151
|
Singh B, Singh D, Verma V, Yadav R, Kumar R. Angiotensin-converting enzyme 2 as a potential therapeutic target for COVID-19: A review. J Pharm Anal 2021; 12:215-220. [PMID: 34934510 PMCID: PMC8677424 DOI: 10.1016/j.jpha.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
As of August 16, 2021, there have been 207,173,086 confirmed cases and 4,361,996 deaths due to the coronavirus disease (COVID-19), and the pandemic remains a global challenge. To date, no effective and approved drugs are available for the treatment of COVID-19. Angiotensin-converting enzyme 2 (ACE2) plays a crucial role in the invasion into host cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Notably, ACE2 density is influenced by medical conditions, such as hypertension, or by drugs, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which can change the fate of SARS-CoV-2 infectivity. ACE2 is a target for these drugs and can be manipulated to limit the viral entry and replication within the cells. Different strategies aimed at blocking ACE2 with small molecules, peptides, and antibodies, or by neutralizing the virus through its competitive binding with human recombinant soluble ACE2 (hrsACE2) are currently under investigation. In this article, we review the current state of knowledge that emphasizes the need to find effective therapeutic agents against COVID-19 by exploiting ACE2 as a potential target. The increased soluble ACE2 levels and the application of hrsACE2 in patients with COVID-19 can be implemented to control the disease. It has not yet been established whether hypertension and other comorbidities, independent of age, have a direct role in COVID-19. Therefore, the use of renin-angiotensin system inhibitors, ACEIs and ARBs, should not be discontinued during COVID-19 treatment. Blockage of the interaction between the SARS-CoV-2 S protein and ACE2 as a strategy to treat COVID-19 is underway. ACE2 upregulation leads to the increased release of soluble ACE2. Increasing the levels of soluble ACE2 and hrsACE2 has the potential to prevent SARS-CoV-2 infection and reverse lung injury.
Collapse
Affiliation(s)
- Bhagat Singh
- Department of Medical Laboratory Technology, Faculty of Paramedical Sciences, Uttar Pradesh University of Medical Sciences, Etawah, 206130, India
| | - Dheer Singh
- Department of Anaesthesiology and Critical Care, Uttar Pradesh University of Medical Sciences, Etawah, 206130, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Ramakant Yadav
- Department of Neurology, Uttar Pradesh University of Medical Sciences, Etawah, 206130, India
| | - Raj Kumar
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Etawah, 206130, India
| |
Collapse
|
152
|
COVID-19, the Pandemic of the Century and Its Impact on Cardiovascular Diseases. CARDIOLOGY DISCOVERY 2021; 1:233-258. [PMID: 34888547 PMCID: PMC8638821 DOI: 10.1097/cd9.0000000000000038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely ranks among the deadliest diseases in human history. As with other coronaviruses, SARS-CoV-2 infection damages not only the lungs but also the heart and many other organs that express angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2. COVID-19 has upended lives worldwide. Dietary behaviors have been altered such that they favor metabolic and cardiovascular complications, while patients have avoided hospital visits because of limited resources and the fear of infection, thereby increasing out-hospital mortality due to delayed diagnosis and treatment. Clinical observations show that sex, age, and race all influence the risk for SARS-CoV-2 infection, as do hypertension, obesity, and pre-existing cardiovascular conditions. Many hospitalized COVID-19 patients suffer cardiac injury, acute coronary syndromes, or cardiac arrhythmia. SARS-CoV-2 infection may lead to cardiomyocyte apoptosis and necrosis, endothelial cell damage and dysfunction, oxidative stress and reactive oxygen species production, vasoconstriction, fibrotic and thrombotic protein expression, vascular permeability and microvascular dysfunction, heart inflammatory cell accumulation and activation, and a cytokine storm. Current data indicate that COVID-19 patients with cardiovascular diseases should not discontinue many existing cardiovascular therapies such as ACE inhibitors, angiotensin receptor blockers, steroids, aspirin, statins, and PCSK9 inhibitors. This review aims to furnish a framework relating to COVID-19 and cardiovascular pathophysiology.
Collapse
|
153
|
Lapi D, Cammalleri M, Dal Monte M, Di Maro M, Santillo M, Belfiore A, Nasti G, Damiano S, Trio R, Chiurazzi M, De Conno B, Serao N, Mondola P, Colantuoni A, Guida B. The Effects of Angiotensin II or Angiotensin 1-7 on Rat Pial Microcirculation during Hypoperfusion and Reperfusion Injury: Role of Redox Stress. Biomolecules 2021; 11:biom11121861. [PMID: 34944506 PMCID: PMC8699607 DOI: 10.3390/biom11121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Renin-angiotensin systems produce angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7), which are able to induce opposite effects on circulation. This study in vivo assessed the effects induced by Ang II or Ang 1-7 on rat pial microcirculation during hypoperfusion-reperfusion, clarifying the mechanisms causing the imbalance between Ang II and Ang 1-7. The fluorescence microscopy was used to quantify the microvascular parameters. Hypoperfusion and reperfusion caused vasoconstriction, disruption of blood-brain barrier, reduction of capillary perfusion and an increase in reactive oxygen species production. Rats treated with Ang II showed exacerbated microvascular damage with stronger vasoconstriction compared to hypoperfused rats, a further increase in leakage, higher decrease in capillary perfusion and marker oxidative stress. Candesartan cilexetil (specific Ang II type 1 receptor (AT1R) antagonist) administration prior to Ang II prevented the effects induced by Ang II, blunting the hypoperfusion-reperfusion injury. Ang 1-7 or ACE2 activator administration, preserved the pial microcirculation from hypoperfusion-reperfusion damage. These effects of Ang 1-7 were blunted by a Mas (Mas oncogene-encoded protein) receptor antagonist, while Ang II type 2 receptor antagonists did not affect Ang 1-7-induced changes. In conclusion, Ang II and Ang 1-7 triggered different mechanisms through AT1R or MAS receptors able to affect cerebral microvascular injury.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Via San Zeno, 31, 56127 Pisa, Italy; (M.C.); (M.D.M.)
