151
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
152
|
Çankaya N, Korcan SE, Turan N, Aydin B, Tanış E. First Report of the Synthesis, Characterization, DFT Calculations of the New Oxoethyl Methacrylate and o-Acetamide and Evaluation of Antimicrobial, Antibiofilm and Antioxidant Effect. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nevin Çankaya
- Department of Chemistry, Faculty of Science, Uşak University, Usak, Turkey
| | | | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, Muş, Turkey
| | - Büşra Aydin
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Uşak University, Usak, Turkey
| | - Emine Tanış
- Department of Electrical Electronics Engineering, Kırşehir Ahi Evran University, Kırsehir, Turkey
| |
Collapse
|
153
|
Das S, Vishakha K, Banerjee S, Nag D, Ganguli A. Tetracycline-loaded magnesium oxide nanoparticles with a potential bactericidal action against multidrug-resistant bacteria: In vitro and in vivo evidence. Colloids Surf B Biointerfaces 2022; 217:112688. [PMID: 35841801 DOI: 10.1016/j.colsurfb.2022.112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Worldwide, the emergence of diarrhoea-causing multi-drug resistant (MDR) bacteria has become a crucial problem in everyday life. Tetracycline (TC) is a bacteriostatic agent that has a wide spectrum of antibacterial activity. One potential strategy to enhance the penetration and antibacterial activity of antibiotics is the use of nanotechnology. In this context, this study dealt with the synthesis of TC loading in biocompatible magnesium oxide nanoparticles (MgONPs), its characterization, and the potency of killing against diarrhoea-causing MDR bacteria E. coli and S. flexneri. TC loaded- MgONPs (MgONPs-TC) were characterized by DLS, SEM-EDS, UV-vis spectroscopy, and FTIR techniques with adequate physical properties. Antibacterial and antibiofilm studies indicate that this nanoparticle successfully eradicated both planktonic and sessile forms of those bacteria. It also significantly reduced the production of bacterial EPS, different levels of antioxidant enzymes, and induced reactive oxygen species (ROS) in the bacterial cell as a mode of antibacterial action. In particular, MgONPs-TC were efficient in reducing the colonization of MDR E. coli and S. flexneri in the C. elegans model. Therefore, all these data suggest that MgONPs-TC are a highly promising approach to combating diseases associated with diarrhoea-causing MDR bacteria in the medical field with limited health care budgets.
Collapse
Affiliation(s)
- Shatabdi Das
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India
| | - Debasish Nag
- Department of Biotechnology, University of Calcutta, West Bengal, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal 700091, India.
| |
Collapse
|
154
|
Trubenová B, Roizman D, Rolff J, Regoes RR. Modeling Polygenic Antibiotic Resistance Evolution in Biofilms. Front Microbiol 2022; 13:916035. [PMID: 35875522 PMCID: PMC9301000 DOI: 10.3389/fmicb.2022.916035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The recalcitrance of biofilms to antimicrobials is a multi-factorial phenomenon, including genetic, physical, and physiological changes. Individually, they often cannot account for biofilm recalcitrance. However, their combination can increase the minimal inhibitory concentration of antibiotics needed to kill bacterial cells by three orders of magnitude, explaining bacterial survival under otherwise lethal drug treatment. The relative contributions of these factors depend on the specific antibiotics, bacterial strain, as well as environmental and growth conditions. An emerging population genetic property—increased biofilm genetic diversity—further enhances biofilm recalcitrance. Here, we develop a polygenic model of biofilm recalcitrance accounting for multiple phenotypic mechanisms proposed to explain biofilm recalcitrance. The model can be used to generate predictions about the emergence of resistance—its timing and population genetic consequences. We use the model to simulate various treatments and experimental setups. Our simulations predict that the evolution of resistance is impaired in biofilms at low antimicrobial concentrations while it is facilitated at higher concentrations. In scenarios that allow bacteria exchange between planktonic and biofilm compartments, the evolution of resistance is further facilitated compared to scenarios without exchange. We compare these predictions to published experimental observations.
Collapse
Affiliation(s)
- Barbora Trubenová
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- *Correspondence: Barbora Trubenová
| | - Dan Roizman
- Institute of Biology – Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Jens Rolff
- Institute of Biology – Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
155
|
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
156
|
Adhikari BR, Dummer J, Gordon KC, Das SC. An expert opinion on respiratory delivery of high dose powders for lung infections. Expert Opin Drug Deliv 2022; 19:795-813. [PMID: 35695722 DOI: 10.1080/17425247.2022.2089111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION High dose powder inhalation is evolving as an important approach to to treat lung infections. It is important to its identify applications, consider the factors affecting high dose powder delivery, and assess the effect of high dose drugs in patients. AREA COVERED Both current and pipeline high dose inhalers and their applications have been summarized. Challenges and opportunities to high dose delivery have been highlighted after reviewing formulation techniques in the context of factors affecting aerosolization, devices, and patient factors. EXPERT OPINION High dose inhaled delivery of antimicrobials is an innovative way to increase treatment efficacy of respiratory infections, tackle drug resistance, and the scarcity of new antimicrobials. The high dose inhaled technology also has potential for systemic action; however, innovations in formulation strategies and devices are required to realize its full potential. Advances in formulation strategies include the use of excipients or the engineering of particles to decrease the cohesive property of microparticles and their packing density. Similarly, selection of a synergistic drug instead of an excipient can be considered to increase aerosolization and stability. Device development focused on improving dispersion and loading capacity is also important, and modification of existing devices for high dose delivery can also be considered.
Collapse
Affiliation(s)
| | - Jack Dummer
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
157
|
Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14071389. [PMID: 35890285 PMCID: PMC9323747 DOI: 10.3390/pharmaceutics14071389] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits linked by α-1,4 glycosidic bonds. The shape of CD molecules is similar to a truncated cone with a hydrophobic inner cavity and a hydrophilic surface, which allows the formation of inclusion complexes with various molecules. This review article summarises over 200 reports published by the end of 2021 that discuss the complexation of CDs with antibiotics and antibacterial agents, including beta-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, glycopeptides, polypeptides, nitroimidazoles, and oxazolidinones. The review focuses on drug-delivery applications such as improving solubility, modifying the drug-release profile, slowing down the degradation of the drug, improving biological membrane permeability, and enhancing antimicrobial activity. In addition to simple drug/CD combinations, ternary systems with additional auxiliary substances have been described, as well as more sophisticated drug-delivery systems including nanosponges, nanofibres, nanoparticles, microparticles, liposomes, hydrogels, and macromolecules. Depending on the desired properties of the drug product, an accelerated or prolonged dissolution profile can be achieved when combining CD with antibiotics or antimicrobial agents.
