151
|
Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae. PLoS One 2013; 8:e83199. [PMID: 24349460 PMCID: PMC3859661 DOI: 10.1371/journal.pone.0083199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022] Open
Abstract
Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with Pseudomonas syringae DC3000 pv. tomato. Our analysis demonstrated that this bacterial strain is unable to cause disease in these accessions, even though the defense mechanisms triggered in these ecotypes might differ. Thus, disease tolerance in MG-20 was characterized by bacterial multiplication, chlorosis and desiccation at the infiltrated tissues. In turn, Gifu B-129 plants did not show any symptom at all and were completely successful in restricting bacterial growth. We performed a microarray based analysis of these responses and determined the regulation of several genes that could play important roles in plant defense. Interestingly, we were also able to identify a set of defense genes with a relative high expression in Gifu B-129 plants under non-stress conditions, what could explain its higher tolerance. The participation of these genes in plant defense is discussed. Our results position the L. japonicus-P. syringae interaction as a interesting model to study defense mechanisms in legume species.
Collapse
|
152
|
Dadakova K, Klempova J, Jendrisakova T, Lochman J, Kasparovsky T. Elucidation of signaling molecules involved in ergosterol perception in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:121-7. [PMID: 24095918 DOI: 10.1016/j.plaphy.2013.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/12/2013] [Indexed: 05/28/2023]
Abstract
Ergosterol, a principal compound of the fungal plasma membrane, is regarded as a pathogen-associated molecular pattern. In the present study, the role of salicylic acid (SA), jasmonic acid (JA) and spermine signaling pathways after ergosterol elicitation were evaluated. SA, JA and spermine production, as well as accumulation of transcripts for a lipoxygenase (NaLOX3) gene, the phenylalanine-ammonia lyase gene, selected pathogenesis-related genes (PR1, PR5), and peroxidase tPOXC1 were determined in tobacco (Nicotiana tabacum L. cv. Xanthi) in response to ergosterol elicitation. To understand the sequence of the signaling cascade, several representative steps involved in the synthesis of crucial signaling molecules were targeted using specific inhibitors. SA signaling pathway, together with calmodulin-dependent protein kinases and nitric oxide, was demonstrated to play an important role in the induction of defense-related genes following ergosterol treatment. The results suggested that nitric oxide participates in defense-related gene activation following ergosterol treatment but does not directly participate in activation of reactive oxygen species production. The induction of PR5 and tPOXC1 transcripts was found to be not fully dependent on calmodulin/Ca2+ and SA signaling, contrary to the PR1a transcript. A possible candidate for this SA-independent pathway is the spermine pathway, as elevated spermine levels were detected following ergosterol treatment.
Collapse
Affiliation(s)
- Katerina Dadakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
153
|
Goyal RK, Hancock REW, Mattoo AK, Misra S. Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS One 2013; 8:e77505. [PMID: 24147012 PMCID: PMC3797780 DOI: 10.1371/journal.pone.0077505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial cationic peptides (AMPs) are ubiquitous small proteins used by living cells to defend against a wide spectrum of pathogens. Their amphipathic property helps their interaction with negatively charged cellular membrane of the pathogen causing cell lysis and death. AMPs also modulate signaling pathway(s) and cellular processes in animal models; however, little is known of cellular processes other than the pathogen-lysis phenomenon modulated by AMPs in plants. An engineered heterologous AMP, msrA3, expressed in potato was previously shown to cause resistance of the transgenic plants against selected fungal and bacterial pathogens. These lines together with the wild type were studied for growth habits, and for inducible defense responses during challenge with biotic (necrotroph Fusarium solani) and abiotic stressors (dark-induced senescence, wounding and temperature stress). msrA3-expression not only conferred protection against F. solani but also delayed development of floral buds and prolonged vegetative phase. Analysis of select gene transcript profiles showed that the transgenic potato plants were suppressed in the hypersensitive (HR) and reactive oxygen species (ROS) responses to both biotic and abiotic stressors. Also, the transgenic leaves accumulated lesser amounts of the defense hormone jasmonic acid upon wounding with only a slight change in salicylic acid as compared to the wild type. Thus, normal host defense responses to the pathogen and abiotic stressors were mitigated by msrA3 expression suggesting MSRA3 regulates a common step(s) of these response pathways. The stemming of the pathogen growth and mitigating stress response pathways likely contributes to resource reallocation for higher tuber yield.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Autar K. Mattoo
- The Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Sustainable Agricultural Systems Laboratory, Beltsville, Maryland, United States of America
| | - Santosh Misra
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
154
|
Gayatridevi S, Jayalakshmi SK, Mulimani VH, Sreeramulu K. Salicylic acid and salicylic acid sensitive and insensitive catalases in different genotypes of chickpea against Fusarium oxysporum f. sp. ciceri. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:529-36. [PMID: 24431522 PMCID: PMC3781282 DOI: 10.1007/s12298-013-0184-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Differential expression of catalase isozymes in different genotypes of chickpea resistant genotypes- A1, JG-315, JG-11, WR-315, R1-315, Vijaya, ICCV-15017, GBS-964, GBM-10, and susceptible genotypes- JG-62, MNK, ICCV-08321, ICCV-08311, KW-104, ICCV-08123, ICC-4951, ICC-11322, ICC-08116 for wilt disease caused by Fusarium oxysporum. f. sp. ciceri (Foc) was analyzed. Salicylic acid (SA) and H2O2 concentrations were determined in control as well as in plants infected with F. ciceri and found that the high and low levels of salicylic acid and H2O2 in resistant and susceptible genotypes of chickpea respectively. Catalase isozyme activities were detected in the gel and found that no induction of new catalases was observed in all the resistant genotypes and their some of the native catalase isozymes were inhibited; whereas, induction of multiple catalase isozymes was observed in all the screened susceptible genotypes and their activities were not inhibited upon Foc or SA treatments. The above results support the possible role of these isozymes as a marker to identify which genotype of chickpea is expressing systemic acquired resistance.
Collapse
Affiliation(s)
- S. Gayatridevi
- />Department of Biochemistry, Gulbarga University, Gulbarga, 585 106 India
| | - S. K. Jayalakshmi
- />Agricultural College, University of Agricultural Sciences, Raichur, Gulbarga, 585 103 India
| | - V. H. Mulimani
- />Department of Biochemistry, Gulbarga University, Gulbarga, 585 106 India
| | - K. Sreeramulu
- />Department of Biochemistry, Gulbarga University, Gulbarga, 585 106 India
| |
Collapse
|
155
|
Morkunas I, Formela M, Floryszak-Wieczorek J, Marczak Ł, Narożna D, Nowak W, Bednarski W. Cross-talk interactions of exogenous nitric oxide and sucrose modulates phenylpropanoid metabolism in yellow lupine embryo axes infected with Fusarium oxysporum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:102-121. [PMID: 23987816 DOI: 10.1016/j.plantsci.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 06/02/2023]
Abstract
The aim of the study was to examine cross-talk of exogenous nitric oxide (NO) and sucrose in the mechanisms of synthesis and accumulation of isoflavonoids in embryo axes of Lupinus luteus L. cv. Juno. It was verified whether the interaction of these molecules can modulate the defense response of axes to infection and development of the pathogenic fungus Fusarium oxysporum f. sp. lupini. Sucrose alone strongly stimulated a high level of genistein glucoside in axes pretreated with exogenous nitric oxide (SNP or GSNO) and non-pretreated axes. As a result of amplification of the signal coming from sucrose and GSNO, high isoflavonoids accumulation was observed (+Sn+GSNO). It needs to be stressed that infection in tissues pretreated with SNP/GSNO and cultured on the medium with sucrose (+Si+SNP/+Si+GSNO) very strongly enhances the accumulation of free isoflavone aglycones. In +Si+SNP axes phenylalanine ammonia-lyase activity was high up to 72h. As early as at 12h in +Si+SNP axes an increase was recorded in gene expression level of the specific isoflavonoid synthesis pathway. At 24h in +Si+SNP axes a very high total antioxidant capacity dependent on the pool of fast antioxidants was noted. Post-infection generation of semiquinone radicals was lower in axes with a high level of sucrose than with a deficit.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, Poznań, Poland.