- Correspondence: ; Tel.: +39-050-2211433
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Via San Zeno, 31, 56127 Pisa, Italy; (M.C.); (M.D.M.)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno, 31, 56127 Pisa, Italy; (M.C.); (M.D.M.)
| | - Martina Di Maro
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Anna Belfiore
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Gilda Nasti
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Rossella Trio
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Barbara De Conno
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Nicola Serao
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Paolo Mondola
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Via S. Pansini, 5, 80131 Naples, Italy; (M.D.M.); (M.S.); (A.B.); (G.N.); (S.D.); (R.T.); (M.C.); (B.D.C.); (N.S.); (P.M.); (A.C.); (B.G.)
| |
Collapse
|
154
|
Ciochetto Z, Havens PL, Aldrete S. Two cases of multi-inflammatory syndrome in children (MIS-C) in adults in 2020. BMC Infect Dis 2021; 21:1228. [PMID: 34876052 PMCID: PMC8649675 DOI: 10.1186/s12879-021-06911-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Late complications and longer-lasting sequelae of COVID-19 infection in adults can occur. Cardiovascular involvement including reduced ejection fraction, coronary artery aneurysms, and pericardial involvement have been reported. Prompt recognition is the first step and secondly, these cardiovascular phenomena require an alternative set of therapeutics from the standard of care for acute COVID-19 infection.
Case presentation Here we describe two cases that fulfill the current case definition of the recently defined multisystem inflammatory syndrome in adults (MIS-A). One patient is a 27-year-old white female and the other a 21-year-old French creole male, both without any prior medical history. Both were hospitalized and found to have significant cardiac dysfunction and treated with IVIG, high dose aspirin, and corticosteroids with resolution of their acute illnesses and cardiac sequelae. Conclusion Not only does the immediate impact of this viral infection need to be addressed, but also the long-term complications that could arise if not recognized and treated promptly as seen in our two cases. Patients can develop acute cardiovascular collapse and cardiogenic shock which requires high level of care and treatment within an intensive care unit. Depending on the complications, patients may require treatment for congestive heart failure, pericarditis, or even coronary artery disease acutely with close follow up to ensure improvement or resolution.
Collapse
Affiliation(s)
- Zachary Ciochetto
- Division of Infectious Diseases, Medical College of Wisconsin Affiliated Hospitals, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Peter L Havens
- Division of Infectious Diseases, Medical College of Wisconsin Affiliated Hospitals, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.,Infectious Diseases, Children's Hospital of Wisconsin, 999 North 92nd Street, Wauwatosa, WI, 53226, USA
| | - Sol Aldrete
- Division of Infectious Diseases, Medical College of Wisconsin Affiliated Hospitals, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
155
|
Shahgolzari M, Yavari A, Arjeini Y, Miri SM, Darabi A, Mozaffari Nejad AS, Keshavarz M. Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. GENE REPORTS 2021; 25:101417. [PMID: 34778602 PMCID: PMC8570409 DOI: 10.1016/j.genrep.2021.101417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) directly interacts with host's epithelial and immune cells, leading to inflammatory response induction, which is considered the hallmark of infection. The host immune system is programmed to facilitate the clearance of viral infection by establishing a modulated response. However, SARS-CoV-2 takes the initiative and its various structural and non-structural proteins directly or indirectly stimulate the uncontrolled activation of injurious inflammatory pathways through interaction with innate immune system mediators. Upregulation of cell-signaling pathways such as mitogen-activate protein kinase (MAPK) in response to recognition of SARS-CoV-2 antigens by innate immune system receptors mediates unbridled production of proinflammatory cytokines and cells causing cytokine storm, tissue damage, increased pulmonary edema, acute respiratory distress syndrome (ARDS), and mortality. Moreover, this acute inflammatory state hinders the immunomodulatory effect of T helper cells and timely response of CD4+ and CD8+ T cells against infection. Furthermore, inflammation-induced overproduction of Th17 cells can downregulate the antiviral response of Th1 and Th2 cells. In fact, the improperly severe response of the innate immune system is the key to conversion from a non-severe to severe disease state and needs to be investigated more deeply. The virus can also modulate the protective immune responses by developing immune evasion mechanisms, and thereby provide a more stable niche. Overall, combination of detrimental immunostimulatory and immunomodulatory properties of both the SARS-CoV-2 and immune cells does complicate the immune interplay. Thorough understanding of immunopathogenic basis of immune responses against SARS-CoV-2 has led to developing several advanced vaccines and immune-based therapeutics and should be expanded more rapidly. In this review, we tried to delineate the immunopathogenesis of SARS-CoV-2 in humans and to provide insight into more effective therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Yaser Arjeini
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Miri
- Freelance Researcher of Biomedical Sciences, No 32, Vaezi Street, Tehran, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Sasan Mozaffari Nejad
- Department of Microbiology, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
156
|
Abstract
It is hypothesized that several comorbidities increase the severity of COVID-19 symptoms. Cardiovascular disease including hypertension was shown to play a critical role in the severity of COVID-19 infection by affecting the survival of patients with COVID-19. Hypertension and the renin-angiotensin-aldosterone system are involved in increasing vascular inflammation and endothelial dysfunction (ED), and both processes are instrumental in COVID-19. Angiotensin-converting enzyme 2 is an essential component of the renin-angiotensin-aldosterone system and the target receptor that mediates SARS-CoV-2 entry to the cell. This led to speculations that major renin-angiotensin-aldosterone system inhibitors, such as angiotensin receptor blockers and angiotensin-converting enzyme inhibitors might affect the course of the disease, since their administration enhances angiotensin-converting enzyme (ACE)2 expression. An increase in ACE2 activity could reduce angiotensin II concentration in the lungs and mitigate virus-driven lung injury. This could also be associated with a reduction in blood coagulation, which plays a critical role in the pathogenesis of SARS-CoV-2; of note, COVID-19 is now regarded as a disorder of blood clotting. Therefore, there is an urgent need to better understand the effect of targeting ACE2 as a potential treatment for SARS-CoV-2 driven injury, and in alleviating COVID-19 symptoms by reversing SARS-CoV-2-induced excessive coagulation and fatalities. Ongoing therapeutic strategies that include recombinant human ACE2 and anti-spike monoclonal antibodies are essential for future clinical practice in order to better understand the effect of targeting ED in COVID-19.