Collapse
|
158
|
Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiol Spectr 2022; 10:e0218121. [PMID: 35762769 PMCID: PMC9430453 DOI: 10.1128/spectrum.02181-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The approach of sequencing or genotyping to characterize the pathogenic potential of staphylococci from orthopedic device-related infection (ODRI) has been applied in recent studies. These studies described the genomic carriage of virulence in clinical strains and compared it with those in commensal strains. Only a few studies have directly correlated genomic profiles to patient outcome and phenotypic virulence properties in periprosthetic joint infections (PJIs). We investigated the association between genomic variations and virulence-associated phenotypes (biofilm-forming ability and antimicrobial resistance) in 111 staphylococcal strains isolated from patients with PJI and the infection outcome (resolved/unresolved). The presence of a strong biofilm phenotype in Staphylococcus aureus and an antibiotic-resistant phenotype in Staphylococcus epidermidis were both associated with treatment failure of PJI. In S. epidermidis, multidrug resistance (MDR) and resistance to rifampicin were associated with unresolved infection. Sequence type 45 (ST45) and ST2 were particularly enriched in S. aureus and S. epidermidis, respectively. S. epidermidis ST2 caused the majority of relapses and was associated with MDR and strong biofilm production, whereas ST215 correlated with MDR and non/weak biofilm production. S. aureusagr II correlated with resolved infection, while S. epidermidisagr I was associated with strong biofilm production and agr III with non/weak production. Collectively, our results highlight the importance of careful genomic and phenotypic characterization to anticipate the probability of the strain causing treatment failure in PJI. Due to the high rate of resistant S. epidermidis strains identified, this study provides evidence that the current recommended treatment of rifampicin and a fluoroquinolone should not be administered without knowledge of the resistance pattern. IMPORTANCE This study addresses the presence and frequency of particular genetic variants and virulence factors found in staphylococcal bacteria causing periprosthetic joint infection (PJI) of the hip and knee to ascertain their clinical relevance as predictors of treatment failure. We characterized the genetic virulence traits of a large collection of clinical staphylococci isolated from patients with PJI and evaluated their association with the patient’s infection outcome. The results showed that S. aureus strains that produced strong biofilms and S. epidermidis strains with resistance to several antibiotics associated significantly with unresolved infection. Some particular genetic variants associated with biofilm formation and multidrug resistance. These traits should be considered important risk factors for the diagnosis and treatment guidance in PJI.
Collapse
|
159
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
160
|
Cressey P, Bronstein LG, Benmahmoudi R, Rosilio V, Regeard C, Makky A. Novel liposome-like assemblies composed of phospholipid-porphyrin conjugates with photothermal and photodynamic activities against bacterial biofilms. Int J Pharm 2022; 623:121915. [PMID: 35716977 DOI: 10.1016/j.ijpharm.2022.121915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Phospholipid-Porphyrin (PL-Por) conjugates are unique building blocks that can self assemble into liposome-like structures with improved photophysical properties compared to their monomeric counterparts. The high packing density of porphyrin moieties enables these assemblies to exhibit high photothermal conversion efficiency as well as photodynamic activity. Thus, PL-Por conjugates assemblies can be used for photodynamic therapy (PDT) and photothermal therapy (PTT) applications against resistant bacteria and biofilms. In order to tune the PD/PT properties of such nanosystems, we developed six different supramolecular assemblies composed of newly synthesized PL-Por conjugates bearing either pheophorbide-a (PhxLPC) or pyropheophorbide-a (PyrxLPC) photosensitizers (PSs) for combined PDT/PTT against planktonic bacteria and their biofilms. In this study, the influence of the chemical structure of the phospholipid backbone as well as that of the PS on the photothermal conversion efficiency, the photodynamic activity and the stability of these assemblies in biological medium were determined. Then their antimicrobial efficiency was assessed on S. aureus and P. aeruginosa planktonic cultures and biofilms. The two studied systems show almost the same photothermal effect against planktonic cultures and biofilms of S. aureus and P. aeruginosa. However, PhxLPC vesicles exhibit superior photodynamic activity, making them the best combination for PTT/PDT. Such results highlight the higher potential of the photodynamic activity of PL-Por nanoassemblies compared to their photothermal conversion in combating bacterial infections.
Collapse
Affiliation(s)
- Paul Cressey
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry cedex, France
| | - Louis-Gabriel Bronstein
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry cedex, France
| | - Rayene Benmahmoudi
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry cedex, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry cedex, France
| | - Christophe Regeard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France..
| | - Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
161
|
Santos AL, Liu D, Reed AK, Wyderka AM, van Venrooy A, Li JT, Li VD, Misiura M, Samoylova O, Beckham JL, Ayala-Orozco C, Kolomeisky AB, Alemany LB, Oliver A, Tegos GP, Tour JM. Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. SCIENCE ADVANCES 2022; 8:eabm2055. [PMID: 35648847 PMCID: PMC9159576 DOI: 10.1126/sciadv.abm2055] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 06/01/2023]
Abstract
The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light-activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Anna K. Reed
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Aaron M. Wyderka
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | - John T. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Victor D. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mikita Misiura
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Olga Samoylova
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jacob L. Beckham
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | | | - Lawrence B. Alemany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Antonio Oliver
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, Palma, Spain
| | - George P. Tegos
- Office of Research, Reading Hospital, Tower Health, 420 S. Fifth Avenue, West Reading, PA 19611, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
- NanoCarbon Center and the Welch Institute for Advanced Materials, Rice University, Houston, TX 77005, USA
| |
Collapse
|
162
|
Abdelsattar AS, Makky S, Nofal R, Hebishy M, Agwa MM, Aly RG, Abo El-Naga MY, Heikal YA, Fayez MS, Rezk N, El-Shibiny A. Enhancement of wound healing via topical application of natural products: In vitro and in vivo evaluations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
163
|
Raju DV, Nagarajan A, Pandit S, Nag M, Lahiri D, Upadhye V. Effect of bacterial quorum sensing and mechanism of antimicrobial resistance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
164
|
Fortune GT, Oliveira NM, Goldstein RE. Biofilm Growth under Elastic Confinement. PHYSICAL REVIEW LETTERS 2022; 128:178102. [PMID: 35570462 DOI: 10.1103/physrevlett.128.178102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Bacteria often form surface-bound communities, embedded in a self-produced extracellular matrix, called biofilms. Quantitative studies of bioflim growth have typically focused on unconfined expansion above solid or semisolid surfaces, leading to exponential radial growth. This geometry does not accurately reflect the natural or biomedical contexts in which biofilms grow in confined spaces. Here, we consider one of the simplest confined geometries: a biofilm growing laterally in the space between a solid surface and an overlying elastic sheet. A poroelastic framework is utilized to derive the radial growth rate of the biofilm; it reveals an additional self-similar expansion regime, governed by the Poisson's ratio of the matrix, leading to a finite maximum radius, consistent with our experimental observations of growing Bacillus subtilis biofilms confined by polydimethylsiloxane.
