151
|
Stankiewicz AR, Lachapelle G, Foo CPZ, Radicioni SM, Mosser DD. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 2005; 280:38729-39. [PMID: 16172114 DOI: 10.1074/jbc.m509497200] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hsp70 overexpression can protect cells from stress-induced apoptosis. Our previous observation that Hsp70 inhibits cytochrome c release in heat-stressed cells led us to examine events occurring upstream of mitochondrial disruption. In this study we examined the effects of heat shock on the proapoptotic Bcl-2 family member Bax because of its central role in regulating cytochrome c release in stressed cells. We found that heat shock caused a conformational change in Bax that leads to its translocation to mitochondria, stable membrane association, and oligomerization. All of these events were inhibited in cells that had elevated levels of Hsp70. Hsp70 did not physically interact with Bax in control or heat-shocked cells, indicating that Hsp70 acts to suppress signals leading to Bax activation. Hsp70 inhibited stress-induced JNK activation and inhibition of JNK with SP600125 or by expression of a dominant negative mutant of JNK-blocked Bax translocation as effectively as Hsp70 overexpression. Hsp70 did not protect cells expressing a mutant form of Bax that has constitutive membrane insertion capability or cells treated with a small molecule activator of apoptosome formation, indicating that it is unable to prevent cell death after mitochondrial disruption and caspase activation have occurred. These results indicate that Hsp70 blocks heat-induced apoptosis primarily by inhibiting Bax activation and thereby preventing the release of proapoptotic factors from mitochondria. Hsp70, therefore, inhibits events leading up to mitochondrial membrane permeabilization in heat-stressed cells and thereby controls the decision to die but does not interfere with cell death after this event has occurred.
Collapse
Affiliation(s)
- Adam R Stankiewicz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
152
|
Hou Q, Hsu YT. Bax translocates from cytosol to mitochondria in cardiac cells during apoptosis: development of a GFP-Bax-stable H9c2 cell line for apoptosis analysis. Am J Physiol Heart Circ Physiol 2005; 289:H477-87. [PMID: 15961378 DOI: 10.1152/ajpheart.00879.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.
Collapse
Affiliation(s)
- Qi Hou
- Dept. of Biochemistry and Molecular Biology, Medical Univ. of South Carolina, 173 Ashley Ave., PO Box 250509, Charleston, SC 29425, USA
| | | |
Collapse
|
153
|
Zalk R, Israelson A, Garty E, Azoulay-Zohar H, Shoshan-Barmatz V. Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 2005; 386:73-83. [PMID: 15456403 PMCID: PMC1134768 DOI: 10.1042/bj20041356] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The VDAC (voltage-dependent anion channel) plays a central role in apoptosis, participating in the release of apoptogenic factors including cytochrome c. The mechanisms by which VDAC forms a protein-conducting channel for the passage of cytochrome c are not clear. The present study approaches this problem by addressing the oligomeric status of VDAC and its role in the induction of the permeability transition pore and cytochrome c release. Chemical cross-linking of isolated mitochondria or purified VDAC with five different reagents proved that VDAC exists as dimers, trimers or tetramers. Fluorescence resonance energy transfer between fluorescently labelled VDACs supports the concept of dynamic VDAC oligomerization. Mitochondrial cross-linking prevented both permeability transition pore opening and release of cytochrome c, yet had no effect on electron transport or Ca2+ uptake. Bilayer-reconstituted purified cross-linked VDAC showed decreased conductance and voltage-independent channel activity. In the dithiobis(succinimidyl propionate)-cross-linked VDAC, these channel properties could be reverted to those of the native VDAC by cleavage of the cross-linking. Cross-linking of VDAC reconstituted into liposomes inhibited the release of the proteoliposome-encapsulated cytochrome c. Moreover, encapsulated, but not soluble cytochrome c induced oligomerization of liposome-reconstituted VDAC. Thus the results indicate that VDAC exists in a dynamic equilibrium between dimers and tetramers and suggest that oligomeric VDAC may be involved in mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Ran Zalk
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adrian Israelson
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Erez S. Garty
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Heftsi Azoulay-Zohar
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- To whom correspondence should be addressed (email )
| |
Collapse
|
154
|
Lang-Rollin I, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ, Stefanis L. Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 2005; 10:809-20. [PMID: 16133871 DOI: 10.1007/s10495-005-0378-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The function of the proteasome has been linked to various pathologies, including cancer and neurodegeneration. Proteasomal inhibition can lead to death in a variety of cell types, however the manner in which this occurs is unclear, and may depend on the particular cell type. In this work we have extended previous findings pertaining to the effects of pharmacological proteasomal inhibitors on PC12 cells, by examining in more detail the induced death pathway. We find that cell death is apoptotic by ultrastructural criteria. Caspase 9 and 3 are processed, cytochrome c is released from the mitochondria and a dominant negative form of caspase 9 prevents death. Furthermore, Bax undergoes a conformational change and is translocated to the mitochondria in a caspase-independent fashion. Total cell levels of Bax however do not change, whereas levels of the BH3-only protein Bim increase with proteasomal inhibition. Transient overexpression of bcl-xL or, to a lesser extent, of bcl-2, significantly decreased apoptotic death and prevented Bax conformational change. We conclude that death elicited by proteasomal inhibition of PC12 cells follows a classical "intrinsic" pathway. Significantly, antiapoptotic bcl-2 family members prevent apoptosis by inhibiting Bax conformational change. Increased levels of Bim may contribute to cell death in this model.
Collapse
Affiliation(s)
- I Lang-Rollin
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Dejean LM, Martinez-Caballero S, Manon S, Kinnally KW. Regulation of the mitochondrial apoptosis-induced channel, MAC, by BCL-2 family proteins. Biochim Biophys Acta Mol Basis Dis 2005; 1762:191-201. [PMID: 16055309 DOI: 10.1016/j.bbadis.2005.07.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/21/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Programmed cell death or apoptosis is central to many physiological processes and pathological conditions such as organogenesis, tissue homeostasis, cancer, and neurodegenerative diseases. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other pro-apoptotic factors. Control of the formation of the mitochondrial apoptosis-induced channel, or MAC, is central to the regulation of apoptosis by Bcl-2 family proteins. MAC is detected early in apoptosis by patch clamping the mitochondrial outer membrane. The focus of this review is on the regulation of MAC activity by Bcl-2 family proteins. The role of MAC as the putative cytochrome c release channel during early apoptosis and insights concerning its molecular composition are also discussed.
Collapse
Affiliation(s)
- Laurent M Dejean
- Department Basic Sciences, New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|
156
|
Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA. Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:985-95. [PMID: 16002698 DOI: 10.4049/jimmunol.175.2.985] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fas-induced apoptosis is a critical process for normal immune system development and function. Although many molecular components in the Fas signaling pathway have been identified, a systematic understanding of how they work together to determine network dynamics and apoptosis itself has remained elusive. To address this, we generated a computational model for interpreting and predicting effects of pathway component properties. The model integrates current information concerning the signaling network downstream of Fas activation, through both type I and type II pathways, until activation of caspase-3. Unknown parameter values in the model were estimated using experimental data obtained from human Jurkat T cells. To elucidate critical signaling network properties, we examined the effects of altering the level of Bcl-2 on the kinetics of caspase-3 activation, using both overexpression and knockdown in the model and experimentally. Overexpression was used to distinguish among alternative hypotheses for inhibitory binding interactions of Bcl-2 with various components in the mitochondrial pathway. In comparing model simulations with experimental results, we find the best agreement when Bcl-2 blocks the release of cytochrome c by binding to both Bax and truncated Bid instead of Bax, truncated Bid, or Bid alone. Moreover, although Bcl-2 overexpression strongly reduces caspase-3 activation, Bcl-2 knockdown has a negligible effect, demonstrating a general model finding that varying the expression levels of signal molecules frequently has asymmetric effects on the outcome. Finally, we demonstrate that the relative dominance of type I vs type II pathways can be switched by varying particular signaling component levels without changing network structure.
Collapse
Affiliation(s)
- Fei Hua
- Center for Cancer Research and Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
157
|
Abstract
Research on VDAC has accelerated as evidence grows of its importance in mitochondrial function and in apoptosis. New investigators entering the field are often confounded by the VDAC literature and its many apparent conflicts and contradictions. This review is an effort to shed light on the situation and identify reliable information from more questionable claims. Our views on the most important controversial issues are as follows: VDAC is only present in the mitochondrial outer membrane. VDAC functions as a monomer. VDAC functions normally with or without Ca(2+). It does not form channels that mediate the flux of proteins through membranes (peptides and unfolded proteins are excluded from this statement). Closure of VDAC, not VDAC opening, leads to mitochondria outer membrane permeabilization and apoptosis.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
158
|
Zheng Y, Yamaguchi H, Tian C, Lee MW, Tang H, Wang HG, Chen Q. Arsenic trioxide (As(2)O(3)) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 2005; 24:3339-47. [PMID: 15735709 DOI: 10.1038/sj.onc.1208484] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study explores the roles of Bax and other Bcl-2 family members play in arsenic trioxide (As(2)O(3))-induced apoptosis. We showed that As(2)O(3) treatment triggered Bax conformational change and subsequent translocation from cytosol to mitochondria to form various multimeric homo-oligomers in IM-9 cells. On the other hand, human leukemic Jurkat cells deficient in Bax showed dramatically reduced apoptosis in response to As(2)O(3). Stable overexpression of Bcl-2 in IM-9 cells (IM-9/Bcl-2) inhibited As(2)O(3)-mediated Bax activation and apoptosis, and this inhibition could be partially averted by cell-permeable Bid-Bcl-2 homology (BH)3 peptide. Meanwhile, Bax conformational change and oligomerization induced by As(2)O(3) were not inhibited by the pancaspase inhibitor z-VAD-fmk, although Bid cleavage could be completely abolished. Bax activation by As(2)O(3) seemed to require stress-induced intracellular reactive oxygen species (ROS), since the ROS scavengers (N-acetyl-L-cysteine and lipoic acid) could completely block the conformational change and translocation of Bax from cytosol to mitochondria. These data suggest that As(2)O(3) might exert the cell killing in part by inducing Bax activation through a Bcl-2-suppressible pathway in hematopoietic cells that is caspase independent and intracellular ROS regulated.
