10:891569. [PMID: 35646896 PMCID: PMC9132545 DOI: 10.3389/fcell.2022.891569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells experience many selective pressures which shape their cellular populations, potentially pushing them to skew towards dominance of a few break-through clones. An evolutionarily conserved answer to curb these aberrant selective pressures is cell competition, the elimination of a subset of cells by their neighbours in a seemingly homogenous population. Cell competition in mammalian systems is a relatively recent discovery that has now been observed across many tissue systems, such as embryonic, haematopoietic, intestinal, and epithelial compartments. With this rapidly growing field, there is a need to revisit and standardize the terminology used, much of which has been co-opted from evolutionary biology. Further, the implications of cell competition across biological scales in organisms have been difficult to capture. In this review, we make three key points. One, we propose new nomenclature to standardize concepts across dispersed studies of different types of competition, each of which currently use the same terminology to describe different phenomena. Second, we highlight the challenges in capturing information flow across biological scales. Third, we challenge the field to incorporate next generation technologies into the cell competition toolkit to bridge these gaps. As the field of cell competition matures, synergy between cutting edge tools will help elucidate the molecular events which shape cellular growth and death dynamics, allowing a deeper examination of this evolutionarily conserved mechanism at the core of multicellularity.
Collapse
Affiliation(s)
| | | | - Nika Shakiba
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
183
|
Liu T, Zhao X, Lin Y, Luo Q, Zhang S, Xi Y, Chen Y, Lin L, Fan W, Yang J, Ma Y, Maity AK, Huang Y, Wang J, Chang J, Lin D, Teschendorff AE, Wu C. Computational identification of preneoplastic cells displaying high stemness and risk of cancer progression. Cancer Res 2022; 82:2520-2537. [PMID: 35536873 DOI: 10.1158/0008-5472.can-22-0668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Evidence points towards the differentiation state of cells as a marker of cancer risk and progression. Measuring the differentiation state of single cells in a preneoplastic population could thus enable novel strategies for early detection and risk prediction. Recent maps of somatic mutagenesis in normal tissues from young healthy individuals have revealed cancer driver mutations, indicating that these do not correlate well with differentiation state and that other molecular events also contribute to cancer development. We hypothesized that the differentiation state of single cells can be measured by estimating the regulatory activity of the transcription factors (TFs) that control differentiation within that cell lineage. To this end, we present a novel computational method called CancerStemID that estimates a stemness index of cells from single-cell RNA-Seq data. CancerStemID is validated in two human esophageal squamous cell carcinoma (ESCC) cohorts, demonstrating how it can identify undifferentiated preneoplastic cells whose transcriptomic state is overrepresented in invasive cancer. Spatial transcriptomics and whole-genome bisulfite sequencing demonstrated that differentiation activity of tissue-specific TFs was decreased in cancer cells compared to the basal cell-of-origin layer and established that differentiation state correlated with differential DNA methylation at the promoters of these TFs, independently of underlying NOTCH1 and TP53 mutations. The findings were replicated in a mouse model of ESCC development, and the broad applicability of CancerStemID to other cancer-types was demonstrated. In summary, these data support an epigenetic stem-cell model of oncogenesis and highlight a novel computational strategy to identify stem-like preneoplastic cells that undergo positive selection.
Collapse
Affiliation(s)
- Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University (PKU), Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Ma
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Alok K Maity
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University (PKU), Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- CAMS Oxford Institute (COI), Chinese Academy of Medical Sciences, Beijing, China
- CAMS key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
184
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
185
|
Liang J, Wang Y, Cai L, Liu J, Yan J, Chen X, Wu X, Chen Q. Comparative Genomic Analysis Reveals Genetic Variations in Multiple Primary Esophageal Squamous Cell Carcinoma of Chinese Population. Front Oncol 2022; 12:868301. [PMID: 35515115 PMCID: PMC9065449 DOI: 10.3389/fonc.2022.868301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and lethal malignant tumors. The incidence of malignant transformation of esophageal mucosa increases greatly due to long-term exposure to factors such as smoking, drinking, and poor eating habits. Furthermore, multiple primary tumors could occur synchronously or asynchronously in the upper aerodigestive tract, especially in the esophagus, adding difficulty to the treatment of ESCC. Genetic mutations are important during the malignant transformation from normal mucosa to esophageal cancer, but the underlying mechanism has not been fully elucidated. In this study, we used whole-exome sequencing (WES) to profile genetic variations in physiologically normal mucosa (PNM) and ESCC tumors, as well as PNM of non-ESCC subjects. We found significant differences in mutation frequencies of NOTCH1 and NOTCH2, copy number variations (CNVs) at both gene and chromosomal arm levels, and cancer-related HIPPO, WNT, and NRF2 signaling pathways between ESCC tumors and normal mucosa. Our analysis of both primary tumors and paired PNM in bifocal ESCC revealed three different primary tumor evolution modes, and the most common mode exhibited a complete genomic divergence in all the samples from the same patient. Furthermore, the mutation frequency of TP53 was significantly higher in ESCC cases than that in non-ESCC cases. Overall, our results provide important evidence for further elucidating the mechanisms of genetic mutations underlying the cause of ESCC.