Collapse
Affiliation(s)
- Jalil Daher
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli PO Box 100, Lebanon
| |
Collapse
|
157
|
Jashari R, Van Esbroeck M, Vanhaebost J, Micalessi I, Kerschen A, Mastrobuoni S. The risk of transmission of the novel coronavirus (SARS-CoV-2) with human heart valve transplantation: evaluation of cardio-vascular tissues from two consecutive heart donors with asymptomatic COVID-19. Cell Tissue Bank 2021; 22:665-674. [PMID: 33687611 PMCID: PMC7941121 DOI: 10.1007/s10561-021-09913-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
We report on two living donors of explanted hearts while receiving heart transplantation that tested positive for SARS-CoV-2 on the day of donation, although clinically asymptomatic. They underwent heart transplantation for ischaemic and hypertrophic obstructive cardiomyopathy, respectively. After evaluation of donor hearts, we cryopreserved and stored two pulmonary valves for clinical application and one aortic valve for research. Light microscopy of myocardium, mitral valve and aortic and pulmonary arterial wall and RT-PCR SARS-CoV-2 test of myocardium, mitral and tricuspid valve and aortic wall for detection of SARS-CoV-2 were performed. Presence of ACE2 in tissues was assessed with immunostaining. Light microscopy revealed a mild eosinophilic myocarditis in the ischemic cardiomyopathy heart, whereas enlarged cardiomyocytes with irregular nucleus and some with cytoplasmic vacuoles in the hypertrophic obstructive cardiomyopathy heart. Aortic and pulmonary wall were histologically normal. Immunostaining revealed diffuse presence of ACE2 in the myocardium of the heart with eosinophilic myocarditis, but only discrete presence in the hypertrophic cardiomyopathy heart. The RT-PCR SARS-CoV-2 test showed no presence of the virus in tested tissues. Despite eosinophilic myocarditis in the ischemic cardiomyopathy heart, no viral traces were found in the myocardium and valve tissues. However, ACE2 was present diffusely in the ischemic cardiomyopathy heart. SARS-CoV-2 could not be detected in the cardiac tissues of these COVID-19 asymptomatic heart donors. In our opinion, clinical application of the valves from these donors presents negligible risk for coronavirus transmission. Nonetheless, considering the uncertainty regarding the risk of virus transmission with the human tissue transplantation, we would not release in any case the pulmonary valve recovered from the eosinophilic myocarditis heart. In contrast, we may consider the release of the pulmonary valve from the dilated cardiomyopathy heart only for a life-threatening situation when no other similar allograft were available.
Collapse
Affiliation(s)
- R Jashari
- European Homograft Bank (EHB), UCL St. Luc, Méridien Site, rue du Méridien 100, 1210, Brussels, Belgium.
| | - M Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Vanhaebost
- Department of Pathology and Legal Medicine, Belgium and Morphology Research Group, Institute of Experimental and Clinical Research, UCL St. Luc, Brussels, Belgium
| | - I Micalessi
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - A Kerschen
- Department of Pathology and Legal Medicine, Belgium and Morphology Research Group, Institute of Experimental and Clinical Research, UCL St. Luc, Brussels, Belgium
| | - S Mastrobuoni
- European Homograft Bank (EHB), UCL St. Luc, Méridien Site, rue du Méridien 100, 1210, Brussels, Belgium
| |
Collapse
|
158
|
Zhao Z, Lu K, Mao B, Liu S, Trilling M, Huang A, Lu M, Lin Y. The interplay between emerging human coronavirus infections and autophagy. Emerg Microbes Infect 2021; 10:196-205. [PMID: 33399028 PMCID: PMC7872537 DOI: 10.1080/22221751.2021.1872353] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 02/08/2023]
Abstract
ABSTRACT Following outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2002 and 2012, respectively, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third highly pathogenic emerging human coronavirus (hCoV). SARS-CoV-2 is currently causing the global coronavirus disease 2019 (COVID-19) pandemic. CoV infections in target cells may stimulate the formation of numerous double-membrane autophagosomes and induce autophagy. Several studies provided evidence that hCoV infections are closely related to various cellular aspects associated with autophagy. Autophagy may even promote hCoV infection and replication. However, so far it is unclear how hCoV infections induce autophagy and whether the autophagic machinery is necessary for viral propagation. Here, we summarize the most recent advances concerning the mutual interplay between the autophagic machinery and the three emerging hCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 and the model system mouse hepatitis virus. We also discuss the applicability of approved and well-tolerated drugs targeting autophagy as a potential treatment against COVID-19.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
159
|
Wang K, Gheblawi M, Nikhanj A, Munan M, MacIntyre E, O'Neil C, Poglitsch M, Colombo D, Del Nonno F, Kassiri Z, Sligl W, Oudit GY. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2021; 79:365-378. [PMID: 34844421 DOI: 10.1161/hypertensionaha.121.18295] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Mahmoud Gheblawi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Matt Munan
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.)
| | - Erika MacIntyre
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Respirology, Department of Medicine, University of Alberta, Edmonton, Canada. (E.M.)
| | - Conar O'Neil
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | | | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| |
Collapse
|
160
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
161
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
162
|
Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021; 8:745789. [PMID: 34901061 PMCID: PMC8652056 DOI: 10.3389/fmed.2021.745789] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
163
|
Navaratnarajah CK, Pease DR, Halfmann PJ, Taye B, Barkhymer A, Howell KG, Charlesworth JE, Christensen TA, Kawaoka Y, Cattaneo R, Schneider JW. Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. J Virol 2021; 95:e0136821. [PMID: 34613786 PMCID: PMC8610601 DOI: 10.1128/jvi.01368-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.
