151
|
Vigo E, Müller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC, Helin K. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 1999; 19:6379-95. [PMID: 10454584 PMCID: PMC84608 DOI: 10.1128/mcb.19.9.6379] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1999] [Accepted: 06/14/1999] [Indexed: 11/20/2022] Open
Abstract
Functional inactivation of the pRB pathway is a very frequent event in human cancer, resulting in deregulated activity of the E2F transcription factors. To understand the functional role of the E2Fs in cell proliferation, we have developed cell lines expressing E2F-1, E2F-2, and E2F-3 fused to the estrogen receptor ligand binding domain (ER). In this study, we demonstrated that activation of all three E2Fs could relieve the mitogen requirement for entry into S phase in Rat1 fibroblasts and that E2F activity leads to a shortening of the G(0)-G(1) phase of the cell cycle by 6 to 7 h. In contrast to the current assumption that E2F-1 is the only E2F capable of inducing apoptosis, we showed that deregulated E2F-2 and E2F-3 activities also result in apoptosis. Using the ERE2F-expressing cell lines, we demonstrated that several genes containing E2F DNA binding sites are efficiently induced by the E2Fs in the absence of protein synthesis. Furthermore, CDC25A is defined as a novel E2F target whose expression can be directly regulated by E2F-1. Data showing that CDC25A is an essential target for E2F-1, since its activity is required for efficient induction of S phase by E2F-1, are provided. Finally, our results show that expression of two E2F target genes, namely CDC25A and cyclin E, is sufficient to induce entry into S phase in quiescent fibroblasts. Taken together, our results provide an important step in defining how E2F activity leads to deregulated proliferation.
Collapse
Affiliation(s)
- E Vigo
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
152
|
Li X, Zhang Y, Clarke JD, Li Y, Dong X. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of npr1-1. Cell 1999; 98:329-39. [PMID: 10458608 DOI: 10.1016/s0092-8674(00)81962-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Systemic acquired resistance (SAR) is a plant immune response induced after a local infection by necrotizing pathogens. The Arabidopsis NPR1 gene is a positive regulator of SAR, essential for transducing the SAR signal salicylic acid (SA). Mutations in the NPR1 gene abolish the SA-induced expression of pathogenesis-related (PR) genes and resistance to pathogens. To identify additional regulators of SAR, we screened for suppressors of npr1-1. In the npr1-1 background, the sni1 (suppressor of npr1-1, inducible 1) mutant shows near wild-type levels of PR1 expression and resistance to pathogens after induction. Restoration of SAR in npr1-1 by the recessive sni1 mutation indicates that wild-type SNI1 may function as a negative regulator of SAR. We cloned the SNI1 gene and found that it encodes a leucine-rich nuclear protein.
Collapse
Affiliation(s)
- X Li
- Developmental, Cell, and Molecular Biology Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | | | |
Collapse
|
153
|
Gottifredi V, Peschiaroli A, Fimia GM, Maione R. p53-independent apoptosis induced by muscle differentiation stimuli in polyomavirus large T-expressing myoblasts. J Cell Sci 1999; 112 ( Pt 14):2397-407. [PMID: 10381395 DOI: 10.1242/jcs.112.14.2397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abnormal proliferation signals, driven by cellular or viral oncogenes, can result in the induction of apoptosis under sub-optimal cell growth conditions. The tumor suppressor p53 plays a central role in mediating oncogene-induced apoptosis, therefore transformed cells lacking p53 are generally resistant to apoptosis-promoting treatments. In a previous work we have reported that the expression of polyomavirus large T antigen causes apoptosis in differentiating myoblasts and that this phenomenon is dependent on the onset of muscle differentiation in the absence of a correct cell cycle arrest. Here we report that polyomavirus large T increases the levels and activity of p53, but these alterations are not involved in the apoptotic mechanism. Apoptosis in polyomavirus large T-expressing myoblasts is not prevented by the expression of a p53 dominant-negative mutant nor it is increased by p53 over-expression. Moreover, forced differentiation induced through the over-expression of the muscle regulatory factor MyoD, leads to apoptosis without altering p53 function and, more significantly, even in a p53-null background. Our results indicate that apoptosis induced by the activation of muscle differentiation pathways in oncogene-expressing cells can occur in a p53-independent manner.
Collapse
Affiliation(s)
- V Gottifredi
- Isituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena 324, Italy
| | | | | | | |
Collapse
|
154
|
McArthur GA, Laherty CD, Quéva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:423-33. [PMID: 10384307 DOI: 10.1101/sqb.1998.63.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- G A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Yuan SS, Cox LA, Dasika GK, Lee EY. Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol 1999; 207:62-75. [PMID: 10049565 DOI: 10.1006/dbio.1998.9141] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor suppressor RB regulates diverse cellular processes such as G1/S transition, cell differentiation, and cell survival. Indeed, Rb-knockout mice exhibit phenotypes including ectopic mitosis, defective differentiation, and extensive apoptosis in the neurons. Using differential display, a novel gene, Rig-1, was isolated based on its elevated expression in the hindbrain and spinal cord of Rb-knockout embryos. The longest open reading frame of Rig-1 encoded a polypeptide that consists of a putative extracellular segment with five immunoglobulin-like domains and three fibronectin III-like domains, a putative transmembrane domain, and a distinct intracellular segment. The Rig-1 sequence was 40% identical to the recently identified roundabout protein. Consistent with the predicted transmembrane nature of the protein, Rig-1 protein was present in the membranous fraction. Antisera raised against the putative extracellular and intracellular segments of Rig-1 reacted with an approximately 210-kDa protein in mouse embryonic CNS. Rig-1 mRNA was transiently expressed in the embryonic hindbrain and spinal cord. Elevated levels of Rig-1 mRNA and protein were found in Rb-/- embryos. Ectopic expression of a transmembrane form of Rig-1, but not the secreted form, promoted neuronal cell entrance to S phase and repressed the expression of a marker of differentiated neuron, Talpha1 tubulin. Thus Rig-1, a possible distant relative of roundabout, may mediate some of the pleiotropic roles of RB in the developing neurons.
Collapse
Affiliation(s)
- S S Yuan
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78245, USA
| | | | | | | |
Collapse
|
156
|
Perez-Juste G, Aranda A. The cyclin-dependent kinase inhibitor p27(Kip1) is involved in thyroid hormone-mediated neuronal differentiation. J Biol Chem 1999; 274:5026-31. [PMID: 9988748 DOI: 10.1074/jbc.274.8.5026] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thyroid hormone (triiodothyronine, T3) is essential for normal brain maturation. To determine the mechanisms by which T3 controls neuronal proliferation and differentiation, we have analyzed the effect of this hormone on the expression and activity of cell cycle-regulating molecules in neuroblastoma N2a-beta cells that overexpress the beta1 isoform of the T3 receptor. Our results show that incubation of N2a-beta cells with T3 leads to a rapid down-regulation of the c-myc gene and to a decrease of cyclin D1 levels. T3 also causes a strong and sustained increase of the levels of the cyclin kinase inhibitor p27(Kip1). This increase is secondary, to the augmented levels of p27(Kip1) transcripts as well as to stabilization of the p27(Kip1) protein. The increased levels of p27(Kip1) lead to a significant increase in the amount of p27(Kip1) associated with cyclin-dependent kinase 2 (CDK2), and to a marked inhibition of the kinase activity of the cyclin.CDK2 complexes. As a consequence, the retinoblastoma protein (pRb) and the retinoblastoma protein-related protein p130 are hypophosphorylated in T3-treated N2a-beta cells. This study shows for the first time that T3-mediated growth arrest and neuronal differentiation are associated with an increase in the levels of a cyclin kinase inhibitor, which does not allow the inactivation of retinoblastoma proteins required for progression through the restriction point in the cell cycle.