Collapse
Affiliation(s)
- Jinxiao Liang
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yinjie Wang
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lei Cai
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinshi Liu
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaoying Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qixun Chen
- Department of Oncological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
186
|
Solary E, Abou-Zeid N, Calvo F. Ageing and cancer: a research gap to fill. Mol Oncol 2022; 16:3220-3237. [PMID: 35503718 PMCID: PMC9490141 DOI: 10.1002/1878-0261.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
The complex mechanisms of ageing biology are increasingly understood. Interventions to reduce or delay ageing‐associated diseases are emerging. Cancer is one of the diseases promoted by tissue ageing. A clockwise mutational signature is identified in many tumours. Ageing might be a modifiable cancer risk factor. To reduce the incidence of ageing‐related cancer and to detect the disease at earlier stages, we need to understand better the links between ageing and tumours. When a cancer is established, geriatric assessment and measures of biological age might help to generate evidence‐based therapeutic recommendations. In this approach, patients and caregivers would include the respective weight to give to the quality of life and survival in the therapeutic choices. The increasing burden of cancer in older patients requires new generations of researchers and geriatric oncologists to be trained, to properly address disease complexity in a multidisciplinary manner, and to reduce health inequities in this population of patients. In this review, we propose a series of research challenges to tackle in the next few years to better prevent, detect and treat cancer in older patients while preserving their quality of life.
Collapse
Affiliation(s)
- Eric Solary
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,Gustave Roussy Cancer Center, INSERM U1287, Villejuif, France
| | - Nancy Abou-Zeid
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France
| | - Fabien Calvo
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université de Paris, Paris, France
| |
Collapse
|
187
|
Vanni D, Borsani O, Nannya Y, Sant'Antonio E, Trotti C, Casetti IC, Pietra D, Gallì A, Zibellini S, Ferretti VV, Malcovati L, Ogawa S, Arcaini L, Rumi E. Haematological malignancies in relatives of patients affected with myeloproliferative neoplasms. EJHAEM 2022; 3:475-479. [PMID: 35846061 PMCID: PMC9176120 DOI: 10.1002/jha2.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
In a cohort of 3131 patients with myeloproliferative neoplasms (MPNs), we identified 200 patients (6.4%) who reported a second case of haematological malignancies (HM) in first- or second-degree relatives. The occurrence of a second HM in the family was not influenced by MPN subtype, sex or driver mutation, while it was associated with age at MPN diagnosis: 8.5% of patients diagnosed with MPN younger than 45 years had a second relative affected with HM compared to 5.5% of those diagnosed at the age of 45 years or older (p = 0.003), thus suggesting a genetic predisposition to HM with early onset.
Collapse
Affiliation(s)
- Daniele Vanni
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Oscar Borsani
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Yasuhito Nannya
- Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
- Division of Hematopoietic Disease ControlThe Institute of Medical SciencesThe University of TokyoTokyoJapan
| | | | - Chiara Trotti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Daniela Pietra
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Anna Gallì
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Silvia Zibellini
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Virginia Valeria Ferretti
- Service of Clinical Epidemiology and BiostatisticsFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Luca Malcovati
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
| | - Luca Arcaini
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| | - Elisa Rumi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HaematologyFondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San MatteoPaviaItaly
| |
Collapse
|
188
|
Franco I, Revêchon G, Eriksson M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 2022; 21:e13613. [PMID: 35435316 PMCID: PMC9124308 DOI: 10.1111/acel.13613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by the progressive accumulation of permanent changes to the genomic sequence, termed somatic mutations. Small mutations, including single‐base substitutions and insertions/deletions, are key determinants of the malignant transformations leading to cancer, but their role as initiators of other age‐related phenotypes is controversial. Here, we present recent advances in the study of somatic mutagenesis in aging tissues and posit that the current uncertainty about its causal effects in the aging process is due to technological and methodological weaknesses. We highlight classical and novel experimental systems, including premature aging syndromes, that could be used to model the increase of somatic mutation burden and understand its functional role. It is important that studies are designed to take into account the biological context and peculiarities of each tissue and that the downstream impact of somatic mutation accumulation is measured by methods able to resolve subtle cellular changes.