Collapse
Affiliation(s)
- George T Fortune
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
165
|
Kim D, Kim KY. Pectolinarin Inhibits the Bacterial Biofilm Formation and Thereby Reduces Bacterial Pathogenicity. Antibiotics (Basel) 2022; 11:antibiotics11050598. [PMID: 35625242 PMCID: PMC9137516 DOI: 10.3390/antibiotics11050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial biofilms are a growing problem as it is a major cause of nosocomial infection from urinary catheters to chronic tissue infections and provide resistance to a variety of antibiotics and the host’s immune system. The effect of pectolinarin on the biofilm formation in Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Streptococcus mutans, Streptococcus sobrinus, Staphylococcus aureus, Pseudomonas aeruginosa, Cutibacterium acnes, and Porphyromonas gingivalis was studied in TSBg (tryptic soy broth supplemented with 1% glucose). Pectolinarin inhibited biofilm formation of E. faecalis (IC50 = 0.39 μg/mL), E. faecium (IC50 = 0.19 μg/mL), E. coli (IC50 = 0.25 μg/mL), S. mutans (IC50 = 1.2 μg/mL), S. sobrinus (IC50 = 1.4 μg/mL), S. aureus (IC50 = 0.39 μg/mL), P. aeruginosa (IC50 = 0.9 μg/mL), P. acnes (IC50 = 12.5 μg/mL), and P. gingivalis (IC50 = 9.0 μg/mL) without inhibiting the bacterial growth. Pectolinarin also showed increased susceptibility of antibacterial activity with commercially available antibiotics including ampicillin, vancomycin, streptomycin, and oxytetracyclin against E. faecalis and E. faecium. Finally, pectolinarin dose-dependently reduced the expression of genes including cytolysin genes (cylLS, cylR2 and cylM), quorum sensing (QS) genes (fsrB, fsrC, gelE, ebpA, ebpB, acm, scm and bps), and biofilm virulence genes (esp) of E. faecalis and E. faecium. Pectolinarin reduced the bacterial biofilm formation, activated the antibacterial susceptibility, and reduced the bacterial adherence. These results suggest that bacterial biofilm formation is a good target to develop the antibacterial agents against biofilm-related infections.
Collapse
Affiliation(s)
- Daseul Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin 17104, Korea;
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin 17104, Korea;
- College of Life Science, Kyung Hee University, Seocheon, Giheung, Yongin 17104, Korea
- Correspondence: ; Tel.: +82-312012633
| |
Collapse
|
166
|
Khan F, Tabassum N, Bamunuarachchi NI, Kim YM. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4817-4838. [PMID: 35418233 DOI: 10.1021/acs.jafc.2c00532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phloroglucinol (PG) is a natural product isolated from plants, algae, and microorganisms. Aside from that, the number of PG derivatives has expanded due to the discovery of their potential biological roles. Aside from its diverse biological activities, PG and its derivatives have been widely utilized to treat microbial infections caused by bacteria, fungus, and viruses. The rapid emergence of antimicrobial-resistant microbial infections necessitates the chemical synthesis of numerous PG derivatives in order to meet the growing demand for drugs. This review focuses on the use of PG and its derivatives to control microbial infection and the underlying mechanism of action. Furthermore, as future perspectives, some of the various alternative strategies, such as the use of PG and its derivatives in conjugation, nanoformulation, antibiotic combination, and encapsulation, have been thoroughly discussed. This review will enable the researcher to investigate the possible antibacterial properties of PG and its derivatives, either free or in the form of various formulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
167
|
Wang Y, Chen G, Liu R, Fang X, Li F, Wu L, Wu Y. Synergistically enhanced photothermal transition of a polyoxometalate/peptide assembly improved the antibiofilm and antibacterial activities. SOFT MATTER 2022; 18:2951-2958. [PMID: 35348178 DOI: 10.1039/d2sm00092j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We successfully developed an antimicrobial assembly (Mo154/TK-14) using molybdenum-polyoxometalate and a positively charged peptide of TK-14. It was characterized and assayed using zeta-potential, dynamic light scattering (DLS), and TEM measurements. The Mo154/TK-14 assembly showed an enhanced 808 nm absorption and, therefore, improved the photothermal conversion efficiency of Mo154 (30.3%) to 38.6%. Consequently, in comparison to 5 μM Mo154 without irradiation, both the biofilm formation and bacterial viability of S. aureus were 24.6% and 20.2%, respectively, for the Mo154/TK-14 assembly; the biofilm formation and bacterial viability were further decreased to 7.7% and 4.4% under 808 nm irradiation, respectively. Therefore, the Mo154/TK-14 assembly reflects convincing antibacterial properties compared to Mo154. This is due to the synergistic effect between the peptide-binding enhanced 808 nm absorption and the improved PTT properties. The antimicrobial assembly offers a novel strategy for the rational design of light-responsive antibacterial materials.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Rongrong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
168
|
Ahmed HY, Safwat N, Shehata R, Althubaiti EH, Kareem S, Atef A, Qari SH, Aljahani AH, Al-Meshal AS, Youssef M, Sami R. Synthesis of Natural Nano-Hydroxyapatite from Snail Shells and Its Biological Activity: Antimicrobial, Antibiofilm, and Biocompatibility. MEMBRANES 2022; 12:408. [PMID: 35448378 PMCID: PMC9025656 DOI: 10.3390/membranes12040408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Hydroxyapatite nanoparticles (HAn) have been produced as biomaterial from biowaste, especially snail shells (Atactodea glabrata). It is critical to recycle the waste product in a biomedical application to overcome antibiotic resistance as well as biocompatibility with normal tissues. Moreover, EDX, TEM, and FT-IR analyses have been used to characterize snail shells and HAn. The particle size of HAn is about 15.22 nm. Furthermore, higher inhibitory activity was observed from HAn than the reference compounds against all tested organisms. The synthesized HAn has shown the lowest MIC values of about 7.8, 0.97, 3.9, 0.97, and 25 µg/mL for S. aureus, B. subtilis, K. pneumonia, C. albicans, and E. coli, respectively. In addition, the HAn displayed potent antibiofilm against S. aureus and B. subtilis. According to the MTT, snail shell and HAn had a minor influence on the viability of HFS-4 cells. Consequently, it could be concluded that some components of waste, such as snail shells, have economic value and can be recycled as a source of CaO to produce HAn, which is a promising candidate material for biomedical applications.
Collapse
Affiliation(s)
- Hanaa Y Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Nesreen Safwat
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Reda Shehata
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Eman Hillal Althubaiti
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sayed Kareem
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Ahmed Atef
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amani H Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Areej Suliman Al-Meshal
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud Youssef
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11787, Egypt
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
169
|
Pandey RP, Mukherjee R, Chang CM. Emerging Concern with Imminent Therapeutic Strategies for Treating Resistance in Biofilm. Antibiotics (Basel) 2022; 11:476. [PMID: 35453227 PMCID: PMC9032911 DOI: 10.3390/antibiotics11040476] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Biofilm production by bacteria is presumed to be a survival strategy in natural environments. The production of biofilms is known to be influenced by a number of factors. This paper has precisely elaborated on the different factors that directly influence the formation of biofilm. Biofilm has serious consequences for human health, and a variety of infections linked to biofilm have emerged, rapidly increasing the statistics of antimicrobial resistance, which is a global threat. Additionally, to combat resistance in biofilm, various approaches have been developed. Surface modifications, physical removal, and the use of nanoparticles are the recent advances that have enabled drug discovery for treating various biofilm-associated infections. Progress in nanoparticle production has led to the development of a variety of biofilm-fighting strategies. We focus on the present and future therapeutic options that target the critical structural and functional characteristics of microbial biofilms, as well as drug tolerance mechanisms, such as the extracellular matrix, in this review.