Collapse
Affiliation(s)
- Yanhua Zheng
- The Laboratory of Apoptosis and Cancer Biology, The National Key Laboratory of Biomembrane and Membrane Biotechnology, The Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
159
|
Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DCS. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19:1294-305. [PMID: 15901672 PMCID: PMC1142553 DOI: 10.1101/gad.1304105] [Citation(s) in RCA: 1022] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Commitment of cells to apoptosis is governed largely by the interaction between members of the Bcl-2 protein family. Its three subfamilies have distinct roles: The BH3-only proteins trigger apoptosis by binding via their BH3 domain to prosurvival relatives, while the proapoptotic Bax and Bak have an essential downstream role involving permeabilization of organellar membranes and induction of caspase activation. We have investigated the regulation of Bak and find that, in healthy cells, Bak associates with Mcl-1 and Bcl-x(L) but surprisingly not Bcl-2, Bcl-w, or A1. These interactions require the Bak BH3 domain, which is also necessary for Bak dimerization and killing activity. When cytotoxic signals activate BH3-only proteins that can engage both Mcl-1 and Bcl-x(L) (such as Noxa plus Bad), Bak is displaced and induces cell death. Accordingly, the BH3-only protein Noxa could bind to Mcl-1, displace Bak, and promote Mcl-1 degradation, but Bak-mediated cell death also required neutralization of Bcl-x(L) by other BH3-only proteins. The results indicate that Bak is held in check solely by Mcl-1 and Bcl-x(L) and induces apoptosis only if freed from both. The finding that different prosurvival proteins have selective roles has notable implications for the design of anti-cancer drugs that target the Bcl-2 family.
Collapse
Affiliation(s)
- Simon N Willis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Yin W, Raffelsberger W, Gronemeyer H. Retinoic acid determines life span of leukemic cells by inducing antagonistic apoptosis-regulatory programs. Int J Biochem Cell Biol 2005; 37:1696-708. [PMID: 15869897 DOI: 10.1016/j.biocel.2005.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 01/12/2023]
Abstract
As a single signal, retinoids induce terminal differentiation. This implies that they activate differentiation and apoptosis in a temporally defined order to allow expression of the differentiated phenotype well before death. We report that two apparently contradictory retinoid-induced programs have the capacity to define cellular life span. Anti-apoptotic factors are activated concomitantly with differentiation, while retinoids induce at the same time also pro-apoptotic signaling. We have assessed the roles of two key factors, Bcl2A1 and TRAIL, in the temporal programming of cell death and differentiation. We demonstrate that PLB985 are type II cells in which TRAIL induces apoptosis through the extrinsic and--via Bid activation--also the intrinsic death pathways. Bcl2A1, ectopically over-expressed, or endogenously induced by retinoic acid receptor agonists, protected cells from apoptosis triggered by TRAIL, whose induction required the activation of both the retinoic acid and retinoid X receptors. Bcl2A1 prevented loss of mitochondrial membrane potential and caspase-9, but not caspase-8, activation. The expression of anti-sense Bcl2A1 sensitized PLB985 cells to TRAIL. Co-culture experiments revealed protection from fraternicide if sister cells were pre-exposed to retinoic acid. Collectively, our data support a model in which retinoids orchestrate a life span-regulatory program comprising Bcl2A1 induction to temporally protect against concomitantly induced TRAIL death signaling. Termination of this life span in presence of Bcl2A1 is most likely a consequence of the Bid-independent TRAIL action. Thus, depending on the retinoic acid and retinoid X receptor activation potential of a ligand and the relative efficacies of the intrinsic and extrinsic death pathways in a given cell, a single retinoid triggers the life span of a differentiated phenotype.
Collapse
Affiliation(s)
- Weihong Yin
- Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire/CNRS/INSERM/ULP, BP 10142, F-67404 Illkirch Cedex, C. U. de Strasbourg, France
| | | | | |
Collapse
|
161
|
Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA, Kinnally KW. Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 2005; 16:2424-32. [PMID: 15772159 PMCID: PMC1087246 DOI: 10.1091/mbc.e04-12-1111] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2-overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC.
Collapse
Affiliation(s)
- Laurent M Dejean
- Department of Basic Sciences, College of Dentistry, New York University, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Brooks C, Ketsawatsomkron P, Sui Y, Wang J, Wang CY, Yu FS, Dong Z. Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol 2005; 289:F410-9. [PMID: 15755925 DOI: 10.1152/ajprenal.00440.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubular cell apoptosis has been implicated in the development of ischemic renal failure. In in vitro models, ATP depletion-induced apoptosis of tubular cells is mediated by the intrinsic pathway involving Bax translocation, cytochrome c release, and caspase activation. While the apoptotic cascade has been delineated, much less is known about its regulation. The current study has examined the regulation of ATP depletion-induced tubular cell apoptosis by acidic pH, a common feature of tissue ischemia. Cultured renal tubular cells were subjected to 3 h of ATP depletion with azide and then recovered in full culture medium. The treatment led to apoptosis in approximately 40% of cells. Apoptosis was significantly reduced, if the pH of ATP depletion buffer was lowered from 7-7.4 to 6-6.5. This was accompanied by the inhibition of caspase activation. However, acidic pH did not prevent Bax translocation and oligomerization in mitochondria. Cytochrome c release from mitochondria was not blocked either, suggesting that acidic pH inhibited apoptosis at the postmitochondrial level. To determine the postmitochondrial events that were blocked by acidic pH, we conducted in vitro reconstitution experiments. Exogenous cytochrome c, when added into isolated cell cytosol, induced caspase activation. Such activation was abrogated, when pH during the reconstitution was lowered to 6 or 6.5. Nevertheless, acidic pH did not prevent the recruitment and association of caspase-9 by Apaf-1, as shown by coimmunoprecipitation. Together, this study demonstrated the inhibition of tubular cell apoptosis following ATP depletion by acidic pH. A critical step blocked by acidic pH seems to be caspase-9 activation in apoptosome.
Collapse
Affiliation(s)
- Craig Brooks
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Xin M, Deng X. Nicotine Inactivation of the Proapoptotic Function of Bax through Phosphorylation. J Biol Chem 2005; 280:10781-9. [PMID: 15642728 DOI: 10.1074/jbc.m500084200] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotine-induced cell survival is associated with chemoresistance of human lung cancer cells, but our understanding of the intracellular mechanism(s) is fragmentary. Bax is a major proapoptotic member of the Bcl2 family and a molecule required for apoptotic cell death. Growth factor (i.e. granulocyte-macrophage colony-stimulating factor)-induced phosphorylation of Bax has been reported to negatively regulate its proapoptotic function. Because Bax is ubiquitously expressed in both small cell lung cancer and non-small cell lung cancer cells, nicotine may mimic growth factor(s) to regulate the activity of Bax. We found that nicotine potently induces Bax phosphorylation at Ser-184, which results in abrogation of the proapoptotic activity of Bax and increased cell survival. AKT, a known physiological Bax kinase, is activated by nicotine, co-localizes with Bax in the cytoplasm, and can directly phosphorylate Bax in vitro. Treatment of cells with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or specific depletion of AKT expression by RNA interference can block both nicotine-induced Bax phosphorylation and cell survival. Importantly, nicotine-induced Bax phosphorylation potently blocks stress-induced translocation of Bax from cytosol to mitochondria, impairs Bax insertion into mitochondrial membranes, and reduces the half-life of Bax protein (i.e. from 9-12 h to <6 h). Because knockdown of Bax expression by gene silencing results in prolonged cell survival following treatment with cisplatin in the absence or presence of nicotine, Bax may be an essential component in the nicotine survival signaling pathway. Thus, nicotine-induced survival and chemoresistance of human lung cancer cells may occur in a novel mechanism involving activation of PI3K/AKT that directly phosphorylates and inactivates the proapoptotic function of Bax.
Collapse
Affiliation(s)
- Meiguo Xin
- University of Florida Shands Cancer Center, Department of Medicine and Anatomy, University of Florida, Gainesville, Florida 32610-0232, USA
| | | |
Collapse
|
164
|
Abstract
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 x 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological roles and relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.
