151
|
Liu C, Gao J, Yang D, Yu Q, Zhang S. Title: Multi-Omics and Immune Landscape of Proliferative LncRNA Signatures: Implications for Risk Stratification and Immunotherapy in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:907433. [PMID: 35662721 PMCID: PMC9158467 DOI: 10.3389/fphar.2022.907433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) are significantly implicated in tumor proliferation. Nevertheless, proliferation-derived lncRNAs and their latent clinical significance remain largely unrevealed in hepatocellular carcinoma (HCC). Methods: This research enrolled 658 HCC patients from five independent cohorts. We retrieved 50 Hallmark gene sets from the MSigDB portal. Consensus clustering was applied to identify heterogeneous proliferative subtypes, and the nearest template prediction (NTP) was utilized to validate the subtypes. We introduced an integrative framework (termed “ProLnc”) to identify proliferation-derived lncRNAs. Moreover, a proliferation-related signature was developed and verified in four independent cohorts. Results: In 50 Hallmarks, seven proliferation pathways were significantly upregulated and correlated with a worse prognosis. Subsequently, we deciphered two heterogeneous proliferative subtypes in TCGA-LIHC. Subtype 2 displayed enhanced proliferative activities and a worse prognosis, whereas subtype 1 was associated with hyperproliferative HCC and a favorable prognosis. The NTP further verified the robustness and reproducibility of two subtypes in four cohorts derived from different platforms. Combining the differentially expressed lncRNAs from two subtypes with proliferative lncRNA modulators from our ProLnc pipeline, we determined 230 proliferation-associated lncRNAs. Based on the bootstrapping channel and the verification of multiple cohorts, we further identified ten lncRNAs that stably correlated with prognosis. Subsequently, we developed and validated a proliferative lncRNA signature (ProLncS) that could independently and accurately assess the overall survival (OS) and relapse-free survival (RFS) of HCC patients in the four cohorts. Patients with high ProLncS score displayed significantly genomic alterations (e.g., TP53 mutation, 8p23-8p24 copy number variation) and higher abundances of immune cells and immune checkpoint molecules, which suggested immunotherapy was more suitable for patients with high ProLncS score. Conclusion: Our work provided new insights into the heterogeneity of tumor proliferation, and ProLncS could be a prospective tool for tailoring the clinical decision and management of HCC.
Collapse
Affiliation(s)
- Chi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Dongjing Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| |
Collapse
|
152
|
Identification of Five N6-Methylandenosine-Related ncRNA Signatures to Predict the Overall Survival of Patients with Gastric Cancer. DISEASE MARKERS 2022; 2022:7765900. [PMID: 35774851 PMCID: PMC9239763 DOI: 10.1155/2022/7765900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/15/2022] [Indexed: 01/19/2023]
Abstract
Noncoding ribonucleic acids (ncRNAs) are involved in various functions in the formation and progression of different tumors. However, the association between N6-methyladenosine-related ncRNAs (m6A-related ncRNAs) and gastric cancer (GC) prognosis remains elusive. As such, this research was aimed at identifying m6A-related ncRNAs (lncRNAs and miRNAs) in GC and developing prognostic models of relevant m6A-related ncRNAs and identifying potential biomarkers regulated by m6A. In this study, the m6A2Target database, Starbase database, and The Cancer Genome Atlas (TCGA) were used to screen m6A-related ncRNAs. And then, we performed integrated bioinformatics analyses to determine prognosis-associated ncRNAs and to develop the m6A-related ncRNA prognostic signature (m6A-NPS) for GC patients. Finally, five m6A-related ncRNAs (including lnc-ARHGAP12, lnc-HYPM-1, lnc-WDR7-11, LINC02266, and lnc-PRIM2-7) were identified to establish m6A-NPS. The predictive power of m6A-NPS was better in the receiver operating characteristic (ROC) curve analysis of the training set (area under the curve (AUC), >0.6). The m6A-NPS could be utilized to classify patients into high- and low-risk cohorts, and the Kaplan-Meier analysis indicated that participants in the high-risk cohort had a poorer prognosis. The entire TCGA dataset substantiated the predictive value of m6A-NPS. Significant differences in TCGA molecular GC subtypes were observed between high- and low-risk cohorts. The ROC curve analysis indicated that m6A-NPS had better predictive power than other clinical characteristics of GC prognosis. Uni- and multivariate regression analyses indicated m6A-NPS as an independent prognostic factor. Furthermore, the m6A status between the low-risk cohort and high-risk cohort was significantly different. Differential genes between them were enriched in multiple tumor-associated signaling pathways. In summary, five m6A-related ncRNA signatures that could forecast the overall survival of patients with GC were identified.
Collapse
|
153
|
Zhang F, Guo C, Cao X, Yan Y, Zhang J, Lv S. Gastric cancer cell-derived extracellular vesicles elevate E2F7 expression and activate the MAPK/ERK signaling to promote peritoneal metastasis through the delivery of SNHG12. Cell Death Dis 2022; 8:164. [PMID: 35383161 PMCID: PMC8983762 DOI: 10.1038/s41420-022-00925-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/28/2022]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have extensive application in the formation of their environment, including metastasis. This study explored the ability of gastric cancer (GC) cell-derived EVs-mediated microRNA-129-5p/E2F transcription factor 7/mitogen-activated protein kinase/extracellular regulated protein kinase (miR-129-5p/E2F7/MAPK/ERK) axis to affect the peritoneal metastasis of GC by delivering lncRNA small nucleolar RNA host gene 12 (SNHG12). EV-derived lncRNA and SNHG12/miR-129-5p/E2F7 network were determined by bioinformatics analysis. The regulatory relationship among SNHG12, miR-129-5p, and E2F7 was verified using a combination of dual-luciferase reporter gene, RNA immunoprecipitation, and RNA pull-down assays. The SNHG12, miR-129-5p, and E2F7 expression was measured by RT-qPCR. After GC cell-derived EVs were isolated and co-cultured with human peritoneal mesothelial cells (HPMCs), the uptake of EVs by HPMCs was observed under laser scanning confocal microscopy. Cell viability and apoptosis were examined using cell counting kit-8 and flow cytometry, respectively. Western blot analysis was performed to measure the mesothelial–mesenchymal transition (MMT)-related protein expression. The pathological and morphological characteristics of metastatic tumors in nude mice were observed by hematoxylin–eosin staining. A high SNHG12 expression was correlated with the poor prognosis of patients with GC. GC-derived EVs led to increased HPMC apoptosis and MMT by transferring SNHG12, whereas the knockdown of SNHG12 annulled the aforementioned results. SNHG12 sponged miR-129-5p to boost E2F7 expression and activate the MAPK/ERK signaling, thus inducing HPMC apoptosis and MMT. In vivo experiments further verified that EVs derived from GC cells promoted peritoneal metastasis in nude mice. GC cell-derived EVs elevated the E2F7 expression and activated the MAPK/ERK signaling to promote peritoneal metastasis through the delivery of SNHG12.
Collapse
Affiliation(s)
- Fangbin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China.
| | - Changqing Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China
| | - Xinguang Cao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China
| | - Yan Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China
| | - Shuai Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P.R. China
| |
Collapse
|
154
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
155
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
156
|
Wang Y, Zhu GQ, Tian D, Zhou CW, Li N, Feng Y, Zeng MS. Comprehensive analysis of tumor immune microenvironment and prognosis of m6A-related lncRNAs in gastric cancer. BMC Cancer 2022; 22:316. [PMID: 35331183 PMCID: PMC8943990 DOI: 10.1186/s12885-022-09377-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Background N6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal roles in gastric cancer (GC) progression. The emergence of immunotherapy in GC has created a paradigm shift in the approaches of treatment, whereas there is significant heterogeneity with regard to degree of treatment responses, which results from the variability of tumor immune microenvironment (TIME). How the interplay between m6A and lncRNAs enrolling in the shaping of TIME remains unclear. Methods The RNA sequencing and clinical data of GC patients were collected from TCGA database. Pearson correlation test and univariate Cox analysis were used to screen out m6A-related lncRNAs. Consensus clustering method was implemented to classify GC patients into two clusters. Survival analysis, the infiltration level of immune cells, Gene set enrichment analysis (GSEA) and the mutation profiles were analyzed and compared between two clusters. A competing endogenous RNA (ceRNA) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied for the identification of pathways in which m6A-related lncRNAs enriched. Then least absolute shrinkage and selection operator (LASSO) COX regression was implemented to select pivotal lncRNAs, and risk model was constructed accordingly. The prognosis value of the risk model was explored. In addition, the response to immune checkpoint inhibitors (ICIs) therapy were compared between different risk groups. Finally, we performed qRT-PCR to detect expression patterns of the selected lncRNAs in the 35 tumor tissues and their paired adjacent normal tissues, and validated the prognostic value of risk model in our cohort (N = 35). Results The expression profiles of 15 lncRNAs were included to cluster patients into 2 subtypes. Cluster1 with worse prognosis harbored higher immune score, stromal score, ESTIMATE score and lower mutation rates of the genes. Different immune cell infiltration patterns were also displayed between the two clusters. GSEA showed that cluster1 preferentially enriched in tumor hallmarks and tumor-related biological pathways. KEGG pathway analysis found that the target mRNAs which m6A-related lncRNAs regulated by sponging miRNAs mainly enriched in vascular smooth muscle contraction, cAMP signaling pathway and cGMP-PKG signaling pathway. Next, eight lncRNAs were selected by LASSO regression algorithm to construct risk model. Patients in the high-risk group had poor prognoses, which were consistent in our cohort. As for predicting responses to ICIs therapy, patients from high-risk group were found to have lower tumor mutation burden (TMB) scores and account for large proportion in the Microsatellite Instability-Low (MSI-L) subtype. Moreover, patients had distinct immunophenoscores in different risk groups. Conclusion Our study revealed that the interplay between m6A modification and lncRNAs might have critical role in predicting GC prognosis, sculpting TIME landscape and predicting the responses to ICIs therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09377-8.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, 200032, China
| | - Gui-Qi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di Tian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, 200032, China
| | - Chang-Wu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, 200032, China
| | - Na Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, 200032, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226000, Jiangsu, China.