Collapse
Affiliation(s)
- Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India; (R.P.P.); (R.M.)
| | - Riya Mukherjee
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131 029, Haryana, India; (R.P.P.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Road, Guishan District, Taoyuan 33302, Taiwan
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Road, Guishan District, Taoyuan 33302, Taiwan
| |
Collapse
|
170
|
Vidal Oliver L, Bayo Calduch P, Forqué Rodríguez L, Navarro Ortega D, Duch Samper AM, Colomina Rodríguez J. [Methicillin-resistant Staphylococcus epidermidis infectious keratitis: Clinical and microbiological profile]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35:171-177. [PMID: 35067009 PMCID: PMC8972698 DOI: 10.37201/req/128.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction Staphylococcus epidermidis (SE) is a common cause of bacterial keratitis in certain geographic areas. A high percentage of resistance to methicillin is shown, which gives it cross resistance to beta-lactams and sometimes resistance to other antibacterial groups. We analyzed clinical and microbiological variables in patients with infectious keratitis due to SE. Methods Medical records of 43 patients with suspected infectious keratitis and microbiological confirmation for SE, between October 2017 and October 2020, were retrospectively studied. Clinical characteristics (risk factors, size of lesions, treatment, evolution) and microbiological (susceptibility to antibiotics) were analyzed, and groups of patients with methicillin-resistant (MRSE) and methicillin-susceptible (MSSE) infection were compared. Results MRSE was present in 37.2% of infectious keratitis. All isolates were sensitive to vancomycin and linezolid. Rates of resistance to tetracyclines and ciprofloxacin were 50% and 56% in the MRSE group, and 11% and 7% in the MSSE group. The clinical characteristics, including size of lesion, visual axis involvement, inflammation of anterior chamber, presence of risk factors and follow-up time, did not show statistically significant differences between groups. Conclusions MRSE is a common cause of infectious keratitis caused by SE and shows a high rate of multidrug resistance. Clinically, it does not differ from MSSE keratitis. Additional work is needed to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - J Colomina Rodríguez
- Javier Colomina Rodriguez. Servicio de Microbiología, Hospital Clínico Universitario de Valencia. Spain.
| |
Collapse
|
171
|
Safadi S, Maan H, Kolodkin-Gal I, Tsesis I, Rosen E. The Products of Probiotic Bacteria Effectively Treat Persistent Enterococcus faecalis Biofilms. Pharmaceutics 2022; 14:pharmaceutics14040751. [PMID: 35456585 PMCID: PMC9027392 DOI: 10.3390/pharmaceutics14040751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/30/2023] Open
Abstract
Objectives: Enterococcus faecalis is a Gram-positive commensal bacterium that possesses various survival and virulence factors, including the ability to compete with other microorganisms, invade dentinal tubules, and resist nutritional deprivation. E. faecalis is associated with persistent endodontic infections where biofilms formed by this bacterium in the root canal frequently resist dental therapies. Aseptic techniques, such as the inclusion of sodium hypochlorite, are the most commonly used methods to treat E. faecalis infections within the root canal system. In this work, we assess the effectiveness of probiotic strains to prevent the regrowth of E. faecalis biofilm cells treated by sodium hypochlorite irrigation. Methods: First, methods are presented that evaluate the effects of short-term exposure to sodium-hypochlorite on established E. faecalis. Next, we evaluate the effects of the secreted products of probiotic strains on biofilm cells and planktonic cells. Results: Sodium hypochlorite, the treatment conventionally used to decontaminate infected root canal systems, was extremely toxic to planktonic bacteria but did not fully eradicate biofilm cells. Furthermore, low concentrations of sodium hypochlorite induced eDNA dependent biofilms. Strikingly, conditioned medium from the probiotic bacteria Lactobacillus plantarum and Lactobacillus casei was sufficient to fully prevent the regrowth of treated biofilms while showing reduced potency towards planktonic cells. Conclusion: Sodium hypochlorite irrigations may contribute to the persistence of biofilm cells if used at concentrations lower than 3%. Probiotic strains and their products represent a new reservoir of biofilm therapies for E. faecalis infections formed in the root canal system.
Collapse
Affiliation(s)
- Shatha Safadi
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699780l, Israel;
| | - Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100001, Israel;
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100001, Israel;
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100001, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Igor Tsesis
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699780l, Israel;
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| | - Eyal Rosen
- Department of Endodontics, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 699780l, Israel;
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (I.K.-G.); (I.T.); (E.R.)
| |
Collapse
|
172
|
Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules 2022; 27:molecules27072182. [PMID: 35408576 PMCID: PMC9000680 DOI: 10.3390/molecules27072182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.
Collapse
|
173
|
Müller AR, Leite BR, Corção G. Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Microb Drug Resist 2022; 28:654-659. [PMID: 35325574 DOI: 10.1089/mdr.2021.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the blaOXA-48 gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.
Collapse
Affiliation(s)
- Aline Reis Müller
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Belize Rodrigues Leite
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Gertrudes Corção
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Science, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
174
|
Trubenová B, Roizman D, Moter A, Rolff J, Regoes RR. Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends Microbiol 2022; 30:841-852. [PMID: 35337697 DOI: 10.1016/j.tim.2022.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Biofilms are communities of bacteria forming high-density sessile colonies. Such a lifestyle comes associated with costs and benefits: while the growth rate of biofilms is often lower than that of their free-living counterparts, this cost is readily repaid once the colony is subjected to antibiotics. Biofilms can grow in antibiotic concentrations a thousand times higher than planktonic bacteria. While numerous mechanisms have been proposed to explain biofilm recalcitrance towards antibiotics, little is yet known about their effect on the evolution of resistance. We synthesize the current understanding of biofilm recalcitrance from a pharmacodynamic and a population genetics perspective. Using the pharmacodynamic framework, we discuss the effects of various mechanisms and show that biofilms can either promote or impede resistance evolution.
Collapse
Affiliation(s)
| | - Dan Roizman
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | - Annette Moter
- Charité, Universitätsmedizin Berlin Biofilmcenter, Berlin, Germany
| | - Jens Rolff
- Institute of Biology, Evolutionary Biology, Freie Universität Berlin, Germany
| | | |
Collapse
|
175
|
Nandy P, Santra RC, Lahiri D, Nag M, Das S. In Situ Reactivity of Electrochemically Generated Nitro Radical Anion on Tinidazole and Its Monomeric and Dimeric Cu II Complexes on Model Biological Targets with Relative Manifestation of Preventing Bacterial Biofilm Formation. ACS OMEGA 2022; 7:8268-8280. [PMID: 35309450 PMCID: PMC8928527 DOI: 10.1021/acsomega.1c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Formation of nitro radical anion (-NO2 •-) and other reduction products of 5-nitroimidazoles, although important for antimicrobial activity, makes the drugs neurotoxic. Hence, an appropriate generation and their role in the free radical pathway needs proper realization. This was attempted by studying the action of tinidazole and its CuII complexes on model targets (nucleic acid bases and calf thymus DNA). Results obtained were correlated with studies on biological species where prevention of biofilm formation on Staphylococcus aureus and Pseudomonas aeruginosa was followed. Tinidazole and its CuII complexes subjected to electrochemical reduction in aqueous solution, under de-aerated conditions, interact with model nucleic acid bases and calf thymus DNA. These model targets were followed to realize what happens when such compounds undergo enzymatic reduction within cells of microorganisms that they eventually kill. Studies reveal that CuII complexes were better in modifying nucleic acid bases and calf thymus DNA than tinidazole; damage caused to nucleic acid bases was correlated with that caused to DNA, indicating that compounds affect DNA rich in thymine and adenine. Minimum bactericidal concentrations on sessile S. aureus and P. aeruginosa for the monomeric CuII complex were 12.5 and 20.25 μM respectively, while those for the dimeric complex were 40.0 and 45.0 μM, respectively. Biofilm formation by P. aeruginosa and S. aureus and viability count of sessile cells were also determined. CuII complexes of tinidazole brought about substantial reduction in carbohydrate and protein content in S. aureus and P. aeruginosa. Downregulation of quorum sensing signaling mechanism viz. reduced production of pyocyanin and elastase during biofilm formation was also detected. CuII complexes showed much higher tendency to prevent biofilm formation than tinidazole, almost comparable to amoxicillin, an established drug in this regard.