Collapse
Affiliation(s)
| | - David R. Pease
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Biruhalem Taye
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alison Barkhymer
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle G. Howell
- Mayo Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Jon E. Charlesworth
- Mayo Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jay W. Schneider
- Discovery Engine/Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
164
|
Cardiovascular complications after COVID-19 in chronic kidney disease, dialysis and kidney transplant patients. Int Urol Nephrol 2021; 54:1551-1563. [PMID: 34811606 PMCID: PMC8608362 DOI: 10.1007/s11255-021-03059-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) is associated with increased mortality in patients with chronic kidney disease (CKD), dialysis patients and kidney transplant recipients (KTR). Cardiovascular complications, such as sudden arrhythmias, thromboembolic events, coronary events, cardiomyopathies and heart failure, may present in about 10–20% of patients with COVID-19. Patients with CKD, dialysis patients and KTR are all at increased cardiovascular risk and present with more cardiovascular complications after COVID-19 compared to the general population. During the pandemic, health care giving has rapidly changed by reducing elective outpatient reviews, which may refrain these high-risk patients from the appropriate management of their medical conditions, further increasing cardiovascular risk. Importantly, acute kidney injury (AKI) is another common complication of severe COVID-19 and associates with increased mortality. A large proportion of the AKI patients need renal replacement treatment, while 30% of them may not present renal function recovery and remain dialysis-dependent after discharge, thereby having potentially increased future cardiovascular risk. This review summarizes current knowledge regarding the cardiovascular events and mortality in patients with CKD or undergoing hemodialysis and in KTR.
Collapse
|
165
|
El-Arif G, Farhat A, Khazaal S, Annweiler C, Kovacic H, Wu Y, Cao Z, Fajloun Z, Khattar ZA, Sabatier JM. The Renin-Angiotensin System: A Key Role in SARS-CoV-2-Induced COVID-19. Molecules 2021; 26:6945. [PMID: 34834033 PMCID: PMC8622307 DOI: 10.3390/molecules26226945] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was first identified in Eastern Asia (Wuhan, China) in December 2019. The virus then spread to Europe and across all continents where it has led to higher mortality and morbidity, and was declared as a pandemic by the World Health Organization (WHO) in March 2020. Recently, different vaccines have been produced and seem to be more or less effective in protecting from COVID-19. The renin-angiotensin system (RAS), an essential enzymatic cascade involved in maintaining blood pressure and electrolyte balance, is involved in the pathogenicity of COVID-19, since the angiotensin-converting enzyme II (ACE2) acts as the cellular receptor for SARS-CoV-2 in many human tissues and organs. In fact, the viral entrance promotes a downregulation of ACE2 followed by RAS balance dysregulation and an overactivation of the angiotensin II (Ang II)-angiotensin II type I receptor (AT1R) axis, which is characterized by a strong vasoconstriction and the induction of the profibrotic, proapoptotic and proinflammatory signalizations in the lungs and other organs. This mechanism features a massive cytokine storm, hypercoagulation, an acute respiratory distress syndrome (ARDS) and subsequent multiple organ damage. While all individuals are vulnerable to SARS-CoV-2, the disease outcome and severity differ among people and countries and depend on a dual interaction between the virus and the affected host. Many studies have already pointed out the importance of host genetic polymorphisms (especially in the RAS) as well as other related factors such age, gender, lifestyle and habits and underlying pathologies or comorbidities (diabetes and cardiovascular diseases) that could render individuals at higher risk of infection and pathogenicity. In this review, we explore the correlation between all these risk factors as well as how and why they could account for severe post-COVID-19 complications.
Collapse
Affiliation(s)
- George El-Arif
- Department of Biology, Faculty of Sciences 2, Campus Fanar, Lebanese University, Jdeidet El-Matn 1202, Lebanon; (G.E.-A.); (A.F.)
| | - Antonella Farhat
- Department of Biology, Faculty of Sciences 2, Campus Fanar, Lebanese University, Jdeidet El-Matn 1202, Lebanon; (G.E.-A.); (A.F.)
| | - Shaymaa Khazaal
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon;
| | - Cédric Annweiler
- Research Center on Autonomy and Longevity, Department of Geriatric Medicine and Memory Clinic, University Hospital, Laboratoire de Psychologie des Pays de la Loire, LPPL EA 4638, SFR Confluences, University of Angers, 44312 Angers, France;
| | - Hervé Kovacic
- Institute of NeuroPhysiopathology, Aix-Marseille University, CNRS, INP, 13385 Marseille, France;
| | - Yingliang Wu
- Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Zhijian Cao
- Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.W.); (Z.C.)
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon;
- Azm Center for Research in Biotechnology and Its Applications, Laboratory of Applied Biotechnology (LBA3B), EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Ziad Abi Khattar
- Department of Biology, Faculty of Sciences 2, Campus Fanar, Lebanese University, Jdeidet El-Matn 1202, Lebanon; (G.E.-A.); (A.F.)