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
157
|
Liang C, Fan J, Liang C, Guo J. Identification and Validation of a Pyroptosis-Related Prognostic Model for Gastric Cancer. Front Genet 2022; 12:699503. [PMID: 35280928 PMCID: PMC8916103 DOI: 10.3389/fgene.2021.699503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed cell death triggered by caspase-1/4/5/11 that plays an important role in the occurrence and development of gastric cancer (GC). We investigated the prognostic value of pyroptosis-related genes in GC. The “LIMMA” R package and univariate Cox analysis were used to find pyroptosis-related genes with differential expression and prognostic value in the TCGA cohort and the identified genes were analyzed for GO enrichment and KEGG pathways. The selected genes were then included in a multivariate Cox proportional hazard regression analysis, and a ten genes prognostic model (BIRC2, CD274, IRGM, ANXA2, GBP5, TXNIP, POP1, GBP1, DHX9, and TLR2) was established. To evaluate the predictive value of the risk score on prognosis, patients were divided into high-risk and low-risk groups according to the median risk score, and survival analysis was carried out. Compared with the low-risk group, the OS of GC patients in the high-risk group was significantly worse. Additionally, these results were verified in the GSE84437 and GSE66229 datasets. Finally, through the combination of prognostic gene characteristics and clinicopathological features, a nomogram was established to predict individual survival probability. The results show that the genetic risk characteristics related to clinical features can be used as independent prognostic indicators for patients with GC. In summary, the pyroptosis-related risk signals proposed in this study can potentially predict the prognosis of patients with GC. In addition, we also found significant infiltration of dendritic cells, macrophages, and neutrophils in tissues of high-risk patients.
Collapse
Affiliation(s)
- Chaowei Liang
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxin Fan
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chaojie Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| | - Jiansheng Guo
- Department of Gastrointestinal Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Chaojie Liang, ; Jiansheng Guo,
| |
Collapse
|
158
|
Integrated Analysis of miR-7-5p-Related ceRNA Network Reveals Potential Biomarkers for the Clinical Outcome of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8204818. [PMID: 35466319 PMCID: PMC9023173 DOI: 10.1155/2022/8204818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer (GC) is the second leading cause of tumor-associated death and the fourth most commonly seen tumor across the world. Abnormal ncRNAs have been verified to be involved in potential metastasis via modulating epithelial-to-mesenchymal transition progression and are vital for the progression of cancers. Tumor-infiltrating immune cells (TICs) are a vital indicator of whether cancer patients will benefit from immunotherapy. Nonetheless, the association between ceRNAs and immune cells remained largely unclear. We used the ceRNA network combined with TICs for the prediction of the clinical outcome of GC patients based on TCGA datasets. The percentage of immunocytes in GC was speculated by the use of CIBERSORT. Via Lasso and multivariate assays, prognostic models were established applying survival-related genes and immune cells. Nomograms were developed, and the accuracy of the nomograms was determined using calibration curves. The association between ceRNAs and TICs was validated by the use of integration analysis. In this study, there were 2219 mRNAs (1308 increased and 911 decreased), 171 lncRNAs (51 decreased and 120 increased), and 123 miRNAs (55 decreased and 68 increased) differentially expressed between tumor groups and nontumor groups. Five lncRNAs, six miRNAs, and 64 mRNAs were used for ceRNA network construction. Eight genes including LOX, SPARC, MASTL, PI15, BMPR1B, ANKRD13B, PVT1, and miR-7-5p were applied for the development of the prognostic model. Survival assays suggested that tumor cases with high risk exhibited a shorter overall survival. In addition, we included T-cell CD4 memory activated, monocytes, and neutrophils for the development of a prognosis model. Eventually, our team demonstrated the possible associations between the ceRNA prognosis model and prognostic model based on immune cells. To sum up, the ceRNA network could be used for gene regulation and predict clinical outcomes of GC patients.
Collapse
|
159
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
160
|
Cheng Z, Hong J, Tang N, Liu F, Gu S, Feng Z. Long non-coding RNA p53 upregulated regulator of p53 levels (PURPL) promotes the development of gastric cancer. Bioengineered 2022; 13:1359-1376. [PMID: 35012438 PMCID: PMC8805877 DOI: 10.1080/21655979.2021.2017588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastric cancer (GC), one of the most prevalent malignancies across the world, has an increasing incidence rate. Long non-coding RNA (lncRNA) PURPL (also referred to as LINC01021) has been demonstrated to influence malignant GC behaviors and partake in other cancers. Notwithstanding, reports pertaining to the underlying mechanism of PURPL in GC haven’t been rarely seen. Presently, in-vivo and ex-vivo experiments were implemented to examine the PURPL-miR-137-ZBTB7A-PI3K-AKT-NF-κB regulatory axis in GC. Our statistics revealed that PURPL presented a high expression in GC tissues and cell lines. PURPL overexpression remarkably exacerbated colony formation, migration, and invasion and repressed apoptosis in GC cells (AGS and MNK-45). In-vivo experiments also corroborated that cell growth was boosted by PURPL up-regulation. Mechanistic investigations verified that PURPL interacted with miR-137 and lowered its profile in GC cell lines. miR-137 overexpression or ZBTB7A knockdown upended the oncogenic function mediated by PURPL. PURPL initiated the PI3K/AKT/NF-κB pathway. PI3K and NF-κB inhibition impaired the promoting impact on GC cells elicited by PURPL overexpression and contributed to PURPL down-regulation. These findings disclosed that PURPL serves as an oncogene in the context of GC via miR-137-ZBTB7A-PI3K-AKT-NF-κB axis modulation.
Collapse
Affiliation(s)
- Zhonghua Cheng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jing Hong
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Tang
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fenghua Liu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuo Gu
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhen Feng
- Department of Gastroenterology, The Central Hospital of Xuhui District, Xuhui Hospital, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
161
|
Zhang L, Qin S, Lu L, Huang L, Li S. Diagnostic value of combined prealbumin-to-fibrinogen and albumin-to-fibrinogen ratios in Hp-negative gastric cancer. Int J Biol Markers 2022; 37:66-73. [PMID: 35014884 DOI: 10.1177/17246008211072875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND This study aimed to investigate the diagnostic value of prealbumin-to-fibrinogen ratio (PFR) and albumin-to-fibrinogen ratio (AFR) alone or in combination in Helicobacter pylori-negative gastric cancer (Hp-NGC) patients. METHODS This study included 171 healthy controls, 180 Hp-NGC patients, and 215 Helicobacter pylori-negative chronic gastritis (HpN) patients. We compared the differences of various indicators and pathological characteristics between groups with Mann-Whitney U test and Chi-square test. The diagnostic value of PFR and AFR alone or in combination for Hp-NGC patients was assessed by the receiver operating characteristic (ROC) curve. RESULTS PFR and AFR were related to the progression and clinicopathological characteristics of Hp-NGC. As the disease progressed, PFR and AFR values gradually decreased and were negatively related to the tumor size and depth of invasion. In addition, the area under the curves (AUCs) that resulted from combining PFR and AFR to distinguish Hp-NGC patients from healthy controls and HpN patients were 0.908 and 0.654, respectively. When combined with PFR and AFR in the differential diagnosis of tumors with a maximum diameter ≥ 5 cm and the T3 + T4 stage, the AUCs were 0.949 and 0.922; the sensitivity was 86.32% and 80.74%; and the specificity was 94.74% and 92.98%, respectively. CONCLUSIONS PFR and AFR may be used as diagnostic biomarkers for Hp-NGC. The combination of PFR and AFR was more valuable than each indicator alone in the diagnosis of Hp-NGC.
Collapse
Affiliation(s)
- Linyan Zhang
- Department of Laboratory Medicine, 117742First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Simeng Qin
- Department of Laboratory Medicine, 117742First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyi Lu
- Department of Laboratory Medicine, 117742First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Huang
- Department of Laboratory Medicine, 117742First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan Li
- Department of Laboratory Medicine, 117742First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
162
|
Immune Score Predicts Outcomes of Gastric Cancer Patients Treated with Adjuvant Chemoradiotherapy. JOURNAL OF ONCOLOGY 2022; 2021:9344124. [PMID: 34987582 PMCID: PMC8723845 DOI: 10.1155/2021/9344124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Background Substantial evidence has demonstrated that tumor-infiltrating lymphocytes (TILs) are correlated with patient prognosis. The TIL-based immune score (IS) affects prognosis in various cancers, but its prognostic impact in gastric cancer (GC) patients treated with adjuvant chemoradiotherapy remains unclear. Methods A total of 101 GC patients who received chemoradiotherapy after gastrectomy were retrospectively analyzed in this study. Immunohistochemistry staining for CD3+ and CD8+ T-cell counts in both tumor center (CT) and invasive margin (IM) regions was built into the IS. Patients were then divided into three groups based on their differential IS levels. The correlation between IS and clinical parameters was analyzed. The prognostic impact of IS and clinical parameters was evaluated using Kaplan-Meier analysis and Cox proportional hazard regression analysis. Receiver operating characteristic (ROC) curves were plotted to compare the area under the curve (AUC) of IS with other clinical parameters. Nomograms for disease-free survival (DFS) and overall survival (OS) prediction were constructed based on the identified parameters. Results Finally, 20 (19.8%), 57 (56.4%), and 24 (23.8%) GC patients were identified with low, intermediate, and high IS levels, respectively. GC patients with higher IS levels exhibited better DFS (p < 0.001) and OS (p < 0.001). IS was an independent prognostic factor for both DFS (p < 0.001) and OS (p < 0.001) in multivariate analysis. IS presented a better predictive ability than the traditional pathological tumor-node-metastasis (pTNM) staging system (AUC: 0.801 vs. 0.677 and 0.800 vs. 0.660, respectively) with respect to both DFS and OS. The C-index of the nomograms for DFS and OS prediction was 0.737 and 0.774, respectively. Conclusions IS is a strong predictive factor for both DFS and OS in GC patients treated with adjuvant chemoradiotherapy, which may complement the traditional pTNM staging system.
Collapse
|
163
|
CircRNAs as Potential Blood Biomarkers and Key Elements in Regulatory Networks in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23020650. [PMID: 35054834 PMCID: PMC8776217 DOI: 10.3390/ijms23020650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.
Collapse
|
164
|
Demirtas TY, Rahman MR, Yurtsever MC, Gov E. Forecasting Gastric Cancer Diagnosis, Prognosis, and Drug Repurposing with Novel Gene Expression Signatures. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:64-74. [PMID: 34910889 DOI: 10.1089/omi.2021.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gastric cancer (GC) is a prevalent disease worldwide with high mortality and poor treatment success. Early diagnosis of GC and forecasting of its prognosis with the use of biomarkers are directly relevant to achieve both personalized/precision medicine and innovation in cancer therapeutics. Gene expression signatures offer one of the promising avenues of research in this regard, as well as guiding drug repurposing analyses in cancers. Using publicly accessible gene expression datasets from the Gene Expression Omnibus and The Cancer Genome Atlas (TCGA), we report here original findings on co-expressed gene modules that are differentially expressed between 133 GC samples and 46 normal tissues, and thus hold potential for novel diagnostic candidates for GC. Furthermore, we found two co-expressed gene modules were significantly associated with poor survival outcomes revealed by survival analysis of the RNA-Seq TCGA datasets. We identified STAT6 (signal transducer and activator of transcription 6) as a key regulator of the identified gene modules. Finally, potential therapeutic drugs that may target and reverse the expression of the identified altered gene modules examined for drug repurposing analyses and the unraveled compounds were further investigated in the literature by the text mining method. Accordingly, we found several repurposed drug candidates, including Trichostatin A, Vorinostat, Parthenolide, Panobinostat, Brefeldin A, Belinostat, and Danusertib. Through text mining analysis and literature search validation, Belinostat and Danusertib were suggested as possible novel drug candidates for GC treatment. These findings collectively inform multiple aspects of GC medical management, including its precision diagnosis, forecasting of possible outcomes, and drug repurposing for innovation in GC medicines in the future.