Collapse
Affiliation(s)
- V S Goldmacher
- ImmunoGen, Inc., 128 Sidney St., Cambridge, MA 02139, USA.
| |
Collapse
|
165
|
Lai JC, Benimetskaya L, Khvorova A, Wu S, Hua E, Miller P, Stein C. Phosphorothioate oligodeoxynucleotides and G3139 induce apoptosis in 518A2 melanoma cells. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.305.4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In a previous study, we showed that G3139, an antisense phosphorothioate oligonucleotide that down-regulates the expression of Bcl-2 protein, did not cause chemosensitization of 518A2 melanoma cells. In this work, we show that G3139, and the 2-base mismatch, G4126, can initiate apoptosis in this and other melanoma cell lines as shown by increased cell surface Annexin V expression, typical nuclear phenotypic changes as assessed by 4′,6-diamidino-2-phenylindole staining, activation of caspase-3 (but not caspase-8) and Bid, appearance of DEVDase (but not IETDase) activity, and cleavage of poly(ADP-ribose)-polymerase 1. Depolarization of the mitochondrial membrane occurs as a relatively late event. All of these processes seem to be substantially, but perhaps not totally, Bcl-2 independent as shown by experiments employing an anti-Bcl-2 small interfering RNA, which as shown previously down-regulated Bcl-2 protein expression but did not produce apoptosis or chemosensitization in melanoma cells. In fact, these G3139-induced molecular events were not dramatically altered in cells that forcibly overexpressed high levels of Bcl-2 protein. Addition of irreversible caspase inhibitors (e.g., the pan-caspase inhibitor zVAD-fmk) to G3139-treated cells almost completely blocked cytotoxicity. Examination of the time course of the appearance of caspase-3 and cleaved poly(ADP-ribose)-polymerase 1 showed that this could be correlated with the release of cytochrome c from the mitochondria, an event that begins only ∼4 hours after the end of the oligonucleotide/LipofectAMINE 2000 5-hour transfection period. Thus, both G3139 and cytotoxic chemotherapy activate the intrinsic pathway of apoptosis in these cells, although Bcl-2 expression does not seem to contribute strongly to chemoresistance. These findings suggest that the attainment of G3139-induced chemosensitization in these cells will be difficult.
Collapse
Affiliation(s)
- Johnathan C. Lai
- 2Department of Biomedical Engineering, Columbia University, New York, New York
| | - Luba Benimetskaya
- 1Department of Oncology, Montefiore Medical Center, Albert Einstein-Montefiore Cancer Center, Bronx, New York
| | | | - Sijian Wu
- 1Department of Oncology, Montefiore Medical Center, Albert Einstein-Montefiore Cancer Center, Bronx, New York
| | - Emily Hua
- 1Department of Oncology, Montefiore Medical Center, Albert Einstein-Montefiore Cancer Center, Bronx, New York
| | - Paul Miller
- 4Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - C.A. Stein
- 1Department of Oncology, Montefiore Medical Center, Albert Einstein-Montefiore Cancer Center, Bronx, New York
| |
Collapse
|
166
|
Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria: Different modes of dying. BIOCHEMISTRY (MOSCOW) 2005; 70:231-9. [PMID: 15807663 DOI: 10.1007/s10541-005-0105-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Programmed cell death (PCD) is a major component of normal development, preservation of tissue homeostasis, and elimination of damaged cells. Many studies have subdivided PCD into the three categories of apoptosis, autophagy, and necrosis based on criteria such as morphological alterations, initiating death signal, or the implication of caspases. However, these classifications fail to address the interplay between the three types of PCD. In this review, we will discuss the central role of the mitochondrion in the integration of the cell death pathways. Mitochondrial alterations such as the release of sequestered apoptogenic proteins, loss of transmembrane potential, production of reactive oxygen species (ROS), disruption of the electron transport chain, and decreases in ATP synthesis have been shown to be involved in, and possibly responsible for, the different manifestations of cell death. Thus, the mitochondria can be viewed as a central regulator of the decision between cellular survival and demise.
Collapse
Affiliation(s)
- M Bras
- Apoptose et Systeme Immunitaire, Institut Pasteur, CNRS-URA 1961, Paris 75015, France
| | | | | |
Collapse
|
167
|
D'Agostino DM, Bernardi P, Chieco-Bianchi L, Ciminale V. Mitochondria as Functional Targets of Proteins Coded by Human Tumor Viruses. Adv Cancer Res 2005; 94:87-142. [PMID: 16096000 DOI: 10.1016/s0065-230x(05)94003-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular analyses of tumor virus-host cell interactions have provided key insights into the genes and pathways involved in neoplastic transformation. Recent studies have revealed that the human tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human T-cell leukemia virus type 1 (HTLV-1) express proteins that are targeted to mitochondria. The list of these viral proteins includes BCL-2 homologues (BHRF1 of EBV; KSBCL-2 of KSHV), an inhibitor of apoptosis (IAP) resembling Survivin (KSHV K7), proteins that alter mitochondrial ion permeability and/or membrane potential (HBV HBx, HPV E[wedge]14, HCV p7, and HTLV-1 p13(II)), and K15 of KSHV, a protein with undefined function. Consistent with the central role of mitochondria in energy production, cell death, calcium homeostasis, and redox balance, experimental evidence indicates that these proteins have profound effects on host cell physiology. In particular, the viral BCL-2 homologues BHRF1 and KSBCL-2 inhibit apoptosis triggered by a variety of stimuli. HBx, p7, E1[wedge]4, and p13(II) exert powerful effects on mitochondria either directly due to their channel-forming activity or indirectly through interactions with endogenous channels. Further investigation of these proteins and their interactions with mitochondria will provide important insights into the mechanisms of viral replication and tumorigenesis and could aid in the discovery of new targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Donna M D'Agostino
- Department of Oncology and Surgical Sciences, University of Padova, Padova 35128, Italy
| | | | | | | |
Collapse
|
168
|
Ho HK, Hu ZH, Tzung SP, Hockenbery DM, Fausto N, Nelson SD, Bruschi SA. BCL-xL overexpression effectively protects against tetrafluoroethylcysteine-induced intramitochondrial damage and cell death. Biochem Pharmacol 2005; 69:147-57. [PMID: 15588723 DOI: 10.1016/j.bcp.2004.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 08/27/2004] [Indexed: 12/01/2022]
Abstract
S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC), a major metabolite of the industrial gas tetrafluoroethylene, has been shown to mediate nephrotoxicity by necrosis. TFEC-induced cell death is associated with an early covalent modification of specific intramitochondrial proteins; including aconitase, alpha-ketoglutarate dehydrogenase (KGDH) subunits, HSP60 and HSP70. Previous studies have indicated that the TAMH line accurately models TFEC-induced in vivo cell death with dose- and time-dependent inhibitions of both KGDH and aconitase activities. Here, we show that the molecular pathway leading to TFEC-mediated cell death is associated with an early cytosolic to mitochondrial translocation of BAX, a pro-apoptotic member of the BCL-2 family. Immunoblot analyses indicated movement of BAX (21 kDa) to the mitochondrial fraction after exposure to a cytotoxic concentration of TFEC (250 microM). Subsequent cytochrome c release from mitochondria was also demonstrated, but only a modest increase in caspase activities was observed, suggesting a degeneration of early apoptotic signals into secondary necrosis. Significantly, TAMH cells overexpressing BCL-xL preserved cell viability even to supratoxicological concentrations of TFEC (< or =600 microM), and this cytoprotection was associated with decreased HSP70i upregulation, indicating suppression of TFEC-induced proteotoxicity. Hence, TFEC-induced necrotic cell death in the TAMH cell line is mediated by BAX and antagonized by the anti-apoptotic BCL-2 family member, BCL-xL.
Collapse
Affiliation(s)
- Han K Ho
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Kwon KB, Kim EK, Lim JG, Shin BC, Han SC, Song BK, Kim KS, Seo EA, Ryu DG. Protective effect of Coptidis Rhizoma on S-nitroso-N-acetylpenicillamine (SNAP)-induced apoptosis and necrosis in pancreatic RINm5F cells. Life Sci 2005; 76:917-29. [PMID: 15589968 DOI: 10.1016/j.lfs.2004.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
Coptidis rhizoma (CR) is a herb used in many traditional prescriptions against diabetes mellitus in Asia for centuries. Our purpose was to determine the protective effect and its action mechanism of CR on the cytotoxicity of pancreatic beta-cells. Nitric oxide (NO) is believed to play a key role in the process of pancreatic beta-cell destruction leading to insulin-dependent diabetes mellitus (IDDM). Exposure of RINm5F cells to chemical NO donor such as S-nitroso-N-acetylpenicillamine (SNAP) induced apoptotic events such as the disruption of mitochondrial membrane potential (Deltapsim), cytochrome c release from mitochondria, activation of caspase-3, poly (ADP-ribose) polymerase cleavage and DNA fragmentation. Also, exposure of SNAP led to LDH release into medium, one of the necrotic events. However, pretreatment of RINm5F cells with CR extract protected both apoptosis and necrosis through the inhibition of Deltapsim disruption in SNAP-treated RINm5F cells. In addition, rat islets pretreated with CR extract retained the insulin-secretion capacity even after the treatment with IL-1beta. These results suggest that CR may be a candidate for a therapeutic or preventing agent against IDDM.