| | | | | | | | | | | | | |
Collapse
|
156
|
Liao YWK, Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ. The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the basal defense against Tobacco mosaic virus. PLoS One 2013; 8:e76090. [PMID: 24098767 PMCID: PMC3786905 DOI: 10.1371/journal.pone.0076090] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
Plant RNA-dependent RNA Polymerase 1 (RDR1) is an important element of the RNA silencing pathway in the plant defense against viruses. RDR1 expression can be elicited by viral infection and salicylic acid (SA), but the mechanisms of signaling during this process remains undefined. The involvement of hydrogen peroxide (H2O2) and nitric oxide (NO) in RDR1 induction in the compatible interactions between Tobacco mosaic tobamovirus (TMV) and Nicotiana tabacum, Nicotiana benthamiana, and Arabidopsis thaliana was examined. TMV inoculation onto the lower leaves of N. tabacum induced the rapid accumulation of H2O2 and NO followed by the increased accumulation of RDR1 transcripts in the non-inoculated upper leaves. Pretreatment with exogenous H2O2 and NO on upper leaf led to increased RDR1 expression and systemic TMV resistance. Conversely, dimethylthiourea (an H2O2 scavenger) and 2-(4-carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (an NO scavenger) partly blocked TMV- and SA-induced RDR1 expression and increased TMV susceptibility, whereas pretreatment with exogenous H2O2 and NO failed to diminish TMV infection in N. benthamiana plants with naturally occurring RDR1 loss-of-function. Furthermore, in N. tabacum and A. thaliana, TMV-induced H2O2 accumulation was NO-dependent, whereas NO generation was not affected by H2O2. These results suggest that, in response to TMV infection, H2O2 acts downstream of NO to mediate induction of RDR1, which plays a critical role in strengthening RNA silencing to restrict systemic viral infection.
Collapse
Affiliation(s)
- Yang-Wen-Ke Liao
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zeng-Hui Sun
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yan-Hong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xin Li
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guan-Qun Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao-Jian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhi-Xiang Chen
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jing-Quan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, People’s Republic of China
| |
Collapse
|
157
|
Vitor SC, Duarte GT, Saviani EE, Vincentz MGA, Oliveira HC, Salgado I. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. PLANTA 2013; 238:475-86. [PMID: 23748675 DOI: 10.1007/s00425-013-1906-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/28/2013] [Indexed: 05/23/2023]
Abstract
Nitrate reductase (NR) has emerged as a potential NO source in plants. Indeed, the Arabidopsis thaliana NR double-deficient mutant (nia1 nia2) produces low NO and develops abnormal susceptibility to bacterial infection. We have employed quantitative real-time polymerase chain reactions to analyze the effects of NO gas on the expression of defense-related genes in wild-type and nia1 nia2 A. thaliana plants that were inoculated with an avirulent strain of Pseudomonas syringae pv. tomato. The pathogenesis-related gene 1 (PR1) was up-regulated by bacterial infection, and its expression was higher in the wild type than in nia1 nia2. Fumigation with NO attenuated the expression of PR1 and other salicylic acid-related genes in plants that had been inoculated with P. syringae. Nevertheless, NO inhibited the most intense bacterial growth and disease symptoms in nia1 nia2 leaves. The NO fumigation also directly modulated lignin biosynthesis-related gene expression (CAD1) and parts of the auxin (TIR1, ILL1, GH3) and ethylene (ACCS7) pathways, among other defense-related genes, and their modulation was more intense in the NR-deficient mutant. Pathogen inoculation induced delayed but intense H2O2 production in mutant leaves in comparison with the wild type. Hydrogen peroxide potentiated the microbicidal effects of NO against bacterial cultures. These results suggest that NO has a direct microbicidal effect in combination with H2O2 to allow for the attenuation of the SA-mediated defense response, thereby reducing the energy expenditure associated with defense-related gene transcription. Overall, these results highlight the importance of NR-dependent NO production in the establishment of disease resistance.
Collapse
Affiliation(s)
- Simone C Vitor
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
158
|
Boatwright JL, Pajerowska-Mukhtar K. Salicylic acid: an old hormone up to new tricks. MOLECULAR PLANT PATHOLOGY 2013; 14:623-34. [PMID: 23621321 PMCID: PMC6638680 DOI: 10.1111/mpp.12035] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Salicylic acid (SA) acts as a signalling molecule in plant defence against biotrophic and hemibiotrophic phytopathogens. The biosynthesis of SA on pathogen detection is essential for local and systemic acquired resistance, as well as the accumulation of pathogenesis-related (PR) proteins. SA biosynthesis can occur via several different substrates, but is predominantly accomplished by isochorismate synthase (ICS1) following pathogen recognition. The roles of BTB domain-containing proteins, NPR1, NPR3 and NPR4, in SA binding and signal transduction have been re-examined recently and are elaborated upon in this review. The pathogen-mediated manipulation of SA-dependent defences, as well as the crosstalk between the SA signalling pathway, other plant hormones and defence signals, is also discussed in consideration of recent research. Furthermore, the recent links established between SA, pathogen-triggered endoplasmic reticulum stress and the unfolded protein response are highlighted.
Collapse
Affiliation(s)
- Jon Lucas Boatwright
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 5294, USA
| | | |
Collapse
|
159
|
Kim NH, Kim BS, Hwang BK. Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. PLANT PHYSIOLOGY 2013; 162:2067-83. [PMID: 23784462 PMCID: PMC3729783 DOI: 10.1104/pp.113.217372] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/18/2013] [Indexed: 05/05/2023]
Abstract
The Xanthomonas campestris pv vesicatoria (Xcv) effector AvrBsT induces a hypersensitive cell death in pepper (Capsicum annuum). However, the molecular mechanisms underlying AvrBsT-triggered cell death are not fully understood. Here, we identified pepper arginine decarboxylase (CaADC1) as an AvrBsT-interacting protein, which is early and strongly induced in incompatible pepper-Xcv interactions. Bimolecular fluorescence complementation and coimmunoprecipitation assays showed that the CaADC1-AvrBsT complex was localized to the cytoplasm. Transient coexpression of CaADC1 with avrBsT in Nicotiana benthamiana leaves specifically enhanced AvrBsT-triggered cell death, accompanied by an accumulation of polyamines, nitric oxide (NO), and hydrogen peroxide (H₂O₂) bursts. Among the polyamines, spermine application strongly induced NO and H₂O₂ bursts, ultimately leading to cell death. CaADC1 silencing in pepper leaves significantly compromised NO and H₂O₂ accumulation and cell death induction, leading to the enhanced avirulent Xcv growth during infection. The levels of salicylic acid, polyamines, and γ-aminobutyric acid (GABA), and the expression of defense response genes during avirulent Xcv infection, were distinctly lower in CaADC1-silenced plants than those in the empty vector control plants. GABA application significantly inhibited avirulent Xcv growth in CaADC1-silenced leaves and the empty vector control plants. Together, these results suggest that CaADC1 may act as a key defense and cell death regulator via mediation of polyamine and GABA metabolism.