Collapse
Affiliation(s)
- Irene Franco
- Cystic Kidney Disorders Unit Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| |
Collapse
|
189
|
Takeuchi Y, Yoshida K, Halik A, Kunitz A, Suzuki H, Kakiuchi N, Shiozawa Y, Yokoyama A, Inoue Y, Hirano T, Yoshizato T, Aoki K, Fujii Y, Nannya Y, Makishima H, Pfitzner BM, Bullinger L, Hirata M, Jinnouchi K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Okamoto T, Haga H, Ogawa S, Damm F. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer 2022; 151:565-577. [PMID: 35484982 DOI: 10.1002/ijc.34051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Myxofibrosarcoma (MFS) is a rare subtype of sarcoma, whose genetic basis is poorly understood. We analyzed 69 MFS cases using whole-genome (WGS), whole-exome (WES), and/or targeted-sequencing (TS). Newly sequenced genomic data were combined with additional deposited 116 MFS samples. WGS identified a high number of structural variations (SVs) per tumor most frequently affecting the TP53 and RB1 loci, 40% of tumors showed a BRCAness-associated mutation signature, and evidence of chromothripsis was found in all cases. Most frequently mutated /copy number altered genes affected known disease drivers such as TP53 (56.2%), CDKN2A/B (29.7%), RB1 (27.0%), ATRX (19.5%), and HDLBP (18.9%). Several previously unappreciated genetic aberrations including MUC17, FLG, and ZNF780A were identified in more than 20% of patients. Longitudinal analysis of paired diagnosis and relapse time points revealed a 1.2-fold mutation number increase accompanied with substantial changes in clonal composition over time. This study highlights the genetic complexity underlying sarcomagenesis of MFS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.,Research Fellowships of Japan Society for the Promotion of Science for Young Scientists
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Adriane Halik
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Annegret Kunitz
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hiromichi Suzuki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tetsuichi Yoshizato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Aoki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoichi Fujii
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Makishima
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Keita Jinnouchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yuichi Shiraishi
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Kenichi Chiba
- Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Okamoto
- Department of Orthopaedic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.,Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), partner site Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
190
|
Paulson TG, Galipeau PC, Oman KM, Sanchez CA, Kuhner MK, Smith LP, Hadi K, Shah M, Arora K, Shelton J, Johnson M, Corvelo A, Maley CC, Yao X, Sanghvi R, Venturini E, Emde AK, Hubert B, Imielinski M, Robine N, Reid BJ, Li X. Somatic whole genome dynamics of precancer in Barrett's esophagus reveals features associated with disease progression. Nat Commun 2022; 13:2300. [PMID: 35484108 PMCID: PMC9050715 DOI: 10.1038/s41467-022-29767-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
While the genomes of normal tissues undergo dynamic changes over time, little is understood about the temporal-spatial dynamics of genomes in premalignant tissues that progress to cancer compared to those that remain cancer-free. Here we use whole genome sequencing to contrast genomic alterations in 427 longitudinal samples from 40 patients with stable Barrett’s esophagus compared to 40 Barrett’s patients who progressed to esophageal adenocarcinoma (ESAD). We show the same somatic mutational processes are active in Barrett’s tissue regardless of outcome, with high levels of mutation, ESAD gene and focal chromosomal alterations, and similar mutational signatures. The critical distinction between stable Barrett’s versus those who progress to cancer is acquisition and expansion of TP53−/− cell populations having complex structural variants and high-level amplifications, which are detectable up to six years prior to a cancer diagnosis. These findings reveal the timing of common somatic genome dynamics in stable Barrett’s esophagus and define key genomic features specific to progression to esophageal adenocarcinoma, both of which are critical for cancer prevention and early detection strategies. Barrett’s esophagus is a pre-malignant condition that can progress to esophageal cancer. Here, the authors carry out whole genome sequencing of samples from patients who did or did not progress to cancer and find that mutations in many genes occur regardless of progression status, but also find features associated with progressive disease.