- Laboratory of Georesources, Geosciences and Environment (L2GE), Microbiology/Tox-Ecotoxicology Team, Faculty of Sciences 2, Lebanese University, Jdeidet El-Matn 1202, Lebanon
| | - Jean Marc Sabatier
- Institute of NeuroPhysiopathology, Aix-Marseille University, CNRS, INP, 13385 Marseille, France;
| |
Collapse
|
166
|
Natarelli L, Virgili F, Weber C. SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. Int J Mol Sci 2021; 22:12243. [PMID: 34830125 PMCID: PMC8620514 DOI: 10.3390/ijms222212243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is characterized by important respiratory impairments frequently associated with severe cardiovascular damages. Moreover, patients with pre-existing comorbidity for cardiovascular diseases (CVD) often present a dramatic increase in inflammatory cytokines release, which increases the severity and adverse outcomes of the infection and, finally, mortality risk. Despite this evident association at the clinical level, the mechanisms linking CVD and COVID-19 are still blurry and unresolved. Noncoding RNAs (ncRNAs) are functional RNA molecules transcribed from DNA but usually not translated into proteins. They play an important role in the regulation of gene expression, either in relatively stable conditions or as a response to different stimuli, including viral infection, and are therefore considered a possible important target in the design of specific drugs. In this review, we introduce known associations and interactions between COVID-19 and CVD, discussing the role of ncRNAs within SARS-CoV-2 infection from the perspective of the development of efficient pharmacological tools to treat COVID-19 patients and taking into account the equally dramatic associated consequences, such as those affecting the cardiovascular system.
Collapse
Affiliation(s)
- Lucia Natarelli
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany;
| | - Fabio Virgili
- Research Center for Food and Nutrition, Council for Agricultural Research and Economics, 00178 Rome, Italy;
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), 800336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Institute for Stroke and Dementia Research, 81377 Munich, Germany
| |
Collapse
|
167
|
Ionescu M, Stoian AP, Rizzo M, Serban D, Nuzzo D, Mazilu L, Suceveanu AI, Dascalu AM, Parepa IR. The Role of Endothelium in COVID-19. Int J Mol Sci 2021; 22:11920. [PMID: 34769350 PMCID: PMC8584762 DOI: 10.3390/ijms222111920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
The 2019 novel coronavirus, known as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19), is causing a global pandemic. The virus primarily affects the upper and lower respiratory tracts and raises the risk of a variety of non-pulmonary consequences, the most severe and possibly fatal of which are cardiovascular problems. Data show that almost one-third of the patients with a moderate or severe form of COVID-19 had preexisting cardiovascular comorbidities such as diabetes mellitus, obesity, hypertension, heart failure, or coronary artery disease. SARS-CoV2 causes hyper inflammation, hypoxia, apoptosis, and a renin-angiotensin system imbalance in a variety of cell types, primarily endothelial cells. Profound endothelial dysfunction associated with COVID-19 can be the cause of impaired organ perfusion that may generate acute myocardial injury, renal failure, and a procoagulant state resulting in thromboembolic events. We discuss the most recent results on the involvement of endothelial dysfunction in the pathogenesis of COVID-19 in patients with cardiometabolic diseases in this review. We also provide insights on treatments that may reduce the severity of this viral infection.
Collapse
Affiliation(s)
- Mihaela Ionescu
- Cardiology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania; (M.I.); (I.R.P.)
| | - Anca Pantea Stoian
- Diabetes, Nutrition, and Metabolic Diseases Department, Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania; (A.P.S.); (M.R.)
| | - Manfredi Rizzo
- Diabetes, Nutrition, and Metabolic Diseases Department, Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania; (A.P.S.); (M.R.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Dragos Serban
- Forth Surgery Department, Emergency University Hospital Bucharest and Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Domenico Nuzzo
- Italian National Research Council, Institute for Research and Biomedical Innovation (CNR-IRIB), 90100 Palermo, Italy
| | - Laura Mazilu
- Oncology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania;
| | - Andra Iulia Suceveanu
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania;
| | - Ana Maria Dascalu
- Department of Ophthalmology, Emergency University Hospital Bucharest and Faculty of Medicine, Carol Davila University, 050474 Bucharest, Romania;
| | - Irinel Raluca Parepa
- Cardiology Department, Faculty of Medicine, Ovidius University of Constanţa, 900527 Constanţa, Romania; (M.I.); (I.R.P.)
| |
Collapse
|
168
|
Karim MM, Sultana S, Sultana R, Rahman MT. Possible Benefits of Zinc supplement in CVD and COVID-19 Comorbidity. J Infect Public Health 2021; 14:1686-1692. [PMID: 34649043 PMCID: PMC8489295 DOI: 10.1016/j.jiph.2021.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
As far as comorbidity is concerned, cardiovascular diseases (CVD) appear to be accounted for the highest prevalence, severity, and fatality among COVID 19 patients. A wide array of causal links connecting CVD and COVID-19 baffle the overall prognosis as well as the efficacy of the given therapeutic interventions. At the centre of this puzzle lies ACE2 that works as a receptor for the SARS-CoV-2, and functional expression of which is also needed to minimize vasoconstriction otherwise would lead to high blood pressure. Furthermore, SARS-CoV-2 infection seems to reduce the functional expression of ACE2. Given these circumstances, it might be advisable to consider a treatment plan for COVID-19 patients with CVD in an approach that would neither aggravate the vasodeleterious arm of the renin-angiotensinogen-aldosterone system (RAAS) nor compromise the vasoprotective arm of RAAS but is effective to minimize or if possible, inhibit the viral replication. Given the immune modulatory role of Zn in both CVD and COVID-19 pathogenesis, zinc supplement to the selective treatment plan for CVD and COVID-19 comorbid conditions, to be decided by the clinicians depending on the cardiovascular conditions of the patients, might greatly improve the therapeutic outcome. Notably, ACE2 is a zinc metalloenzyme and zinc is also known to inhibit viral replication.