Collapse
Affiliation(s)
- Talip Yasir Demirtas
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Md Rezanur Rahman
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Merve Capkin Yurtsever
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
165
|
Song L, Feng D, Tan J, Zhang H. Novel ferroptosis-related gene signature as a potential prognostic tool for gastric cancer. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives Gastric cancer (GC) is a major global health concern and is difficult to diagnose in the early stage. Ferroptosis is an iron-dependent, novel form of non-apoptotic cell death. In recent years, inducing the upregulation of ferroptosis-related genes has become a promising therapeutic alternative for cancers, especially those resistant to traditional treatments. However, the relationship between ferroptosis-related genes and GC remains to be further elucidated. Methods In the present study, mRNA expression profiles and corresponding clinical data of patients with GC were retrieved from The Cancer Genome Atlas and used as test data. A multigene signature was constructed using the least absolute shrinkage and selection operator Cox regression model. Data of patients with GC from ‘GSE84426’ in the Gene Expression Omnibus database were used as Training data for validation. Results More than half ferroptosis-related genes were differentially expressed in GC tissues and adjacent normal tissue samples (58.43%) in the test data. Univariate Cox regression analysis showed that 16 differentially expressed genes were related to the prognosis of GC (all p < 0.05). Expression profiles of the 16 DGEs were analysed using LASSO Cox regression, and a prognostic model was established by selecting the 10 best genes for λ. These 10 genes were used to construct a 10-gene signature and stratify patients into two risk groups. Based on the median risk score in the test data, patients with GC were divided into high- and low-risk groups ( p < 0.001). Risk score was an independent predictor for overall survival in multivariate Cox regression analyses ( p < 0.001 and <0.01 in the test and training data, respectively; hazard ratio >1). Receiver operating characteristic curve analysis confirmed the predictive capacity of the 10-gene signature. Functional analysis revealed that tumour-infiltrating lymphocytes, antigen-presenting cell co-stimulation, and cytokine-cytokine receptors were enriched; however, the immune status differed between the two risk groups. Conclusion The novel ferroptosis-related gene signature can be used for GC prognosis. In addition, ferroptosis may provide a novel alternative for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Ling Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Feng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajie Tan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
166
|
Jiang Q, Zhang J, Li F, Ma X, Wu F, Miao J, Li Q, Wang X, Sun R, Yang Y, Zhao L, Huang C. POLR2A Promotes the Proliferation of Gastric Cancer Cells by Advancing the Overall Cell Cycle Progression. Front Genet 2021; 12:688575. [PMID: 34899822 PMCID: PMC8655910 DOI: 10.3389/fgene.2021.688575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II subunit A (POLR2A) is the largest subunit encoding RNA polymerase II and closely related to cancer progression. However, the biological role and underlying molecular mechanism of POLR2A in gastric cancer (GC) are still unclear. Our study demonstrated that POLR2A was highly expressed in GC tissue and promoted the proliferation of GC in vitro and in vivo. We also found that POLR2A participated in the transcriptional regulation of cyclins and cyclin-dependent kinases (CDKs) at each stage and promoted their expression, indicated POLR2A’s overall promotion of cell cycle progression. Moreover, POLR2A inhibited GC cell apoptosis and promoted GC cell migration. Our results indicate that POLR2A play an oncogene role in GC, which may be an important factor involved in the occurrence and development of GC.
Collapse
Affiliation(s)
- Qiuyu Jiang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Jinyuan Zhang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Fang Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoping Ma
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiaofei Wang
- Biomedical Experiment Center, Xian Jiaotong University, Xi'an, China
| | - Ruifang Sun
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Yang Yang
- Department of Toxicology and Sanitary Analysis, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Lingyu Zhao
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
167
|
Gallo A, Ronzio M, Bezzecchi E, Mantovani R, Dolfini D. NF-Y subunits overexpression in gastric adenocarcinomas (STAD). Sci Rep 2021; 11:23764. [PMID: 34887475 PMCID: PMC8660849 DOI: 10.1038/s41598-021-03027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
NF-Y is a pioneer transcription factor-TF-formed by the Histone-like NF-YB/NF-YC subunits and the regulatory NF-YA. It binds to the CCAAT box, an element enriched in promoters of genes overexpressed in many types of cancer. NF-YA is present in two major isoforms-NF-YAs and NF-YAl-due to alternative splicing, overexpressed in epithelial tumors. Here we analyzed NF-Y expression in stomach adenocarcinomas (STAD). We completed the partitioning of all TCGA tumor samples (450) according to molecular subtypes proposed by TCGA and ACRG, using the deep learning tool DeepCC. We analyzed differentially expressed genes-DEG-for enriched pathways and TFs binding sites in promoters. CCAAT is the predominant element only in the core group of genes upregulated in all subtypes, with cell-cycle gene signatures. NF-Y subunits are overexpressed, particularly NF-YA. NF-YAs is predominant in CIN, MSI and EBV TCGA subtypes, NF-YAl is higher in GS and in the ACRG EMT subtypes. Moreover, NF-YAlhigh tumors correlate with a discrete Claudinlow cohort. Elevated NF-YB levels are protective in MSS;TP53+ patients, whereas high NF-YAl/NF-YAs ratios correlate with worse prognosis. We conclude that NF-Y isoforms are associated to clinically relevant features of gastric cancer.
Collapse
Affiliation(s)
- Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Eugenia Bezzecchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
168
|
Guo Z, Zhou C, Zhou L, Wang Z, Zhu X, Mu X. Overexpression of DAPK1-mediated inhibition of IKKβ/CSN5/PD-L1 axis enhances natural killer cell killing ability and inhibits tumor immune evasion in gastric cancer. Cell Immunol 2021; 372:104469. [DOI: 10.1016/j.cellimm.2021.104469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
|
169
|
Zheng S, Wang J, Ding N, Chen W, Chen H, Xue M, Chen F, Ni J, Wang Z, Lin Z, Jiang H, Liu X, Wang L. Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. J Nanobiotechnology 2021; 19:381. [PMID: 34802453 PMCID: PMC8607732 DOI: 10.1186/s12951-021-01127-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The prognosis of patients with advanced gastric cancer (GC) remains unsatisfactory owing to distant metastasis and resistance to concurrent systemic therapy. Cancer-associated fibroblasts (CAFs), as essential participators in the tumor microenvironment (TME), play a vital role in tumor progression. Thus, CAFs-targeting therapy is appealing for remodeling TME and sensitizing GC to conventional systemic therapy. Methods Amphiphilic SN38 prodrug polymeric micelles (PSN38) and encapsulated the hydrophobic esterase-responsive prodrug of Triptolide (TPL), triptolide-naphthalene sulfonamide (TPL-nsa), were synthesized to form PSN38@TPL-nsa nanoparticles. Then, CAFs were isolated from fresh GC tissues and immortalized. TPL at low dose concentration was used to investigate its effect on CAFs and CAFs-induced GC cells proliferation and migration. The synergistic mechanism and antitumor efficiency of SN38 and TPL co-delivery nanoparticle were investigated both in vitro and in vivo. Results Fibroblast activation protein (FAP), a marker of CAFs, was highly expressed in GC tissues and indicated poorer prognosis. TPL significantly reduced CAFs activity and inhibited CAFs-induced proliferation, migration and chemotherapy resistance of GC cells. In addition, TPL sensitized GC cells to SN38 treatment through attenuated NF-κB activation in both CAFs and GC cells. PSN38@TPL-nsa treatment reduced the expression of collagen, FAP, and α-smooth muscle actin (α-SMA) in tumors. Potent inhibition of primary tumor growth and vigorous anti-metastasis effect were observed after systemic administration of PSN38@TPL-nsa to CAFs-rich peritoneal disseminated tumor and patient-derived xenograft (PDX) model of GC. Conclusion TPL suppressed CAFs activity and CAFs-induced cell proliferation, migration and chemotherapy resistance to SN38 of GC. CAFs-targeted TPL and SN38 co-delivery nanoparticles exhibited potent efficacy of antitumor and reshaping TME, which was a promising strategy to treat advanced GC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01127-5.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiafeng Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Fei Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaojiao Ni
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhuo Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghua Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
170
|
The Upregulation of PLXDC2 Correlates with Immune Microenvironment Characteristics and Predicts Prognosis in Gastric Cancer. DISEASE MARKERS 2021; 2021:5669635. [PMID: 34777633 PMCID: PMC8589478 DOI: 10.1155/2021/5669635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
Tumor microenvironment (TME) has been demonstrated to exhibit a regulatory effect on the progressions of gastric cancer (GC). However, the related functions of stromal and immune components (TME-associated genes) in TME remain largely unclear. From the TCGA dataset, we downloaded the clinical data of 375 GC cases and then estimated the percentage of tumor-infiltrating immunocytes (TICs) and the levels of immune and stromal constituents by the use of CIBERSORT and ESTIMATE tolls. Univariate assays were applied to study the differentially expressed genes. The associations between the clinical information of GC patients and the expressions of the specific genes were analyzed based on the TCGA datasets. The effect of Plexin domain containing 2 (PLXDC2) expression on TICs was conducted. We observed that PLXDC2 expression was distinctly upregulated in GC specimens compared with nontumor gastric specimens. Its upregulation was associated with advanced clinical stages and predicted a shorter overall survival of GC patients. The genes in the group of higher expressing PLXDC2 were primarily enriched in immunity-associated events. By the use of CIBERSORT, we observed that PLXDC2 expressions were related to the proportion of dendritic cells resting, T cell CD4 memory resting, eosinophils, mastocyte resting, mononuclear cells, plasma cells, T cell follicle helper, macrophage M2, and dendritic cells activated. Overall, our discoveries revealed that the expression of PLXDC2 was remarkable in GC, might be a possible biomarker for GC, and provided novel contents regarding immune infiltrates, offering novel insight for treatments of GC.