Collapse
Affiliation(s)
- Thomas G Paulson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.
| | - Patricia C Galipeau
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Kenji M Oman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Carissa A Sanchez
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195-5065, USA
| | - Lucian P Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA
| | - Kevin Hadi
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Minita Shah
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Kanika Arora
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | | | - Molly Johnson
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Andre Corvelo
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiaotong Yao
- New York Genome Center (NYGC), New York, NY, 10013, USA
| | | | | | | | | | - Marcin Imielinski
- New York Genome Center (NYGC), New York, NY, 10013, USA.,Department of Pathology and Laboratory Medicine, Englander Institute for Precision Medicine, Institute for Computational Biomedicine and Meyer Cancer Center, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Brian J Reid
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, 98195-5065, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xiaohong Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA.
| |
Collapse
|
191
|
Single cell transcriptomic analysis reveals cellular diversity of murine esophageal epithelium. Nat Commun 2022; 13:2167. [PMID: 35443762 PMCID: PMC9021266 DOI: 10.1038/s41467-022-29747-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2022] [Indexed: 12/09/2022] Open
Abstract
Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction. We compare single cell transcriptomic profiles in 3D murine organoids and human esophageal biopsies with that of murine esophageal epithelium. Finally, we employ pseudotemporal trajectory analysis to develop a working model of cell fate determination in murine esophageal epithelium. These studies provide comprehensive molecular perspective on the cellular heterogeneity of murine esophageal epithelium in the context of homeostasis and aging. The level of cellular diversity in the esophageal epithelium has yet to be classified at the single cell level. Here the authors analyze the transcriptome of 44,679 murine esophageal keratinocytes to identify an unexpected level of cellular heterogeneity.
Collapse
|
192
|
Bowes A, Tarabichi M, Pillay N, Van Loo P. Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers. J Pathol 2022; 257:466-478. [PMID: 35438189 PMCID: PMC9322001 DOI: 10.1002/path.5914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution. Areas highlighted include the potential power of single cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis and therapy resistance. We also explore the use of in-situ sequencing technologies to study intra-tumour heterogeneity in a spatial context, as well as examining the use of single cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multi-modal single cell sequencing technologies. Taken together, it is hoped that these many facets of single cell genome sequencing will improve our understanding of tumourigenesis, progression and lethality in cancer leading to the development of novel therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy Bowes
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
| | - Maxime Tarabichi
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK.,Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Van Loo
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Department of Genetics, The University of Texas MD Anderson Cancer Centre, Houston, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, USA
| |
Collapse
|
193
|
Matas J, Kohrn B, Fredrickson J, Carter K, Yu M, Wang T, Gui X, Soussi T, Moreno V, Grady WM, Peinado MA, Risques RA. Colorectal Cancer Is Associated with the Presence of Cancer Driver Mutations in Normal Colon. Cancer Res 2022; 82:1492-1502. [PMID: 35425963 PMCID: PMC9022358 DOI: 10.1158/0008-5472.can-21-3607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Although somatic mutations in colorectal cancer are well characterized, little is known about the accumulation of cancer mutations in the normal colon before cancer. Here, we have developed and applied an ultrasensitive, single-molecule mutational test based on CRISPR-DS technology, which enables mutation detection at extremely low frequency (<0.001) in normal colon from patients with and without colorectal cancer. This testing platform revealed that normal colon from patients with and without colorectal cancer carries mutations in common colorectal cancer genes, but these mutations are more abundant in patients with cancer. Oncogenic KRAS mutations were observed in the normal colon of about one third of patients with colorectal cancer but in none of the patients without colorectal cancer. Patients with colorectal cancer also carried more TP53 mutations than patients without cancer and these mutations were more pathogenic and formed larger clones, especially in patients with early-onset colorectal cancer. Most mutations in the normal colon were different from the driver mutations in tumors, suggesting that the occurrence of independent clones with pathogenic KRAS and TP53 mutations is a common event in the colon of individuals who develop colorectal cancer. These results indicate that somatic evolution contributes to clonal expansions in the normal colon and that this process is enhanced in individuals with cancer, particularly in those with early-onset colorectal cancer. SIGNIFICANCE This work suggests prevalent somatic evolution in the normal colon of patients with colorectal cancer, highlighting the potential of using ultrasensitive gene sequencing to predict disease risk.