Collapse
Affiliation(s)
- Kang-Beom Kwon
- Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Chonbuk, 570-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Izyumov DS, Avetisyan AV, Pletjushkina OY, Sakharov DV, Wirtz KW, Chernyak BV, Skulachev VP. "Wages of fear": transient threefold decrease in intracellular ATP level imposes apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:141-7. [PMID: 15282185 DOI: 10.1016/j.bbabio.2004.05.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/12/2004] [Accepted: 05/12/2004] [Indexed: 11/21/2022]
Abstract
In HeLa cells, complete inhibition of oxidative phosphorylation by oligomycin, myxothiazol or FCCP combined with partial inhibition of glycolysis by DOG resulted in a steady threefold decrease in the intracellular ATP level. The ATP level recovers when the DOG-containing medium was replaced by that with high glucose. In 48 h after a transient (3 h) [ATP] lowering followed by recovery of the ATP level, the majority of the cells commits suicide by means of apoptosis. The cell death does not occur if DOG or an oxidative phosphorylation inhibitor was added separately, treatments resulting in 10-35% lowering of [ATP]. Apoptosis is accompanied by Bax translocation to mitochondria, cytochrome c release into cytosol, caspase activation, reactive oxygen species (ROS) generation, and reorganization and decomposition of chromatin. Apoptosis appears to be sensitive to oncoprotein Bcl-2 and a pancaspase inhibitor zVADfmk. In the latter case, necrosis is shown to develop instead of apoptosis. The cell suicide is resistant to cyclosporine A, a phospholipase inhibitor trifluoroperazine, the JNK and p38 kinase inhibitors, oligomycin, N-acetyl cysteine and mitoQ, differing in these respects from the tumor necrosis factor (TNF)- and H(2)O(2)-induced apoptoses. It is suggested that the ATP concentration in the cell is monitored by intracellular "ATP-meter(s)" generating a cell suicide signal when ATP decreases, even temporarily, below some critical level (around 1 mM).
Collapse
Affiliation(s)
- Denis S Izyumov
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Khokhlova Street 4, Moscow 119992, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
171
|
Shankar S, Srivastava RK. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 2004; 7:139-56. [PMID: 15158769 DOI: 10.1016/j.drup.2004.03.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/28/2022]
Abstract
Activation of cell surface death receptors by their cognate ligands triggers apoptosis. Several human death receptors (Fas, TNF-R1, TRAMP, DR4, DR5, DR6, EDA-R and NGF-R) have been identified. The most promising cytokine for anticancer therapy is TRAIL/APO-2L, which induces apoptosis in cancer cells by binding to death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. The cytotoxic activity of TRAIL is relatively selective to cancer cells compared to normal cells. Signaling by TRAIL and its receptors is tightly regulated process essential for key physiological functions in a variety of organs, as well as the maintenance of immune homeostasis. Despite early promising results, recent studies have identified several TRAIL-resistant cancer cells of various origins. Based on molecular analysis of death-receptor signaling pathways several new approaches have been developed to increase the efficacy of TRAIL. Resistance of cancer cells to TRAIL appears to occur through the modulation of various molecular targets. They may include differential expression of death receptors, constitutively active Akt and NFkappaB, overexpression of cFLIP and IAPs, mutations in Bax and Bak genes, and defects in the release of mitochondrial proteins in resistant cells. Conventional chemotherapeutic and chemopreventive drugs, and irradiation can sensitize TRAIL-resistant cells to undergo apoptosis. Thus, these agents enhance the therapeutic potential of TRAIL in TRAIL-sensitive cells and sensitize TRAIL-resistant cells. TRAIL and TRAIL-receptor antibodies may prove to be useful for cancer therapy, either alone or in association with conventional approaches such as chemotherapy or radiation therapy. This review discusses intracellular mechanisms of TRAIL resistance and various approaches that can be taken to sensitize TRAIL-resistant cancer cells.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pharmaceutical Sciences, Greenebaum Cancer Center, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
172
|
Lundberg KC, Szweda LI. Initiation of mitochondrial-mediated apoptosis during cardiac reperfusion. Arch Biochem Biophys 2004; 432:50-7. [PMID: 15519296 DOI: 10.1016/j.abb.2004.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/20/2004] [Indexed: 10/26/2022]
Abstract
Reperfusion of myocardial tissue can result in programmed cell death. Nevertheless, relatively little information exists concerning pathways initiated in vivo that ultimately commit cardiac cells to apoptosis during ischemia/reperfusion. The goal of the present study was to determine whether mitochondrial-mediated mechanisms of apoptosis are initiated during in vivo cardiac ischemia/reperfusion. We provide evidence that the content of cytochrome c in the cytosol increases exclusively during reperfusion. Over the same time interval Bax, a pro-apoptotic protein implicated in release of cytochrome c from mitochondria, was found to disappear from cytosolic extracts. This was associated with the appearance of tightly associated Bax in the mitochondrial fraction. Cytochrome c from reperfused cytosolic extracts is present as a high molecular weight oligomer consistent with formation of the apoptosome. In addition, pro-caspase-9 was found to disappear exclusively during reperfusion. Therefore, the results of the current study indicate that the mitochondrial-mediated pathway of apoptosis is initiated as a result of in vivo cardiac ischemia/reperfusion.
Collapse
|
173
|
Shangary S, Oliver CL, Tillman TS, Cascio M, Johnson DE. Sequence and helicity requirements for the proapoptotic activity of Bax BH3 peptides. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1343.3.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Overexpression of the antiapoptotic proteins Bcl-2 and Bcl-XL is commonly observed in human malignancies and contributes to chemotherapy and radiation resistance. Bcl-2 and Bcl-XL inhibit apoptosis by binding to proapoptotic proteins such as Bax, thereby preventing chemotherapy-induced or radiation-induced release of cytochrome c from mitochondria and subsequent activation of the caspase protease cascade. Efforts to inhibit Bcl-2 or Bcl-XL function in tumor cells have focused on developing agents to inhibit the interactions of these proteins with proapoptotic proteins. Peptides derived from the BH3 domains of proapoptotic proteins have been shown to disrupt the interactions of Bcl-2 and Bcl-XL with key binding partners in cell-free reactions and to promote cellular apoptosis. However, less is known about the targets of BH3 peptides in intact cells as well as the sequence, length, and conformational requirements for peptide biological activity. In this report, we show that cell-permeable Bax BH3 peptides physically disrupt Bax/Bcl-2 heterodimerization in intact cells and that this disruption correlates with peptide-induced cell death. A point-mutant, control peptide that failed to disrupt intracellular Bax/Bcl-2 interactions also failed to promote apoptosis. To determine important sequence, length, and structural requirements for peptide activity, we generated and systematically analyzed the biological activities of 17 Bax BH3 peptide variants. Peptides were quantitatively examined for their ability to inhibit Bax/Bcl-2 and Bax/Bcl-XL heterodimerization in vitro and to promote cytochrome c release from mitochondria isolated from Jurkat, HL-60, U937, and PC-3 cells. Our results define 15 amino acids as the minimal length required for Bax BH3 peptide biological activity and show that amino acids COOH terminal to the BH3 core sequence are less critical than those located NH2 terminal to the core. In addition, circular dichroism spectroscopy revealed that high α-helical content generally correlated with, but was not sufficient for, peptide activity. Taken together, these studies provide a basis for future optimization of Bax BH3 peptide as a therapeutic anticancer agent.