Collapse
Affiliation(s)
- Nak Hyun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| | - Beom Seok Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| | - Byung Kook Hwang
- College of Life Sciences and Biotechnology, Korea University, Seoul 136–713, Republic of Korea
| |
Collapse
|
160
|
Correa-Aragunde N, Foresi N, Delledonne M, Lamattina L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3339-49. [PMID: 23918967 DOI: 10.1093/jxb/ert172] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
S-Nitrosylation of Cys residues is one of the molecular mechanisms driven by nitric oxide (NO) for regulating biological functions of key proteins. While the studies on S-nitrosylation of Cys residues have served for identifying SNO proteomes, the physiological relevance of protein S-nitrosylation/denitrosylation remains poorly understood. In this study, it is shown that auxin influences the balance of S-nitrosylated/denitrosylated proteins in roots of Arabidopsis seedlings. 2D-PAGE allowed the identification of ascorbate peroxidase 1 (APX1) as target of auxin-induced denitrosylation in roots. Auxin causes APX1 denitrosylation and partial inhibition of APX1 activity in Arabidopsis roots. In agreement, the S-nitrosylated form of recombinant APX1 expressed in Escherichia coli is more active than the denitrosylated form. Consistently, Arabidopsis apx1 mutants have increased H₂O₂ accumulation in roots, shorter roots, and less sensitivity to auxin than the wild type. It is postulated that an auxin-regulated counterbalance of APX1 S-nitrosylation/denitrosylation contributes to a fine-tuned control of root development and determination of root architecture.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. CC 1245, 7600 Mar del Plata, Argentina
| | | | | | | |
Collapse
|
161
|
Souza SR, Blande JD, Holopainen JK. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:111-119. [PMID: 23669460 DOI: 10.1016/j.envpol.2013.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The roles that ozone and nitric oxide (NO), the chief O₃ precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O₃ inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O₃ did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O₃ (NO/O₃) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O₃ treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate-glutathione cycle and O₃ and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
Collapse
Affiliation(s)
- Silvia R Souza
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
162
|
Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens. THE NEW PHYTOLOGIST 2013; 198:1001-1016. [PMID: 23594392 DOI: 10.1111/nph.12277] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens have evolved a variety of strategies to enter plant hosts and cause disease. In particular, biotrophic pathogens, which parasitize living plant tissue, establish sophisticated interactions in which they modulate the plant's metabolism to their own good. The prime decision, whether or not a pathogen can accommodate itself in its host tissue, is made during the initial phase of infection. At this stage, the plant immune system recognizes conserved molecular patterns of the invading microbe, which initiate a set of basal immune responses. Induced plant defense proteins, toxic compounds and antimicrobial proteins encounter a broad arsenal of pathogen-derived virulence factors that aim to disarm host immunity. Crucial regulatory processes and protein-protein interactions take place in the apoplast, that is, intercellular spaces, plant cell walls and defined host-pathogen interfaces which are formed between the plant cytoplasm and the specialized infection structures of many biotrophic pathogens. This article aims to provide an insight into the most important principles and components of apoplastic plant immunity and its modulation by filamentous microbial pathogens.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
163
|
Piterková J, Luhová L, Mieslerová B, Lebeda A, Petřivalský M. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:57-65. [PMID: 23602099 DOI: 10.1016/j.plantsci.2013.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 05/02/2023]
Abstract
Heat shock proteins (HSP) are produced in response to various stress stimuli to prevent cell damage. We evaluated the involvement of nitric oxide (NO) and reactive oxygen species (ROS) in the accumulation of Hsp70 proteins in tomato leaves induced by abiotic and biotic stress stimuli. A model system of leaf discs was used with two tomato genotypes, Solanum lycopersicum cv. Amateur and Solanum chmielewskii, differing in their resistance to fungal pathogen Oidium neolycopersici. Leaf discs were exposed to stress factors as heat shock and pathogen infection alone or in a combination, and treated with substances modulating endogenous NO and ROS levels. Two proteins of Hsp70 family were detected in stressed tomato leaf discs: a heat-inducible 72 kDa protein and a constitutive 75 kDa protein. The pathogenesis and mechanical stress influenced Hsp75 accumulation, whereas heat stress induced mainly Hsp72 production. Treatment with NO donor and NO scavenger significantly modulated the level of Hsp70 in variable manner related to the genotype resistance. Hsp70 accumulation correlated with endogenous NO level in S. lycopersicum and ROS levels in S. chmielewskii. We conclude NO and ROS are involved in the regulation of Hsp70 production and accumulation under abiotic and biotic stresses in dependence on plant ability to trigger its defence mechanisms.
Collapse
Affiliation(s)
- Jana Piterková
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
164
|
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:79-87. [PMID: 23602102 DOI: 10.1016/j.plantsci.2013.03.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/21/2023]
Abstract
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops.
Collapse
Affiliation(s)
- Holly Derksen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
165
|
Zou B, Jia Z, Tian S, Wang X, Gou Z, L B, Dong H. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:304-313. [PMID: 32481109 DOI: 10.1071/fp12253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Plant MYB transcription factors are implicated in resistance to biotic and abiotic stresses. Here, we demonstrate that an R2-R3 MYB transcription factor, AtMYB44, plays a role in the plant defence response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). The expression of AtMYB44 was upregulated upon pathogen infection and treatments with defence-related phytohormones. Transgenic plants overexpressing AtMYB44 (35S-Ms) exhibited greater levels of PR1 gene expression, cell death, callose deposition and hydrogen peroxide (H2O2) accumulation in leaves infected with PstDC3000. Consequently, 35S-M lines displayed enhanced resistance to PstDC3000. In contrast, the atmyb44 T-DNA insertion mutant was more susceptible to PstDC3000 and exhibited decreased PR1 gene expression upon infection. Using double mutants constructed via crosses of 35S-M lines with NahG transgenic plants and nonexpressor of pathogenesis-related genes1 mutant (npr1-1), we demonstrated that the enhanced PR1 gene expression and PstDC3000 resistance in 35S-M plants occur mainly through the salicylic acid signalling pathway.
Collapse
Affiliation(s)
- Baohong Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Jia
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei 050051, China
| | - Shuangmei Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Gou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Beibei L
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
166
|
Zhao J, Zhang Y, Bian X, Lei J, Sun J, Guo N, Gai J, Xing H. A comparative proteomics analysis of soybean leaves under biotic and abiotic treatments. Mol Biol Rep 2013; 40:1553-62. [PMID: 23100066 DOI: 10.1007/s11033-012-2203-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
A comparative proteomic study was made to explore the molecular mechanisms, which underlie soybean root and stem defense response caused by the oomycete Phytophthora sojae strain P6497. Soybean (Glycine max cv. Xinyixiaoheidou) seedling roots were incubated in salicylic acid, methyl jasmonate, 1-amino cyclopropane-1-carboxylic acid, hydrogen peroxide, sodium nitroprusside, vitamin B(1) and P. sojae zoosperm in order to determine whether the corresponding leaves play a role in the defense response at the proteomic level. The results showed that the proteome of leaves had no significant differences. Of the 21 identified proteins identified in the study, 62 % were involved in predominately in energy functions. Those involved in protein synthesis, secondary metabolism and metabolism categories followed in abundance, where proteins involved as transporters and in transcription were the least and represented only 5 %. Those related to energy were shown to be involved in photosynthesis and photorespiration activities. The present study provides important information with regards to proteomic methods aimed to study protein regulations of the soybean-P. sojae pathosystem, especially in terms of host resistance to this pathogen.
Collapse
Affiliation(s)
- Jinming Zhao
- Soybean Research Institute of Nanjing Agricultural University, National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJM, Bauwe H, Fernie AR, Kaiser WM, Mur LAJ. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:553-68. [PMID: 23230025 PMCID: PMC3542047 DOI: 10.1093/jxb/ers348] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)-a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either NO₃⁻ or NH₄⁺. The speed of cell death was faster in NO₃⁻-fed compared with NH₄⁺-fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in NH₄⁺-fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with NH₄⁺ feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in NH₄⁺-fed compared with NO₃⁻ fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following NO₃⁻ nutrition, polyamine biosynthesis was predominant, whilst after NH₄⁺ nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with NH₄⁺, which also increases the availability of nutrients to pathogens, are discussed.