Collapse
Affiliation(s)
- G Perez-Juste
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain
| | | |
Collapse
|
157
|
Abstract
The first appearance of G1 during Drosophila embryogenesis, at cell cycle 17, is accompanied by the down-regulation of E2F-dependent transcription. Mutant alleles of rbf were generated and analyzed to determine the role of RBF in this process. Embryos lacking both maternal and zygotic RBF products show constitutive expression of PCNA and RNR2, two E2F-regulated genes, indicating that RBF is required for their transcriptional repression. Despite the ubiquitous expression of E2F target genes, most epidermal cells enter G1 normally. Rather than pausing in G1 until the appropriate time for cell cycle progression, many of these cells enter an ectopic S-phase. These results indicate that the repression of E2F target genes by RBF is necessary for the maintenance but not the initiation of a G1 phase. The phenotype of RBF-deficient embryos suggests that rbf has a function that is complementary to the roles of dacapo and fizzy-related in the introduction of G1 during Drosophila embryogenesis.
Collapse
Affiliation(s)
- W Du
- MGH Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
158
|
Affiliation(s)
- H J Brady
- Division of Molecular Immunology, National Institute for Medical Research, London, UK
| | | |
Collapse
|
159
|
Abstract
Our understanding of how RB and E2F-1 function has progressed significantly from the model in which RB negatively regulates expression of genes required for S phase by binding to and inhibiting E2F-1. Both RB and E2F-1 have been shown recently to possess additional properties and mechanisms of regulation relevant to developmental and tumorigenic processes. In particular, it is now realised that RB has E2F-independent tumor suppressor functions which rely upon the ability of RB to induce differentiation. For its part, E2F-1 is unique amongst E2F family members in its capacity to induce apoptosis and this function is clearly relevant to our appreciation of E2F-1 as a conditional tumor suppressor. E2F-1 can induce both apoptosis and S-phase transition and whether E2F-1 acts as an oncogene or a tumor-suppressor gene may depend on the extent to which E2F-1 induces apoptosis as opposed to G1/S transition.
Collapse
Affiliation(s)
- K Macleod
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK.
| |
Collapse
|
160
|
Diccianni MB, Omura-Minamisawa M, Batova A, Le T, Bridgeman L, Yu AL. Frequent deregulation of p16 and the p16/G1 cell cycle-regulatory pathway in neuroblastoma. Int J Cancer 1999; 80:145-54. [PMID: 9935245 DOI: 10.1002/(sici)1097-0215(19990105)80:1<145::aid-ijc26>3.0.co;2-g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alterations of the p16 gene in neuroblastoma are very rare. Pronounced expression of p16 at both the transcript and protein levels, however, was observed in 7 of 19 (39%) neuroblastoma cell lines and 2 of 6 (33%) primary neuroblastoma samples. As p16 expression is tightly controlled in a feedback loop with Rb, we investigated the possibility that changes in p16 expression were reflective of alterations of the downstream components in the G1 regulatory pathway. Two cell lines and one primary sample highly expressing p16 were shown to harbor CDK4 amplification. The cyclin D2 gene was infrequently expressed in neuroblastoma cell lines and did not correlate with p16 expression. Slight variations in the expression of CDK6, cyclins D1, D3 and E; and E2F1 and E2F2 among the cell lines were observed, without apparent correlation with p16 status. No mutations to the p16-binding site of CDK4 and CDK6 nor any mutations to the coding region of p16 itself were identified in neuroblastoma cell lines. Despite frequent N-myc amplification in these cell lines, no relationship with this gene was observed either. All cell lines contained Rb protein with varying degrees of phosphorylation, which bears no correlation with p16 expression. Overall, alterations of the G1 pathway in neuroblastoma included relatively frequent p16 expression and infrequent CDK4 amplification and cyclin D2 expression. Despite a reported feedback relationship between p16 expression and Rb/G1 deregulation, p16 expression in neuroblastoma cell lines is independent of Rb gene and phosphorylation status and, in contrast to other cell lines where expression of p16 leads to G1/S arrest, neuroblastoma cell lines proliferate in the presence of elevated levels of p16.
Collapse
Affiliation(s)
- M B Diccianni
- Department of Pediatrics/Hematology-Oncology, University of California, San Diego 92103-8447, USA
| | | | | | | | | | | |
Collapse
|
161
|
Abstract
The generation of mice designed to overexpress activated forms of oncogenes or carrying targeted mutations in tumour suppressor genes, has allowed scientists to causally link the function of these genes with specific tumour processes, such as proliferation, apoptosis, angiogenesis or metastasis. In addition, these mice have been interbred to assess the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of the multi-stage nature of tumourigenesis. The effect of genetic mutations is often influenced by the genetic background of the mouse and by analysing strain-dependent phenotypes, modifier loci have been identified. Although genetic mutations in mouse and humans do not always lead to the same tumour spectrum, the underlying molecular mechanisms are frequently relevant to both species. Furthermore, new technical approaches creating conditional mouse mutants which develop tumours in a tissue-specific manner, will allow the effect of mutation of certain genes to be studied in specific tissues, free from the fatal effects of the mutation in other clinically less relevant tissues. Several exising mouse strains have already been used to develop and test new therapies and conditional mutagenesis will undoubtedly increase the potential use of transgenic mice in understanding and treating cancer.
Collapse
Affiliation(s)
- K F Macleod
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital, Scotland, U.K.
| | | |
Collapse
|
162
|
Erhardt JA, Hynicka W, DiBenedetto A, Shen N, Stone N, Paulson H, Pittman RN. A novel F box protein, NFB42, is highly enriched in neurons and induces growth arrest. J Biol Chem 1998; 273:35222-7. [PMID: 9857061 DOI: 10.1074/jbc.273.52.35222] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NFB42 (neural F Box 42 kDa) is a novel gene product that is highly enriched in the nervous system. Its predicted protein contains an F box, a motif recently shown to couple cell cycle regulation to the proteasome pathway (Bai, C., Sen, P., Hofmann, K., Ma, L., Goebl, M., Harper, J. W., and Elledge, S. (1996) Cell 86, 263-274). NFB42 mRNA and protein are expressed in all major areas of the adult rat brain but are not detected in non-neural tissues. NFB42 protein is localized primarily to the cytoplasm of neurons and does not appear to be present in glia. The presence of an F box in NFB42 suggests that it may be involved in cell cycle regulation; however, its expression in postmitotic neurons indicates that it is not involved in regulating typical cell cycle events. In an initial attempt to characterize the function of this protein, NFB42 was transfected into N1E-115 neuroblastoma and Chinese hamster ovary cells. The expression of full-length NFB42, but not an F box deletion mutant, inhibits proliferation in both cell lines. Additional experiments demonstrate that NFB42 interacts with Skp1p, a component of the proteasome pathway, and deletion of the F box also inhibits this interaction. Overall, the expression pattern of NFB42, along with the presence of an F box domain and the ability to inhibit growth, suggests that it may play a role in maintaining neurons in a postmitotic state.
Collapse
Affiliation(s)
- J A Erhardt
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA.
| | | | | | | | | | | | | |
Collapse
|
163
|
LeCouter JE, Kablar B, Whyte PF, Ying C, Rudnicki MA. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 1998; 125:4669-79. [PMID: 9806916 DOI: 10.1242/dev.125.23.4669] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The retinoblastoma-related p130 protein is a member of a conserved family, consisting of Rb, p107 and p130, which are believed to play important roles in cell-cycle control and cellular differentiation. We have generated a null mutation in p130 by gene targeting and crossed the null allele into Balb/cJ and C57BL/6J strains of mice. In an enriched Balb/cJ genetic background, p130(−/−) embryos displayed arrested growth and died between embryonic days 11 and 13. Histological analysis revealed varying degrees of disorganization in neural and dermamyotomal structures. Immunohistochemistry with antibody reactive with Islet-1 indicated markedly reduced numbers of neurons in the spinal cord and dorsal root ganglia. Immunohistochemistry with antibody reactive with desmin indicated a similar reduction in the number of differentiated myocytes in the myotome. The myocardium of mutant embryos was abnormally thin and resembled an earlier staged two-chambered heart consisting of the bulbus cordis and the ventricular chamber. TUNEL analysis indicated the presence of extensive apoptosis in various tissues including the neural tube, the brain, the dermomyotome, but not the heart. Immunohistochemistry with antibody reactive with PCNA revealed increased cellular proliferation in the neural tube and the brain, and decreased proliferation in the heart. The placentas of p130(−/−) embryos did not display elevated apoptosis and were indistinguishable from wild type suggesting that the phenotype was not due to placental failure. Following a single cross with the C57BL/6 mice, p130(−/−) animals were derived that were viable and fertile. These results indicate that p130 in a Balb/cJ genetic background plays an essential role that is required for normal development. Moreover, our experiments establish that second-site modifier genes exist that have an epistatic relationship with p130.