Collapse
Affiliation(s)
| | - Shahnaz Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka 1205, Bangladesh
| | - Rokaia Sultana
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), New Elephant Road, Dhaka 1205, Bangladesh
| | - Mohammad Tariqur Rahman
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia,Corresponding author
| |
Collapse
|
169
|
Xu B, Li G, Guo J, Ikezoe T, Kasirajan K, Zhao S, Dalman RL. Angiotensin-converting enzyme 2, coronavirus disease 2019, and abdominal aortic aneurysms. J Vasc Surg 2021; 74:1740-1751. [PMID: 33600934 PMCID: PMC7944865 DOI: 10.1016/j.jvs.2021.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the current, world-wide coronavirus disease 2019 (COVID-19) pandemic. Angiotensin-converting enzyme 2 (ACE2) is the SARS-CoV-2 host entry receptor for cellular inoculation and target organ injury. We reviewed ACE2 expression and the role of ACE2-angiotensin 1-7-Mas receptor axis activity in abdominal aortic aneurysm (AAA) pathogenesis to identify potential COVID-19 influences on AAA disease pathogenesis. METHODS A comprehensive literature search was performed on PubMed, National Library of Medicine. Key words included COVID-19, SARS-CoV-2, AAA, ACE2, ACE or angiotensin II type 1 (AT1) receptor inhibitor, angiotensin 1-7, Mas receptor, age, gender, respiratory diseases, diabetes, and autoimmune diseases. Key publications on the epidemiology and pathogenesis of COVID-19 and AAAs were identified and reviewed. RESULTS All vascular structural cells, including endothelial and smooth muscle cells, fibroblasts, and pericytes express ACE2. Cigarette smoking, diabetes, chronic obstructive pulmonary disease, lupus, certain types of malignancies, and viral infection promote ACE2 expression and activity, with the magnitude of response varying by sex and age. Genetic deficiency of AT1 receptor, or pharmacologic ACE or AT1 inhibition also increases ACE2 and its catalytic product angiotensin 1-7. Genetic ablation or pharmacologic inhibition of ACE2 or Mas receptor augments, whereas ACE2 activation or angiotensin 1-7 treatment attenuates, progression of experimental AAAs. The potential influences of SARS-CoV-2 on AAA pathogenesis include augmented ACE-angiotensin II-AT1 receptor activity resulting from decreased reciprocal ACE2-angiotensin 1-7-Mas activation; increased production of proaneurysmal mediators stimulated by viral spike proteins in ACE2-negative myeloid cells or by ACE2-expressing vascular structural cells; augmented local or systemic cross-talk between viral targeted nonvascular, nonleukocytic ACE2-expressing cells via ligand recognition of their cognate leukocyte receptors; and hypoxemia and increased systemic inflammatory tone experienced during severe COVID-19 illness. CONCLUSIONS COVID-19 may theoretically influence AAA disease through multiple SARS-CoV-2-induced mechanisms. Further investigation and clinical follow-up will be necessary to determine whether and to what extent the COVID-19 pandemic will influence the prevalence, progression, and lethality of AAA disease in the coming decade.
Collapse
Affiliation(s)
- Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| | - Gang Li
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Toru Ikezoe
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | | | - Sihai Zhao
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
170
|
Arcari L, Luciani M, Cacciotti L, Pucci M, Musumeci MB, Pietropaolo L, Spuntarelli V, Negro A, Camastra G, Bentivegna E, Marazzi G, Sighieri C, Ansalone G, Santini C, Martelletti P, Volpe M, De Biase L. Coronavirus disease 2019 in patients with cardiovascular disease: clinical features and implications on cardiac biomarkers assessment. J Cardiovasc Med (Hagerstown) 2021; 22:832-839. [PMID: 34482324 DOI: 10.2459/jcm.0000000000001252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Previous cardiovascular disease (CVD) and myocardial involvement are common in coronavirus disease-19 (COVID-19). We investigated relationships between CVD, cardiac biomarkers and outcome in COVID-19. METHODS We analyzed n = 252 patients from a multicenter study and provided comparison according to the presence or absence of underlying CVD. Cardiac biomarkers high-sensitivity Troponin [upper reference of normality (URN) 35 pg/ml for Troponin I and 14 pg/ml for Troponin T] and natriuretic peptides (Nt-pro-B-type natriuretic peptide, URN 300 pg/ml and B-type natriuretic peptide, URN 100 pg/ml) were both available in n = 136. RESULTS Mean age was 69 ± 16 years (56% men, 31% with previous CVD). Raised hs-Troponin and natriuretic peptides were detected in 36 and 50% of the cases respectively. Age, chronic obstructive pulmonary disease, hemoglobin, hs-Troponin and natriuretic peptides were independently associated with underlying CVD (P < 0.05 for all). Compared with the normal biomarkers subgroups, patients with isolated hs-Troponin elevation had higher in-hospital mortality (31 vs. 4%, P < 0.05), similar CVD prevalence (15 vs. 11%) and trend towards higher D-dimer (930 vs. 397 ng/ml, P = 0.140). Patients with both biomarkers elevated had higher age, D-dimer, CVD and in-hospital mortality prevalence compared with other subgroups (all P < 0.05 for trend). Outcome analysis revealed previous CVD [model 1: OR 2.72 (95% CI 1.14-6.49), P = 0.024. model 2: OR 2.65 (95% CI 1.05-6.71), P = 0.039], hs-Troponin (log10) [OR 2.61 (95% CI 1.21-5.66), P = 0.015] and natriuretic peptides (log10) [OR 5.84 (95%CI 2.43-14), P < 0.001] to be independently associated with in-hospital mortality. CONCLUSION In our population, previous CVD was part of a vulnerable phenotype including older age, comorbidities, increased cardiac biomarkers and worse prognosis. Patients with isolated increase in hs-Troponin suffered higher mortality rates despite low prevalence of CVD, possibly explained by higher COVID-19-related systemic involvement.