Collapse
Affiliation(s)
- Promita Nandy
- . Department of
Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| | - Ramesh C. Santra
- . Department of
Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| | - Dibyajit Lahiri
- Department
of Biotechnology, University of Engineering
and Management, Kolkata 700 156, India
| | - Moupriya Nag
- Department
of Biotechnology, University of Engineering
and Management, Kolkata 700 156, India
| | - Saurabh Das
- . Department of
Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
176
|
Chaggar GK, Nkemngong CA, Li X, Teska PJ, Oliver HF. Hydrogen peroxide, sodium dichloro-s-triazinetriones and quaternary alcohols significantly inactivate the dry-surface biofilms of Staphylococcus aureus and Pseudomonas aeruginosa more than quaternary ammoniums. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35275049 PMCID: PMC9558353 DOI: 10.1099/mic.0.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Globally, healthcare-associated infections (HAI) are the most frequent adverse outcome in healthcare delivery. Although bacterial biofilms contribute significantly to the incidence of HAI, few studies have investigated the efficacy of common disinfectants against dry-surface biofilms (DSB). The objective of this study was to evaluate the bactericidal efficacy of seven Environmental Protection Agency (EPA)-registered liquid disinfectants against DSB of Staphylococcus aureus and Pseudomonas aeruginosa. We hypothesized that overall, there will be significant differences among the bactericidal efficacies of tested disinfectants by product type and active ingredient class. We also hypothesized that depending on the species, higher bactericidal efficacies against DSB will be exhibited after 24 h of dehydration compared to 72 h. Wet-surface biofilms of S. aureus and P. aeruginosa were grown following EPA-MLB-SOP-MB-19 and dehydrated for 24 and 72 h to establish DSB. Seven EPA-registered disinfectants were tested against dehydrated DSB following EPA-MLB-SOP-MB-20. Overall, quaternary ammonium plus alcohol, sodium dichloro-s-triazinetrione and hydrogen peroxide products were more efficacious against DSB than quaternary ammoniums for both tested species. While there was no significant difference in the log10 reductions between 24 and 72 h S. aureus biofilms, significantly higher log10 reductions were observed when products were challenged with 24 h P. aeruginosa DSB compared to 72 h P. aeruginosa DSB. Species type, active ingredient class and dry time significantly impact disinfectant efficacy against DSB of S. aureus or P. aeruginosa.
Collapse
Affiliation(s)
- Gurpreet K. Chaggar
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Carine A. Nkemngong
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Diversey Inc., Charlotte, NC 28273, USA
| | | | | | - Haley F. Oliver
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- *Correspondence: Haley F. Oliver,
| |
Collapse
|
177
|
Zhang Y, Silva DM, Young P, Traini D, Li M, Ong HX, Cheng S. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth. Biotechnol Bioeng 2022; 119:1483-1497. [PMID: 35274289 PMCID: PMC9313621 DOI: 10.1002/bit.28077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix and exhibit high tolerance towards environmental stress. Despite the plethora of research on biofilms, most biofilm models are produced using mono-interface culture in static flow conditions, and knowledge of the effects of interfaces and mechanical forces on biofilm development remains fragmentary. This study elucidated the effects of air-liquid (ALI) or liquid-liquid (LLI) interfaces and mechanical shear forces induced by airflow and hydrodynamic flow on biofilm growing using a custom-designed dual-channel microfluidic platform. Results from this study showed that comparing biofilms developed under continuous nutrient supply and shear stresses free condition to those developed with limited nutrient supply, ALI biofilms were four times thicker, 60% less permeable, and 100 times more resistant to antibiotics, while LLI biofilms were two times thicker, 20% less permeable, and 100 times more resistant to antibiotics. Subjecting the biofilms to mechanical shear stresses affected the biofilm structure across the biofilm thickness significantly, resulting in generally thinner and denser biofilm compared to their controlled biofilm cultured in the absence of shear stresses, and the ALI and LLI biofilm's morphology was vastly different. Biofilms developed under hydrodynamic shear stress also showed increased antibiotic resistance. These findings highlight the importance of investigating biofilm growth and its mechanisms in realistic environmental conditions and demonstrate a feasible approach to undertake this work using a novel platform. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ye Zhang
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Sydney, Australia
| | - Dina M Silva
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ming Li
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
178
|
Establishment of a reliable in-vivo model of implant-associated infection to investigate innovative treatment options. Sci Rep 2022; 12:3979. [PMID: 35273202 PMCID: PMC8913616 DOI: 10.1038/s41598-022-07673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
The increasing number of implant-associated infections and of multiresistant pathogens is a major problem in the daily routine. In the field of osteomyelitis, it is difficult to manage a valid clinical study because of multiple influencing factors. Therefore, models of osteomyelitis with a simulation of the pathophysiology to evaluate treatment options for implant-associated infections are necessary. The aim of this study is to develop a standardized and reproducible osteomyelitis model in-vivo to improve treatment options. This study analyses the influence of a post-infectious implant exchange one week after infection and the infection progress afterward in combination with a systemic versus a local antibiotic treatment in-vivo. Therefore, the implant exchange, the exchange to a local drug-delivery system with gentamicin, and the implant removal are examined. Furthermore, the influence of an additional systemic antibiotic therapy is evaluated. An in-vivo model concerning the implant exchange is established that analyzes clinic, radiologic, microbiologic, histologic, and immunohistochemical diagnostics to obtain detailed evaluation and clinical reproducibility. Our study shows a clear advantage of the combined local and systemic antibiotic treatment in contrast to the implant removal and to a non-combined antibiotic therapy. Group genta/syst. showed the lowest infection rate with a percentage of 62.5% concerning microbiologic analysis, which is in accordance with the immunohistochemical, cytochemical, histologic, and radiologic analysis. Our in-vivo rat model has shown valid and reproducible results, which will lead to further investigations regarding treatment options and influencing factors concerning the therapy of osteomyelitis and implant-associated infections.
Collapse
|
179
|
Browne K, Kuppusamy R, Chen R, Willcox MDP, Walsh WR, Black DS, Kumar N. Bioinspired Polydopamine Coatings Facilitate Attachment of Antimicrobial Peptidomimetics with Broad-Spectrum Antibacterial Activity. Int J Mol Sci 2022; 23:ijms23062952. [PMID: 35328373 PMCID: PMC8948759 DOI: 10.3390/ijms23062952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023] Open
Abstract
The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics—antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia;
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia;
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia;
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia;
| | - David StC. Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-2-9385-4657 (D.S.B.); +61-2-9385-4698 (N.K.)
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia; (K.B.); (R.K.); (R.C.)