Collapse
Affiliation(s)
- Kapuganti J. Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-18059, Rostock, Germany
| | - Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Shruthi Segu
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Tatiana Zeier
- Institute for Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse1 40225 Düsseldorf
| | - Jürgen Zeier
- Institute for Plant Molecular Ecophysiology, Heinrich-Heine-Universität Universitätsstrasse1 40225 Düsseldorf
| | - Stefan T. Persijn
- Dutch Metrology Institute, VSL, Thijsseweg 11, 2629 JA Delft, The Netherlands
| | - Simona M. Cristescu
- Molecular and Laser Physics, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Frans J. M. Harren
- Molecular and Laser Physics, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-18059, Rostock, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm-Potsdam, Germany
| | - Werner M. Kaiser
- Lehrstuhl Botanik I, Julius-von-Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Luis A. J. Mur
- Aberystwyth University, Institute of Environmental and Rural Science, Edward Llwyd Building, Aberystwyth, UK, SY23 3DA
| |
Collapse
|
168
|
Kovacs I, Lindermayr C. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. FRONTIERS IN PLANT SCIENCE 2013; 4:229. [PMID: 23717319 PMCID: PMC3701225 DOI: 10.3389/fpls.2013.00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is a reactive free radical with pleiotropic functions that participates in diverse biological processes in plants, such as germination, root development, stomatal closing, abiotic stress, and defense responses. It acts mainly through redox-based modification of cysteine residue(s) of target proteins, called protein S-nitrosylation.In this way NO regulates numerous cellular functions and signaling events in plants. Identification of S-nitrosylated substrates and their exact target cysteine residue(s) is very important to reveal the molecular mechanisms and regulatory roles of S-nitrosylation. In addition to the necessity of protein-protein interaction for trans-nitrosylation and denitrosylation reactions, the cellular redox environment and cysteine thiol micro-environment have been proposed important factors for the specificity of protein S-nitrosylation. Several methods have recently been developed for the proteomic identification of target proteins. However, the specificity of NO-based cysteine modification is still less defined. In this review, we discuss formation and specificity of S-nitrosylation. Special focus will be on potential S-nitrosylation motifs, site-specific proteomic analyses, computational predictions using different algorithms, and on structural analysis of cysteine S-nitrosylation.
Collapse
|
169
|
Kovacs I, Lindermayr C. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. FRONTIERS IN PLANT SCIENCE 2013; 4:137. [PMID: 23717319 PMCID: PMC3653056 DOI: 10.3389/fpls.2013.00137] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/22/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a reactive free radical with pleiotropic functions that participates in diverse biological processes in plants, such as germination, root development, stomatal closing, abiotic stress, and defense responses. It acts mainly through redox-based modification of cysteine residue(s) of target proteins, called protein S-nitrosylation.In this way NO regulates numerous cellular functions and signaling events in plants. Identification of S-nitrosylated substrates and their exact target cysteine residue(s) is very important to reveal the molecular mechanisms and regulatory roles of S-nitrosylation. In addition to the necessity of protein-protein interaction for trans-nitrosylation and denitrosylation reactions, the cellular redox environment and cysteine thiol micro-environment have been proposed important factors for the specificity of protein S-nitrosylation. Several methods have recently been developed for the proteomic identification of target proteins. However, the specificity of NO-based cysteine modification is still less defined. In this review, we discuss formation and specificity of S-nitrosylation. Special focus will be on potential S-nitrosylation motifs, site-specific proteomic analyses, computational predictions using different algorithms, and on structural analysis of cysteine S-nitrosylation.
Collapse
Affiliation(s)
| | - Christian Lindermayr
- *Correspondence: Christian Lindermayr, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München-Neuherberg, Germany. e-mail:
| |
Collapse
|
170
|
Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ. Nitric oxide in plants: an assessment of the current state of knowledge. AOB PLANTS 2013; 5:pls052. [PMID: 23372921 PMCID: PMC3560241 DOI: 10.1093/aobpla/pls052] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
- Corresponding author's e-mail address:
| | - Julien Mandon
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Stefan Persijn
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Simona M. Cristescu
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Igor E. Moshkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow 127276, Russia
| | - Galina V. Novikova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow 127276, Russia
| | - Michael A. Hall
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
| | - Frans J. M. Harren
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Kapuganti J. Gupta
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
171
|
Kulye M, Liu H, Zhang Y, Zeng H, Yang X, Qiu D. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. PLANT, CELL & ENVIRONMENT 2012; 35:2104-20. [PMID: 22591019 DOI: 10.1111/j.1365-3040.2012.02539.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report the identification, purification, characterization and gene cloning of a novel hypersensitive response inducing protein secreted by necrotrophic fungus, Alternaria tenuissima, designated as hypersensitive response inducing protein 1 (Hrip1). The protein caused the formation of necrotic lesions that mimic a typical hypersensitive response and apoptosis-related events including DNA laddering. The protein-encoding gene was cloned by rapid amplification of cDNA ends (RACE) method. The sequence analysis revealed that the cDNA is 495 bp in length and the open reading frame (ORF) encodes for a polypeptide of 163 amino acids with theoretical pI of 5.50 and molecular weight of 17 562.5 Da. Hrip1 induced calcium influx, medium alkalinization, activation of salicylic acid-induced protein kinase and several defence-related genes after infiltration in tobacco leaves. Cellular damage, restricted to the infiltrated zone, occurred only several hours later, at a time when expression of defence-related genes was activated. After several days, systemic acquired resistance was also induced. The tobacco plant cells that perceived the Hrip1 generated a cascade of signals acting at local, short, and long distances, and caused the coordinated expression of specific defence responses in a way similar to hypersensitivity to tobacco mosaic virus. Thus, Hrip1 represents a powerful tool to investigate further the signals and their transduction pathways involved in induced disease resistance in necrotrophic fungi.
Collapse
Affiliation(s)
- Mahesh Kulye
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
172
|
Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 2012; 13:643. [PMID: 23171218 PMCID: PMC3560180 DOI: 10.1186/1471-2164-13-643] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/22/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND We have previously shown that lipophilic components (LPC) of the brown seaweed Ascophyllum nodosum (ANE) improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s) of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. RESULTS Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH) gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ) representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5%) in comparison with untreated plants. A total of 463 genes (2%) were up regulated while 650 genes (3%) were down regulated. CONCLUSION Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.
Collapse
Affiliation(s)
- Prasanth Nair
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Junzeng Zhang
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Xiuhong Ji
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Chris Kirby
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 550 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Bernhard Benkel
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Mark D Hodges
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, NS, B4N 1J5, Canada
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - David Hiltz
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
173
|
Chun HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS, Kang CH, Baek D, Cheong YH, Yun DJ, Chung WS, Cho MJ, Kim MC. Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cells 2012; 34:463-71. [PMID: 23124383 PMCID: PMC3887790 DOI: 10.1007/s10059-012-0213-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022] Open
Abstract
Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H(2)O(2), with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.
Collapse
Affiliation(s)
- Hyun Jin Chun
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Hyeong Cheol Park
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Sung Cheol Koo
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857,
Korea
| | - Ju Huck Lee
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Chan Young Park
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Man Soo Choi
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857,
Korea
| | - Chang Ho Kang
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Dongwon Baek
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Yong Hwa Cheong
- Department of Bio-Environmental Science, Sunchon National University, Sunchon 550-742,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Woo Sik Chung
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Moo Je Cho
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| | - Min Chul Kim
- Division of Applied Life Science (Brain Korea 21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
174
|
Guo M, Chen K, Zhang P. Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1511-9. [PMID: 22921678 DOI: 10.1016/j.jplph.2012.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 05/08/2023]
Abstract
Burdock fructooligosaccharide (BFO), isolated from the roots of Arcitum lappa, is a novel potential elicitor. Previous studies have shown that BFO induces various defense responses in plants. However, little is known about the mechanism of BFO induced plant responses. The transcriptome profiles in tobacco leaves after treatment with BFO or distilled water were analyzed using Solexa technology. The profiling analysis revealed numerous changes in gene expression after BFO treatment, which resulted in the up-regulation of 169 genes and the down-regulation of 243 genes. The data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR. Gene ontology analysis revealed that the differentially expressed genes were mainly involved in stress responses, defense responses, biosynthetic processes, hormone responses, RNA biosynthetic processes, signaling pathways and other processes. The results of this study suggested two important concepts. First, the differential expression of genes involved in plant hormone signaling pathways are related to defense, especially salicylic acid-mediated pathways, such as the genes encoding pathogen related proteins, WRKY transcription factors, Avr9/Cf-9 rapidly elicited protein, SA-activated MAP kinase, jasmonic acid/ethylene-related genes encoding jasmonate ZIM-domain protein and ethylene-responsive transcription factor, gibberellin-related genes encoding flowering promoting factor-like 1 and GA-insensitive dwarf 2, and abscisic acid related gene encoding ABA 8'-hydroxylase CYP707A, indicated that plant hormones and their crosstalk might play a critical role in the defense response to BFO treatment in tobacco. Second, the genes involved in the biosynthesis of secondary metabolites were increased after BFO treatment including epiaristolochene synthase and cinnamoyl-CoA reductase, which serve as attractants in defense against pathogens and herbivores.