Collapse
|
171
|
Liu YJ, Zeng SH, Hu YD, Zhang YH, Li JP. Overexpression of NREP Promotes Migration and Invasion in Gastric Cancer Through Facilitating Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2021; 9:746194. [PMID: 34746143 PMCID: PMC8565479 DOI: 10.3389/fcell.2021.746194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The identification of biomarkers and effective therapeutic targets for gastric cancer (GC), the most common cause of cancer-related deaths around the world, is currently a major focus area in research. Here, we examined the utility of Neuronal Regeneration Related Protein (NREP) as a prognostic biomarker and therapeutic target for GC. We assessed the clinical relevance, function, and molecular role of NREP in GC using bioinformatics analysis and experimental validation. Our results showed that in GC, NREP overexpression was significantly associated with a poor prognosis. Our findings also suggested that NREP may be involved in the activation of cancer-associated fibroblasts and the epithelial-mesenchymal transition (EMT), with transforming growth factor β1 mediating both processes. In addition, NREP expression showed a positive correlation with the abundance of M2 macrophages, which are potent immunosuppressors. Together, these results indicate that NREP is overexpressed in GC and affects GC prognosis. Thus, NREP could be a prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.,Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shu-Hong Zeng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi-Dou Hu
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Yong-Hua Zhang
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Jie-Pin Li
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China.,No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
172
|
Lin Y, Pan X, Zhao L, Yang C, Zhang Z, Wang B, Gao Z, Jiang K, Ye Y, Wang S, Shen Z. Immune cell infiltration signatures identified molecular subtypes and underlying mechanisms in gastric cancer. NPJ Genom Med 2021; 6:83. [PMID: 34635662 PMCID: PMC8505616 DOI: 10.1038/s41525-021-00249-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has clarified that the tumor microenvironment (TME) is closely related to the prognosis and therapeutic efficacy of cancer. However, there is no reliable TME evaluation system used to accurately predict the prognosis of and therapeutic efficacy in gastric cancer. We evaluated the immune microenvironment score (IMS) of 1422 gastric cancer samples based on 51 immune cell signatures. We explored the relationship between the IMS and prognosis, immune cell infiltration, cancer subtype, and potential immune escape mechanisms. The results show that activation of the stroma and decreased levels of immune infiltration were associated with a low IMS. A high IMS was characterized by Epstein–Barr virus infection, increased mutation load, microsatellite instability, and immune cell infiltration. A high IMS was also related to high expression of immune checkpoint molecules (PD-1/PD-L1). Finally, patients with a high IMS had a better response to PD-1/PD-L1 inhibitors and may be more suitable for immune checkpoint inhibitors (area under the curve = 0.81). In addition, a low IMS may be converted into the immune-infiltrating subtype after romidepsin treatment. Stratification based on the IMS may enable gastric cancer patients to benefit more from immunotherapy and help identify new cancer treatment strategies.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Xiaoxian Pan
- Department of Radiotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, PR China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China. .,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.
| |
Collapse
|
173
|
Shi X, Ding K, Zhao Q, Li P, Kang Y, Tan S, Sun J. Suppression of CPSF6 Enhances Apoptosis Through Alternative Polyadenylation-Mediated Shortening of the VHL 3'UTR in Gastric Cancer Cells. Front Genet 2021; 12:707644. [PMID: 34594359 PMCID: PMC8477001 DOI: 10.3389/fgene.2021.707644] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Alternative polyadenylation (APA) is an important RNA post-transcriptional process, which can generate diverse mRNA isoforms. Increasing evidence shows that APA is involved in cell self-renewal, development, immunity, and cancer. CPSF6 is one of the core proteins of CFIm complex and can modulate the APA process. Although it has been reported to play oncogenic roles in cancer, the underlying mechanisms remain unclear. The aim of the present study was to characterize CPSF6 in human gastric cancer (GC). We observed that CPSF6 was upregulated in GC. Knockdown of CPSF6 inhibited proliferation and enhanced apoptosis of GC cells both in vitro and in vivo. Global APA site profiling analysis revealed that knockdown of CPSF6 induced widespread 3′UTR shortening of genes in GC cells, including VHL. We also found CPSF6 negatively regulated the expression of VHL through APA and VHL short-3′UTR isoform enhanced apoptosis and inhibited cell growth in GC cells. Our data suggested that CPSF6-induced cell proliferation and inhibition of apoptosis were mediated by the preferential usage of poly(A) in VHL. Our data provide insights into the function of CPSF6 and may imply potential therapeutic targets against GC.
Collapse
Affiliation(s)
- Xinglong Shi
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengxiao Li
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Tan
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Sun
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
174
|
Zhang C, Li YZ, Dai DQ. Aberrant DNA Methylation-Mediated FOXF2 Dysregulation Is a Prognostic Risk Factor for Gastric Cancer. Front Mol Biosci 2021; 8:645470. [PMID: 34568422 PMCID: PMC8460759 DOI: 10.3389/fmolb.2021.645470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background: The prognosis of gastric cancer (GC) patients is poor. The effect of aberrant DNA methylation on FOXF2 expression and the prognostic role of FOXF2 methylation in GC have not yet been identified. Methods: The RNA-Seq and gene methylation HM450 profile data were used for analyzing FOXF2 expression in GC and its association with methylation level. Bisulfite sequencing PCR (BSP) was performed to measure the methylation level of the FOXF2 promoter region in GC cell lines and normal GES-1 cells. The cells were treated with the demethylation reagent 5-Aza-dC, and the mRNA and protein expression levels of FOXF2 were then measured by qRT-PCR and western blot assays. The risk score system from SurvivalMeth was calculated by integrating the methylation level of the cg locus and the corresponding Cox regression coefficient. Results: FOXF2 was significantly downregulated in GC cells and tissues. On the basis of RNA-Seq and Illumina methylation 450 data, FOXF2 expression was significantly negatively correlated with the FOXF2 methylation level (Pearson’s R = −0.42, p < 2.2e−16). The FOXF2 methylation level in the high FOXF2 expression group was lower than that in the low FOXF2 expression group. The BSP assay indicated that the methylation level of the FOXF2 promoter region in GC cell lines was higher than that in GES-1 cells. The qRT-PCR and western blot assay showed that FOXF2 mRNA and protein levels were increased in GC cells following treatment with 5-Aza-Dc. The methylation risk score model indicated that patients in the high risk group had poorer survival probability than those in the low risk group (HR = 1.84 (1.11–3.07) and p = 0.0068). FOXF2 also had a close transcriptional regulation network with four miRNAs and their corresponding target genes. Functional enrichment analysis of the target genes revealed that these genes were significantly related to several important signaling pathways. Conclusion: FOXF2 was downregulated due to aberrant DNA methylation in GC, and the degree of methylation in the promoter region of FOXF2 was related to the prognosis of patients. The FOXF2/miRNAs/target genes axis may play a vital biological regulation role in GC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong-Zhi Li
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
175
|
Yuan X, Zhao Q, Zhang Y, Xue M. The role and mechanism of HLA complex group 11 in cancer. Biomed Pharmacother 2021; 143:112210. [PMID: 34563948 DOI: 10.1016/j.biopha.2021.112210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
HLA is critical in a variety of diseases, including infectious disease and cancer, and has been used for diagnostic differentiation and immunosurveillance of certain diseases. In addition, emerging evidence suggests that the mutations and dysregulation of lncRNAs are essential contributors in cancers. HLA Complex Group 11 (HCG11) located on MHC region is affiliated with the lncRNA class. Studies have shown that HCG11 could serve as a key regulator in lung cancer, prostate cancer, glioma, cervical cancer and hepatocellular carcinoma. In this review, we summarize the accumulated information on the expression and clinical value of HCG11 in different cancer types, discuss its interactions with microRNAs, mRNAs, and proteins, and discover the biological roles and potential mechanisms of HCG11 in a variety of cellular functions, including cell proliferation, apoptosis, migration, and invasion. Further, we emphasize the possible application of HCG11 in treatment, summarize the studies of HCG11 in chemotherapy resistance and hormone therapy, and propose the significance of further study of HCG11.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qinlu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
176
|
Yue J, Zhang S, Zheng B, Raza F, Luo Z, Li X, Zhang Y, Nie Q, Qiu M. Efficacy and Mechanism of Active Fractions in Fruit of Amomum villosum Lour. for Gastric Cancer. J Cancer 2021; 12:5991-5998. [PMID: 34539873 PMCID: PMC8425199 DOI: 10.7150/jca.61310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/21/2021] [Indexed: 01/11/2023] Open
Abstract
Amomi Fructus is the dried ripe fruit of Amomum villosum Lour. (A. villosum). It is a well-known traditional Chinese medicine widely used to treat gastrointestinal diseases, while the efficacy or mechanism of main components in Amomi Fructus on cancer treatment remains unknown. In this study, volatile oil of A. villosum (VOAV), total flavonoids of A. villosum (FNAV) and the other residue of A. villosum (RFAV) were distilled, extracted and separated as different active fractions of A. villosum. The cell toxicity test results indicated that VOAV and FNAV can effectively inhibit the cell growth of MFC cells. Flow cytometry test results confirmed that MFC cells were caused apoptosis after being treated with VOAV, FNAV or RFAV. VOAV, FNAV or RFAV induced MFC cells apoptosis through reactive oxygen species (ROS)-mediated mitochondrial pathway, evident by the increase of endogenous ROS and mitochondrial membrane potential collapse. In addition, FNAV exhibited robust inhibitory effects on MFC tumor growth, and could improve the health status of mice compared to that of mice in 5-FU treated group. To sum up, all the above results suggest that FNAV may be a good candidate for the development of new drugs for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jianjun Yue
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Zuhan Luo
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| | - Xiaohua Li
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Yongyu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences; Jinghong, Yunnan 666100, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University; Shanghai 200240, China
| |
Collapse
|
177
|
Chen ZD, Zhang PF, Xi HQ, Wei B, Chen L. AKT inhibits the phosphorylation level of H2A at Tyr57 via CK2α to promote the progression of gastric cancer. J Gastrointest Oncol 2021; 12:1363-1373. [PMID: 34532094 DOI: 10.21037/jgo-21-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/22/2021] [Indexed: 11/06/2022] Open
Abstract
Background Histone H2A and its variants have an important effect on DNA damage repair and cancer development. Protein kinase B (AKT) can regulate various cellular functions and play critical roles in the progression of different cancers. However, the interaction mechanism of H2A with AKT in gastric cancer (GC) has not been reported. A series of experiments were carried out in the present study to investigate this issue. Methods Firstly, we used western blot and immunoprecipitation assays to determine the correlation between AKT and H2A, then detected the relationship between AKT and protein kinase CK2α that can phosphorylate H2A at Tyr57 site (H2AY57), and next examined the interaction among AKT, CK2α, and H2A in SNU-16 cells. Subsequently, the effect of these molecules on the cellular proliferation, migration, and invasion was measured by Cell Counting Kit-8 (CCK-8), wound healing, and transwell invasion assays. Results Our study preliminarily found that AKT was negatively correlated with H2A phosphorylation at the Tyr 57 site (H2AY57p). It was revealed that AKT mediated the phosphorylation of CK2α at the T13 site, which decreased the affinity of CK2α with its substrate histone H2A and inhibited the level of H2AY57p in GC cells. Furthermore, AKT-mediated CK2α phosphorylation promoted the proliferation, migration, and invasion of SNU-16 cells possibly through downregulating H2AY57p level. Conclusions These findings contribute to understanding the interactions among AKT, CK2α, and H2A in GC, and provide the potential biomarkers for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhi-Da Chen
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng-Fei Zhang
- Department of Oncology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hong-Qing Xi
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
178
|
Gao G, Fang M, Xu P, Chen B. Identification of three immune molecular subtypes associated with immune profiles, immune checkpoints, and clinical outcome in multiple myeloma. Cancer Med 2021; 10:7395-7403. [PMID: 34418312 PMCID: PMC8525096 DOI: 10.1002/cam4.4221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To identify the immune molecular subtype for MM to help achieve individualized and precise targeted therapy. Methods The GDC API was used to download the TCGA‐MM profile dataset, which contains 859 samples in total, all of which were anterior to the standard treatment after diagnosis. Moreover, 282, 298, and 258 samples were stage I, stage II, and stage III separately. We used the immune gene expression profile for consistent clustering; and used the R software package ConsensusClusterPlus to sort the immune molecular subtypes. Correlation between subtypes and clinical features, immunity, and prognosis was then analyzed. Results A total of 859 tumor samples were separated into these three subtypes, which were not meaningfully related to age or sex but showed a remarkable association with stage. The results suggested that obvious differences in immune metagene expression and expression of 10 immune checkpoint genes appeared among the three subtypes. Conclusion The three subtypes are distinctly different in terms of immune metagenes, immune checkpoint molecules, and clinical prognosis. The discovery of the immune microenvironment of MM could further reveal the strategy for immunotherapy in MM and provide a promising candidate prognostic tool for survival.