Collapse
Affiliation(s)
| | | | | | | | - Daniel E. Johnson
- 1Medicine, Departments of
- 4Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
174
|
Massaad CA, Portier BP, Taglialatela G. Inhibition of transcription factor activity by nuclear compartment-associated Bcl-2. J Biol Chem 2004; 279:54470-8. [PMID: 15471874 DOI: 10.1074/jbc.m407659200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Using a reporter gene assay in PC12, HEK293, HeLa, and NIH-3T3 cells, we show that the anti-apoptotic protein Bcl-2 significantly inhibits transcriptional activation of various transcription factors, including NF kappa B, AP1, CRE, and NFAT. A Bcl-2 mutant lacking its BH4 domain (Delta BH4) also inhibited transcription, whereas a Bcl-2 mutant lacking its transmembrane domain (Delta TM) was ineffective. Furthermore, Bcl-2 chimeric proteins containing transmembrane domains from the mitochondrial protein monoamine oxidase B (MaoB) or the endoplasmic reticulum protein cytochrome b(5) showed no effect on transcription factor activity. Subcellular localization studies showed that under conditions of transient transfection, the active Bcl-2 forms (wild type and Delta BH4) were predominantly found in the nuclear fraction, whereas the non-active forms (Delta TM, MaoB, and cytochrome b(5)) were in the non-nuclear fraction. Additionally, stably expressed Bcl-2 loses its ability to inhibit transcriptional activation and localizes predominantly to the non-nuclear fraction. Expression of FKBP38 (a chaperone that shuttles Bcl-2 to the mitochondria) removes co-expressed Bcl-2 from the nuclear fraction and reverses its effect on transcription factor activity. Finally, using an inducible gene expression system, we show that nuclear compartment-associated Bcl-2 prevents entry of NF kappa B subunits to the nucleus without affecting NF kappa B release from its cytosolic inhibitory sub-unit I kappa B alpha. These results suggest that (a) Bcl-2 suppresses transcriptional activity of multiple transcription factors; (b) Bcl-2 does not interfere with NF kappa B activation but prevents entrance of its active subunits to the nucleus; (c) membrane anchoring is required for this function of Bcl-2; and (d) association of Bcl-2 with the nuclear compartment is also necessary. We speculate that nuclear compartment-associated Bcl-2 may affect nuclear trafficking of multiple factors necessary for transcriptional activity.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1043, USA
| | | | | |
Collapse
|
175
|
Bai L, Cao CP, Mao GP. Mechanism of hepatocytes apoptosis induced by the proapoptosis protein Bid. ACTA ACUST UNITED AC 2004; 5:175-80. [PMID: 15612888 DOI: 10.1111/j.1443-9573.2004.00178.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the mechanism of hepatocyte apoptosis induced by the proapoptosis protein Bid. METHODS Mouse primary hepatocytes were isolated from wild-type and Bid-deficient mice and treated with tumor necrosis factor-alpha (TNF-alpha) or anti-Fas antibody to induce cell apoptosis. Immunofluorescence staining of Bax was performed to recognize Bax translocation and its conformational change. The wild-type mice or wild-type mice transfected with the adenovirus carried DN-FADD (Dominant Negative-Fas Associated Death Domain) and the Bid-deficient mice were injected with anti-Fas antibody 2 h before being killed. Caspase 3 and 8 activities were measured. Bands of Bid cleavage and Bax conformational change were detected by Western blot. RESULTS Death receptors, including TNF-alpha and anti-Fas antibody, induced hepatocytes apoptosis, Bax translocation and conformational change through activation of Bid, which caused Bax to be inserted into the mitochondrial membrane of hepatocytes. The translocation and insertion of Bax were blocked when Bid was knocked out or blocked, and hepatocyte apoptosis was delayed or inhibited. CONCLUSION Hepatocyte apoptosis induced by death receptors is regulated by Bid and the translocation and insertion of Bax are also dependent on Bid.
Collapse
Affiliation(s)
- Li Bai
- Department of Digestive diseases, General Air Force Hospital, Beijing, China.
| | | | | |
Collapse
|
176
|
Shankar S, Singh TR, Srivastava RK. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate 2004; 61:35-49. [PMID: 15287092 DOI: 10.1002/pros.20069] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We assessed the influence of sequential treatment of ionizing radiation followed by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on intracellular mechanisms of apoptosis of prostate tumor cells in vitro and in vivo. METHODS Prostate normal and cancer cells were exposed to irradiation and TRAIL. Four- to 6-week-old athymic nude mice were injected s.c. with PC-3 tumor cells. Tumor bearing mice were exposed to irradiation and TRAIL, either alone or in combination (TRAIL after 24 hr of irradiation), and tumor growth, apoptosis, and survival of mice were examined. Expressions of death receptors, Bcl-2 family members, and caspase were measured by Western blotting, ELISA, and ribonuclease protection assay; tumor cellularity was assessed by H&E staining; inhibition of p53 was performed by RNA interference (RNAi) technology, and apoptosis was measured by annexin V/propidium iodide staining, and terminal deoxynucleotidyltransferase-mediated nick end labeling assay. RESULTS Irradiation significantly augmented TRAIL-induced apoptosis in prostate cancer cells through upregulation of DR5, Bax, and Bak, and induction of caspase activation. Dominant negative FADD and p53 siRNA inhibited the synergistic interaction between irradiation and TRAIL. The pretreatment of cells with irradiation followed by TRAIL significantly enhanced more apoptosis than single agent alone or concurrent treatment. Furthermore, irradiation sensitized TRAIL-resistant LNCaP cells to undergo apoptosis. The sequential treatment of xenografted mice with irradiation followed by TRAIL-induced apoptosis through activation of caspase-3, induction of Bax and Bak, and inhibition of Bcl-2, and completely eradicated the established tumors with enhanced survival of nude mice. CONCLUSION The sequential treatment with irradiation followed by TRAIL can be used as a viable option to enhance the therapeutic potential of TRAIL in prostate cancer.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Pharmaceutical Sciences, University of Maryland, 20 N. Pine Street, Baltimore, MD 2120-1180, USA
| | | | | |
Collapse
|
177
|
Sitailo LA, Tibudan SS, Denning MF. Bax Activation and Induction of Apoptosis in Human Keratinocytes by the Protein Kinase C δ Catalytic Domain. J Invest Dermatol 2004; 123:434-43. [PMID: 15304079 DOI: 10.1111/j.0022-202x.2004.23403.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The constitutively active catalytic domain of protein kinase C (PKC)delta is an apoptotic effector generated by caspase-3 cleavage of full-length PKCdelta in response to a wide variety of apoptotic stimuli, including UV radiation. The PKCdelta catalytic domain induces apoptosis when ectopically expressed, however, the mechanism of apoptosis induction is unclear. We constructed a chimeric protein encoding the PKCdelta catalytic domain fused to a mutated estrogen receptor ligand-binding domain in order to selectively activate the PKCdelta catalytic domain. The enzymatic activity of the PKCdelta catalytic domain fusion protein was induced in human keratinocytes treated with 4-hydroxytamoxifen, and its activation triggered loss of mitochondrial membrane potential and apoptosis. The apoptosis was associated with release of cytochrome c from the mitochondria and caspase activation, and was blocked by caspase inhibitors and the anti-apoptotic proteins Bcl-2, and Bcl-x(L), suggesting a role for mitochondrial pore formation. Consistent with this, the activated PKCdelta catalytic domain triggered the redistribution and activation of Bax, a Bcl-2 family protein that can directly induce cytochrome c release. In summary, despite being an apoptotic effector activated late in the apoptotic cascade, PKCdelta also activates upstream components of the death effector pathway to insure the demise of cells committed to apoptosis.
Collapse
Affiliation(s)
- Leonid A Sitailo
- Department of Pathology and the Oncology Institute, Skin Cancer Research Program, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|
178
|
Mc Gee MM, Greene LM, Ledwidge S, Campiani G, Nacci V, Lawler M, Williams DC, Zisterer DM. Selective induction of apoptosis by the pyrrolo-1,5-benzoxazepine 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) in Leukemia cells occurs via the c-Jun NH2-terminal kinase-dependent phosphorylation and inactivation of Bcl-2 and Bcl-XL. J Pharmacol Exp Ther 2004; 310:1084-95. [PMID: 15143129 DOI: 10.1124/jpet.104.067561] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Collapse
|
179
|
Zhang Z, Lapolla SM, Annis MG, Truscott M, Roberts GJ, Miao Y, Shao Y, Tan C, Peng J, Johnson AE, Zhang XC, Andrews DW, Lin J. Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. J Biol Chem 2004; 279:43920-8. [PMID: 15302859 PMCID: PMC1350923 DOI: 10.1074/jbc.m406412200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The homo- and heterodimerization of Bcl-2 family proteins is important for transduction and integration of apoptotic signals and control of the permeability of mitochondria and endoplasmic reticulum membranes. Here we mapped the interface of the Bcl-2 homodimer in a cell-free system using site-specific photocross-linking. Bcl-2 homodimer-specific photoadducts were detected from 11 of 17 sites studied. When modeled into the structure of Bcl-2 core, the interface is composed of two distinct surfaces: an acceptor surface that includes the hydrophobic groove made by helices 2 and 8 and the loop connecting helices 4 and 5 and a donor surface that is made by helices 1-4 and the loop connecting helices 2 and 3. The two binding surfaces are on separate faces of the three-dimensional structure, explaining the formation of Bcl-2 homodimers, homo-oligomers, and Bcl-2/Bax hetero-oligomers. We show that in vitro the Bcl-2 dimer can still interact with activated Bax as a larger oligomer. However, formation of a Bax/Bcl-2 heterodimer is favored, since this interaction inhibits Bcl-2 homodimerization. Our data support a simple model mechanism by which Bcl-2 interacts with activated Bax during apoptosis in an effective manner to neutralize the proapoptotic activity of Bax.