Collapse
Affiliation(s)
- J E LeCouter
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | |
Collapse
|
164
|
Alani RM, Hasskarl J, Münger K. Alterations in cyclin-dependent kinase 2 function during differentiation of primary human keratinocytes. Mol Carcinog 1998; 23:226-33. [PMID: 9869451 DOI: 10.1002/(sici)1098-2744(199812)23:4<226::aid-mc5>3.0.co;2-n] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Terminal differentiation of epithelial cells is intimately linked to cell-cycle withdrawal. The tight coupling of these two processes is critical to maintenance of epidermal tissue homeostasis and is frequently disrupted in squamous cell carcinoma. To identify possible molecular targets of epithelial carcinogenesis, we investigated the regulatory pathways that couple cellular differentiation and proliferation in primary cultures of human keratinocytes and found that the cyclin-dependent kinase inhibitors (CKIs) p21cip1/waf1 and p27kip1 were induced early during differentiation of human keratinocytes, whereas p15ink4B was induced later in differentiation. The induction of p21c1/waf1 was mediated by both transcriptional and non-transcriptional mechanisms, and the activities of cyclin A/cyclin-dependent kinase (cdk) 2 and cyclin E/cdk2 complexes were specifically inhibited during keratinocyte differentiation. In contrast, p21cip1/wafl did not associate with cdk4, and the activities of cdk4 complexes remained unchanged. Hence, our results support the model that multiple CKIs participate in linking cellular proliferation and differentiation in human keratinocytes by specific modulation of cdk2 activity.
Collapse
Affiliation(s)
- R M Alani
- Pathology Department and Harvard Center for Cancer Biology, Harvard Medical School, Massachusetts General Hospital, Boston 02115-5701, USA
| | | | | |
Collapse
|
165
|
ElShamy WM, Fridvall LK, Ernfors P. Growth arrest failure, G1 restriction point override, and S phase death of sensory precursor cells in the absence of neurotrophin-3. Neuron 1998; 21:1003-15. [PMID: 9856457 DOI: 10.1016/s0896-6273(00)80619-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
More than half of the dorsal root ganglion (DRG) neurons are lost by excessive cell death coinciding with precursor proliferation and cell cycle exit in neurotrophin-3 null mutant (NT-3-/-) mice. We find that in the absence of NT-3, sensory precursor cells fail to arrest the cell cycle, override the G1 phase restriction point, and die by apoptosis in S phase, which can be prevented in vivo by a cell cycle blocker. Uncoordinated cell cycle reentry is preceded by a failure of nuclear N-myc downregulation and is paralleled by the activation of the full repertoire of G1 and S phase cell cycle proteins required for cell cycle entry. Our results provide evidence for novel activity of neurotrophins in cell cycle control and point toward an N-myc sensitization to cell death in the nervous system that is under the control of NT-3.
Collapse
Affiliation(s)
- W M ElShamy
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
166
|
Abstract
Infection with mouse hepatitis virus strain 3 (MHV-3) results in lethal fulminant hepatic necrosis in fully susceptible BALB/c mice compared to the minimal disease observed in resistant strain A/J mice. Macrophages play a central role in the pathogenesis of MHV-3-induced hepatitis. In the present study we have shown that MHV-3 infection of macrophages induces these cells to undergo apoptosis. Three methods to detect apoptosis were applied: flow cytometry analysis of nuclear DNA content, fluorescence microscopic visualization of apoptotic cells labeled by the TUNEL assay, and gel electrophoresis to detect DNA laddering. Apoptosis in A/J and BALB/c macrophages was first detected at 8 h postinfection (p.i.) and reached a maximum by 12 h p.i. The degree of MHV-3-induced apoptosis was much greater in A/J-derived macrophages than in BALB/c-derived cells. Apoptosis was inversely correlated with the development of typical MHV cytopathology, namely syncytia formation. Infected macrophages from A/J mice did not form synctia in contrast to the extensive synctia formation observed in BALB/c-derived macrophages. In MHV-3-infected BALB/c macrophage cultures, apoptotic cells were not incorporated into syncytia. Apoptosis was also inversely correlated with the expression of MHV-3-induced fgl2 prothrombinase in macrophages. These results add the murine coronavirus MHV-3 to the list of RNA-containing viruses capable of inducing apoptosis.
Collapse
Affiliation(s)
- M Belyavsky
- Department of Pathology and Laboratory Medicine, Texas A&M University College of Medicine, 208 Reynolds Building, College Station, Texas, 77843-1114, USA
| | | | | | | |
Collapse
|
167
|
Athanasiou MC, Yunis W, Coleman N, Ehlenfeldt R, Clark HB, Orr HT, Feddersen RM. The transcription factor E2F-1 in SV40 T antigen-induced cerebellar Purkinje cell degeneration. Mol Cell Neurosci 1998; 12:16-28. [PMID: 9770337 DOI: 10.1006/mcne.1998.0699] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic targeting of SV40 large T antigen (Tag) expression to murine cerebellar Purkinje cells induces these normally postmitotic neurons to undergo DNA synthesis and apoptosis. It has been proposed that these effects of Tag are due to the binding of Tag to pRb, which leads to the release and activation of the transcription factor E2F. Here it is reported that E2F and CDC2, the protein product of a gene regulated by E2F, were detectable in the Purkinje cell nuclei of Tag expressing transgenic animals. To directly test whether E2F-1 is part of the mechanism of Tag-induced Purkinje cell degeneration, transgenic mice that overexpress E2F-1 specifically in cerebellar Purkinje cells were generated. Although E2F-1 itself did not affect Purkinje cells, it did accelerate Tag-induced ataxia and Purkinje cell loss, suggesting that E2F-1 can contribute to the mechanism of Tag-induced Purkinje cell degeneration.
Collapse
Affiliation(s)
- M C Athanasiou
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2:293-304. [PMID: 9774968 DOI: 10.1016/s1097-2765(00)80274-9] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mice mutant for the Rb tumor suppressor gene die in mid-gestation with defects in erythropoiesis, cell cycle control, and apoptosis. We show here that embryos mutant for both Rb and its downstream target E2f-1 demonstrate significant suppression of apoptosis and S phase entry in certain tissues compared to Rb mutants, implicating E2f-1 as a critical mediator of these effects. Up-regulation of the p53 pathway, required for cell death in these cells in Rb mutants, is also suppressed in the Rb/E2f-1 double mutants. However, double mutants have defects in cell cycle regulation and apoptosis in some tissues and die at approximately E17.0 with anemia and defective skeletal muscle and lung development, demonstrating that E2F-1 regulation is not the sole function of pRB in development.
Collapse
Affiliation(s)
- K Y Tsai
- MIT Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | |
Collapse
|
169
|
Pan H, Yin C, Dyson NJ, Harlow E, Yamasaki L, Van Dyke T. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol Cell 1998; 2:283-92. [PMID: 9774967 DOI: 10.1016/s1097-2765(00)80273-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apoptosis induced by the p53 tumor suppressor can attenuate cancer growth in preclinical animal models. Inactivation of the pRb proteins in mouse brain epithelium by the T121 oncogene induces aberrant proliferation and p53-dependent apoptosis. p53 inactivation causes aggressive tumor growth due to an 85% reduction in apoptosis. Here, we show that E2F1 signals p53-dependent apoptosis since E2F1 deficiency causes an 80% apoptosis reduction. E2F1 acts upstream of p53 since transcriptional activation of p53 target genes is also impaired. Yet, E2F1 deficiency does not accelerate tumor growth. Unlike normal cells, tumor cell proliferation is impaired without E2F1, counterbalancing the effect of apoptosis reduction. These studies may explain the apparent paradox that E2F1 can act as both an oncogene and a tumor suppressor in experimental systems.