Collapse
Affiliation(s)
- Guangtao Gao
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mengkun Fang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
179
|
Adam RS, Blomberg I, Ten Hoorn S, Bijlsma MF, Vermeulen L. The recurring features of molecular subtypes in distinct gastrointestinal malignancies-A systematic review. Crit Rev Oncol Hematol 2021; 164:103428. [PMID: 34284100 DOI: 10.1016/j.critrevonc.2021.103428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
In colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC) and gastric cancer (GC) multiple studies of inter-tumor heterogeneity have identified molecular subtypes, which correlate with clinical features. Our aim was to investigate the attributes of molecular subtypes across three different gastrointestinal cancer types. We performed a systematic search for publications on molecular subtypes or classifications in PDAC and GC and compared the described subtypes with the established consensus molecular subtypes of CRC. Examining the characteristics of subtypes across CRC, PDAC and GC resulted in four categories of subtypes. We describe uniting and distinguishing features within a mesenchymal, an epithelial, an immunogenic and a metabolic and digestive subtype category. We conclude that molecular subtypes of CRC, PDAC and GC display relevant overlap in molecular features and clinical outcomes. This finding encourages quantitative studies on subtypes across different cancer types and could lead to a paradigm shift in future treatment strategies.
Collapse
Affiliation(s)
- Ronja S Adam
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Ilse Blomberg
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Sanne Ten Hoorn
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
180
|
Mao R, Liu K, Zhao N, Guo P, Wu Y, Wang Z, Liu Y, Zhang T. Clinical significance and prognostic role of an immune-related gene signature in gastric adenocarcinoma. Aging (Albany NY) 2021; 13:17734-17767. [PMID: 34247148 PMCID: PMC8312416 DOI: 10.18632/aging.203266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Limited progress has been made in the treatment of gastric adenocarcinoma (GAC) in recent years, but the potential of immunotherapy in GAC is worthy of consideration. The purpose of this study was to develop a reliable, personalized signature based on immune genes to predict the prognosis of GAC. Here, we identified two groups of patients with significantly different prognoses by performing unsupervised clustering analysis of The Cancer Genome Atlas (TCGA) database based on 881 immune genes. The immune signature was constructed with a training set composed of 350 GAC samples from the TCGA and subsequently validated with 431 samples from GSE84437, 432 samples from GSE26253, and 145 GAC samples from real-time quantitative reverse transcription polymerase chain reaction data. This classification system can also be used to predict prognosis in different clinical subgroups. Further analysis suggested that high-risk patients were characterized by low immune scores, distinctive immune cell proportions, different immune checkpoint profiles, and a low tumor mutational burden. Ultimately, the signature was identified as an independent prognostic factor. In general, the signature can accurately predict recurrence and overall survival in patients with GAC and may serve as a powerful prognostic tool to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Rui Mao
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Kehao Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Nana Zhao
- Department of Operating Room, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Pengsen Guo
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Yingxin Wu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjun Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Tongtong Zhang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China.,Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
181
|
Alvarez-Manceñido F, Jimenez-Fonseca P, Carmona-Bayonas A, Arrazubi V, Hernandez R, Cano JM, Custodio A, Pericay Pijaume C, Aguado G, Martínez Lago N, Sánchez Cánovas M, Cacho Lavin D, Visa L, Martinez-Torron A, Arias-Martinez A, López F, Limón ML, Vidal Tocino R, Fernández Montes A, Alsina M, Pimentel P, Reguera P, Martín Carnicero A, Ramchandani A, Granja M, Azkarate A, Martín Richard M, Serra O, Hernández Pérez C, Hurtado A, Gil-Negrete A, Sauri T, Morales Del Burgo P, Gallego J. Is advanced esophageal adenocarcinoma a distinct entity from intestinal subtype gastric cancer? Data from the AGAMENON-SEOM Registry. Gastric Cancer 2021; 24:926-936. [PMID: 33651195 DOI: 10.1007/s10120-021-01169-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advanced esophageal adenocarcinoma (EAC) is generally treated similarly to advanced gastroesophageal junction (GEJ-AC) and gastric (GAC) adenocarcinomas, although GAC clinical trials rarely include EAC. This work sought to compare clinical characteristics and treatment outcomes of advanced EAC with those of GEJ-AC and GAC and examine prognostic factors. PATIENTS AND METHODS Participants comprised patients with advanced EAC, intestinal GEJ-AC, and GAC treated with platin and fluoropyrimidine (plus trastuzumab when HER2 status was positive). Overall and progression-free survival were estimated using the Kaplan-Meier method. Cox proportional hazards regression gauged the prognostic value of the AGAMENON model. RESULTS Between 2008 and 2019, 971 participants from the AGAMENON-SEOM registry were recruited at 35 centers. The sample included 67.3% GAC, 13.3% GEJ-AC, and 19.4% EAC. Pulmonary metastases were most common in EAC and peritoneal metastases in GAC. Median PFS and OS were 7.7 (95% CI 7.3-8.0) and 13.9 months (12.9-14.7). There was no difference in PFS or OS between HER2- and HER2+ tumors from the three locations (p > 0.05). Five covariates were found to be prognostic for the entire sample: ECOG-PS, histological grade, number of metastatic sites, NLR, and HER2+ tumors treated with trastuzumab. In EAC, the same variables were prognostic except for grade. The favorable prognosis for HER2+ cancers treated with trastuzumab was homogenous for all three subgroups (p = 0.351) and, after adjusting for the remaining covariates, no evidence supported primary tumor localization as a prognostic factor (p = 0.331). CONCLUSION Our study supports the hypothesis that EAC exhibits clinicopathological characteristics, prognostic factors, and treatment outcomes comparable to intestinal GEJ-AC and GAC.
Collapse
Affiliation(s)
- Felipe Alvarez-Manceñido
- Pharmacy Department, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011, Oviedo, Spain.
| | - Paula Jimenez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Alberto Carmona-Bayonas
- Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, University of Murcia, IMIB, Murcia, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Raquel Hernandez
- Medical Oncology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Juana M Cano
- Medical Oncology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Ana Custodio
- Medical Oncology Department, Hospital Universitario La Paz, CIBERONC CB16/12/00398, Madrid, Spain
| | | | - Gema Aguado
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Nieves Martínez Lago
- Medical Oncology Department, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Manuel Sánchez Cánovas
- Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Diego Cacho Lavin
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Laura Visa
- Medical Oncology Department, Hospital Universitario El Mar, Barcelona, Spain
| | - Alba Martinez-Torron
- Pharmacy Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Aranzazu Arias-Martinez
- Pharmacy Department, Hospital Universitario Central de Asturias, Avenida Roma s/n, 33011, Oviedo, Spain
| | - Flora López
- Medical Oncology Department, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - M Luisa Limón
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rosario Vidal Tocino
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca-IBSAL, Salamanca, Spain
| | | | - Maria Alsina
- Medical Oncology Department, Hospital Universitario Vall d'Hebron, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paola Pimentel
- Medical Oncology Department, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | - Pablo Reguera
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Avinash Ramchandani
- Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mónica Granja
- Medical Oncology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Aitor Azkarate
- Medical Oncology Department, Hospital Universitario Son Espases, Mallorca, Spain
| | - Marta Martín Richard
- Medical Oncology Department, Hospital Universitario Santa Creu i Sant Pau, Barcelona, Spain
| | - Olbia Serra
- Medical Oncology Department, Catalan Institute of Oncology, L'Hospitalet, Spain
| | - Carolina Hernández Pérez
- Medical Oncology Department, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | - Alicia Hurtado
- Medical Oncology Department, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Aitziber Gil-Negrete
- Medical Oncology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - Tamara Sauri
- Medical Oncology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | | | - Javier Gallego
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Spain
| |
Collapse
|
182
|
Addeo M, Di Paola G, Verma HK, Laurino S, Russi S, Zoppoli P, Falco G, Mazzone P. Gastric Cancer Stem Cells: A Glimpse on Metabolic Reprogramming. Front Oncol 2021; 11:698394. [PMID: 34249759 PMCID: PMC8262334 DOI: 10.3389/fonc.2021.698394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most widespread causes of cancer-related death worldwide. Recently, emerging implied that gastric cancer stem cells (GCSCs) play an important role in the initiation and progression of GC. This subpopulation comprises cells with several features, such as self-renewal capability, high proliferating rate, and ability to modify their metabolic program, which allow them to resist current anticancer therapies. Metabolic pathway intermediates play a pivotal role in regulating cell differentiation both in tumorigenesis and during normal development. Thus, the dysregulation of both anabolic and catabolic pathways constitutes a significant opportunity to target GCSCs in order to eradicate the tumor progression. In this review, we discuss the current knowledge about metabolic phenotype that supports GCSC proliferation and we overview the compounds that selectively target metabolic intermediates of CSCs that can be used as a strategy in cancer therapy.