Collapse
Affiliation(s)
- Zhi Zhang
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the
| | - Suzanne M. Lapolla
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the
| | - Matthew G. Annis
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the
| | - Mary Truscott
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the
| | - G. Jane Roberts
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the
| | - Yiwei Miao
- Departments of Medical Biochemistry and Genetics
| | | | - Chibing Tan
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the
| | - Jun Peng
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the
| | - Arthur E. Johnson
- Departments of Medical Biochemistry and Genetics
- Chemistry, and
- Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-1114, and the
| | - Xuejun C. Zhang
- Crystallography Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - David W. Andrews
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the
| | - Jialing Lin
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, the
- ¶¶ To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 935, P.O. Box 26901, Oklahoma City, OK 73190. Tel.: 405-271-2227 (ext. 1216); Fax: 405-271-3092; E-mail:
| |
Collapse
|
180
|
Lajoie C, Calderone A, Béliveau L. Exercise training enhanced the expression of myocardial proteins related to cell protection in spontaneously hypertensive rats. Pflugers Arch 2004; 449:26-32. [PMID: 15290300 DOI: 10.1007/s00424-004-1307-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exercise training could potentially exert beneficial effects on the signaling events associated with cardiac cell apoptosis. Spontaneously hypertensive rats (SHR) were trained 5 days/week on a treadmill (18 m/min for 120 min/day) between the ages of 4 weeks and 1 week, corresponding to the hypertensive accelerating phase. The effect of exercise training on the expression of anti-apoptotic proteins HSP-72, Bcl-2 and protein kinase B (PKB), and the apoptotic proteins Bax and glycogen synthase kinase-3 (GSK-3) was examined. Exercise had a significant acute lowering effect on blood pressure, but this decrease did not attenuate the progressive increase in blood pressure. In the left ventricles of exercised SHR, PKB phosphorylation of both Ser473 and Thr308 residues was significantly increased by 166% and 120%, respectively, compared to sedentary SHR. PKB phosphorylation significantly correlated with GSK-3beta phosphorylation. HSP-72 and Bcl-2 protein expression were increased in the left ventricle of exercised SHR, and associated with the concomitant increased expression of the protein Bax. Thus, the Bcl-2/Bax ratio was not changed by exercise training, suggesting that the anti-apoptotic mechanism was effective in compensating the increase in the expression of the pro-apoptotic protein Bax in the myocardium of the SHR.
Collapse
Affiliation(s)
- Claude Lajoie
- Department of Kinesiology, University of Montreal, Succ. Centre-ville, C.P. 6128, Montreal H3C 3J7, Canada
| | | | | |
Collapse
|
181
|
Ding WX, Ni HM, DiFrancesca D, Stolz DB, Yin XM. Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology 2004; 40:403-13. [PMID: 15368445 DOI: 10.1002/hep.20310] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Activation of tumor necrosis factor receptor 1 or Fas leads to the generation of reactive oxygen species, which are important to the cytotoxic effects of tumor necrosis factor alpha (TNF-alpha) or Fas ligand. However, how these radicals are generated following receptor ligation is not clear. Using primary hepatocytes, we found that TNF-alpha or anti-Fas antibody-induced burst of oxygen radicals was mainly derived from the mitochondria. We discovered that Bid--a pro-death Bcl-2 family protein activated by ligated death receptors--was the main intracellular molecule signaling the generation of the radicals by targeting to the mitochondria and that the majority of oxygen radical production was dependent on Bid. Reactive oxygen species contributed to cell death and caspase activation by promoting FLICE-inhibitory protein degradation and mitochondrial release of cytochrome c. For the latter part, the oxygen radicals did not affect Bak oligomerization but instead promoted mitochondrial cristae reorganization and membrane lipid peroxidation. Antioxidants could reverse these changes and therefore protect against TNF-alpha or anti-Fas-induced apoptosis. In conclusion, our studies established the signaling pathway from death receptor engagement to oxygen radical generation and determined the mechanism by which reactive oxygen species contributed to hepatocyte apoptosis following death receptor activation.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
182
|
Barlow JW, Mous M, Wiley JC, Varley JM, Lozano G, Strong LC, Malkin D. Germ Line BAX Alterations Are Infrequent in Li-Fraumeni Syndrome. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1403.13.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Multiple early-onset tumors, frequently associated with germ line TP53 mutations characterize the Li-Fraumeni familial cancer syndrome (LFS). LFS-like (LFS-L) families have lower rates of germ line TP53 alteration and do not meet the strict definition of LFS. This study examined 7 LFS cell lines and 30 LFS and 36 LFS-L primary leukocyte samples for mutations in the proapoptotic p53-regulated gene BAX. No germ line BAX mutations were found. A known BAX polymorphism was observed, yet there was no correlation between polymorphism frequency and TP53 status in either LFS or LFS-L. In summary, alterations of BAX are not responsible for cancers in TP53 wild-type LFS or LFS-L families.
Collapse
Affiliation(s)
- Jason W. Barlow
- 1Division of Oncology, Hospital for Sick Children, and Departments of
- 2Medical Biophysics and
| | - Marieke Mous
- 4Department of Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Joe C. Wiley
- 1Division of Oncology, Hospital for Sick Children, and Departments of
| | - Jennifer M. Varley
- 5CRC-UK Cancer Genetics Group, Paterson Institute for Cancer Research, Manchester, United Kingdom; and
| | - Guillermina Lozano
- 6Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Louise C. Strong
- 6Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David Malkin
- 1Division of Oncology, Hospital for Sick Children, and Departments of
- 3Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
183
|
Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S, Kajimoto S, Shibayama-Imazu T, Nakaya K. Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 2004; 279:42503-15. [PMID: 15292218 DOI: 10.1074/jbc.m404256200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta-Hydroxyisovalerylshikonin (beta-HIVS), a compound isolated from the traditional oriental medicinal herb Lithospermum radix, is an ATP non-competitive inhibitor of protein-tyrosine kinases, such as v-Src and EGFR, and it induces apoptosis in various lines of human tumor cells. However, the way in which beta-HIVS induces apoptosis remains to be clarified. In this study, we performed cDNA array analysis and found that beta-HIVS suppressed the expression of the gene for tumor necrosis factor receptor-associated protein 1 (TRAP1), which is a member of the heat-shock family of proteins. When human leukemia HL60 cells and human lung cancer DMS114 cells were treated with beta-HIVS, the amount of TRAP1 in mitochondria decreased in a time-dependent manner during apoptosis. A similar reduction in the level of TRAP1 was also observed upon exposure of cells to VP16. Treatment of DMS114 cells with TRAP1-specific siRNA sensitized the cells to beta-HIVS-induced apoptosis. Moreover, the reduction in the level of expression of TRAP1 by TRAP1-specific siRNA enhanced the release of cytochrome c from mitochondria when DMS114 cells were treated with either beta-HIVS or VP16. The suppression of the level of TRAP1 by either beta-HIVS or VP16 was blocked by N-acetyl-cysteine, indicating the involvement of reactive oxygen species (ROS) in the regulation of the expression of TRAP1. These results suggest that suppression of the expression of TRAP1 in mitochondria might play an important role in the induction of apoptosis caused via formation of ROS.
Collapse
Affiliation(s)
- Yutaka Masuda
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Szabadkai G, Rizzuto R. Participation of endoplasmic reticulum and mitochondrial calcium handling in apoptosis: more than just neighborhood? FEBS Lett 2004; 567:111-5. [PMID: 15165902 DOI: 10.1016/j.febslet.2004.04.059] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 04/19/2004] [Indexed: 11/22/2022]
Abstract
Over the past few years, extensive progress has been made in elucidating the role of calcium in the signaling of apoptosis. This has led to the characterization of calcium's role in the induction of apoptosis and in the regulation of effector proteases. In this review, we attempt to summarize the current knowledge regarding a segment of these studies, the interaction between the endoplasmic reticulum (ER) and mitochondria. This interface has been shown to play a crucial role in transferring agonist induced Ca(2+) signals to mitochondria during physiological processes. Recent evidence, however, extended the role of this Ca(2+) transfer to apoptotic pathways, showing that modulation of mitochondrial Ca(2+) uptake from the ER side has a prominent role in modulating cellular fate.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Via Borsari 46, 44100 Ferrara, Italy
| | | |
Collapse
|
185
|
Zhang L, Shimizu S, Sakamaki K, Yonehara S, Tsujimoto Y. A caspase-8-independent signaling pathway activated by Fas ligation leads to exposure of the Bak N terminus. J Biol Chem 2004; 279:33865-74. [PMID: 15159409 DOI: 10.1074/jbc.m403499200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bak is a pro-apoptotic member of the Bcl-2 family that is activated by apoptotic stimulation: its activation is characterized by conformational changes such as exposure of the N terminus and oligomerization. In death receptor-mediated apoptosis, the activation of Bak depends on activation of caspase-8. However, we found that exposure of the N terminus of Bak (but not oligomerization) can occur in the absence of active caspase-8. Although exposure of the N terminus of Bak without oligomerization is not sufficient to release cytochrome c from the mitochondria and commit cells to apoptosis, this change sensitizes the mitochondria to apoptotic signals (including Bid) and thus sensitizes cells to apoptotic death. Fas-induced, caspase-8-independent exposure of the N terminus of Bak is blocked by staurosporine, a pan protein kinase inhibitor. These results suggest that Fas stimulation not only activates caspase-8, but also a distinct signaling pathway involving protein kinase(s) to induce exposure of the N terminus of Bak.
Collapse
Affiliation(s)
- Lilin Zhang
- Laboratory of Molecular Genetics, Department of Post-Genomics and Diseases, Osaka University Medical School and Solution-Oriented Research for Science and Technology, Japan Science and Technology Corp., 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
186
|
Arnoult D, Bartle LM, Skaletskaya A, Poncet D, Zamzami N, Park PU, Sharpe J, Youle RJ, Goldmacher VS. Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc Natl Acad Sci U S A 2004; 101:7988-93. [PMID: 15148411 PMCID: PMC419544 DOI: 10.1073/pnas.0401897101] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report that the cytomegalovirus-encoded cell death suppressor vMIA binds Bax and prevents Bax-mediated mitochondrial membrane permeabilization by sequestering Bax at mitochondria in the form of a vMIA-Bax complex. vMIA mutants with a defective mitochondria-targeting domain retain their Bax-binding function but not their ability to suppress mitochondrial membrane permeabilization or cell death. vMIA does not seem to either specifically associate with Bak or suppress Bak-mediated mitochondrial membrane permeabilization. Recent evidence suggests that the contribution of Bax and Bak in the mitochondrial apoptotic signaling pathway depends on the distinct phenotypes of cells, and it appears from our data that vMIA is capable of suppressing apoptosis in cells in which this pathway is dominated by Bax, but not in cells where Bak also plays a role.