Collapse
Affiliation(s)
- H Pan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
170
|
Affiliation(s)
- N Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129 USA.
| |
Collapse
|
171
|
Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest 1998; 101:2842-50. [PMID: 9637718 PMCID: PMC508875 DOI: 10.1172/jci1130] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Platinum compounds induce apoptosis in malignant cells and are used extensively in the treatment of cancer. Total dose is limited by development of a sensory neuropathy. We now demonstrate that when rats are administered cisplatin (2 mg/kg i.p. for 5 d), primary sensory neurons in the dorsal root ganglion die by apoptosis. This was reproduced by exposure of dorsal root ganglion neurons and PC12 cells to cisplatin (3 microg/ml) in vitro. Apoptosis was confirmed by electron microscopy, DNA laddering, and inhibition by the caspase inhibitor z-VAD.fmk (100 microM). Cell death in vitro was preceded by upregulation of cyclin D1, cdk4, and increased phosphorylation of retinoblastoma protein; all are indicators of cell cycle advancement. The level of p16(INK4a), an endogenous inhibitor of the cyclin D1/cdk4 complex decreased. Exposure of PC12 cells and dorsal root ganglion neurons to increased levels of nerve growth factor (100 ng/ ml) prevented both apoptosis and upregulation of the cell cycle markers. Cancer cells without nerve growth factor receptors (gp140TrkA) were not protected by the neurotrophin. This indicated that cisplatin may kill cancer cells and neurons by a similar mechanism. In postmitotic neurons, this involves an attempt to re-enter the cell cycle resulting in apoptosis which is specifically prevented by nerve growth factor.
Collapse
Affiliation(s)
- J S Gill
- Molecular Neuroscience Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
172
|
Fimia GM, Gottifredi V, Bellei B, Ricciardi MR, Tafuri A, Amati P, Maione R. The activity of differentiation factors induces apoptosis in polyomavirus large T-expressing myoblasts. Mol Biol Cell 1998; 9:1449-63. [PMID: 9614186 PMCID: PMC25368 DOI: 10.1091/mbc.9.6.1449] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is commonly accepted that pathways that regulate proliferation/differentiation processes, if altered in their normal interplay, can lead to the induction of programmed cell death. In a previous work we reported that Polyoma virus Large Tumor antigen (PyLT) interferes with in vitro terminal differentiation of skeletal myoblasts by binding and inactivating the retinoblastoma antioncogene product. This inhibition occurs after the activation of some early steps of the myogenic program. In the present work we report that myoblasts expressing wild-type PyLT, when subjected to differentiation stimuli, undergo cell death and that this cell death can be defined as apoptosis. Apoptosis in PyLT-expressing myoblasts starts after growth factors removal, is promoted by cell confluence, and is temporally correlated with the expression of early markers of myogenic differentiation. The block of the initial events of myogenesis by transforming growth factor beta or basic fibroblast growth factor prevents PyLT-induced apoptosis, while the acceleration of this process by the overexpression of the muscle-regulatory factor MyoD further increases cell death in this system. MyoD can induce PyLT-expressing myoblasts to accumulate RB, p21, and muscle- specific genes but is unable to induce G0(0) arrest. Several markers of different phases of the cell cycle, such as cyclin A, cdk-2, and cdc-2, fail to be down-regulated, indicating the occurrence of cell cycle progression. It has been frequently suggested that apoptosis can result from an unbalanced cell cycle progression in the presence of a contrasting signal, such as growth factor deprivation. Our data involve differentiation pathways, as a further contrasting signal, in the generation of this conflict during myoblast cell apoptosis.
Collapse
Affiliation(s)
- G M Fimia
- Isituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Università di Roma La Sapienza, 00161 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
173
|
Vogel KS, Parada LF. Sympathetic neuron survival and proliferation are prolonged by loss of p53 and neurofibromin. Mol Cell Neurosci 1998; 11:19-28. [PMID: 9608530 DOI: 10.1006/mcne.1998.0670] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proteins encoded by the p53 and Nf1 tumor suppressor genes are involved in cell signaling and regulation of proliferation during normal development and differentiation, as well as during tumor progression. To characterize the roles of these genes in the proliferation and survival of embryonic neurons, we have used dissociated cultures of sympathetic superior cervical ganglia (SCG) isolated from p53 and Nf1 single and compound-mutant mouse embryos. We have defined a temporal window for p53 involvement in sympathetic neuron survival and proliferation. Moreover, our results indicate that cooperativity between mutations in Nf1 and p53 prolongs SCG neuron proliferation and increases the incidence of neural tube defects in compound-mutant embryos.
Collapse
Affiliation(s)
- K S Vogel
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas 75235-9133, USA.
| | | |
Collapse
|
174
|
Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci 1998. [PMID: 9525997 DOI: 10.1523/jneurosci.18-08-02801.1998] [Citation(s) in RCA: 345] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a major dementing illness characterized by regional concentrations of senile plaques, neurofibrillary tangles, and extensive neuronal cell death. Although cell and synaptic loss is most directly linked to the severity of symptoms, the mechanisms leading to the neuronal death remain unclear. Based on evidence linking neuronal death during development to unexpected reappearance of cell cycle events, we investigated the brains of 12 neuropathologically verified cases of Alzheimer's disease and eight age-matched, disease-free controls for the presence of cell cycle proteins. Aberrant expression of cyclin D, cdk4, proliferating cell nuclear antigen, and cyclin B1 were identified in the hippocampus, subiculum, locus coeruleus, and dorsal raphe nuclei, but not inferotemporal cortex or cerebellum of AD cases. With only one exception, control subjects showed no significant expression of cell cycle markers in any of the six regions. We propose that disregulation of various components of the cell cycle is a significant contributor to regionally specific neuronal death in AD.
Collapse
|
175
|
Phelps DE, Hsiao KM, Li Y, Hu N, Franklin DS, Westphal E, Lee EY, Xiong Y. Coupled transcriptional and translational control of cyclin-dependent kinase inhibitor p18INK4c expression during myogenesis. Mol Cell Biol 1998; 18:2334-43. [PMID: 9528803 PMCID: PMC121487 DOI: 10.1128/mcb.18.4.2334] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 01/22/1998] [Indexed: 02/07/2023] Open
Abstract
Terminal differentiation of many cell types involves permanent withdrawal from the cell division cycle. The p18INK4c protein, a member of the p16/INK4 cyclin-dependent kinase (CDK) inhibitor family, is induced more than 50-fold during myogenic differentiation of mouse C2C12 myoblasts to become the predominant CDK inhibitor complexed with CDK4 and CDK6 in terminally differentiated myotubes. We have found that the p18INK4c gene expresses two mRNA transcripts--a 2.4-kb transcript, p18(L), and a 1.2-kb transcript, p18(S). In proliferating C2C12 myoblasts, only the larger p18(L) transcript is expressed from an upstream promoter. As C2C12 cells are induced to differentiate into permanently arrested myotubes, the abundance of the p18(L) transcript decreases. The smaller p18(S) transcript expressed from a downstream promoter becomes detectable by 12 h postinduction and is the predominant transcript expressed in terminally differentiated myotubes. Both transcripts contain coding exons 2 and 3, but p18(L) uniquely contains an additional noncoding 1.2-kb exon, exon 1, corresponding exclusively to the 5' untranslated region (5' UTR). The expression pattern of the shorter p18(S) transcript, but not that of the longer p18(L) transcript, correlates with terminal differentiation of muscle, lung, liver, thymus, and eye lens cells during mouse embryo development. The presence of the long 5' UTR in exon 1 attenuated the translation of p18(L) transcript, while its absence from the shorter p18(S) transcript resulted in significantly more efficient translation of the p18 protein. Our results demonstrate that during terminal muscle cell differentiation, induction of the p18 protein is regulated by promoter switching coupled with translational control.