Collapse
Affiliation(s)
- Luca Arcari
- Covid-Cardiology Unit, Madre Giuseppina Vannini Hospital
| | | | - Luca Cacciotti
- Covid-Cardiology Unit, Madre Giuseppina Vannini Hospital
| | | | - Maria Beatrice Musumeci
- Cardiology Unit, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome
| | | | | | | | | | | | - Giuseppe Marazzi
- Covid Unit, Heart Failure Unit, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Cinzia Sighieri
- Covid-Internal Medicine Unit, Madre Giuseppina Vannini Hospital
| | | | - Claudio Santini
- Covid-Internal Medicine Unit, Madre Giuseppina Vannini Hospital
| | | | - Massimo Volpe
- Cardiology Unit, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome
| | - Luciano De Biase
- Covid Unit, Heart Failure Unit, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
171
|
Rathore SS, Rojas GA, Sondhi M, Pothuru S, Pydi R, Kancherla N, Singh R, Ahmed NK, Shah J, Tousif S, Baloch UT, Wen Q. Myocarditis associated with Covid-19 disease: A systematic review of published case reports and case series. Int J Clin Pract 2021; 75:e14470. [PMID: 34235815 DOI: 10.1111/ijcp.14470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Covid-19 is an extremely contagious illness caused by the severe acute respiratory syndrome (SARS-CoV-2) virus. The cardiac involvement in such a public health emergency disease has not been well studied and a conflicting evidence exists on this issue. OBJECTIVE This systematic review article aimed to compile and illustrate clinical characteristics, diagnostic findings, management, and outcomes manifesting in myocarditis linked with Covid-19. METHODS A literature search was accomplished for published eligible articles with MEDLINE/PubMed and Embase databases. All eligible case reports and case series were included from around the world without any language restrictions. For this review, inclusion criteria were laboratory-confirmed SARS-CoV-2 infection cases reporting a diagnosis of acute myocarditis. RESULTS Data from 41 studies describing myocarditis in 42 Covid-19 patients was obtained. The median age of these patients was 43.4 years, with 71.4% of them being men. Fever was the most prevalent presenting symptoms seen in 57% of patients. Hypertension was the most pervasive comorbidity accompanying these patients. Cardiac biomarkers troponin and brain natriuretic peptide (BNP) were raised in almost 90% and 87% of patients, respectively. Electrocardiogram findings were nonspecific and included ST-segment and T-wave changes. Echocardiogram commonly showed left ventricular systolic dysfunction with increased heart size. Cardiac magnetic resonance imaging (CMRI) exhibited myocardial edema and injury. The most prevalent histopathological feature appreciated was diffuse lymphocytic inflammatory infiltrates. Antivirals and corticosteroids were the most frequently used medications. About 38% of patients also needed vasopressor assistance. Out of 42 patients, 67% recovered, and eight died. CONCLUSION Because of the risk of a sudden worsening of patients conditions and myocarditis association with considerable mortality and morbidity, a knowledge of this cardiac complication of Covid-19 disease is crucial for healthcare professionals.
Collapse
Affiliation(s)
| | - Gianpier Alonzo Rojas
- Internal Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- Scientific society of medical students, Lima, Perú
| | - Manush Sondhi
- Internal Medicine, Kasturba Medical College, Manipal, India
| | | | - Reshma Pydi
- Internal Medicine, Andhra Medical College, Visakhapatnam, India
| | | | - Romil Singh
- Department of Critical Care, Mayo Clinic, Rochester, MN, USA
| | | | - Jill Shah
- Internal Medicine, Tambov State University named after G.R. Derzhavin, Tambov, Russia
| | - Sohaib Tousif
- Internal Medicine, Ziauddin Medical University, Karachi, Pakistan
| | | | - Qingqing Wen
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
172
|
Bhasin V, Carrillo M, Ghosh B, Moin D, Maglione TJ, Kassotis J. Reversible complete heart block in a patient with coronavirus disease 2019. Pacing Clin Electrophysiol 2021; 44:1939-1943. [PMID: 34289133 PMCID: PMC8446976 DOI: 10.1111/pace.14321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 01/15/2023]
Abstract
Patients infected with novel coronavirus (SARS-CoV-2) can present with a variety of arrhythmias. We report an unusual case of reversible complete heart block (CHB) in the setting of acute coronavirus disease 2019 (COVID-19). A 23-year-old male with a history of Hodgkin's Lymphoma presented with dizziness and syncope. He was found to be in CHB associated with hypotension requiring a transvenous pacemaker. Methylprednisolone and remdesivir were started with rapid resolution of the CHB. Further study is needed to determine the mechanism of CHB in COVID-19. This case underscores the importance of including COVID-19 in one's differential diagnosis for acute CHB.