Collapse
Affiliation(s)
- Damien Arnoult
- National Institute of Neurological Disorders and Stroke Biochemistry Section, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wei Q, Wang J, Wang MH, Yu F, Dong Z. Inhibition of apoptosis by Zn2+ in renal tubular cells following ATP depletion. Am J Physiol Renal Physiol 2004; 287:F492-500. [PMID: 15113746 DOI: 10.1152/ajprenal.00083.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apoptosis has been implicated in ischemic renal injury. Thus one strategy of renal protection is to antagonize apoptosis. However, apoptosis inhibitory approaches remain to be fully explored. Zn(2+) has long been implicated in apoptosis inhibition; but systematic analysis of the inhibitory effects of Zn(2+) is lacking. Moreover, whether Zn(2+) blocks renal cell apoptosis following ischemia is unknown. Here, we demonstrate that Zn(2+) is a potent apoptosis inhibitor in an in vitro model of renal cell ischemia. ATP depletion induced apoptosis in cultured renal tubular cells, which was accompanied by caspase activation. Zn(2+) at 10 microM inhibited both apoptosis and caspase activation, whereas Co(2+) was without effect. In ATP-depleted cells, Zn(2+) partially prevented Bax activation and cytochrome c release from mitochondria. In isolated cell cytosol, Zn(2+) blocked cytochrome c-stimulated caspase activation at low-micromolar concentrations. In addition, Zn(2+) could directly antagonize the enzymatic activity of purified recombinant caspases. We conclude that Zn(2+) is a potent inhibitor of apoptosis in renal tubular cells following ATP depletion. Zn(2+) blocks apoptosis at multiple steps including Bax activation, cytochrome c release, apoptosome function, and caspase activation.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912, USA
| | | | | | | | | |
Collapse
|
188
|
Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM. Bid, but Not Bax, Regulates VDAC Channels. J Biol Chem 2004; 279:13575-83. [PMID: 14729675 DOI: 10.1074/jbc.m310593200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During apoptosis, cytochrome c is released from mitochondria into the cytosol, where it participates in caspase activation. Various and often conflicting mechanisms have been proposed to account for the increased permeability of the mitochondrial outer membrane that is responsible for this process. The voltage-dependent anion channel (VDAC) is the major permeability pathway for metabolites in the mitochondrial outer membrane and therefore is a very attractive candidate for cytochrome c translocation. Here, we report that properties of VDAC channels reconstituted into planar phospholipid membranes are unaffected by addition of the pro-apoptotic protein Bax under a variety of conditions. Contrary to other reports (Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Nature 399, 483-487; Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000) J. Biol. Chem. 275, 12321-12325; Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3100-3105), we found no electrophysiologically detectable interaction between VDAC channels isolated from mammalian mitochondria and either monomeric or oligomeric forms of Bax. We conclude that Bax does not induce cytochrome c release by acting on VDAC. In contrast to Bax, another pro-apoptotic protein (Bid) proteolytically cleaved with caspase-8 affected the voltage gating of VDAC by inducing channel closure. We speculate that by decreasing the probability of VDAC opening, Bid reduces metabolite exchange between mitochondria and the cytosol, leading to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
189
|
Schmitt E, Paquet C, Beauchemin M, Bertrand R. Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation. Oncogene 2004; 23:3915-31. [PMID: 15048082 DOI: 10.1038/sj.onc.1207554] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bcl-2 family members either negatively or positively regulate the apoptotic threshold of cells. Bcl-xES (extra short), a novel Bcl-x member, possesses a unique combination of BH4 and BH2 domains as well as a COOH-terminal hydrophobic transmembrane anchor domain. Bcl-xES contains sequences of hydrophobic alpha-6 helices but lacks sequences of alpha-5 helices, suggesting that it does not have pore channel-forming activity but functions uniquely as a trapping protein. mRNA expression analysis by reverse transcriptase-polymerase chain reaction and RNase protection assay reveal that Bcl-xES is expressed in a variety of human cancer cell lines and human tumors, including bone marrow from patients with acute lymphoblastic leukemia. Bcl-xES expression is much less pronounced in some specimens of normal human tissues, including the breast, ovary, testis and lung. Stable, transfected human B lymphoma Namalwa variant cells expressing Bcl-xES were derived to investigate its role in apoptosis. Bcl-xES had a preventive effect on cell death induced by tumor necrosis factor-alpha and various concentrations of anticancer drugs, including camptothecin, etoposide and cisplatin. Its protective action on cell death was correlated with the inhibition of mitochondrial cytochrome c release and caspase activation. In a yeast two-hybrid system, Bcl-xES interacted with most Bcl-2 family members, including those containing only a BH3 domain, and with the Ced-4 homolog Apaf-1. Co-immunoprecipitation and gel filtration chromatography experiments suggest that Bcl-xES delays drug-induced apoptosis by disturbing the formation of Bax oligomers and preventing cytochrome c release, but also by interacting with Apaf-1 and inhibiting procaspase-9 activation, thus averting the apoptogenic proteolytic caspase cascade and cell death.
Collapse
Affiliation(s)
- Estelle Schmitt
- Centre de recherche, Centre hospitalier de l' Université of Montréal (CHUM), Hôpital Notre-Dame and Institut du cancer de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
190
|
Donovan M, Cotter TG. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1644:133-47. [PMID: 14996498 DOI: 10.1016/j.bbamcr.2003.08.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Accepted: 08/18/2003] [Indexed: 01/13/2023]
Abstract
Programmed cell death (PCD) is essential for normal development and maintenance of tissue homeostasis in multicellular organisms. While it is now evident that PCD can take many different forms, apoptosis is probably the most well-defined cell death programme. The characteristic morphological and biochemical features associated with this highly regulated form of cell death have until recently been exclusively attributed to the caspase family of cysteine proteases. As a result, many investigators affiliate apoptosis with its pivotal execution system, i.e. caspase activation. However, it is becoming increasingly clear that PCD or apoptosis can also proceed in a caspase-independent manner and maintain key characteristics of apoptosis. Mitochondrial integrity is central to both caspase-dependent and-independent cell death. The release of pro-apoptotic factors from the mitochondrial intermembrane space is a key event in a cell's commitment to die and is under the tight regulation of the Bcl-2 family. However, the underlying mechanisms governing the efflux of these pro-death molecules are largely unknown. This review will focus on the regulation of mitochondrial integrity by Bcl-2 family members with particular attention to the controlled release of factors involved in caspase-independent cell death.
Collapse
Affiliation(s)
- Maryanne Donovan
- Cell Development and Disease, Biochemistry Department, Biosciences Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
191
|
An J, Chen Y, Huang Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J Biol Chem 2004; 279:19133-40. [PMID: 14966123 DOI: 10.1074/jbc.m400295200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.
Collapse
Affiliation(s)
- Jing An
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
192
|
Festjens N, van Gurp M, van Loo G, Saelens X, Vandenabeele P. Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta Haematol 2004; 111:7-27. [PMID: 14646342 DOI: 10.1159/000074483] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to their function as major energy-providing organelles of the cell, mitochondria accomplish a crucial role in apoptosis. The pro-apoptotic BH3-only members of the Bcl-2 family continuously sense the cellular integrity and well-being at various subcellular levels. If these sentinels are induced, released or activated, they converge on the release of mitochondrial intermembrane space proteins such as cytochrome c, the oxidoreductase AIF, endonuclease G, Smac/DIABLO and the serine protease Omi/HtrA2. We discuss how Bcl-2 family members integrate diverse survival and death signals and act as central regulators of apoptosis. Furthermore, we describe the current knowledge on the role of mitochondrial proteins in apoptotic cell death, discuss the molecular mechanisms of their release and the apoptotic role of mitochondria from a phylogenetic and immunological point of view.
Collapse
Affiliation(s)
- Nele Festjens
- Molecular Signaling and Cell Death Unit, Department of Molecular Biomedical Research, VIB and Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
193
|
Deng X, Gao F, Flagg T, May WS. Mono- and multisite phosphorylation enhances Bcl2's antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci U S A 2004; 101:153-8. [PMID: 14660795 PMCID: PMC314154 DOI: 10.1073/pnas.2533920100] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Indexed: 11/18/2022] Open
Abstract
Bcl2 functions to suppress apoptosis and retard cell cycle entry. Single-site phosphorylation at serine 70 (S70) is required for Bcl2's antiapoptotic function, and multisite phosphorylation at threonine 69 (T69), S70, and S87 has been reported to inactivate Bcl2. To address this apparent conflict and identify the regulatory role for Bcl2 phosphorylation in cell death and cell cycle control, a series of serine/threonine (S/T) --> glutamate/alanine (E/A) mutants including T69E/A, S70E/A, S87E/A, T69E/S70A/S87A (EAA), T69A/S70E/S87A (AEA), T69A/S70A/S87E (AAE), T69E/S70E/S87E (EEE), and T69A/S70A/S87A (AAA) was created to mimic or abrogate, respectively, either single-site or multisite phosphorylation. The survival and cell cycle status of cells expressing the phosphomimetic or nonphosphorylatable Bcl2 mutants were compared. Surprisingly, all of the E but not the A Bcl2 mutants potently enhance cell survival after stress and retard G(1)/S cell cycle transition. The EEE Bcl2 mutant is the most potent, indicating a possible cumulative advantage for multisite phosphorylation of Bcl2 in survival and retardation of G(1)/S transition functions. Because the E-containing Bcl2 mutants, but not the A-containing mutants, can more potently block cytochrome c release from mitochondria during apoptotic stress, even at times when steady-state expression levels are similar for all mutants, we conclude that phosphorylation at one or multiple sites within the flexible loop domain of Bcl2 not only stimulates antiapoptotic activity but also can regulate cell cycle entry.