Collapse
Affiliation(s)
- Martina Addeo
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Di Paola
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
| | - Henu Kumar Verma
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
- IEOS-CNR, Institute of Experimental Endocrinology and Oncology “G. Salvatore” – National Research Council, Naples, Italy
| | - Simona Laurino
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Sabino Russi
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Geppino Falco
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
- IEOS-CNR, Institute of Experimental Endocrinology and Oncology “G. Salvatore” – National Research Council, Naples, Italy
- Laboratory of Pre-Clinical and Translational Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)-centro di riferimento oncologico della basilicata (CROB), Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pellegrino Mazzone
- Istituto di Ricerche Genetiche Gaetano Salvatore Biogem Scarl, Ariano Irpino, Italy
| |
Collapse
|
183
|
Chen L, Li Q, Jiang Z, Li C, Hu H, Wang T, Gao Y, Wang D. Chrysin Induced Cell Apoptosis Through H19/let-7a/ COPB2 Axis in Gastric Cancer Cells and Inhibited Tumor Growth. Front Oncol 2021; 11:651644. [PMID: 34150620 PMCID: PMC8209501 DOI: 10.3389/fonc.2021.651644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells. Methods Through the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo. Results Our results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth. Conclusions This study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
184
|
Peng WZ, Zhao J, Liu X, Li CF, Si S, Ma R. hnRNPA2B1 regulates the alternative splicing of BIRC5 to promote gastric cancer progression. Cancer Cell Int 2021; 21:281. [PMID: 34044823 PMCID: PMC8161968 DOI: 10.1186/s12935-021-01968-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Systematic profiling studies have implicated regulators of pre-mRNA splicing as important disease determinants in gastric cancer (GC), but the underlying mechanisms have remained elusive. Here we focused on hnRNPA2B1 splicing factor-dependent mechanisms governing GC development. Methods The expression of hnRNPA2B1 was analyzed among the Cancer Genome Atlas (TCGA) datasets of GC and validated at mRNA level. The function of hnRNPA2B1 in GC cells was analyzed and its downstream gene was identified using RNA immunoprecipitation. Further, effect of hnRNPA2B1 on BIRC5 alternative splicing was investigated. Results We show that overexpression of hnRNPA2B1 in GC is correlated with poor survival, and hnRNPA2B1 is required for maintaining GC malignant phenotype by promoting cell proliferation, inhibiting cell apoptosis and increasing cell metastasis. Mechanistically, hnRNPA2B1 co-expressed with several core spliceosome components and controls alternative splicing of anti-apoptotic factor BIRC5. BIRC5 isoform 202 (BIRC5-202) played the oncogenic function in GC cells, and overexpression of the BIRC5-202 transcript partly rescued the decrease in cisplatin resistance induced by downregulation of hnRNPA2B1. Conclusions We demonstrate that hnRNPA2B1 regulates BIRC5 splicing and might act as a therapeutic target of chemo-resistant GC cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01968-y.
Collapse
Affiliation(s)
- Wei-Zhao Peng
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jin Zhao
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xin Liu
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chao-Feng Li
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shuang Si
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ren Ma
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
185
|
Bermúdez A, Arranz-Salas I, Mercado S, López-Villodres JA, González V, Ríus F, Ortega MV, Alba C, Hierro I, Bermúdez D. Her2-Positive and Microsatellite Instability Status in Gastric Cancer-Clinicopathological Implications. Diagnostics (Basel) 2021; 11:944. [PMID: 34070574 PMCID: PMC8228707 DOI: 10.3390/diagnostics11060944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death. The combination of new molecular classifications with clinicopathological data could contribute to the individualization of patients and to the development of new therapeutic strategies. We examined the various associations in two molecular types of GC: HER2-positive (human epidermal growth factor receptor 2) and microsatellite instability (MSI), assessing their influence on treatment and prognosis. A retrospective study of 142 GC patients was performed with molecular characterization through HER2 overexpression and DNA repair protein expression for MSI. The percentage of HER2-positive tumors was 13.4%, predominantly in men. Correlations were found with intestinal type, metastases, advanced stages and chemotherapy. Almost 75% of HER2-positive patients died. MSI occurred in 16.2%, associated with advanced age, female sex, distal location and intestinal type. These patients had few metastases and low stages. The percentage of deaths was higher among MSI patients who received perioperative chemotherapy. The determination of HER2 and MSI status in GC is important for their association with specific clinicopathological features and for their prognostic and predictive value.
Collapse
Affiliation(s)
- Ana Bermúdez
- Department of Anesthesiology, Nuestra Señora de Valme University Hospital, 41014 Seville, Spain;
| | - Isabel Arranz-Salas
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| | - Silvia Mercado
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
| | - Juan A. López-Villodres
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
| | - Virginia González
- Unit of Anatomical Pathology; Montilla Hospital, 14550 Montilla, Spain;
| | - Francisca Ríus
- Department of Public Health and Psychiatry, University of Malaga, 29010 Malaga, Spain;
| | - María V. Ortega
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| | - Carmen Alba
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
| | - Isabel Hierro
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain;
| | - Diego Bermúdez
- Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, University of Malaga, 29010 Malaga, Spain; (I.A.-S.); (S.M.); (J.A.L.-V.); (M.V.O.); (C.A.)
| |
Collapse
|
186
|
Ray-Offor E, Obiorah CC. Topography and Morphology of Gastric Cancer in Nigeria: A Dual Institution Review of 622 Upper Gastrointestinal Endoscopies. Cureus 2021; 13:e14693. [PMID: 34055537 PMCID: PMC8153965 DOI: 10.7759/cureus.14693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction Gastric cancer is a leading cause of cancer mortality worldwide. The burden of this disease is highest in developing countries of East Asia, Eastern Europe, and parts of Central and Southern America. Africa, despite having a similar high profile of Helicobacter pylori infection with East Asia, has a reported low prevalence of gastric cancer. There is a paucity of data on the natural history and endoscopic presentation of gastric cancer in West Africa. Aim To study the topography and morphology of gastric cancer from two institutions in Southern Nigeria. Methods A cross-sectional retrospective study of 622 consecutive cases of upper gastrointestinal (GI) endoscopy performed in two referral endoscopy facilities in Port Harcourt, Rivers State, Nigeria from February 2012 to January 2021. Variables collated from centre records included age, sex, ethnicity, symptoms, site, endoscopic classification, and histology of gastric cancers. Statistical analysis was performed using IBM SPSS version 20 (IBM Corp., Armonk, NY). Results There were 17 (2.7%) cases of histologically confirmed gastric cancer. The age range of patients was from 34 years to 99 years (mean 60.7 ± 14.6 years). There were nine males and eight females (M:F ratio of 1.1:1). Antrum and cardia were predominantly affected in 10 (60.0%) and seven (6.7%) cases, respectively. Borrmann type 1 advanced gastric tumor was seen in seven (53.8%) and adenocarcinoma, the predominant histology, in 14 (82.4%) cases. Helicobacter pylori was detected in a sole case of gastric cancer. Conclusion Gastric cancer is uncommon in our environment and with a delayed presentation. A predominance of gastric antrum topography and exophytic growth morphology is the pattern.
Collapse
Affiliation(s)
- Emeka Ray-Offor
- Digestive Disease Unit, Oak Endoscopy Centre, Port Harcourt, NGA.,Department of Surgery, University of Port Harcourt Teaching Hospital, Port Harcourt, NGA
| | - Christopher C Obiorah
- Department of Anatomical Pathology, University of Port Harcourt Teaching Hospital, Port Harcourt, NGA
| |
Collapse
|
187
|
Lee S, Kim KM, Lee SY, Jung J. Estrogen Aggravates Tumor Growth in a Diffuse Gastric Cancer Xenograft Model. Pathol Oncol Res 2021; 27:622733. [PMID: 34257587 PMCID: PMC8262185 DOI: 10.3389/pore.2021.622733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Gastric cancer has the fifth-highest incidence rate and is the third leading cause of cancer-related deaths worldwide. The incidence of gastric cancer is higher in men than in women, but for the diffuse types of gastric cancer, the trend is opposite. Estrogen is considered the prime culprit behind these differences. Nevertheless, the action of estrogen in gastric cancers remains unclear. In this study, we investigated the effect of estrogen on diffuse-type gastric cancer. Human female diffuse gastric cancer SNU-16 cells were transplanted into male and female mice to analyze the effect of endogenous estrogen on tumor growth. Furthermore, the effect of exogenous estrogen was evaluated in ovariectomized mice. Expressed genes were compared between female and male xenograft models using RNA sequencing analysis. Furthermore, human gene expression omnibus databases were utilized to examine the effect of our target genes on overall survival. SNU-16-derived tumor growth was faster in female mice than in male mice. In total RNA sequencing, interferon gamma receptor 2 (IFNGR2), IQ motif containing E (IQCE), transient receptor potential cation channel subfamily M member 4 (TRPM4), and structure-specific endonuclease subunit SLX4 (SLX4) were found. These genes could be associated with the tumor growth in female diffuse-type gastric cancer which was affected by endogenous estrogen. In an ovariectomized gastric cancer xenograft model, exogenous estrogen promoted tumor growth. Especially, our results indicated that estrogen induced G protein-coupled estrogen receptor expression in these mice. These results suggest that estrogen aggravates tumor progression in female diffuse gastric cancer.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Seung Yeon Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
188
|
Xie N, Pan Y, Wu J, Bai Y, Xiao C, Gao X, Wang J, Liu N. MicroRNA-302s Might Regulate ARL4C-Mediated Gastric Cancer Progression via p53 Signaling: Bioinformatics Analysis and Experiments Validation. Onco Targets Ther 2021; 14:2541-2553. [PMID: 33880033 PMCID: PMC8053516 DOI: 10.2147/ott.s282992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background Our previous studies demonstrate that ARL4C is the most critical clinical biomarker for gastric cancer (GC) patients among ARL family members (ARLs) and functions as an oncogene in GC. However, its underlying mechanisms in GC need to be further illustrated. In this study, we aim to explore the upstream and downstream molecular mechanisms of ARL4C in GC cells. Methods The genetic alteration of ARL4C in GC is analyzed by cBioPortal database. Potential ARL4C-targeted microRNAs (miRs) are predicted by three databases. The high-throughput RNA sequencing is performed to explore the underlying mechanisms of ARL4C in GC cells. The effects of predicted microRNAs on ARL4C, the RNA-sequencing results validation and the biological functions of ARL4C in GC cells are illustrated by in vitro experiments. Results Genetic analyses indicate that ARL4C is significantly upregulated in GC, which is not caused by gene amplification. MicroRNAs prediction shows the high relevance between ARL4C and miR-302 members. Moreover, miR-302c or miR-302d transfection reduces ARL4C protein expression in GC cells. Based on the high-throughput RNA sequencing of ARL4C-knockdown cells, enrichment analyses demonstrate that ARL4C is closely related to cell growth and involved in p53 signaling. Moreover, there are strong gene–gene interactions between ARL4C and genes in p53 signaling, and ARL4C downregulation could inhibit the protein expression of MDM2, a critical gene in p53 pathway. Further functional experiments demonstrate that ARL4C silencing leads to cell cycle arrest and increased cell apoptosis in AGS and MKN45 cells. Conclusion Our data suggest that miR-302c and miR-302d may function as the upstream regulators of ARL4C. And, ARL4C might promote GC cell cycle progression via regulating p53 signaling. Our findings provide novel insights into the key role of ARL4C and the underlying mechanisms in GC progression, thus facilitating the development of ARL4C-targeted therapy.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Jian Wu
- Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Cailan Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoliang Gao
- Xijing Hospital of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
189
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, Wang L, Xu Z. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer 2021; 20:66. [PMID: 33836754 PMCID: PMC8034133 DOI: 10.1186/s12943-021-01358-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A novel type of noncoding RNA, circRNA has been reported to participate in the occurrence and development of diseases through many mechanisms. The MAPK pathway is a common signal transduction pathway involved in cell proliferation, inflammation and apoptosis and plays a particularly important role in cancers. However, the role of circRNAs related to the MAPK pathway in gastric cancer has not been explored. METHODS A bioinformatics analysis was performed to profile and identify the circRNAs involved in the MAPK pathway in gastric cancer. The tumor-suppressive role of circMAPK1 was confirmed both in vitro and in vivo. Mass spectrometry, Western blot and immunofluorescence staining assays were used to validate the existence and expression of MAPK1-109aa. The molecular mechanism of circMAPK1 was investigated by mass spectrometry and immunoprecipitation analyses. RESULTS In this study, we identified that circMAPK1 (hsa_circ_0004872) was downregulated in gastric cancer tissues compared with adjacent normal tissues. Importantly, lower circMAPK1 expression predicted poor survival in GC patients. CircMAPK1 inhibited the proliferation and invasion of gastric cancer cells in vitro and in vivo. Next, we found that circMAPK1 encoded a novel protein with 109 amino acids in length. Through a series of functional experiments, we confirmed that circMAPK1 exerted a tumor-suppressing effect via the encoded protein MAPK1-109aa. Mechanistically, the tumor suppressor MAPK1-109aa inhibited the phosphorylation of MAPK1 by competitively binding to MEK1, thereby suppressing the activation of MAPK1 and its downstream factors in MAPK pathway. CONCLUSIONS Our study revealed that circMAPK1 inhibits the malignant biological behavior of gastric cancer cells through its encoded protein MAPK1-109aa. More importantly, circMAPK1 is a favorable predictor for gastric cancer patients and may provide a new therapeutic target in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Tianlu Jiang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Yiwen Xia
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Jialun Lv
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Bowen Li
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Ying Li
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Sen Wang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Zhe Xuan
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Li Xie
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Shengkui Qiu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
- Department of General Surgery, The Second Affiliated Hospital of Nantong university, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Zhongyuan He
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China
| | - Linjun Wang
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zekuan Xu
- Division of Gastric Surgery, Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
190
|
Díaz Del Arco C, Estrada Muñoz L, Ortega Medina L, Fernández Aceñero MJ. [Update on gastric cancer. New molecular classifications]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2021; 54:102-113. [PMID: 33726886 DOI: 10.1016/j.patol.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 06/12/2023]
Abstract
Gastric cancer (GC) is an aggressive tumor, which is usually diagnosed at an advanced stage and shows high mortality rates. Several GC classifications have been published, based on features such as tumor location, endoscopic features or microscopic architecture. However, TNM stage remains the mainstay of GC management and treatment. In the last years, technical advances have allowed us to investigate the biological heterogeneity of GC and develop new molecular classifications. This knowledge may enhance current classifications, and has the potential to refine GC management and aid in the identification of new molecular targets. In this literature review we have summarized the main findings in epidemiology, screening, classification systems and treatment of GC, focusing on the molecular alterations and new molecular classifications published in the last years.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital Clínico San Carlos, Madrid, España.
| | | | - Luis Ortega Medina
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital Clínico San Carlos, Madrid, España
| | - Ma Jesús Fernández Aceñero
- Universidad Complutense de Madrid, España; Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
191
|
Li P, Wang L, Li P, Hu F, Cao Y, Tang D, Ye G, Li H, Wang D. Silencing of long non-coding RNA XIST represses gastric cancer progression through blocking NFκB pathway via inhibiting HNF4A-mediated transcription of EPHA1. Cancer Gene Ther 2021; 28:307-320. [PMID: 33199830 DOI: 10.1038/s41417-020-00220-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/05/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is a common cancer and a leading cause of cancer-related deaths worldwide. Recent studies have supported the important role of long non-coding RNAs (lncRNAs) in GC progression. This study identified functional significance of X inactive specific transcript (XIST) in GC. The expression of XIST and EPHA1 in GC tissues and cells was measured. Then, dual luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and Chromatin Immunoprecipitation (ChIP) assay were performed to explore the interaction among XIST, EPHA1 and HNF4A. The effects of XIST on GG progression were evaluated by determining expression of proliferation- and invasion-related proteins (Ki67, PCNA, MMP-2, and MMP-9). Further, the functional role of XIST in GC with the involvement of NFκB pathway was also analyzed. Subsequently, the tumor growth in nude mice was evaluated. High expression of XIST and EPHA1 was observed in GC. XIST elevated EPHA1 expression by recruiting HNF4A. In addition, silencing of XIST inhibited GC progression in vitro and in vivo. Overexpressed XIST and EPHA1 yielded a reversed effect on cell proliferation and invasion. SN50 treatment (inhibitor of NFκB pathway) counteracted the promotive effect on GC cell proliferation and invasion mediated by XIST. The present study unveils that XIST increases the enrichment of HNF4A in the promoter region of EPHA1, thus promoting the deterioration of GC.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/physiology
- Disease Progression
- Hepatocyte Nuclear Factor 4/antagonists & inhibitors
- Hepatocyte Nuclear Factor 4/metabolism
- Heterografts
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, EphA1/genetics
- Receptor, EphA1/metabolism
- Signal Transduction
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Transcription, Genetic
Collapse
Affiliation(s)
- Ping Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, 68167, Germany
| | - Liuhua Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery-Yangzhou, Yangzhou University, Yangzhou, 225000, PR China
| | - Pengfei Li
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
| | - Fangyong Hu
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, 223200, PR China
| | - Yi Cao
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, 68167, Germany
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery-Yangzhou, Yangzhou University, Yangzhou, 225000, PR China
| | - Gang Ye
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou, 225200, PR China
| | - Hongbo Li
- Department of General Surgery, Jiangdu People's Hospital of Yangzhou, Yangzhou, 225200, PR China.
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Institute of General Surgery-Yangzhou, Yangzhou University, Yangzhou, 225000, PR China
| |
Collapse
|
192
|
Pan Y, Wang X, He Y, Lin S, Zhu M, Li Y, Wang J, Wang J, Ma X, Xu J, Yang L, Yang G, Huang J, Lu Y, Sheng J. Tumor suppressor ATP4B serve as a promising biomarker for worsening of gastric atrophy and poor differentiation. Gastric Cancer 2021; 24:314-326. [PMID: 33111209 DOI: 10.1007/s10120-020-01128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hydrogen/potassium ATPase β (ATP4B) is a proton pump acting an essential role in gastric acid secretion. This study aimed to investigate the diagnostic performance of ATP4B and its biological role in tumor progression in gastric cancer. METHODS The correlations between ATP4B expression level and clinicopathologic parameters, as well as the relevance of ATP4B expression with overall survival were assessed. The functional roles of ATP4B in gastric cancer were verified by gain- and loss-of-function cell models and tumor xenograft models. The possible downstream effects of ATP4B were analyzed by iTRAQ-based quantitative proteomics analysis. RESULTS A dramatic decrease in ATP4B was associated with malignant transformation in gastric mucosa lesions and correlated with poor differentiation. Restoration of ATP4B expression in gastric cancer cells significantly suppressed cell proliferation, cell viability, migration, invasion, tumorigenicity and induced apoptosis, whereas ATP4B silencing exerted the opposite effects. Mechanistically, we found a quality control on mitochondrial metabolism and functions in ATP4B-overexpression GC cells. CONCLUSIONS Our data suggest that decreasing ATP4B is an indicator for gastric mucosa malignant transformation and GC aggressive phenotype and it plays an inhibitory role in gastric cancer as a tumor suppressor via regulating mitochondrial metabolism and apoptosis pathway.
Collapse
Affiliation(s)
- Yuanming Pan
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Wang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Yuqi He
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,The Second School of Clinical Medicine, Southern Medical University, 253 Middle Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Shuye Lin
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.,College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044, China
| | - Min Zhu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yangjie Li
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,The Second School of Clinical Medicine, Southern Medical University, 253 Middle Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jiheng Wang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Xianzong Ma
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Junfeng Xu
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Lang Yang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Clinic Medical College of Peking University, No. 15 Yuanquan Road, Haidian District, Beijing, 100049, China
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044, China. .,Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, MD, USA.
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jianqiu Sheng
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
193
|
Serum CD4 Is Associated with the Infiltration of CD4 +T Cells in the Tumor Microenvironment of Gastric Cancer. J Immunol Res 2021; 2021:6539702. [PMID: 34258299 PMCID: PMC8246328 DOI: 10.1155/2021/6539702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Serum CD4, CD8, and CD19 are markers of systemic inflammation. However, there is little evidence on the influence of inflammation on the tumor microenvironment and the prognostic indicators of gastric cancer (GC). In this study, two hundred and eight patients who underwent radical gastrectomy for GC were included. Preoperative peripheral blood samples were used to analyze Serum CD4, CD8, and CD19. The optimal cutoff levels for CD4, CD8, and CD19 were defined by receiver operating characteristic curve analysis (CD4 = 38.85%, CD8 = 14.35%, and CD19 = 7.40%). The areas with specific CD4+T cells, CD8+T cells, and CD19+B cells within the tumor microenvironment were measured in paraffin sections by immunohistochemistry and analyzed by Image-Pro Plus. 94 patients had low CD4, and 124 patients had high CD4 levels. 31 patients had low CD8, and 187 patients had high CD8 levels. 64 patients had low CD19, and 154 patients had high CD19 levels. Infiltration of CD4+T cells was associated with serum CD4 (P < 0.001). Serum CD4 and CD19 and the infiltration of CD4+T cells, CD8+T cells, and CD19+B cells were significant in predicting the prognosis of GC. Low CD4 level, infiltration of CD8+T cells, and high infiltration of CD4+T cells and CD19+B cells were correlated with worse overall survival in multivariate analysis. Collectively, our results provide evidence that serum CD4 is associated with the infiltration of CD4+T cells in the tumor microenvironment, which indicates the prognostic value of systemic inflammation in GC.