Collapse
Affiliation(s)
- Moran Guo
- National Glycoengineering Research Center and College of Life Science, Shandong University, Jinan 250100, China
| | | | | |
Collapse
|
175
|
Hashimoto M, Tanishita Y, Suda Y, Murakami EI, Nagata M, Kucho KI, Abe M, Uchiumi T. Characterization of nitric oxide-inducing lipid A derived from Mesorhizobium loti lipopolysaccharide. Microbes Environ 2012; 27:490-6. [PMID: 23059724 PMCID: PMC4103559 DOI: 10.1264/jsme2.me12103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mesorhizobium loti is a member of the rhizobia and forms nitrogen-fixing symbioses with several Lotus species. Recently, it was reported that M. loti bacterial cells and their lipopolysaccharide (LPS) preparations transiently induced nitric oxide (NO) production in the roots of L. japonicus. We subsequently found that polysaccharides and the lipid A moiety were responsible for this NO induction. In this study, we elucidated the chemical structure of M. loti lipid A and characterized its NO-inducing activity in response to structural modifications. M. loti LPS were partially hydrolyzed with hydrazine or aqueous hydrofluoric acid to obtain O-deacylated or dephosphorylated LPS, respectively. The untreated and treated LPS fractions were subjected to weak acid hydrolysis to obtain lipid A fractions. The chemical structure of M. loti lipid A was elucidated by chemical composition analysis, MALDI-TOF-MS, and NMR spectra to be P-4-β-GlcNN(1-6)α-GlcNN(1-1)α-GalA, in which positions 2 and 3 of β-GlcNN are substituted for 3-acyloxy-fatty amides, and positions 2 and 3 of α-GlcNN are substituted for 3OH-fatty amides. The partial hydrolysis of lipid A appeared to reduce its NO-inducing activity. These results suggest that L. japonicus root cells recognize the lipid A structure as a means of controlling NO production.
Collapse
Affiliation(s)
- Masahito Hashimoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Kagoshima University, Korimoto 1–21–40, Kagoshima 890–0065, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. THE NEW PHYTOLOGIST 2012; 196:427-440. [PMID: 22931461 DOI: 10.1111/j.1469-8137.2012.04277.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/12/2012] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
177
|
Slisz AM, Breksa AP, Mishchuk DO, McCollum G, Slupsky CM. Metabolomic analysis of citrus infection by 'Candidatus Liberibacter' reveals insight into pathogenicity. J Proteome Res 2012; 11:4223-30. [PMID: 22698301 DOI: 10.1021/pr300350x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huanglongbing (HLB), considered the most serious citrus disease in the world, is associated with the nonculturable bacterium 'Candidatus Liberibacter asiaticus' (Las). Infection of citrus by this pathogen leads to reduced plant vigor and productivity, ultimately resulting in death of the infected tree. It can take up to two years following initial infection before outward symptoms become apparent, making detection difficult. The existing knowledge gap in our understanding of Las and its pathogenesis leading to HLB has stymied development of treatments and methods to mitigate the pathogen's influence. To evaluate the influence of Las on fruit quality in both symptomatic and asymptomatic fruit, and gain further insight into the pathogenesis of the disease, a 1H NMR metabolomics investigation, complemented with physicochemical and analyte-specific analyses, was undertaken. Comparison of the juice obtained from oranges gathered from Las+ (symptomatic and asymptomatic) and Las- (healthy) trees revealed significant differences in the concentrations of sugars, amino and organic acids, limonin glucoside, and limonin. This study demonstrates differing metabolic profiles in the juice of oranges from Las+ and Las- and proposes how Las may be able to evade citrus defense responses.
Collapse
Affiliation(s)
- Anne M Slisz
- Department of Food Science and Technology, One Shields Avenue, University of California, Davis, Davis, California 95616, United States
| | | | | | | | | |
Collapse
|
178
|
Liang L, Lu YL, Yang H. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2044-2054. [PMID: 22231370 DOI: 10.1007/s11356-011-0698-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/13/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE Isoproturon, a herbicide belonging to the phenylurea family, is widely used to kill weeds in soils. Recent study indicated that isoproturon has become a contaminant in ecosystems due to its intensive use, thus bringing environmental risks to crop production safety. Salicylic acid (SA) is one of the components in plant defense signaling pathways and regulates diverse physiological responses to biotic and environmental stresses. The purpose of the study is to help to understand how SA mediates the biological process in wheat under isoproturon stress. METHODS Wheat seeds (Triticum aestivum, cv. Yangmai 13) were surface-sterilized and placed on moist filter paper for germination. After 24 h, the germinating seeds were placed on a plastic pot (1 L) containing 1,120 g soil mixed with isoproturon at 4 mg kg(-1) soil. After 4 days, wheat leaves were sprayed with 5 mg L(-1) SA. The SA treatment was undertaken once a day and lasted for 6 days, when the third true leaf was well developed. For control seedlings, only water was sprayed. Seedlings were grown under a light intensity of 300 µmol m(-2) s(-1) with a light/dark cycle of 12/12 h at 25°C, and watered to keep 70% relative water content in soils. RESULTS AND DISCUSSION We investigated the role of SA in alleviating isoproturon-induced toxicity in the food crop wheat (T. aestivum). Plants exposed to 4 mg kg(-1) isoproturon showed growth stunt and oxidative damage, but concomitant treatment with 5 mg L(-1) SA was able to attenuate the toxic effect. Isoproturon in soils was readily accumulated by wheat, but such accumulation can be blocked significantly by SA application. Treatment with SA decreased the abundance of O(2) (.-) and H(2)O(2), as well as activities of antioxidant enzymes, and increased activities of catalase in isoproturon-exposed plants. The enzyme activities were confirmed by the native polyacrylamide gel electrophoresis. Further, an RT-PCR-based assay was performed to show that several transcripts coding antioxidant enzymes were increased with isoproturon but decreased by SA. CONCLUSION The present results indicate that exogenous SA is able to improve the wheat tolerance to isoproturon toxicity.
Collapse
Affiliation(s)
- Lu Liang
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
179
|
Pasqualini S, Reale L, Calderini O, Pagiotti R, Ederli L. Involvement of protein kinases and calcium in the NO-signalling cascade for defence-gene induction in ozonated tobacco plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4485-96. [PMID: 22685306 DOI: 10.1093/jxb/ers133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study analyses the signalling pathways triggered by nitric oxide (NO) in response to ozone (O(3)) fumigation of tobacco plants, with particular attention to protein kinase cascades and free cytosolic Ca(2+) in defence-gene activation. NO was visualized with the NO probe DAF-FM. Using a pharmacological approach, the effects of different inhibitors on the expression profiles of NO-dependent defence genes were monitored using RT-PCR. The assay of the kinase activity of the immunoprecipitates complexes shows that O(3) stimulates a 48 kDa salicylic acid (SA)-induced protein kinase (SIPK) in an NO-dependent manner. The O(3)-induced alternative oxidase 1a (AOX1a) and phenylalanine ammonia lyase a (PALa) genes are modulated by phosphorylation by protein kinases, and SIPK might have a role in this up-regulation. By contrast, protein dephosphorylation mediates pathogenesis-related protein 1a (PR1a) expression in O(3)-treated tobacco plants. Ca(2+) is essential, but not sufficient, to promote NO accumulation in ozonated tobacco plants. Intracellular Ca(2+) transients are also essential for PALa up-regulation and cGMP-induced PR1a expression. Partial dependence on intracellular Ca(2+) suggests two different pathways of SA accumulation and PR1a induction. A model summarizing the signalling networks involving NO, SA, and the cellular messengers in this O(3)-induced defence gene activation is proposed.