Collapse
Affiliation(s)
- Xingming Deng
- Shands Cancer Center and Department of Medicine, University of Florida, Gainesville, FL 32610-0232, USA
| | | | | | | |
Collapse
|
194
|
Hur YG, Yun Y, Won J. Rosmarinic acid induces p56lck-dependent apoptosis in Jurkat and peripheral T cells via mitochondrial pathway independent from Fas/Fas ligand interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 172:79-87. [PMID: 14688312 DOI: 10.4049/jimmunol.172.1.79] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis is one way of controlling immune responses, and a variety of immunosuppressive drugs suppress harmful immune responses by inducing apoptosis of lymphocytes. In this study we observed that rosmarinic acid, a secondary metabolite of herbal plants, induced apoptosis in an p56(lck) (Lck)-dependent manner; Lck(+) Jurkat T cells undergo apoptosis in response to rosmarinic acid (RosA) treatment, whereas Lck(-) Jurkat subclone J.CaM1.6 cells do not. J.CaM1.6 cells with various Lck mutants indicated that Lck SH2 domain, but not Lck kinase activity, was required for RosA-induced apoptosis. RosA induced apoptosis in the absence of a TCR stimulus, and this was not prevented by interruption of the Fas/Fas ligand interaction. Instead, RosA-mediated apoptosis involved a mitochondrial pathway as indicated by cytochrome c release and the complete blockage of apoptosis by an inhibitor of mitochondrial membrane depolarization. Both caspase-3 and -8 were indispensable in RosA-induced apoptosis and work downstream of mitochondria and caspase-9 in the order of caspase-9/caspase-3/caspase-8. In freshly isolated human PBMC, RosA specifically induced apoptosis of Lck(+) subsets such as T and NK cells, but not Lck-deficient cells, including B cells and monocytes. Moreover, RosA's ability to kill T and NK cells was restricted to actively proliferating cells, but not to resting cells. In conclusion, Lck-dependent apoptotic activity may make RosA an attractive therapeutic tool for the treatment of diseases in which T cell apoptosis is beneficial.
Collapse
Affiliation(s)
- Yun-Gyoung Hur
- Mogam Biotechnology Research Institute, 304 Bojungri, Goosungeup, Yongin City, Gyunggido 449-913, Korea
| | | | | |
Collapse
|
195
|
Gullicksen PS, Dean RG, Baile CA. Detection of DNA fragmentation and apoptotic proteins, and quantification of uncoupling protein expression by real-time RT-PCR in adipose tissue. ACTA ACUST UNITED AC 2004; 58:1-13. [PMID: 14597184 DOI: 10.1016/s0165-022x(03)00151-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Better understanding of the mechanisms involved in adipose tissue growth and metabolism is critical for the development of more effective treatments for obesity. However, because of its high lipid and low protein content, adipose tissue can present unique problems in some experimental procedures. We describe three protocols that provide new or improved methods for analysis of DNA, RNA, and protein from different adipose tissues. The first protocol provides a simple and rapid method for separation of fragmented DNA and visualization of apoptotic DNA laddering without the need for radioisotopes. This technique allows for an estimate of the amount of DNA fragmentation, and hence, apoptosis. The second protocol details subcellular fractionation of adipose tissue for the extraction of protein in the mitochondrial and cytosol fractions and the measurement of apoptotic protein (Bcl-2 and Bax) levels in each fraction. The last protocol involves extraction of total RNA from adipose tissue and the measurement of uncoupling protein mRNA using real-time RT-PCR, a method that has not previously been used to measure expression of uncoupling proteins in adipose tissue.
Collapse
Affiliation(s)
- P Scott Gullicksen
- Department of Foods and Nutrition, The University of Georgia, 448 Animal Science Complex, Athens, GA 30602-2771, USA.
| | | | | |
Collapse
|
196
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
197
|
Wei Q, Alam MM, Wang MH, Yu F, Dong Z. Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo. Am J Physiol Renal Physiol 2003; 286:F803-9. [PMID: 14678945 DOI: 10.1152/ajprenal.00093.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bid is a proapoptotic Bcl-2 family protein, which on activation translocates to mitochondria and induces damage to the organelles. Activation of Bid depends on its proteolytic processing into truncated forms of tBid. Bid is highly expressed in the kidneys; however, little is known about its role in renal pathophysiology. In this study, we initially examined Bid activation in cultured rat kidney proximal tubular cells following ATP depletion. The cells were depleted of ATP by azide incubation in the absence of metabolic substrates and then returned to normal culture medium for recovery. Typical apoptosis developed during recovery of ATP-depleted cells. This was accompanied by Bid cleavage, releasing tBid of 15 and 13 kDa. Bid cleavage was abolished in cells overexpressing Bcl-2, an antiapoptotic gene. It was also suppressed by caspase inhibitors. Peptide inhibitors of caspase-9 were more effective in blocking Bid cleavage compared with inhibitors of caspase-8 and caspase-3. Provision of glucose, a glycolytic substrate, during azide incubation inhibited Bid cleavage as well, indicating that Bid cleavage was initiated by ATP depletion. Consistently, Bid cleavage was also induced following ATP depletion by hypoxia or mitochondrial uncoupling. Of significance, cleaved Bid translocated to mitochondria, suggesting a role for Bid in the development of mitochondrial defects in ATP-depleted cells. Finally, Bid cleavage was induced during renal ischemia-reperfusion in the rat. Together, these results provide the first evidence for Bid activation in kidney cells following ATP depletion in vitro and renal ischemia in vivo.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, 1459 Laney Walke Blvd., Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
198
|
Abstract
Under hypoxia, some cells are irreversibly injured and die, whereas others can adapt to the stress and survive. The molecular and genetic basis underlying cellular sensitivity to hypoxic injury is unclear. Here we have selected death-resistant cells by repeated episodes of hypoxia. The selected cells are cross-resistant to apoptosis induced by staurosporine, azide, and cisplatin. These cells up-regulate Bcl-X(L), an anti-apoptotic protein. Bcl-X(L) interacts with the pro-apoptotic molecule Bax and abrogates its toxicity in mitochondria, resulting in the preservation of mitochondrial integrity, cytochrome c, and cell viability. Down-regulation of Bcl-X(L) by antisense oligonucleotides or the newly identified Bcl-X(L) inhibitor chelerythrine restores cellular sensitivity to injury and death. Thus, Bcl-X(L) is a key molecule for hypoxia selection of death resistance. These findings may have important implications for the development of solid tumors where hypoxia selects for death-resistant cells that are inert to cancer therapy.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|
199
|
Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhães PJ, Di Virgilio F, Pozzan T. Calcium and apoptosis: facts and hypotheses. Oncogene 2003; 22:8619-27. [PMID: 14634623 DOI: 10.1038/sj.onc.1207105] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although longstanding experimental evidence has associated alterations of calcium homeostasis to cell death, only in the past few years the role of calcium in the signaling of apoptosis has been extensively investigated. In this review, we will summarize the current knowledge, focusing on (i) the effect of the proteins of the Bcl-2 family on ER Ca2+ levels, (ii) the action of the proteolytic enzymes of apoptosis on the Ca2+ signaling machinery, (iii) the ensuing alterations on the signaling patterns of extracellular stimuli, and (iv) the intracellular targets of 'apoptotic' Ca2+ signals, with special emphasis on the mitochondria and cytosolic Ca2+-dependent enzymes.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine and Center for the Study of Inflammation, University of Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Abstract
Apoptosis, the cell-suicide programme executed by caspases, is critical for maintaining tissue homeostasis, and impaired apoptosis is now recognized to be a key step in tumorigenesis. Whether a cell should live or die is largely determined by the Bcl-2 family of anti- and proapoptotic regulators. These proteins respond to cues from various forms of intracellular stress, such as DNA damage or cytokine deprivation, and interact with opposing family members to determine whether or not the caspase proteolytic cascade should be unleashed. This review summarizes current views of how these proteins sense stress, interact with their relatives, perturb organelles such as the mitochondrion and endoplasmic reticulum and govern pathways to caspase activation. It briefly explores how family members influence cell-cycle entry and outlines the evidence for their involvement in tumour development, both as oncoproteins and tumour suppressors. Finally, it discusses the promise of novel anticancer therapeutics that target these vital regulators.
Collapse
Affiliation(s)
- Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | | | |
Collapse
|