Collapse
Affiliation(s)
- Julia Matas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
- Institut Germans Trias i Pujol, Badalona, Spain
| | - Brendan Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Kelly Carter
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ming Yu
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Ting Wang
- Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Sorbonne Université, UPMC Univ Paris 06, F- 75005 Paris, France
- INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | - Rosa Ana Risques
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| |
Collapse
|
194
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
195
|
Sarangi V, Jang Y, Suvakov M, Bae T, Fasching L, Sekar S, Tomasini L, Mariani J, Vaccarino FM, Abyzov A. All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons. PLoS Comput Biol 2022; 18:e1009487. [PMID: 35442945 PMCID: PMC9060341 DOI: 10.1371/journal.pcbi.1009487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/02/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Accurate discovery of somatic mutations in a cell is a challenge that partially lays in immaturity of dedicated analytical approaches. Approaches comparing a cell's genome to a control bulk sample miss common mutations, while approaches to find such mutations from bulk suffer from low sensitivity. We developed a tool, All2, which enables accurate filtering of mutations in a cell without the need for data from bulk(s). It is based on pair-wise comparisons of all cells to each other where every call for base pair substitution and indel is classified as either a germline variant, mosaic mutation, or false positive. As All2 allows for considering dropped-out regions, it is applicable to whole genome and exome analysis of cloned and amplified cells. By applying the approach to a variety of available data, we showed that its application reduces false positives, enables sensitive discovery of high frequency mutations, and is indispensable for conducting high resolution cell lineage tracing.
Collapse
Affiliation(s)
- Vivekananda Sarangi
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Shobana Sekar
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Livia Tomasini
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
196
|
Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH, Sanders MA, Lawson ARJ, Harvey LMR, Bhosle S, Jones D, Alcantara RE, Butler TM, Hooks Y, Roberts K, Anderson E, Lunn S, Flach E, Spiro S, Januszczak I, Wrigglesworth E, Jenkins H, Dallas T, Masters N, Perkins MW, Deaville R, Druce M, Bogeska R, Milsom MD, Neumann B, Gorman F, Constantino-Casas F, Peachey L, Bochynska D, Smith ESJ, Gerstung M, Campbell PJ, Murchison EP, Stratton MR, Martincorena I. Somatic mutation rates scale with lifespan across mammals. Nature 2022; 604:517-524. [PMID: 35418684 PMCID: PMC9021023 DOI: 10.1038/s41586-022-04618-z] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans1-7. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species. We found that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, including 5-methylcytosine deamination and oxidative damage. With some differences, mutational signatures in other species resembled those described in humans8, although the relative contribution of each signature varied across species. Notably, the somatic mutation rate per year varied greatly across species and exhibited a strong inverse relationship with species lifespan, with no other life-history trait studied showing a comparable association. Despite widely different life histories among the species we examined-including variation of around 30-fold in lifespan and around 40,000-fold in body mass-the somatic mutation burden at the end of lifespan varied only by a factor of around 3. These data unveil common mutational processes across mammals, and suggest that somatic mutation rates are evolutionarily constrained and may be a contributing factor in ageing.
Collapse
Affiliation(s)
- Alex Cagan
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| | - Adrian Baez-Ortega
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Natalia Brzozowska
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Shriram Bhosle
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Raul E Alcantara
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Timothy M Butler
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Yvette Hooks
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Kirsty Roberts
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Elizabeth Anderson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Sharna Lunn
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Inez Januszczak
- Wildlife Health Services, Zoological Society of London, London, UK
- The Natural History Museum, London, UK
| | | | - Hannah Jenkins
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Tilly Dallas
- Wildlife Health Services, Zoological Society of London, London, UK
| | - Nic Masters
- Wildlife Health Services, Zoological Society of London, London, UK
| | | | - Robert Deaville
- Institute of Zoology, Zoological Society of London, London, UK
| | - Megan Druce
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Ruzhica Bogeska
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
| | - Björn Neumann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Frank Gorman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Laura Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Langford, UK
| | - Diana Bochynska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, Faculty of Veterinary Medicine, Universitatea de Stiinte Agricole si Medicina Veterinara, Cluj-Napoca, Romania
| | | | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | | | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
197
|
Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med 2022; 28:666-677. [PMID: 35440720 DOI: 10.1038/s41591-022-01746-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible.