Collapse
Affiliation(s)
- S Pasqualini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno, 74, I-06121 Perugia, Italy.
| | | | | | | | | |
Collapse
|
180
|
Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/217037] [Citation(s) in RCA: 2231] [Impact Index Per Article: 171.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are produced as a normal product of plant cellular metabolism. Various environmental stresses lead to excessive production of ROS causing progressive oxidative damage and ultimately cell death. Despite their destructive activity, they are well-described second messengers in a variety of cellular processes, including conferment of tolerance to various environmental stresses. Whether ROS would serve as signaling molecules or could cause oxidative damage to the tissues depends on the delicate equilibrium between ROS production, and their scavenging. Efficient scavenging of ROS produced during various environmental stresses requires the action of several nonenzymatic as well as enzymatic antioxidants present in the tissues. In this paper, we describe the generation, sites of production and role of ROS as messenger molecules as well as inducers of oxidative damage. Further, the antioxidative defense mechanisms operating in the cells for scavenging of ROS overproduced under various stressful conditions of the environment have been discussed in detail.
Collapse
|
181
|
Manjunatha G, Gupta KJ, Lokesh V, Mur LAJ, Neelwarne B. Nitric oxide counters ethylene effects on ripening fruits. PLANT SIGNALING & BEHAVIOR 2012; 7:476-83. [PMID: 22499176 PMCID: PMC3419037 DOI: 10.4161/psb.19523] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits.
Collapse
Affiliation(s)
- Girigowda Manjunatha
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Kapuganti J. Gupta
- Department of Plant Physiology; University of Rostock; Rostock, Germany
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| | - Veeresh Lokesh
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
| | - Luis AJ Mur
- IBERS; Penglais Campus Aberystwyth; Aberystwyth University; Wales UK
| | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department; Central Food Technological Research Institute; Mysore, India
- Correspondence to: Kapuganti J Gupta and Bhagyalakshmi Neelwarne; and
| |
Collapse
|
182
|
Fujikawa Y, Fujikawa R, Iijima N, Esaka M. Characterization of secretory phospholipase A₂ with phospholipase A₁ activity in tobacco, Nicotiana tabacum (L.). Lipids 2012; 47:303-312. [PMID: 22124805 DOI: 10.1007/s11745-011-36323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/07/2011] [Indexed: 05/29/2023]
Abstract
A cDNA encoding protein with homology to plant secretory phospholipase A₂ (sPLA₂), denoted as Nt1 PLA₂, was isolated from tobacco (Nicotiana tabacum). The cDNA encodes a mature protein of 118 amino acid residues with a putative signal peptide of 29 residues. The mature form of Nt1 PLA₂ has 12 cysteines, Ca²⁺ binding loop and catalytic site domain that are commonly conserved in plant sPLA₂s. The recombinant Nt1 PLA₂ was expressed as a fusion protein with thioredoxin in E. coli BL21 cells and was purified by an ion exchange chromatography after digestion of the fusion proteins by Factor Xa protease to obtain the mature form. Interestingly, Nt1 PLA₂ could hydrolyze the ester bond at the sn-1 position of glycerophospholipids as well as at the sn-2 position, when the activities were determined using mixed-micellar phospholipids with sodium cholate. Both activities for the sn-1 and -2 positions of glycerophospholipids required Ca²⁺ essentially, and maximal activities were found in an alkaline region when phosphatidylcholine, phosphatidylglycerol or phosphatidylethanolamine was used as a substrate. The level of Nt1 PLA₂ mRNA was detected at a higher level in tobacco flowers than stem, leaves and roots, and was induced by salicylic acid.
Collapse
Affiliation(s)
- Yukichi Fujikawa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|
183
|
Fujikawa Y, Fujikawa R, Iijima N, Esaka M. Characterization of secretory phospholipase A₂ with phospholipase A₁ activity in tobacco, Nicotiana tabacum (L.). Lipids 2012; 47:303-12. [PMID: 22124805 DOI: 10.1007/s11745-011-3632-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022]
Abstract
A cDNA encoding protein with homology to plant secretory phospholipase A₂ (sPLA₂), denoted as Nt1 PLA₂, was isolated from tobacco (Nicotiana tabacum). The cDNA encodes a mature protein of 118 amino acid residues with a putative signal peptide of 29 residues. The mature form of Nt1 PLA₂ has 12 cysteines, Ca²⁺ binding loop and catalytic site domain that are commonly conserved in plant sPLA₂s. The recombinant Nt1 PLA₂ was expressed as a fusion protein with thioredoxin in E. coli BL21 cells and was purified by an ion exchange chromatography after digestion of the fusion proteins by Factor Xa protease to obtain the mature form. Interestingly, Nt1 PLA₂ could hydrolyze the ester bond at the sn-1 position of glycerophospholipids as well as at the sn-2 position, when the activities were determined using mixed-micellar phospholipids with sodium cholate. Both activities for the sn-1 and -2 positions of glycerophospholipids required Ca²⁺ essentially, and maximal activities were found in an alkaline region when phosphatidylcholine, phosphatidylglycerol or phosphatidylethanolamine was used as a substrate. The level of Nt1 PLA₂ mRNA was detected at a higher level in tobacco flowers than stem, leaves and roots, and was induced by salicylic acid.
Collapse
Affiliation(s)
- Yukichi Fujikawa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|
184
|
Gil’vanova IR, Enikeev AR, Stepanov SY, Rakhmankulova ZF. Involvement of salicylic acid and nitric oxide in protective reactions of wheat under the influence of heavy metals. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s000368381201005x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
185
|
Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:593-603. [PMID: 21893256 DOI: 10.1016/j.plantsci.2011.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H(2)O(2), one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.
Collapse
Affiliation(s)
- Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | |
Collapse
|
186
|
Ma W. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:342-6. [PMID: 21889039 DOI: 10.1016/j.plantsci.2011.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 05/02/2023]
Abstract
The increase of cytosolic Ca(2+) is a vital event in plant pathogen signaling cascades. Molecular components linking pathogen signal perception to cytosolic Ca(2+) increase have not been well characterized. Plant cyclic nucleotide gated channels (CNGCs) play important roles in the pathogen signaling cascade, in terms of facilitating Ca(2+) uptake into the cytosol in response to pathogen and pathogen associated molecular pattern (PAMP) signals. Perception of pathogens leads to cyclic nucleotide production and the activation of CNGCs. The Ca(2+) signal is transduced through Ca(2+) sensors (Calmodulin (CaM) and CaM-like proteins (CMLs)), which regulates the production of nitric oxide (NO). In addition, roles of Ca(2+)/CaM interacting proteins such as CaM binding Protein (CBP) and CaM-binding transcription activators (CAMTAs)) have been recently identified in the plant defense signaling cascade as well. Furthermore, Ca(2+)-dependent protein kinases (CDPKs) have been found to function as components in terms of transcriptional activation in response to a pathogen (PAMP) signal. Although evidence shows that Ca(2+) is an essential signaling component upstream from many vital signaling molecules (such as NO), some work also indicates that these downstream signaling components can also regulate Ca(2+) homeostasis. NO can induce cytosolic Ca(2+) increase (through activation of plasma membrane- and intracellular membrane-localized Ca(2+) channels) during pathogen signaling cascades. Thus, much work is needed to further elucidate the complexity of the plant pathogen signaling network in the future.
Collapse
Affiliation(s)
- Wei Ma
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
187
|
Li JG, Cao J, Sun FF, Niu DD, Yan F, Liu HX, Guo JH. Control of Tobacco mosaic virus by PopW as a result of induced resistance in tobacco under greenhouse and field conditions. PHYTOPATHOLOGY 2011; 101:1202-8. [PMID: 21585268 DOI: 10.1094/phyto-02-11-0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In a previous study, we isolated a new harpin protein, PopW, from the bacterium Ralstonia solanacearum ZJ3721 that can induce a hypersensitive response in tobacco, Nicotiana tabacum, leaves. In the current study, we demonstrate that, in a greenhouse experiment, PopW induced tobacco-acquired resistance against the Tobacco mosaic virus (TMV) with a biocontrol efficacy of 80.9 to 97.4% at a concentration as low as 25 μg/ml in both PopW-treated and neighboring leaves. The resistance induced by PopW is systemic acquired resistance mediated by salicylic acid, which was certified by the development of resistance being accompanied by the expression of the pathogenesis-related-1 gene (PR1) 8 h after PopW was sprayed onto the tobacco leaves. In addition, hydrogen peroxide began to accumulate 10 h after PopW spraying, peaking at 24 h with a maximum concentration of 1.97 μM/g fresh weight. The activities of phenylalanine ammonia lyase (EC4.3.1.5), polyphenoloxidase (EC1.14.18.1), and peroxidase (EC1.11.1.7) also increased, peaking at different times in the PopW-treated tobacco leaves. PopW also reduced the level of TMV disease in field trials with a biocontrol efficacy of 45.2%. Furthermore, PopW both increased tobacco yield (by 30.4 more than in control plants) and improved tobacco foliar quality, with an increase of 50.2% in the number of first-class tobacco leaves from treated compared with untreated plants. All of these results indicate that the new harpin protein PopW has the potential to be an effective biocontrol agent against TMV in tobacco.