Collapse
Affiliation(s)
- D E Phelps
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-3280, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Slack RS, El-Bizri H, Wong J, Belliveau DJ, Miller FD. A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J Cell Biol 1998; 140:1497-509. [PMID: 9508781 PMCID: PMC2132670 DOI: 10.1083/jcb.140.6.1497] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this report, we have examined the requirement for the retinoblastoma (Rb) gene family in neuronal determination with a focus on the developing neocortex. To determine whether pRb is required for neuronal determination in vivo, we crossed the Rb-/- mice with transgenic mice expressing beta-galactosidase from the early, panneuronal Talpha1 alpha-tubulin promoter (Talpha1:nlacZ). In E12.5 Rb-/- embryos, the Talpha1:nlacZ transgene was robustly expressed throughout the developing nervous system. However, by E14. 5, there were perturbations in Talpha1:nlacZ expression throughout the nervous system, including deficits in the forebrain and retina. To more precisely define the temporal requirement for pRb in neuronal determination, we functionally ablated the pRb family in wild-type cortical progenitor cells that undergo the transition to postmitotic neurons in vitro by expression of a mutant adenovirus E1A protein. These studies revealed that induction of Talpha1:nlacZ did not require proteins of the pRb family. However, in their absence, determined, Talpha1:nlacZ-positive cortical neurons underwent apoptosis, presumably as a consequence of "mixed signals" deriving from their inability to undergo terminal mitosis. In contrast, when the pRb family was ablated in postmitotic cortical neurons, there was no effect on neuronal survival, nor did it cause the postmitotic neurons to reenter the cell cycle. Together, these studies define a critical temporal window of requirement for the pRb family; these proteins are not required for induction of neuronal gene expression or for the maintenance of postmitotic neurons, but are essential for determined neurons to exit the cell cycle and survive.
Collapse
Affiliation(s)
- R S Slack
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
177
|
Tiemann F, Hinds PW. Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein. EMBO J 1998; 17:1040-52. [PMID: 9463382 PMCID: PMC1170453 DOI: 10.1093/emboj/17.4.1040] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The retinoblastoma protein, pRb, controls entry into the S phase of the cell cycle and acts as a tumor suppressor in many tissues. Re-introduction of pRb into tumor cells lacking this protein results in growth arrest, due in part to transcriptional repression of genes required for S phase. Several studies suggest that pRb may also be involved in terminal cell cycle exit as a result of the instigation of senescence or differentiation programs. To understand better these multiple growth-inhibitory properties of pRb, a temperature-sensitive mutant of pRb has been produced. This tspRb induces G1 arrest and morphological changes efficiently at the permissive temperature of 32.5 degrees C, but is weakly functional at 37 degrees C. Consistent with this, tspRb is compromised in nuclear association and E2F regulation at the non-permissive temperature, but regains these properties at 32.5 degrees C. Serial activation and inactivation of tspRb in SAOS-2 cells does not allow proliferation, but rather leads to apoptotic cell death. Transient activation of pRb may kill tumor cells by establishing a conflict between persistent proliferation-inhibitory signals and renewed deregulation of pRb targets such as E2F, and may thus be a more potent means of eliminating these cells than through simple re-introduction of the tumor suppressor gene.
Collapse
Affiliation(s)
- F Tiemann
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
178
|
Foley KP, McArthur GA, Quéva C, Hurlin PJ, Soriano P, Eisenman RN. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J 1998; 17:774-85. [PMID: 9451002 PMCID: PMC1170426 DOI: 10.1093/emboj/17.3.774] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The switch from transcriptionally activating MYC-MAX to transcriptionally repressing MAD1-MAX protein heterodimers has been correlated with the initiation of terminal differentiation in many cell types. To investigate the function of MAD1-MAX dimers during differentiation, we disrupted the Mad1 gene by homologous recombination in mice. Analysis of hematopoietic differentiation in homozygous mutant animals revealed that cell cycle exit of granulocytic precursors was inhibited following the colony-forming cell stage, resulting in increased proliferation and delayed terminal differentiation of low proliferative potential cluster-forming cells. Surprisingly, the numbers of terminally differentiated bone marrow and peripheral blood granulocytes were essentially unchanged in Mad1 null mice. This imbalance between the frequencies of precursor and mature granulocytes was correlated with a compensatory decrease in granulocytic cluster-forming cell survival under apoptosis-inducing conditions. In addition, recovery of the peripheral granulocyte compartment following bone marrow ablation was significantly enhanced in Mad1 knockout mice. Two Mad1-related genes, Mxi1 and Mad3, were found to be expressed ectopically in adult spleen, indicating that functional redundancy and cross-regulation between MAD family members may allow for apparently normal differentiation in the absence of MAD1. These findings demonstrate that MAD1 regulates cell cycle withdrawal during a late stage of granulocyte differentiation, and suggest that the relative levels of MYC versus MAD1 mediate a balance between cell proliferation and terminal differentiation.
Collapse
Affiliation(s)
- K P Foley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North-Mailstop A2-025, P.O. Box 19024, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
179
|
Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M, Szekely L, Helin K, Pelicci PG. The promyelocytic leukemia gene product (PML) forms stable complexes with the retinoblastoma protein. Mol Cell Biol 1998; 18:1084-93. [PMID: 9448006 PMCID: PMC108821 DOI: 10.1128/mcb.18.2.1084] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 10/24/1997] [Indexed: 02/05/2023] Open
Abstract
PML is a nuclear protein with growth-suppressive properties originally identified in the context of the PML-retinoic acid receptor alpha (RAR alpha) fusion protein of acute promyelocytic leukemia. PML localizes within distinct nuclear structures, called nuclear bodies, which are disrupted by the expression of PML-RAR alpha. We report that PML colocalizes with the nonphosphorylated fraction of the retinoblastoma protein (pRB) within nuclear bodies and that pRB is delocalized by PML-RAR alpha expression. Both PML and PML-RAR alpha form complexes with the nonphosphorylated form of pRB in vivo, and they interact with the pocket region of pRB. The regions of PML and PML-RAR alpha involved in pRB binding differ; in fact, the B boxes and the C-terminal region of PML, the latter of which is not present in PML-RAR alpha, are essential for the formation of stable complexes with pRB. Functionally, PML abolishes activation of glucocorticoid receptor-regulated transcription by pRB, whereas PML-RAR alpha further increases it. Our results suggest that PML may be part of transcription-regulatory complexes and that the oncogenic potential of the PML-RAR alpha protein may derive from the alteration of PML-regulated transcription.
Collapse
Affiliation(s)
- M Alcalay
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Taniura H, Taniguchi N, Hara M, Yoshikawa K. Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 1998; 273:720-8. [PMID: 9422723 DOI: 10.1074/jbc.273.2.720] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Necdin is a nuclear protein expressed in virtually all postmitotic neurons, and ectopic expression of this protein strongly suppresses the proliferation of NIH3T3 cells. Simian virus 40 large T antigen targets both p53 and the retinoblastoma protein (Rb) for cellular transformation. By analogy with the interactions of the large T antigen with these nuclear growth suppressors, we examined the ability of necdin to bind to the large T antigen. Necdin was co-immunoprecipitated with the large T antigen from the nuclear extract of necdin cDNA-transfected COS-1 cells. Yeast two-hybrid and in vitro binding analyses revealed that necdin bound to an amino-terminal region of the large T antigen, which encompasses the Rb-binding domain. Moreover, necdin bound to adenovirus E1A, another viral oncoprotein that forms a specific complex with Rb. We then examined the ability of necdin to bind to the transcription factor E2F1, a cellular Rb-binding factor involved in cell-cycle progression. Intriguingly, necdin, like Rb, bound to a carboxyl-terminal domain of E2F1, and repressed E2F-dependent transactivation in vivo. In addition, necdin suppressed the colony formation of Rb-deficient SAOS-2 osteosarcoma cells. These results suggest that necdin is a postmitotic neuron-specific growth suppressor that is functionally similar to Rb.