Collapse
Affiliation(s)
- Rebecca C Fitzgerald
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
198
|
Takeda Y, Chijimatsu R, Ofusa K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Cancer metabolism challenges genomic instability and clonal evolution as therapeutic targets. Cancer Sci 2022; 113:1097-1104. [PMID: 35112433 PMCID: PMC8990295 DOI: 10.1111/cas.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/29/2022] Open
Abstract
Although cancer precision medicine has improved diagnosis and therapy, refractory cancers such as pancreatic cancer remain to be challenging targets. Clinical sequencing has identified the significant alterations in driver genes and traced their clonal evolutions. Recent studies indicated that the tumor microenvironment elicits alterations in cancer metabolism, although its involvement in the cause and development of genomic alterations has not been established. Genomic abnormalities can contribute to the survival of selected subpopulations, recently recognized as clonal evolution, and dysfunction can lead to DNA mutations. Here, we present the most recent studies on the mechanisms of cancer metabolism involved in the maintenance of genomic stability to update current understanding of such processes. Sirtuins, which are NAD+-dependent protein deacetylases, appear to be involved in the control of genomic stability. Alterations of deleterious subpopulations would be exposed to selective pressure for cell survival. Recent studies indicated that a new type of cell death, ferroptosis, determines the survival of clones and exert cancer-restricting or -promoting effects to surrounding cells in the tumor microenvironment. Suppressing genomic instability and eliminating deleterious clones by cell death will contribute to the improvement of cancer medicine. Furthermore, the elucidation of the mechanisms involved is seen as a bridgehead to the pharmacologic suppression of such refractory cancers as pancreatic cancer.
Collapse
Affiliation(s)
- Yu Takeda
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Ryota Chijimatsu
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
| | - Ken Ofusa
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
- Prophoenix DivisionFood and Life‐Science LaboratoryIdea Consultants, IncOsaka‐cityJapan
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceGraduate School of MedicineCenter of Medical Innovation and Translational ResearchOsaka UniversitySuitaJapan
| |
Collapse
|
199
|
Kumagai K, Shimizu T, Takai A, Kakiuchi N, Takeuchi Y, Hirano T, Takeda H, Mizuguchi A, Teramura M, Ito T, Iguchi E, Nikaido M, Eso Y, Takahashi K, Ueda Y, Miyamoto SI, Obama K, Ogawa S, Marusawa H, Seno H. Expansion of gastric intestinal metaplasia with copy number aberrations contributes to field cancerization. Cancer Res 2022; 82:1712-1723. [PMID: 35363856 DOI: 10.1158/0008-5472.can-21-1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
Abstract
Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; nineteen single glands in the non-inflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. Additionally, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and the Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired copy number aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable to those of IGC, contributing to field cancerization.
Collapse
Affiliation(s)
- Ken Kumagai
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Atsushi Takai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - Haruhiko Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Aya Mizuguchi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mari Teramura
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takahiko Ito
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | | | - Yuji Eso
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yoshihide Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Seno
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
200
|
Hanselmann RG, Welter C. Origin of Cancer: Cell work is the Key to Understanding Cancer Initiation and Progression. Front Cell Dev Biol 2022; 10:787995. [PMID: 35300431 PMCID: PMC8921603 DOI: 10.3389/fcell.2022.787995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The cell is the smallest unit of life. It is a structure that maintains order through self-organization, characterized by a high level of dynamism, which in turn is characterized by work. For this work to take place, a continuous high flow of energy is necessary. However, a focused view of the physical relationship between energy and work is inadequate for describing complex biological/medical mechanisms or systems. In this review, we try to make a connection between the fundamental laws of physics and the mechanisms and functions of biology, which are characterized by self-organization. Many different physical work processes (work) in human cells are called cell work and can be grouped into five forms: synthetic, mechanical, electrical, concentration, and heat generation cell work. In addition to the flow of energy, these cell functions are based on fundamental processes of self-organization that we summarize with the term Entirety of molecular interaction (EoMI). This illustrates that cell work is caused by numerous molecular reactions, flow equilibrium, and mechanisms. Their number and interactions are so complex that they elude our perception in their entirety. To be able to describe cell functions in a biological/medical context, the parameters influencing cell work should be summarized in overarching influencing variables. These are “biological” energy, information, matter, and cell mechanics (EMIM). This makes it possible to describe and characterize the cell work involved in cell systems (e.g., respiratory chain, signal transmission, cell structure, or inheritance processes) and to demonstrate changes. If cell work and the different influencing parameters (EMIM influencing variables) are taken as the central property of the cell, specific gene mutations cannot be regarded as the sole cause for the initiation and progression of cancer. This reductionistic monocausal view does not do justice to the dynamic and highly complex system of a cell. Therefore, we postulate that each of the EMIM influencing variables described above is capable of changing the cell work and thus the order of a cell in such a way that it can develop into a cancer cell.
Collapse
|