- Correspondence: (D.S.B.); (N.K.); Tel.: +61-2-9385-4657 (D.S.B.); +61-2-9385-4698 (N.K.)
| |
Collapse
|
180
|
Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, Khan A, Kalusalingam A, Ng PW. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life 2022; 15:328-335. [PMID: 35449993 PMCID: PMC9015166 DOI: 10.25122/jml-2021-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/09/2021] [Indexed: 11/14/2022] Open
Abstract
Antimicrobials are widely used to treat bacteria, viruses, fungi, and protozoa. Therefore, research and development of newer types of antimicrobials are important. Antimicrobial resistance has emerged as a major challenge to the healthcare system, although various alternative antimicrobials have been proposed. However, none of these show consistent and comparable efficacy to antimicrobials in clinical trials. More recently, nanoparticles have emerged as a potential solution to antimicrobial agents to overcome antimicrobial resistance. This article revisits and updates applications of various types of nanoparticles for the delivery of antimicrobial agents and their characterization. Though nanoparticle technology has some limitations, it provides an innovative approach to pharmaceutical technology. Furthermore, nanoparticles offer a variety of advantages, such as enhancement of solubility and permeation, leading to better efficacy. In this article, approaches commonly employed to improve antimicrobial therapy are discussed. These approaches have advantages and applications and provide a broader opportunity for pharmaceutical scientists to choose the proper method per the desired outcome.
Collapse
Affiliation(s)
- Kai Bin Liew
- Corresponding Author: Kai Bin Liew, Faculty of Pharmacy, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
182
|
Villageliu DN, Samuelson DR. The Role of Bacterial Membrane Vesicles in Human Health and Disease. Front Microbiol 2022; 13:828704. [PMID: 35300484 PMCID: PMC8923303 DOI: 10.3389/fmicb.2022.828704] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are nanoparticles derived from the membrane components of bacteria that transport microbial derived substances. MVs are ubiquitous across a variety of terrestrial and marine environments and vary widely in their composition and function. Membrane vesicle functional diversity is staggering: MVs facilitate intercellular communication by delivering quorum signals, genetic information, and small molecules active against a variety of receptors. MVs can deliver destructive virulence factors, alter the composition of the microbiota, take part in the formation of biofilms, assist in the uptake of nutrients, and serve as a chemical waste removal system for bacteria. MVs also facilitate host-microbe interactions including communication. Released in mass, MVs overwhelm the host immune system and injure host tissues; however, there is also evidence that vesicles may take part in processes which promote host health. This review will examine the ascribed functions of MVs within the context of human health and disease.
Collapse
Affiliation(s)
| | - Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
183
|
Abstract
Microbial biofilms have caused serious concerns in healthcare, medical, and food industries because of their intrinsic resistance against conventional antibiotics and cleaning procedures and their capability to firmly adhere on surfaces for persistent contamination. These global issues strongly motivate researchers to develop novel methodologies to investigate the kinetics underlying biofilm formation, to understand the response of the biofilm with different chemical and physical treatments, and to identify biofilm-specific drugs with high-throughput screenings. Meanwhile microbial biofilms can also be utilized positively as sensing elements in cell-based sensors due to their strong adhesion on surfaces. In this perspective, we provide an overview on the connections between sensing and microbial biofilms, focusing on tools used to investigate biofilm properties, kinetics, and their response to chemicals or physical agents, and biofilm-based sensors, a type of biosensor using the bacterial biofilm as a biorecognition element to capture the presence of the target of interest by measuring the metabolic activity of the immobilized microbial cells. Finally we discuss possible new research directions for the development of robust and rapid biofilm related sensors with high temporal and spatial resolutions, pertinent to a wide range of applications.
Collapse
Affiliation(s)
- Riccardo Funari
- Dipartimento di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Via Amendola, 173, Bari 70125, Italy
- CNR, Istituto di Fotonica e Nanotecnologie, Via Amendola, 173, 70125 Bari, Italy
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
184
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
185
|
Bavaharan A, Skilbeck C. Electrical signalling in prokaryotes and its convergence with quorum sensing in Bacillus. Bioessays 2022; 44:e2100193. [PMID: 35195292 DOI: 10.1002/bies.202100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The importance of electrical signalling in bacteria is an emerging paradigm. Bacillus subtilis biofilms exhibit electrical communication that regulates metabolic activity and biofilm growth. Starving cells initiate oscillatory extracellular potassium signals that help even the distribution of nutrients within the biofilm and thus help regulate biofilm development. Quorum sensing also regulates biofilm growth and crucially there is convergence between electrical and quorum sensing signalling axes. This makes B. subtilis an interesting model for cell signalling research. SpoOF is predicted to act as a logic gate for signalling pathway convergence, raising interesting questions about the functional nature of this gate and the relative importance of these disparate signals on biofilm behaviour. How is an oscillating signal integrated with a quorum signal? The model presented offers rich opportunities for future experimental and theoretical modelling research. The importance of direct cell-to-cell electrical signalling in prokaryotes, so characteristic of multicellular eukaryotes, is also discussed.
Collapse
|
186
|
Santra HK, Maity S, Banerjee D. Production of Bioactive Compounds with Broad Spectrum Bactericidal Action, Bio-Film Inhibition and Antilarval Potential by the Secondary Metabolites of the Endophytic Fungus Cochliobolus sp. APS1 Isolated from the Indian Medicinal Herb Andrographis paniculata. Molecules 2022; 27:1459. [PMID: 35268559 PMCID: PMC8912084 DOI: 10.3390/molecules27051459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Endophytes, being the co-evolution partners of green host plants, are factories of pharmaceutically valuable novel natural products. Cochliobolus sp. APS1, an endophyte of Andrographis paniculata (Green Chiretta), produces a plethora of natural bioactive compounds and the multipotent alkaloid Aziridine, 1-(2-aminoethyl)-, is the prime one among them. The isolate exhibited antibacterial, anti-biofilm, and antilarval potency. The MIC and MBC values of the ethyl-acetate culture extract ranged from 15.62 to 250 µg/mL against ten pathogenic microorganisms (including MRSA and VRSA). Killing kinetics data along with the leakage of macromolecules into the extracellular environment supports the cidal activity of the antibacterial principles. The broad spectrum antibacterial activity of Aziridine, 1-(2-aminoethyl)-, was optimized by a one-variable-at-a-time system coupled with response surface methodology, which led to a 45% enhancement of the antibacterial activity. The maximum response (22.81 ± 0.16 mm of zone of inhibition against MRSA) was marked in 250 mL Erlenmeyer flask containing 90 mL potato dextrose broth supplemented with (g%/L) glucose, 9.7; urea concentration, 0.74; with medium pH 6.48; after 8.76 days of incubation at 26 °C. APS1 strongly inhibited biofilm formation in the tested pathogenic microorganisms and acts as a larvicidal agent against the Dengue-vector Aedes aegypti. This is probably the first report of Aziridine, 1-(2-aminoethyl)-, from any endophytic source. Cochliobolus sp. APS1 possesses industrial importance for the production of bioactive alkaloids.