Collapse
Affiliation(s)
- H Taniura
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565, Japan
| | | | | | | |
Collapse
|
181
|
Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, Lassar AB, Kaelin WG. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 1998; 12:95-106. [PMID: 9420334 PMCID: PMC316399 DOI: 10.1101/gad.12.1.95] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRB) can inhibit cell cycle progression and promote differentiation. pRB interacts with a variety of transcription factors, including members of the E2F and C-EBP protein families and MyoD, and can either repress or activate transcription depending on the promoter under study. These biological and biochemical activities of pRB have been mapped previously to a core domain, referred to as the pRB pocket. Using a panel of synthetic pRB pocket mutants, we found that the acute induction of a G1/S block by pRB is linked to its ability to both bind to E2F and to repress transcription. In contrast, these functions were not required for pRB to promote differentiation, which correlated with its ability to activate transcription in concert with fate-determining proteins such as MyoD. All tumor-derived pRB mutants tested to date failed to bind to E2F and did not repress transcription. Despite an inability to bind to E2F, pRB mutants associated with a low risk of retinoblastoma, unlike high-risk mutants, retained the ability to activate transcription and promote differentiation. Thus, the pRB pocket participates in dual tumor suppressor functions, one linked to cell cycle progression and the other to differentiation control, and these functions can be genetically and mechanistically dissociated.
Collapse
Affiliation(s)
- W R Sellers
- The Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Riley DJ, Liu CY, Lee WH. Mutations of N-terminal regions render the retinoblastoma protein insufficient for functions in development and tumor suppression. Mol Cell Biol 1997; 17:7342-52. [PMID: 9372965 PMCID: PMC232590 DOI: 10.1128/mcb.17.12.7342] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To assess biological roles of the retinoblastoma protein (RB), four independent transgenic mouse lines expressing human RB with different deletions in the N-terminal region (RBdeltaN) were generated and compared with mice expressing identically regulated, full-length RB. Expression of both RB and RBdeltaN caused developmental growth retardation, but the wild-type protein was more potent. In contrast to wild-type RB, the RBdeltaN proteins were unable to rescue Rb-/- mice completely from embryonic lethality. Embryos survived until gestational day 18.5 but displayed defects in the terminal differentiation of erythrocytes, neurons, and skeletal muscle. In Rb+/- mice, expression of the RBdeltaN transgenes failed to prevent pituitary melanotroph tumors but delayed tumor formation or progression. These results strongly suggest that N-terminal regions are crucial for embryonic and postnatal development, tumor suppression, and the functional integrity of the entire RB protein. Furthermore, these transgenic mice provide models that may begin to explain human families with low-penetrance retinoblastoma and mutations in N-terminal regions of RB.
Collapse
Affiliation(s)
- D J Riley
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 78245-3207, USA
| | | | | |
Collapse
|
183
|
Rodriguez M, Driever W. Mutations resulting in transient and localized degeneration in the developing zebrafish brain. Biochem Cell Biol 1997. [DOI: 10.1139/o97-089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In a large-scale mutagenesis screen in the zebrafish, Danio rerio, we have identified a heterogeneous group of 30 recessive, embryonic lethal mutations characterized by degeneration in the developing central nervous system that is either transient or initially localized to one area of the brain. Transient degeneration is defined as abnormal cell death occurring during a restricted period of development. Following degeneration, the affected structures do not appear to regenerate. In each case degeneration is identified after somitogenesis is complete and is not associated with visually identified patterning defects. These 30 mutations, forming 21 complementation groups, have been classified into four phenotypic groups: group 1, transient degeneration (13 mutations); group 2, spreading degeneration, early onset, in which degeneration is initially confined to the optic tectum but subsequently spreads to other areas of the central nervous system (7 mutations); group 3, late-onset degeneration, initially identified after 4 days (6 mutations); and group 4, degeneration with abnormal pigmentation (4 mutations). Although apoptotic cells are seen in the retina and tectum of all mutants, the distribution, temporal progression, and severity of degeneration vary between mutations. Several mutations also show pleiotropic effects, with degeneration involving extraneural structures including the pharyngeal arches and pectoral fins. We discuss some of the pathways important for cell survival in the nervous system and suggest that these mutations will provide entry points for identifying genes that affect the survival of restricted neural populations.
Collapse
|
184
|
|
185
|
Delhon G, Jones C. Identification of DNA sequences in the latency related promoter of bovine herpes virus type 1 which are bound by neuronal specific factors. Virus Res 1997; 51:93-103. [PMID: 9381799 DOI: 10.1016/s0168-1702(97)00085-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bovine herpes virus 1 establishes a latent infection in sensory ganglionic neurons of cattle. During a latent infection latency related (LR) transcripts are the only detectable viral RNAs. DNA sequences in the LR promoter are positively regulated by neural factors. The 5' terminus of LR RNA in productively infected bovine cells is 20-30 nucleotides downstream from two overlapping TATA like elements. In contrast, the major start sites of LR transcription in trigeminal ganglia of latently infected cattle was 200-300 nucleotides upstream. Electrophoretic mobility shift assays (EMSA) were utilized to identify regions of the LR promoter that specifically bind factors present in dorsal root ganglia of cattle. Nuclear extracts from dorsal root ganglia of cattle or rat pheochromocytoma cells (PC12) contain abundant factors which specifically bind to a 72 bp XhoI-XbaI fragment. The 72 bp fragment is adjacent to the major start sites of LR transcriptional in trigeminal ganglia of latently infected cattle. In contrast, nuclear extracts from non-neural cells, bovine turbinate or Rat-2, did not exhibit similar binding patterns suggesting these factors were not abundant, had reduced binding affinity, or were absent in non-neural cells. Binding was localized to a 20 bp region of the XhoI-XbaI fragment by EMSA and Exonuclease III footprinting. When the XhoI-XbaI fragment was deleted, LR promoter activity was repressed in PC12 cells. Taken together, we conclude the XhoI-XbaI fragment is important for LR-RNA expression in neurons.
Collapse
MESH Headings
- Animals
- Base Sequence/genetics
- Base Sequence/physiology
- Cattle
- Cells, Cultured
- DNA Footprinting
- DNA, Viral/analysis
- DNA, Viral/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Polyacrylamide Gel
- Herpesvirus 1, Bovine/drug effects
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Bovine/physiology
- Molecular Sequence Data
- Nerve Growth Factors/pharmacology
- Nuclear Proteins/metabolism
- PC12 Cells/physiology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/physiology
- Rats
- Virus Latency
Collapse
Affiliation(s)
- G Delhon
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | |
Collapse
|
186
|
Piette J. The transition from proliferation to differentiation in nerve cells: what can we learn from muscle? Exp Cell Res 1997; 234:193-204. [PMID: 9260886 DOI: 10.1006/excr.1997.3588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Piette
- Institut de Génétique Moléculaire de Montpellier, CNRS, France
| |
Collapse
|
187
|
Ninomiya Y, Adams R, Morriss-Kay GM, Eto K. Apoptotic cell death in neuronal differentiation of P19 EC cells: cell death follows reentry into S phase. J Cell Physiol 1997; 172:25-35. [PMID: 9207922 DOI: 10.1002/(sici)1097-4652(199707)172:1<25::aid-jcp3>3.0.co;2-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apoptotic cell death was observed during aggregate culture of the mouse embryonal carcinoma cell line P19 exposed to all-trans retinoic acid (tRA). This finding was confirmed by genomic DNA agarose gel electrophoresis and transmission electron microscopy. Apoptosis was associated with P19 cell neuronal differentiation; alternative causes of cell death, i.e., cavitation-related, cytotoxicity of tRA, or spontaneous cell death were excluded. Analysis by flow cytometry revealed that the apoptosis was likely to occur in multiplying cells that underwent to reentering into S phase. We therefore examined 5-bromo-2'-deoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression and localization in the aggregates by immunofluorescent staining. Although the P19 cells in the aggregates exposed to tRA incorporated BrdU at an equivalent level to those not exposed to tRA, the cells showed diminished PCNA expression and nuclear accumulation. We propose that P19 apoptosis during neuronal differentiation is a model system in which programmed cell death occurs simultaneously with cell division leading to differentiation.