Collapse
Affiliation(s)
- Jian-Gang Li
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
188
|
Lanteri ML, Lamattina L, Laxalt AM. Mechanisms of xylanase-induced nitric oxide and phosphatidic acid production in tomato cells. PLANTA 2011; 234:845-55. [PMID: 21643989 DOI: 10.1007/s00425-011-1446-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/18/2011] [Indexed: 05/20/2023]
Abstract
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant-pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.
Collapse
Affiliation(s)
- M Luciana Lanteri
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
189
|
Zheng Q, Meng Q, Wei YY, Yang ZM. Alleviation of copper-induced oxidative damage in Chlamydomonas reinhardtii by carbon monoxide. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 61:220-7. [PMID: 20859622 DOI: 10.1007/s00244-010-9602-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/30/2010] [Indexed: 05/24/2023]
Abstract
Carbon monoxide (CO) is an endogenous gaseous molecule in plants and animals. Recent studies have shown that it is one of the most essential cellular components regulating many aspects of plant growth and development. However, whether CO regulates the green algae adaptive response to heavy metal toxicity is unknown. The present study investigated the role of CO in regulating Cu-induced oxidative stress in eukaryotic algae Chlamydomonas reinhardtii. Cells pretreated with 5 μM CO for 30 min and followed by exposure to 5 μM Cu(II) for 4 days showed attenuated toxicity. The CO-improved growth of algae was correlated with reduced lipid peroxidation and increased chlorophyll accumulation. The beneficial effect of CO was confirmed by histochemical staining with reactive oxygen species. Further, treatment with 5 μM CO increased the activity of catalase with Cu. However, a reduced superoxide dismutase activity was observed in the CO + Cu-treated algae compared to the control (activity of Cu treatment alone). Under the same condition, the activity of ascorbate peroxidase was not significantly changed. These results suggest that CO can play an important role in regulating the response of algae to Cu stress.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
190
|
Majláth I, Szalai G, Papp I, Vanková R, Janda T. Atnoa1 mutant Arabidopsis plants induce compensation mechanisms to reduce the negative effects of the mutation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1184-1190. [PMID: 21392840 DOI: 10.1016/j.jplph.2011.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Alterations in temperature adaptation processes and changes in the content of stress-related compounds, polyamines and salicylic acid were evaluated in Atnoa1 (NO-associated 1) Arabidopsis mutant. The F(v)/F(m) chlorophyll-a fluorescence induction parameter and the actual quantum yield were significantly lower in the Atnoa1 mutant than in the wild-type. In the wild-type Col-0, the fastest increase in the non-photochemical quenching (NPQ) occurred in plants pre-treated at low temperature (4 °C), while the slowest was in those adapted to 30 °C. The NPQ showed not only a substantially increased level in the light-adapted state, but also more rapid light induction after the dark-adapted state in the Atnoa1 mutant than in the wild-type. The results of freezing tests indicated that both the wild-type and the mutant had better freezing tolerance after cold hardening, since no significant differences were found between the genotypes. The level of putrescine increased substantially, while that of spermine decreased by the end of the cold-hardening (4°C, 4d) period. The quantity of spermidine in Atnoa1 was significantly higher than in Col-0, at both control and cold-hardening temperatures. A similar trend was observed for spermine, but only under control conditions. The mutant plants showed substantially higher salicylic acid (SA) contents for both the free and bound forms. This difference was significant not only in the control, but also in the cold-hardened plants. These results suggest that there is a compensation mechanism in Atnoa1 mutant Arabidopsis plants to reduce the negative effects of the mutation. These adaptation processes include the stimulation of photoprotection and alterations in the SA and polyamine compositions.
Collapse
Affiliation(s)
- Imre Majláth
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462 Martonvásár POB 19, Hungary
| | | | | | | | | |
Collapse
|
191
|
Ghanta S, Chattopadhyay S. Glutathione as a signaling molecule: another challenge to pathogens. PLANT SIGNALING & BEHAVIOR 2011; 6:783-8. [PMID: 21969955 PMCID: PMC3218473 DOI: 10.4161/psb.6.6.15147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 05/03/2023]
Abstract
Plants harbor a variety of signaling molecules which are members of a vast array of signaling networks in maintaining their physiological balance. The well known members up till now are salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscissic acid (ABA) and reactive oxygen species (ROS) which are employed by plants for their adaptation to various environmental stresses in order to survive. GSH is gradually gaining importance and becoming a molecule of interest to a number of researchers especially in relation to plant defense to pathogens. Although the role of GSH in plant defense has long been known, a dearth of information still exists regarding the mechanism underlying this defense response. This review highlights on the progress made in the cross-communication of GSH with other established signaling molecules through which GSH acts in abating biotic stress
Collapse
Affiliation(s)
- Srijani Ghanta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, Indian Institute of Chemical Biology (A unit of Council of Scientific & Industrial Research), Kolkata, West Bengal, India
| | | |
Collapse
|
192
|
Meyer T, Hölscher C, Schwöppe C, von Schaewen A. Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:745-58. [PMID: 21309870 DOI: 10.1111/j.1365-313x.2011.04535.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Arabidopsis peroxisomes contain an incomplete oxidative pentose-phosphate pathway (OPPP), consisting of 6-phosphogluconolactonase and 6-phosphogluconate dehydrogenase isoforms with peroxisomal targeting signals (PTS). To start the pathway, glucose-6-phosphate dehydrogenase (G6PD) is required; however, G6PD isoforms with obvious C-terminal PTS1 or N-terminal PTS2 motifs are lacking. We used fluorescent reporter fusions to explore possibly hidden peroxisomal targeting information. Among the six Arabidopsis G6PD isoforms only plastid-predicted G6PD1 with free C-terminal end localized to peroxisomes. Detailed analyses identified SKY as an internal PTS1-like signal; however, in a medial G6PD1 reporter fusion with free N- and C-terminal ends this cryptic information was overruled by the transit peptide. Yeast two-hybrid analyses revealed selective protein-protein interactions of G6PD1 with catalytically inactive G6PD4, and of both G6PD isoforms with plastid-destined thioredoxin m2 (Trx(m2) ). Serine replacement of redox-sensitive cysteines conserved in G6PD4 abolished the G6PD4-G6PD1 interaction, albeit analogous changes in G6PD1 did not. In planta bimolecular fluorescence complementation (BiFC) demonstrated that the G6PD4-G6PD1 interaction results in peroxisomal import. BiFC also confirmed the interaction of Trx(m2) with G6PD4 (or G6PD1) in plastids, but co-expression analyses revealed Trx(m2) -mediated retention of medial G6PD4 (but not G6PD1) reporter fusions in the cytosol that was stabilized by CxxC¹¹³S exchange in Trx(m2) . Based on preliminary findings with plastid-predicted rice G6PD isoforms, we dismiss Arabidopsis G6PD4 as non-functional. G6PD4 orthologs (new P0 class) apparently evolved to become cytosolic redox switches that confer thioredoxin-relayed alternative targeting to peroxisomes.