Collapse
Affiliation(s)
| | | | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore 721102, West Bengal, India; (H.K.S.); (S.M.)
| |
Collapse
|
187
|
Genetic Mechanisms of Vancomycin Resistance in Clostridioides difficile: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11020258. [PMID: 35203860 PMCID: PMC8868222 DOI: 10.3390/antibiotics11020258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance to treatments for Clostridioides difficile infection (CDI) poses a significant threat to global health. C. difficile is widely thought to be susceptible to oral vancomycin, which is increasingly the mainstay of CDI treatment. However, clinical labs do not conduct C. difficile susceptibility testing, presenting a challenge to detecting the emergence and impact of resistance. In this systematic review, we describe gene determinants and associated clinical and laboratory mechanisms of vancomycin resistance in C. difficile, including drug-binding site alterations, efflux pumps, RNA polymerase mutations, and biofilm formation. Additional research is needed to further characterize these mechanisms and understand their clinical impact.
Collapse
|
188
|
Man Y, Zhang H, Huang J, Xi S, Wang J, Tao H, Zhou Y. Combined effect of tetracycline and copper ion on catalase activity of microorganisms during the biological phosphorus removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114218. [PMID: 34891056 DOI: 10.1016/j.jenvman.2021.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial catalase is a key enzyme that affects the activities of microorganisms, and the catalase activity is affected by pollutants in wastewater. However, the effects of mixed pollutants on catalase activity are rather complex. To reveal the effect of the mixed pollutants on catalase activity of microorganisms, the present study investigated tetracycline and copper ion as pollutants during the biological phosphorus removal. Three concentration ratios of tetracycline and copper ion and 27 different concentration gradients were designed through the direct equipartition ray and the dilution factor method. The effects of mixed pollutants on the catalase activity of microorganisms were analyzed by the nonlinear regression equation and concentration-addition model. The results showed that, with the increase of actuation duration and the pollutant concentration, the inhibitory effects on the catalase activity of microorganisms obviously increased, which indicated that the inhibitory effects are concentration-dependent and time-dependent. The concentration-addition model suggested that when the ratio was 0.297, the combined effect of mixed pollutants on the activity of microbial catalase was mainly antagonism. When the ratio is 0.894, the combined effect was mainly additivity. When the ratio was 2.676, the combined effect transformed from synergism to additivity and antagonism. The study of the combined effects of tetracycline and copper ion on the catalase activity is helpful to further study their ecotoxicological mechanisms in wastewater treatment.
Collapse
Affiliation(s)
- Yacan Man
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hua Zhang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jian Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
| | - Shanshan Xi
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jinhua Wang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Haitao Tao
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Yu Zhou
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, 230601, PR China; School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| |
Collapse
|
189
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
190
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
191
|
Pucelik B, Dąbrowski JM. Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms. ADVANCES IN INORGANIC CHEMISTRY 2022; 79:65-103. [PMID: 35095189 PMCID: PMC8787646 DOI: 10.1016/bs.adioch.2021.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the whole world is currently observing the global battle against COVID-19, it should not be underestimated that in the next 30 years, approximately 10 million people per year could be exposed to infections caused by multi-drug resistant bacteria. As new antibiotics come under pressure from unpredictable resistance patterns and relegation to last-line therapy, immediate action is needed to establish a radically different approach to countering resistant microorganisms. Among the most widely explored alternative methods for combating bacterial infections are metal complexes and nanoparticles, often in combination with light, but strategies using monoclonal antibodies and bacteriophages are increasingly gaining acceptance. Photodynamic inactivation (PDI) uses light and a dye termed a photosensitizer (PS) in the presence of oxygen to generate reactive oxygen species (ROS) in the field of illumination that eventually kill microorganisms. Over the past few years, hundreds of photomaterials have been investigated, seeking ideal strategies based either on single molecules (e.g., tetrapyrroles, metal complexes) or in combination with various delivery systems. The present work describes some of the most recent advances of PDI, focusing on the design of suitable photosensitizers, their formulations, and their potential to inactivate bacteria, viruses, and fungi. Particular attention is focused on the compounds and materials developed in our laboratories that are capable of killing in the exponential growth phase (up to seven logarithmic units) of bacteria without loss of efficacy or resistance, while being completely safe for human cells. Prospectively, PDI using these photomaterials could potentially cure infected wounds and oral infections caused by various multidrug-resistant bacteria. It is also possible to treat the surfaces of medical equipment with the materials described, in order to disinfect them with light, and reduce the risk of nosocomial infections.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Janusz M Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
192
|
Hartman LM, Blackall LL, van Oppen MJH. Antibiotics reduce bacterial load in Exaiptasia diaphana, but biofilms hinder its development as a gnotobiotic coral model. Access Microbiol 2022; 4:000314. [PMID: 35252752 PMCID: PMC8895603 DOI: 10.1099/acmi.0.000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Coral reefs are declining due to anthropogenic disturbances, including climate change. Therefore, improving our understanding of coral ecosystems is vital, and the influence of bacteria on coral health has attracted particular interest. However, a gnotobiotic coral model that could enhance studies of coral–bacteria interactions is absent. To address this gap, we tested the ability of treatment with seven antibiotics for 3 weeks to deplete bacteria in Exaiptasia diaphana, a sea anemone widely used as a coral model. Digital droplet PCR (ddPCR) targeting anemone Ef1-α and bacterial 16S rRNA genes was used to quantify bacterial load, which was found to decrease six-fold. However, metabarcoding of bacterial 16S rRNA genes showed that alpha and beta diversity of the anemone-associated bacterial communities increased significantly. Therefore, gnotobiotic E. diaphana with simplified, uniform bacterial communities were not generated, with biofilm formation in the culture vessels most likely impeding efforts to eliminate bacteria. Despite this outcome, our work will inform future efforts to create a much needed gnotobiotic coral model.
Collapse
Affiliation(s)
- Leon M. Hartman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Swinburne University of Technology, Hawthorn, VIC, Australia
- Monash University, Clayton, VIC, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
193
|
The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS One 2022; 17:e0261893. [PMID: 35073323 PMCID: PMC8786148 DOI: 10.1371/journal.pone.0261893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Combating the spread of antimicrobial resistance (AMR) among bacteria requires a new class of antimicrobials, which desirably have a narrow spectrum because of their low propensity for the spread of AMR. Antimicrobial peptides (AMPs), which target the bacterial cell membrane, are promising seeds for novel antimicrobials because the cell membrane is essential for all cells. Previously, we reported the antimicrobial and haemolytic effects of a natural AMP, magainin 2 (Mag2), isolated from the skin of Xenopus laevis (the African clawed frog), four types of synthesised Mag2 derivatives, and three types of rationally designed AMPs on gram-positive and gram-negative bacteria. To identify novel antimicrobial seeds, we evaluated the effect of AMPs on Mycoplasma pneumoniae, which also exhibits AMR. We also evaluated the antimicrobial effects of an AMP, NK2A, which has been reported to have antimicrobial effects on Mycoplasma bovis, in addition to Mag2 and previously synthesised seven AMPs, on four strains of M. pneumoniae using colorimetric, biofilm, and killing assays. We found that three synthesised AMPs, namely 17base-Ac6c, 17base-Hybrid, and Block, had anti-M. pneumoniae (anti-Mp) effect at 8–30 μM, whereas others, including NK2A, did not have any such effect. For the further analysis, the membrane disruption activities of AMPs were measured by propidium iodide (PI) uptake assays, which suggested the direct interaction of AMPs to the cell membrane basically following the colorimetric, biofilm, and killing assay results. PI uptake assay, however, also showed the NK2A strong interaction to cell membrane, indicating unknown anti-Mp determinant factors related to the peptide sequences. Finally, we conclude that anti-Mp effect was not simply determined by the membrane disruption activities of AMPs, but also that the sequence of AMPs were important for killing of M. pneumoniae. These findings would be helpful for the development of AMPs for M. pneumoniae.