Collapse
Affiliation(s)
- Y Ninomiya
- Department of Developmental Biology, Graduate School of Dentistry, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
188
|
Herwig S, Strauss M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:581-601. [PMID: 9219514 DOI: 10.1111/j.1432-1033.1997.t01-2-00581.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retinoblastoma susceptibility gene is a tumour suppressor and its product retinoblastoma protein (pRb) has been known for 10 years as a repressor of progression towards S phase. Its major activity was supposed to be sequestration or inactivation of the transcription factor E2F which is required for activation of S phase genes. However, within recent years growing evidence has been accumulating for a more general function of pRb at both the transcriptional level and the cellular level. pRb not only regulates the activity of certain protein-encoding genes but also the activity of RNA polymerase pol I and pol III transcription. This protein appears to be the major player in a regulatory circuit in the late G1 phase, the so-called restriction point. Moreover, it is involved in regulating an elusive switch point between cell cycle, differentiation and apoptosis. Here, it seems to cooperate with another major tumour suppressor, p53. Thus, pRb sits at the interface of the most important cell-regulatory processes and therefore deserves close attention by specialists from different fields of research. This review provides an introduction to the complex functions of pRb.
Collapse
Affiliation(s)
- S Herwig
- Max-Planck-Gesellschaft, Humboldt-Universität, Max-Delbrück-Centrum for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
189
|
Du Q, Tomkinson AE, Gardner PD. Transcriptional regulation of neuronal nicotinic acetylcholine receptor genes. A possible role for the DNA-binding protein Puralpha. J Biol Chem 1997; 272:14990-5. [PMID: 9169473 DOI: 10.1074/jbc.272.23.14990] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors constitute a multigene family (alpha2-alpha9, beta2-beta4) expressed in discrete temporal and spatial patterns within the nervous system. The receptors are critical for proper signal transmission between neurons and their targets. The molecular mechanisms underlying receptor gene expression have not been completely elucidated but clearly involve regulation at the level of transcription. We previously identified a novel 19-base pair (bp) transcriptional regulatory element in the promoter region of the rat beta4 subunit gene. This 19-bp element interacts specifically with DNA-binding proteins enriched in nuclear extracts prepared from adult rat brain. Using a combination of cellulose-phosphate, DNA-cellulose, and DNA sequence-specific affinity chromatographies, we purified the 19-bp element binding activity approximately 19,000-fold. Analysis by denaturing gel electrophoresis revealed the presence of four polypeptides in the most purified fraction, ranging in molecular masses between 31 and 114 kDa. Peptide sequence analysis revealed that one of the polypeptides is the bovine homologue of the transcriptional regulatory factor, Puralpha. Electrophoretic mobility shift assays indicated that Puralpha interacts directly and specifically with the 19-bp element. In addition, mobility shift assays using an anti-Puralpha monoclonal antibody revealed the presence of Puralpha, or an immunologically related protein, in nuclear extracts prepared from brain tissue. We hypothesize that the interaction between Puralpha and the 19-bp element is critical for proper expression of the beta4 subunit gene.
Collapse
Affiliation(s)
- Q Du
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas 78245-3207, USA
| | | | | |
Collapse
|
190
|
Hurford RK, Cobrinik D, Lee MH, Dyson N. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 1997; 11:1447-63. [PMID: 9192872 DOI: 10.1101/gad.11.11.1447] [Citation(s) in RCA: 351] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The activity of the E2F transcription factor is controlled by physical association with the retinoblastoma protein (pRB) and two related proteins, p107 and p130. The pRB family members are thought to control different aspects of E2F activity, but it has been unclear what the respective functions of these proteins might be. To dissect the specific functions of pRB, p107, and p130 we have investigated how the expression of E2F-regulated genes is changed in cultures of primary cells lacking each of these family members. Whereas no changes were found in the expression of E2F-target genes in cells lacking either p107 or p130, deregulated expression of E2F targets was seen in cells lacking pRB and in cells lacking both p107 and p130. Surprisingly, the genes that were disregulated in these two settings were completely different. These findings show that pRB and p107/p130 indeed provide different functions in E2F regulation and identify target genes that are dependent on pRB family proteins for their normal expression.
Collapse
Affiliation(s)
- R K Hurford
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | |
Collapse
|
191
|
Altered Expression of the Retinoblastoma Tumor-Suppressor Gene in Leukemic Cell Lines Inhibits Induction of Differentiation But Not G1-Accumulation. Blood 1997. [DOI: 10.1182/blood.v89.8.2938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The retinoblastoma tumor-suppressor gene, RB, has been implicated in tumor suppression, in regulation of the cell cycle, and in mediating cell differentiation. RB is necessary for hematopoiesis in mice, and aberrant RB-expression is associated with the progress and prognosis of leukemia. We have used antisense oligonucleotides, established clones stably expressing an antisense RB construct, and also established clones over expressing the retinoblastoma protein (pRb) to study the role of RB expression in monocytic differentiation induced by all-trans retinoic acid (ATRA) or 1-α-25-dihyroxycholecalciferol (Vit D3) in the monoblastic cell line U-937 and erythroid differentiation induced by transforming growth factor β1 (TGFβ1) and hemin in the erythroleukemic cell line K562. A reduction in pRb production in antisense RB-transfected U-937 clones was shown. Antisense oligonucleotides as well as expression of the antisense RB construct suppressed differentiation responses to ATRA or Vit D3, as judged by the capability to reduce nitro blue tetrazolium, by the appearance of monocyte-related cell surface antigens and by morphologic criteria. K562 cells showed decreased differentiation response to TGFβ1, but not to hemin, when incubated with antisense oligonucleotides. U-937 antisense RB-transfected cells were also suppressed in their ability to upregulate levels of hypophosphorylated pRb when induced to differentiate. Although U-937 cells incubated with antisense oligonucleotides and clones expressing the antisense RB construct were hampered in their ability to differentiate on incubation with ATRA or Vit D3, the induced G0/G1-accumulation was similar to differentiating control cells treated with ATRA or Vit D3. Intriguingly, U-937 clones overexpressing RB were also inhibited in their differentiation response to ATRA or Vit D3 but not inhibited in their ability to respond with G0/G1 accumulation when induced with these substances. The results indicate that pRb plays a role in induced differentiation of U-937 cells as well as K562 cells involving mechanisms that, at least partially, are distinct from those inducing G1 accumulation.
Collapse
|
192
|
Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 1997; 11:973-83. [PMID: 9136926 DOI: 10.1101/gad.11.8.973] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
p57(Kip2) is a paternally imprinted gene that encodes a potent inhibitor of several cyclin/Cdk complexes. p57(Kip2) is primarily expressed in terminally differentiated cells, associates with G1 Cdks, and can cause cell cycle arrest in G1 phase. To investigate the role of p57(Kip2) in vivo, we have ablated the p57(Kip2) gene by homologous recombination in ES cells and generated mice devoid of p57(Kip2) expression. Most p57(Kip2) null mice die after birth and display severe developmental defects with varying degrees of penetrance. As expected, heterozygous mice that inherit a maternal, but not a paternal, targeted allele exhibit similar deficiencies and neonatal death. Developmental defects of p57(Kip2) mutant mice include cleft palate and gastrointestinal abnormalities ranging from an inflated GI tract to loss of the jejunum and ileum. These tissues display a significant increase of apoptotic cells in the absence of p57(Kip2). Most p57(Kip2) mutant mice have short limbs, a defect attributable to abnormal endochondral ossification caused by delayed cell cycle exit during chondrocyte differentiation. A similar defect has been observed in mice lacking p107 and p130, thus suggesting that p57(Kip2) might be an upstream regulator of these Rb-related proteins. The p57(Kip2) locus has been implicated in the Beckwith-Wiedemann syndrome and in the development of sporadic Wilms' tumors and lung carcinomas. To date, we have not observed neoplastic development even in those p57(Kip2) mutant mice that have survived for >5 months of age. These findings indicate that p57(Kip2) has an important role during mouse development that cannot be compensated by other Cdk inhibitors.