Collapse
Affiliation(s)
- Tanja Meyer
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | | | | | | |
Collapse
|
193
|
de Souza WR, Vessecchi R, Dorta DJ, Uyemura SA, Curti C, Vargas-Rechia CG. Characterization of Rubus fruticosus mitochondria and salicylic acid inhibition of reactive oxygen species generation at Complex III/Q cycle: potential implications for hypersensitive response in plants. J Bioenerg Biomembr 2011; 43:237-46. [DOI: 10.1007/s10863-011-9357-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 04/04/2011] [Indexed: 12/29/2022]
|
194
|
Wang YH, Irving HR. Developing a model of plant hormone interactions. PLANT SIGNALING & BEHAVIOR 2011; 6:494-500. [PMID: 21406974 PMCID: PMC3142376 DOI: 10.4161/psb.6.4.14558] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/18/2023]
Abstract
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants.
Collapse
Affiliation(s)
- Yu Hua Wang
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Victoria, Australia
| | | |
Collapse
|
195
|
Meng DK, Chen J, Yang ZM. Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1823-9. [PMID: 21227573 DOI: 10.1016/j.jhazmat.2010.12.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 05/08/2023]
Abstract
Carbon monoxide (CO) is a hazardous gaseous molecule, whose concentration in atmosphere is recently rising. CO also is an endogenous regulator of a variety of biological processes in animals and plants. However, whether CO regulates plant adaptation to Hg-contaminated environments is unknown. In this study, we investigated the effect of CO on biological responses of Indian mustard (Brassica juncea), a plant species frequently used for heavy metal accumulation, to mercury (Hg) toxicity. Exposure of B. juncea to Hg(II) triggered production of O(2)(-) and H(2)O(2) as well as peroxides. However, such an effect can be reversed by CO exposure. Plants treated with 0.2 mM CO accumulated less amounts of Hg and had improved root elongation. Treatment with CO reduced activities of superoxide dismutase and increased activities of catalase, ascorbate peroxidase and guaiacol peroxidase in Hg-treated plants. CO-mediated alleviation of Hg toxicity was closely related to the accumulated proline, an antioxidant and reduced non-protein thiols, a sulfhydryl-containing compound that has strong capability for chelating heavy metals. These results indicate that CO plays a crucial role in preventing the plant from Hg toxicity.
Collapse
Affiliation(s)
- De Kun Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
196
|
Yang H, Wang M, Gao Z, Zhu C, Guo X. Isolation of a novel RNA-dependent RNA polymerase 6 from Nicotiana glutinosa, NgRDR6, and analysis of its response to biotic and abiotic stresses. Mol Biol Rep 2011; 38:929-37. [PMID: 20495874 DOI: 10.1007/s11033-010-0186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/04/2009] [Indexed: 01/22/2023]
Abstract
RNA-dependent RNA polymerases (RDRs) play an important role in RNA silencing, antiviral and developmental progress. Here, we firstly isolated the full-length cDNA, genomic DNA and 5'-flanking region of RDR6 from Nicotiana glutinosa (NgRDR6). Sequences analysis revealed that the cDNA of NgRDR6 was 3,921 bp in length, and the deduced protein consisted of 1,197 amino acids, containing all highly conserved sequence motifs that are present among all RDRs families. Moreover, two introns were detected in the genomic sequences. We also firstly investigated the expression profiles of plant RDR6 under the treatments of gibberellin A (GA), H(2)O(2,) methyl jasmonate (MeJA), Potato virus Y (PVY), Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Rhizoctonia Solani and Colletotrichum nicotianae. In addition, the expression patterns of RDR6 in Nicotiana glutinosa under the treatments of salicylic acid (SA) and abscisic acid (ABA) were also been analyzed. The results indicated that the NgRDR6 mRNA accumulation could be induced by ABA, GA, MeJA, CMV, Rhizoctonia Solani and Colletotrichum nicotianae. In contrast, the expression level of NgRDR6 exhibited no remarkable difference under the treatments of PVY, TMV, H(2)O(2) and SA. Further investigation suggested several potential cis-acting elements were found in the 5'-flanking sequence of NgRDR6, which might be responsible for the enhanced response to phytohormones.
Collapse
Affiliation(s)
- Haifang Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | | | | | | | | |
Collapse
|
197
|
del Río LA. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 2011; 506:1-11. [DOI: 10.1016/j.abb.2010.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022]
|
198
|
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJG, Williams KP, Holt SH, Ruiz Rojas JJ, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Lopez Girona E, Zdepski A, Wang W, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM. The genome of woodland strawberry (Fragaria vesca). Nat Genet 2011; 43:109-16. [PMID: 21186353 PMCID: PMC3326587 DOI: 10.1038/ng.740] [Citation(s) in RCA: 728] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/02/2010] [Indexed: 01/23/2023]
Abstract
The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.
Collapse
Affiliation(s)
- Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Wang X, Tang C, Zhang H, Xu JR, Liu B, Lv J, Han D, Huang L, Kang Z. TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:79-90. [PMID: 20795855 DOI: 10.1094/mpmi-06-10-0131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Defender against cell death (DAD) genes are known to function as negative regulators of cell death in animals. In plants, DAD orthologs are conserved but their role in cell death regulation is not well understood. Here, we report the characterization of the TaDAD2 gene in wheat. The predicted amino acid sequence of TaDAD2 contains typical structural features of DAD proteins, including a signal peptide, three transmembrane regions, and a subunit of oligosaccharyltransferase. Transcripts of TaDAD2 were detected in wheat leaves, culms, roots, florets, and spikelets. The expression level of TaDAD2 was reduced in the initial contact with the stripe rust fungus, subsequently induced and peaked at 18 h postinoculation (hpi), gradually reduced at 24 to 48 hpi, and restored to control level at 72 to 120 hpi. In addition, TaDAD2 exhibited positive transcriptional responses to abiotic stresses after the initial reduction at 1 hpi. Overexpression of TaDAD2 in tobacco leaves inhibited cell death. Furthermore, knocking down TaDAD2 expression by virus-induced gene silencing enhanced the susceptibility of wheat cv. Suwon11 to avirulent race CYR23 and reduced necrotic area at the infection sites. These results indicate that TaDAD2 may function as a suppressor of cell death in the early stages of wheat-stripe rust fungus interaction. However, it is dispensable for or plays an opposite role in hypersensitive response or cell death triggered by an avirulent race of stripe rust fungus at late-infection stages.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Xue L, Li S, Zhang B, Shi X, Chang S. Counteractive action of nitric oxide on the decrease of nitrogenase activity induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 2010; 62:1253-9. [PMID: 21188588 DOI: 10.1007/s00284-010-9850-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The experimental enhancement of UV-B radiation resulted in damage to chlorophyll-a in Spirulina platensis 794, and the degree of this damage was modified by chemical treatments. The addition of 0.5 mM sodium nitroprusside (SNP), a donor of nitric oxide (NO), to cultures of Spirulina platensis 794 could markedly alleviate the damage to chlorophyll-a caused by enhanced ultraviolet-B radiation. Exposure of N(2)-fixing cyanobacterium Spirulina platensis 794 to enhanced ultraviolet-B radiation resulted in an intensity-dependent inhibition of nitrogenase activity. In cultured cells that were treated with 0.5 mM SNP and enhanced UV-B for 6 h, nitrogenase activity increased by 47.3% compared with UV-B treated control cells. SNP apparently counteracted the decrease in nitrogenase activity caused by UV-B stress. NAC (a free radical scavenger) significantly increased nitrogenase activity, but PTIO (a nitric oxide scavenger) decreased nitrogenase activity in UV-B treated S. platensis 794. Thus, the free radical scavenger NAC and NO may counteract the effects of enhanced UV-B radiation. The activity of UV-B-inhibited nitrogenase did not recover upon transfer of exposed cells to fluorescent light, suggesting that the inhibition may be due to specific inactivation of the enzyme. By experimentally manipulating the inhibitors of photosystem-II activity, it was demonstrated that nitrogenase activity in cyanobacterium S. platensis 794 is limited by the amount of reductant and ATP. This result further confirmed that nitrogenase activity requires a continued and abundant supply of suitable reductant and ATP for conversion of N(2) to NH(3). The effects of UV-B treatment on nitratase activity were also examined, and enhanced UV-B radiation increased nitratase activity. In addition, enhanced UV-B in combination with SNP and NAC resulted in significant increases in the activity of nitratase.
Collapse
Affiliation(s)
- Lingui Xue
- School of Chemistry and Bioengineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China.
| | | | | | | | | |
Collapse
|