Collapse
|
194
|
Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, Bao M, Ge F, Li L, Yi J, Du C, Lu C, Tan Y. The Inhibition Effect of Linezolid With Reyanning Mixture on MRSA and its Biofilm is More Significant than That of Linezolid Alone. Front Pharmacol 2022; 12:766309. [PMID: 35046807 PMCID: PMC8762264 DOI: 10.3389/fphar.2021.766309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 μg/ml) to 2 μg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Chu
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Chengqiang Du
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
195
|
Staphylococcus aureus-A Known Opponent against Host Defense Mechanisms and Vaccine Development-Do We Still Have a Chance to Win? Int J Mol Sci 2022; 23:ijms23020948. [PMID: 35055134 PMCID: PMC8781139 DOI: 10.3390/ijms23020948] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this review is to present justification for the urgent need to implement specific prophylaxis of invasive Staphylococcus aureus infections. We emphasize the difficulties in achieving this goal due to numerous S. aureus virulence factors important for the process of infection and the remarkable ability of these bacteria to avoid host defense mechanisms. We precede these considerations with a brief overview of the global necessitiy to intensify the use of vaccines against other pathogens as well, particularly in light of an impasse in antibiotic therapy. Finally, we point out global trends in research into modern technologies used in the field of molecular microbiology to develop new vaccines. We focus on the vaccines designed to fight the infections caused by S. aureus, which are often resistant to the majority of available therapeutic options.
Collapse
|
196
|
A Humanized Monoclonal Antibody Potentiates Killing by Antibiotics of Diverse Biofilm-Forming Respiratory Tract Pathogens. Antimicrob Agents Chemother 2022; 66:e0187721. [DOI: 10.1128/aac.01877-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New strategies to treat diseases wherein biofilms contribute significantly to pathogenesis are needed as biofilm-resident bacteria are highly recalcitrant to antibiotics due to physical biofilm architecture and a canonically quiescent metabolism, among many additional attributes. We, and others, have shown that when biofilms are dispersed or disrupted, bacteria released from biofilm residence are in a distinct physiologic state that, in part, renders these bacteria highly sensitive to killing by specific antibiotics. We sought to demonstrate the breadth of ability of a recently humanized monoclonal antibody against an essential biofilm structural element (DNABII protein) to disrupt biofilms formed by respiratory tract pathogens and potentiate antibiotic-mediated killing of bacteria released from biofilm residence.
Biofilms formed by six respiratory tract pathogens were significantly disrupted by the humanized monoclonal antibody in a dose- and time-dependent manner, as corroborated by CLSM imaging. Bacteria newly released from the biofilms of 3 of 6 species were significantly more sensitive than their planktonic counterparts to killing by 2 of 3 antibiotics currently used clinically and were now also equally as sensitive to killing by the 3
rd
antibiotic. The remaining 3 pathogens were significantly more susceptible to killing by all 3 antibiotics.
A humanized monoclonal antibody directed against protective epitopes of a DNABII protein effectively released six diverse respiratory tract pathogens from biofilm residence in a phenotypic state that was now as, or significantly more, sensitive to killing by three antibiotics currently indicated for use clinically. These data support this targeted, combinatorial, species-agnostic therapy to mitigate chronic bacterial diseases.
Collapse
|
197
|
Garcia CR, Malik MH, Biswas S, Tam VH, Rumbaugh KP, Li W, Liu X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022; 10:633-653. [PMID: 34994371 DOI: 10.1039/d1bm01537k] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ever-growing threat of new and existing infectious diseases in combination with antimicrobial resistance requires the need for innovative and effective forms of drug delivery. Optimal drug delivery systems for existing and newly developed antimicrobials can enhance drug bioavailability, enable site-specific drug targeting, and overcome current limitations of drug formulations such as short elimination half-lives, poor drug solubility, and undesirable side effects. Nanoemulsions (NE) consist of nanometer-sized droplets stabilized by emulsifiers and are typically more stable and permeable due to their smaller particle sizes and higher surface area compared to conventional emulsions. NE have been identified as a promising means of antimicrobial delivery due to their intrinsic antimicrobial properties, ability to increase drug solubility, stability, bioavailability, organ and cellular targeting potentials, capability of targeting biofilms, and potential to overcome antimicrobial resistance. Herein, we discuss non-drug loaded essential oil-based NE that can confer antimicrobial actions through predominantly physical or biochemical mechanisms without drug payloads. We also describe drug-loaded NE for enhanced antimicrobial efficacy by augmenting the potency of existing antimicrobials. We highlight the versatility of NE to be administered through multiple different routes (oral, parenteral, dermal, transdermal, pulmonary, nasal, ocular, and rectal). We summarize recent advances in the clinical translation of antimicrobial NE and shed light on future development of effective antimicrobial therapy to combat infectious diseases.
Collapse
Affiliation(s)
- Celine R Garcia
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Muhammad H Malik
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Sujit Biswas
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Vincent H Tam
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| | - Kendra P Rumbaugh
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
198
|
Bao J, Xie L, Ma Y, An R, Gu B, Wang C. Proteomic and Transcriptomic Analyses Indicate Reduced Biofilm-Forming Abilities in Cefiderocol-Resistant Klebsiella pneumoniae. Front Microbiol 2022; 12:778190. [PMID: 35046911 PMCID: PMC8762213 DOI: 10.3389/fmicb.2021.778190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
The advent of cefiderocol provides hope for the clinical treatment of multi-drug resistant gram-negative bacteria (GNB), especially those with carbapenem resistance. Resistance of Klebsiella pneumoniae to cefiderocol can be enhanced by acclimatization. In the present study, we collected cefiderocol resistant K. pneumoniae isolates during a 36-day acclimatization procedure while increasing the cefiderocol concentration in the culture medium. Strains were studied for changes in their biological characteristics using proteomics and transcriptomics. A decrease in biofilm formation ability was the main change observed among the induced isolates. Downregulation of genes involved in biofilm formation including hdeB, stpA, yhjQ, fba, bcsZ, uvrY, bcsE, bcsC, and ibpB were the main factors that reduced the biofilm formation ability. Moreover, downregulation of siderophore transporter proteins including the iron uptake system component efeO, the tonB-dependent receptor fecA, and ferric iron ABC transporter fbpA may be among the determining factors leading to cefiderocol resistance and promoting the reduction of biofilm formation ability of K. pneumoniae. This is the first study to investigate cefiderocol resistance based on comprehensive proteomic and transcriptomic analyses.
Collapse
Affiliation(s)
- Jinfeng Bao
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lu Xie
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| | - Yating Ma
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| | - Ran An
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- College of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chengbin Wang
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, China
| |
Collapse
|
199
|
Villalba M, Venturelli L, Arnal L, Masson C, Dietler G, Vela ME, Yantorno O, Kasas S. Effect of antibiotics on mechanical properties of Bordetella pertussis examined by atomic force microscopy. Micron 2022; 155:103229. [DOI: 10.1016/j.micron.2022.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
|
200
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|