Collapse
Affiliation(s)
- Y Yan
- Department of Molecular Oncology, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543, USA
| | | | | | | | | |
Collapse
|
193
|
Lee KY, Helbing CC, Choi KS, Johnston RN, Wang JH. Neuronal Cdc2-like kinase (Nclk) binds and phosphorylates the retinoblastoma protein. J Biol Chem 1997; 272:5622-6. [PMID: 9038171 DOI: 10.1074/jbc.272.9.5622] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tumor suppressor retinoblastoma protein (RB) plays a central role in cellular growth regulation, differentiation, and apoptosis. Phosphorylation of RB results in a consequent loss of its ability to inhibit cell cycle progression. However, how RB phosphorylation might be regulated in apoptotic or postmitotic cells, such as neurons, remains unclear. Here we report that neuronal Cdc2-like kinase (Nclk), composed of Cdk5 and a neuronal Cdk5 activator (p25(nck5a)), can bind and phosphorylate RB. Since RB has been shown recently to associate with D-type G1 cyclins and viral oncoproteins through a common peptide sequence motif of LXCXE, Nclk binding may be mediated by a related sequence motif (LXCXXE) found in p25(nck5a). We demonstrate (i) in vitro binding of bacterially expressed p25(nck5a) to a GST-RB fusion protein, (ii) coprecipitation of GST-RB and reconstituted Cdk5.p25(nck5a), and (iii) phosphorylation of GST-RB by bacterially expressed Cdk5.p25(nck5a) kinase and by Cdk5.p25(nck5a) kinase purified from bovine brain. Finally, we show that immunoprecipitation of RB from embryonic mouse brain homogenate results in the coprecipitation of Cdk5 and that Cdk5 kinase activity is maximal during late embryonic development, a period when programmed cell death of developing neurons is greatest. Taken together, these results suggest that Nclk can bind to and phosphorylate RB in vitro and in vivo. We infer that Nclk may play an important role in regulating the activity of RB in the brain, including perhaps in apoptosing neurons.
Collapse
Affiliation(s)
- K Y Lee
- Department of Anatomy, The University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
194
|
Maione R, Amati P. Interdependence between muscle differentiation and cell-cycle control. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1332:M19-30. [PMID: 9061008 DOI: 10.1016/s0304-419x(96)00036-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R Maione
- Dipartimento di Biopatologia Umana, Università di Roma La Sapienza, Italy
| | | |
Collapse
|
195
|
Feinman R, Sawyer J, Hardin J, Tricot G. Cytogenetics and molecular genetics in multiple myeloma. Hematol Oncol Clin North Am 1997; 11:1-25. [PMID: 9081201 DOI: 10.1016/s0889-8588(05)70412-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Specific cytogenetic abnormalities have been identified in multiple myeloma that confer a poor prognosis, even with intensive chemotherapy and autotransplants. The identification and characterization of potential genes involved in these different chromosomal changes and their interplay with oncogenes and tumor suppressor genes controlling cellular growth and apoptosis is the major focus of this review.
Collapse
Affiliation(s)
- R Feinman
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | |
Collapse
|
196
|
Tevosian SG, Shih HH, Mendelson KG, Sheppard KA, Paulson KE, Yee AS. HBP1: a HMG box transcriptional repressor that is targeted by the retinoblastoma family. Genes Dev 1997; 11:383-96. [PMID: 9030690 DOI: 10.1101/gad.11.3.383] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A prominent feature of cell differentiation is the initiation and maintenance of an irreversible cell cycle arrest with the complex involvement of the retinoblastoma (RB) family (RB, p130, p107). We have isolated the HBP1 transcriptional repressor as a potential target of the RB family in differentiated cells. By homology, HBP1 is a sequence-specific HMG transcription factor, of which LEF-1 is the best-characterized family member. Several features of HBP1 suggest an intriguing role as a transcriptional and cell cycle regulator in differentiated cells. First, inspection of the HBP1 protein sequence revealed two consensus RB interaction motifs (LXCXE and IXCXE). Second, HBP1 interaction was selective for RB and p130, but not p107. HBP1, RB, and p130 levels are all up-regulated with differentiation; in contrast, p107 levels decline. Third, HBP1 can function as a transcriptional repressor of the promoter for N-MYC, which is a critical cell cycle and developmental gene. Fourth, because the activation of the N-MYC promoter in cycling cells required the E2F transcription factor, we show that E2F-1 and HBP1 represent opposite transcriptional signals that can be integrated within the N-MYC promoter. Fifth, the expression of HBP1 lead to efficient cell cycle arrest. The arrest phenotype was manifested in the presence of optimal proliferation signals, suggesting that HBP1 exerted a dominant regulatory role. Taken together, the results suggest that HBP1 may represent a unique transcriptional repressor with a role in initiation and establishment of cell cycle arrest during differentiation.
Collapse
Affiliation(s)
- S G Tevosian
- The Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
197
|
Dbaibo G, Hannun YA. Ceramide: A Stress Response Mediator Involved in Growth Suppression. SPHINGOLIPID-MEDIATED SIGNAL TRANSDUCTION 1997. [DOI: 10.1007/978-3-662-22425-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
198
|
Feddersen RM, Yunis WS, O'Donnell MA, Ebner TJ, Shen L, Iadecola C, Orr HT, Clark HB. Susceptibility to cell death induced by mutant SV40 T-antigen correlates with Purkinje neuron functional development. Mol Cell Neurosci 1997; 9:42-62. [PMID: 9204479 DOI: 10.1006/mcne.1997.0601] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purkinje cells are uniquely susceptible to a number of physical, chemical, and genetic insults both during development and in the mature state. We have previously shown that when the postmitotic state of murine Purkinje cells is altered by inactivation of the retinoblastoma tumor susceptibility protein (pRb), immature as well as mature Purkinje cells undergo apoptosis. DNA synthesis and neuronal loss are induced in postmitotic Purkinje cells dependent upon the pRb-binding portion of SV40 large T antigen (T-ag). In the present study, Purkinje cell targeting of a mutant T-ag, PVU, which does not bind pRb, reveals disparate cerebellar phenotypes dependent upon temporal differences in transgene expression. Strong embryonic and postnatal transgene expression in three lines alters Purkinje cell development and function during the second postnatal week, causing ataxia without Purkinje cell loss. In contrast, two other transgenic lines reveal that PVU T-ag expression following normal Purkinje cell maturation causes rapid Purkinje cell degeneration. The second and third postnatal weeks of cerebellar development, which include the major period of synaptogenesis, appear to be the defining stage for the two PVU-induced phenotypes. These data indicate that Purkinje cell death susceptibility varies with developmental stage.
Collapse
Affiliation(s)
- R M Feddersen
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Over the past several years, a number of human tumor suppressor genes have been cloned and characterized. Germline mutations in tumor suppressor genes strongly predispose to cancer, and they are also mutated somatically in sporadic forms of the disease. In order to create animal models for the familial cancer syndromes caused by inherited mutations in these genes as well as to determine their role in embryogenesis, the homologues of several members of this class have been mutated in the mouse. The initial characterization of the heterozygous and homozygous phenotypes caused by these mutations has led to important insights into the mechanisms by which tumor suppressor genes participate in normal development and how their loss contributes to tumorigenesis.
Collapse
Affiliation(s)
- T Jacks
- Howard Hughes Medical Institute, Massachusetts Institute of Technology Center for Cancer Research, Cambridge 02139, USA
| |
Collapse
|
200
|
Riley DJ, Nikitin AY, Lee WH. Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/- mice. Nat Med 1996; 2:1316-21. [PMID: 8946829 DOI: 10.1038/nm1296-1316] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The retinoblastoma gene (RB) is the prototypic tumor suppressor. Studies to date have demonstrated cancer suppression with tumor cells reconstituted with RB ex vivo and implanted into immunodeficient mice, as well as with germline transmission of a human RB transgene into tumor-prone Rb +/- mice. To mimic the therapy of cancer more closely, spontaneous pituitary melanotroph tumors arising in immunocompetent Rb +/- mice were treated with a recombinant adenovirus carrying RB cDNA. Intratumoral RB gene transfer decreased tumor cell proliferation, reestablished innervation by growth-regulatory dopaminergic neurons, inhibited the growth of tumors, and prolonged the life spans of treated animals.
Collapse
Affiliation(s)
- D J Riley
- Center for Molecular Medicine, University of Texas Health Science Center at San Antonio 78245, USA
| | | | | |
Collapse
|