Collapse
|
194
|
Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021; 137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.
Collapse
|
195
|
Guan X, Xu ZY, Chen R, Qin JJ, Cheng XD. Identification of an Immune Gene-Associated Prognostic Signature and Its Association With a Poor Prognosis in Gastric Cancer Patients. Front Oncol 2021; 10:629909. [PMID: 33628738 PMCID: PMC7898907 DOI: 10.3389/fonc.2020.629909] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
The immune response plays a critical role in gastric cancer (GC) development, metastasis, and treatment. A better understanding of the tumor-immune system interactions in gastric cancer may provide promising diagnostic, prognostic, and therapeutic biomarkers for patients with this disease. In the present study, we aimed to identify a prognostic signature of GC through a comprehensive bioinformatics analysis on the tumor-immune interactions as well as the molecular characteristics. We firstly identified two immunophenotypes and immunological characteristics by employing multiple algorithms, such as the single sample Gene Sets Enrichment Analysis and Cell type Identification By Estimating Relative Subsets of RNA Transcripts. Next, we developed a six-immune-gene signature as a promising independent prognostic biomarker for GC using Lasso Cox regression and verified it via the external validation set and systematically correlated the immune signature with GC clinicopathologic features and genomic characteristics. Finally, a nomogram was successfully constructed based on the immune signature and clinical characteristics and showed a high potential for GC prognosis prediction. This study may shed light on the treatment strategies for GC patients from the perspective of immunology.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
196
|
Zhang Y, Yu C. Bibliometric Evaluation of Publications (2000-2020) on the Prognosis of Gastric Cancer. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211056015. [PMID: 34875913 PMCID: PMC8664315 DOI: 10.1177/00469580211056015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Gastric cancer remains a global malignancy. The role of bibliometric analysis is increasingly valued. It is feasible and necessary to perform a bibliometric analysis to regurgitate studies in the prognosis of gastric cancer. Materials and methods: Web of Science was selected for the dataset resource. Articles published between 2000 and 2020 within the database of Web of Science Core Collection were included with predefined search terms. CiteSpace version 5.7.R1 and R software program version 4.0.3 were used for bibliometric analysis with parameters extrapolated from included studies. Results: A total of 1721 articles were included from 2000 to 2020 with remarkably increasing trends. China (n=1183), Japan (n=218), and South Korea (n=119) showed the most publications. SUN YAT SEN University, FUDAN University, and NANJING MED University were the top institutions with most publications. Keywords with strongest citation bursts between 2000 and 2020 were characterized. Particularly, “statistics”, “resistance”, “mortality”, “lncrna”, “diagnosis”, “outcome”, “migration”, “promote,” and “regulatory t cell” were the latest rising keywords since 2017, indicating possible study trends ahead. Several articles showed strongest citation bursts, including Jemal A. CA-CANCER J CLIN, Van Cutsem E. LANCET, and Japanese Gastric Cancer Association GASTRIC CANCER. Conclusion: This bibliometric analysis provides a thought-provoking, insightful result concerning the trajectory of research development in prognosis of gastric cancer with a future perspective.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, P.R.China
| | - Chaoran Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| |
Collapse
|
197
|
Xu J, Xu N, Bai Y, Liu R, Mao C, Sui H, Wang X, Jiang Q, Dou Y. Anti-PD-1 antibody HX008 combined with oxaliplatin plus capecitabine for advanced gastric or esophagogastric junction cancer: a multicenter, single-arm, open-label, phase Ib trial. Oncoimmunology 2020; 10:1864908. [PMID: 33457083 PMCID: PMC7781732 DOI: 10.1080/2162402x.2020.1864908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anti-PD-1 monoclonal antibody is approved as an option for third-line treatment of advanced gastric and gastroesophageal junction (G/GEJ) cancer in several countries, but no anti-PD-1 monoclonal antibody treatment is yet approved for first-line treatment of advanced G/GEJ cancer. We report a phase Ib trial of HX008, a highly selective, humanized anti-programmed death-1 monoclonal antibody, plus oxaliplatin and capecitabine as first-line treatment for advanced G/GEJ cancer. Patients with previously untreated, locally advanced or metastatic G/GEJ cancer were enrolled. All patients received HX008 3 mg/kg intravenously every 3 weeks, oxaliplatin 130 mg/m2 intravenously on day 1 every 3 weeks (up to 6 cycles), and capecitabine 1000 mg/m2 orally twice daily for 14 days continuous dosing followed by a 7-day break. The primary end point was the incidence of adverse events and serious adverse events. In total, 35 patients were enrolled. Median follow-up was 12.7 months. Most frequent (>10%) grade ≥3 treatment-related adverse events were anemia (27.5%), neutropenia (20%), thrombocytopenia (17.1%), leukopenia (17.1%) and fatigue (17.3%). Objective response rate was 60.0% (95% confidence interval [CI] 42.1-76.1%). Disease control rate was 77.1% (95% CI 59.9-89.6). Median time to response and duration of response were 1.4 months (range 1.3-2.9) and 12.3 months (range 1.4-17.9+), respectively. Median PFS was 9.2 months (95% CI 5.4-not reached). These results demonstrated that HX008 combined with oxaliplatin plus capecitabine was well tolerated and demonstrated encouraging efficacy as first-line treatment for advanced G/GEJ cancer. This study was registered in china, register number was CTR20181270.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nong Xu
- Department of Medical Oncology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yuxian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rongrui Liu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenyu Mao
- Department of Medical Oncology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hong Sui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaofei Wang
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| | - Qian Jiang
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| | - Yiwei Dou
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| |
Collapse
|
198
|
Zhang Y, Guo D. Epigenetic Variation Analysis Leads to Biomarker Discovery in Gastric Adenocarcinoma. Front Genet 2020; 11:551787. [PMID: 33363566 PMCID: PMC7753064 DOI: 10.3389/fgene.2020.551787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
As one of the most common malignant tumors worldwide, gastric adenocarcinoma (GC) and its prognosis are still poorly understood. Various genetic and epigenetic factors have been indicated in GC carcinogenesis. However, a comprehensive and in-depth investigation of epigenetic alteration in gastric cancer is still missing. In this study, we systematically investigated some key epigenetic features in GC, including DNA methylation and five core histone modifications. Data from The Cancer Genome Atlas Program and other studies (Gene Expression Omnibus) were collected, analyzed, and validated with multivariate statistical analysis methods. The landscape of epi-modifications in gastric cancer was described. Chromatin state transition analysis showed a histone marker shift in gastric cancer genome by employing a Hidden-Markov-Model based approach, indicated that histone marks tend to label different sets of genes in GC compared to control. An additive effect of these epigenetic marks was observed by integrated analysis with gene expression data, suggesting epigenetic modifications may cooperatively regulate gene expression. However, the effect of DNA methylation was found more significant without the presence of the five histone modifications in our study. By constructing a PPI network, key genes to distinguish GC from normal samples were identified, and distinct patterns of oncogenic pathways in GC were revealed. Some of these genes can also serve as potential biomarkers to classify various GC molecular subtypes. Our results provide important insights into the epigenetic regulation in gastric cancer and other cancers in general. This study describes the aberrant epigenetic variation pattern in GC and provides potential direction for epigenetic biomarker discovery.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
199
|
Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, Chen X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol 2020; 10:583463. [PMID: 33381453 PMCID: PMC7769310 DOI: 10.3389/fonc.2020.583463] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fifth most common malignant tumor and second leading cause of cancer-related deaths worldwide. With the improved understanding of gastric cancer, a subset of gastric cancer patients infected with Epstein–Barr virus (EBV) has been identified. EBV-positive gastric cancer is a type of tumor with unique genomic aberrations, significant clinicopathological features, and a good prognosis. After EBV infects the human body, it first enters an incubation period in which the virus integrates its DNA into the host and expresses the latent protein and then affects DNA methylation through miRNA under the action of the latent protein, which leads to the occurrence of EBV-positive gastric cancer. With recent developments in immunotherapy, better treatment of EBV-positive gastric cancer patients appears achievable. Moreover, studies show that treatment with immunotherapy has a high effective rate in patients with EBV-positive gastric cancer. This review summarizes the research status of EBV-positive gastric cancer in recent years and indicates areas for improvement of clinical practice.
Collapse
Affiliation(s)
- Keran Sun
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keqi Jia
- Department of Pathology, Pathology Department of Hebei Medical University, Shijiazhuang, China
| | - Huifang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Wu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huijun Lei
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
200
|
Jiang L, Hu LG. Serpin peptidase inhibitor clade A member 1-overexpression in gastric cancer promotes tumor progression in vitro and is associated with poor prognosis. Oncol Lett 2020; 20:278. [PMID: 33014156 PMCID: PMC7520747 DOI: 10.3892/ol.2020.12141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is the second most common cause of cancer-associated death in Asia. The incidence and mortality rates of gastric cancer have markedly increased in the past few decades. Therefore, the identification of novel gastric cancer biomarkers are needed to determine prognosis. The role of serpin peptidase inhibitor clade A member 1 (SERPINA1) has been studied in several types of cancer; however, little is known about its mechanism in gastric cancer. The present study aimed to evaluate SERPINA1 as a potential prognostic biomarker in gastric cancer and to identify the possible mechanisms underlying its action. The expression levels of SERPINA1 in several gastric cancer datasets were assessed, and it was identified that high expression of SERPINA1 was associated to poor clinical outcomes. Furthermore, using histochemical analysis, western blotting, apoptotic analysis, gap closure and invasion assays in cell lines, it was reported that silencing of SERPINA1 inhibited the formation of cellular pseudopodia and did not affect apoptosis, but promoted cell cycle S-phase entry. In addition, overexpression of SERPINA1 increased the migration and invasion of gastric cancer cells, whereas knockdown of SERPINA1 decreased these functions. Moreover, SERPINA1 overexpression increased the protein levels of SMAD4, which is a key regulator of the transforming growth factor (TGF)-β signaling pathway. Taken together, the present data demonstrated that SERPINA1 promotes gastric cancer progression through TGF-β signaling, and suggested that SERPINA1 may be a novel prognostic biomarker from tumor tissue biopsy in gastric cancer.
Collapse
Affiliation(s)
- Longchang Jiang
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Asia Research and Development Center, Shanghai 201210, P.R. China
| | - Liangbiao George Hu
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Asia Research and Development Center, Shanghai 201210, P.R. China
| |
Collapse
|