Collapse
Affiliation(s)
- Varun Bhasin
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - MaryKate Carrillo
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Bobby Ghosh
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Danyaal Moin
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Theodore J. Maglione
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - John Kassotis
- Division of Cardiology, Department of MedicineRutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| |
Collapse
|
173
|
Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. Int J Mol Sci 2021; 22:11662. [PMID: 34769093 PMCID: PMC8584039 DOI: 10.3390/ijms222111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and hypertension. Angiotensin-converting enzyme 2 (ACE2) and angiotensin-converting enzyme I (ACE) are two main components of the RAS that play a major role in blood pressure homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 as a receptor to enter cells. Despite some controversies, numerous studies have reported a significant association between the use of ACE inhibitors and reduced risk of COVID-19. In our previous studies, we produced and identified peptide sequences present in whey hydrolysates exhibiting high ACE inhibitory activity. Therefore, the aim of this work is to obtain an improved understanding of the function of these natural peptides as RAS inhibitors and investigate their potential therapeutic role in the COVID-19 pandemic. The molecular interactions between peptides IPP, LIVTQ, IIAE, LVYPFP, and human ACE2 were assessed by employing a molecular docking approach. The results show that natural whey-derived peptides have a dual inhibitory action against both ACE and ACE2. This dual activity distinguishes these ACE inhibitory peptides from synthetic drugs, such as Captopril and Lisinopril which were not shown to inhibit ACE2 activity, and may represent a potential strategy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yara Chamata
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kim G. Jackson
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kimberly A. Watson
- Health and Life Sciences Building, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK;
| | - Paula Jauregi
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| |
Collapse
|
174
|
Mizera L, Borst O. COVID-19 and the Incidence of Acute Myocardial Injury. Hamostaseologie 2021; 41:356-364. [PMID: 34695852 DOI: 10.1055/a-1554-6416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular manifestations are frequent in COVID-19 infection and are predictive of adverse outcomes. Elevated cardiac biomarkers are common findings in patients with cardiovascular comorbidities and severe COVID-19 infection. Troponin, inflammatory and thrombotic markers may also improve risk prediction in COVID-19. In our comprehensive review, we provide an overview of the incidence, potential mechanisms and outcome of acute cardiac injury in COVID-19. Thereby, we discuss coagulation abnormalities in sepsis and altered immune response as contributing factors favoring myocardial injury. We further highlight the role of endothelial damage in the pathophysiological concepts. Finally, observational studies addressing the incidence of myocardial infarction during COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Lars Mizera
- Department of Cardiology and Angiology, University of Tuebingen, Tuebingen, Germany
| | - Oliver Borst
- Department of Cardiology and Angiology, University of Tuebingen, Tuebingen, Germany.,DFG Heisenberg Group Thrombocardiology
| |
Collapse
|
175
|
Zhang Y, Wang L, Wei S. Research Status of SARS-CoV-2 on Cardiovascular System Injury in Children. Braz J Cardiovasc Surg 2021; 36:685-690. [PMID: 33355798 PMCID: PMC8597604 DOI: 10.21470/1678-9741-2020-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 11/04/2022] Open
Abstract
In December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to break out in the Hubei Province of China. At present, the epidemic situation in the world continues and the number of confirmed cases is increasing every day. A recent review showed that children under the age of ten years make up about 1% of the infected population, which cannot be ignored. Studies have shown that after SARS-CoV-2 infection children can show clinical symptoms of cardiovascular system damage in addition to typical respiratory symptoms. This article mainly discusses the possible damage of SARS-CoV-2 to children's cardiovascular system and related mechanisms.
Collapse
Affiliation(s)
- Yuhai Zhang
- Department of Cardiothoracic Surgery, Baotou Clinical Medical College affiliated to Inner Mongolia Medical University, Baotou, Inner Mongolia, People’s Republic of China
| | - Liang Wang
- Department of Cardiothoracic Surgery, Baotou Clinical Medical College affiliated to Inner Mongolia Medical University, Baotou, Inner Mongolia, People’s Republic of China
| | - Shixiong Wei
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
176
|
Hebbard C, Lee B, Katare R, Garikipati VNS. Diabetes, Heart Failure, and COVID-19: An Update. Front Physiol 2021; 12:706185. [PMID: 34721055 PMCID: PMC8554151 DOI: 10.3389/fphys.2021.706185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared a pandemic by the WHO in March 2020. As of August 2021, more than 220 countries have been affected, accounting for 211,844,613 confirmed cases and 4,432,802 deaths worldwide. A new delta variant wave is sweeping through the globe. While previous reports consistently have demonstrated worse prognoses for patients with existing cardiovascular disease than for those without, new studies are showing a possible link between SARS-CoV-2 infection and an increased incidence of new-onset heart disease and diabetes, regardless of disease severity. If this trend is true, with hundreds of millions infected, the disease burden could portend a potentially troubling increase in heart disease and diabetes in the future. Focusing on heart failure in this review, we discuss the current data at the intersection of COVID, heart failure, and diabetes, from clinical findings to potential mechanisms of how SARS-CoV-2 infection could increase the incidence of those pathologies. Additionally, we posit questions for future research areas regarding the significance for patient care.
Collapse
Affiliation(s)
- Carleigh Hebbard
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brooke Lee
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Rajesh Katare
- Department of Physiology–HeartOtago, University of Otago, Dunedin, New Zealand
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
177
|
Dixit AK, Giri N, Singh S. Exploring the scope of homoeopathy in combating the unfortunate consequences of post-COVID-19 survivors based on non-COVID conditions: a narrative review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021:jcim-2021-0200. [PMID: 34704429 DOI: 10.1515/jcim-2021-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The long-term consequences of COVID-19 survivors care and post-coronavirus infection are not yet well understood. The review aims to see whether homoeopathy can help COVID-19 survivors recover from its consequences and improve their quality of life. CONTENT A systematic search of published articles for post-COVID sequelae and the impact of Homoeopathy were conducted. For the literature search, the major electronic bio-medical database PubMed/MEDLINE was used. In addition, supplementary searches were conducted through the references of those published articles. SUMMARY A total of 113 records were identified of which 61 studies included for this review. Homoeopathy is effective in the treatment of mental disorders including anxiety and depressive disorder (ADD), some research studies have found, although systematic reviews disagree. Likewise, some medical societies denounce homoeopathy for pain management; other literature shows that it can be used to treat pain effectively. Homoeopathy can aid in the treatment of cardiovascular diseases, as Crataegus, a homoeopathic medication, was found to be just as effective as a standard angiotensin-converting enzyme (ACE) inhibitor and diuretic treatment for minor cardiac insufficiency. The outcomes for Chronic Fatigue Syndrome (CFS), Influenza, and Acute Respiratory Tract Infections (ARTIs) are also promising. OUTLOOK Based on the results of homoeopathy in non-COVID conditions, it can be thought of in the management of post-COVID-19 outcomes. Consequently, we propose that while investigating post-COVID-19 patient rehabilitation, homoeopathic management may be included as part of the follow-up route and as much data as possible in the context of homoeopathy should be collected, so that in future, the role of homoeopathy in dealing with it can be better demonstrated.
Collapse
Affiliation(s)
| | - Nibha Giri
- State Homoeopathic Dispensary, Jakhanian, Ghazipur, Uttar Pradesh, India
| | - Shishir Singh
- Department of Paediatrics, National institute of Homoeopathy, Kolkata, West Bengal, India
| |
Collapse
|
178
|
Ahmad I, Pawara R, Surana S, Patel H. The Repurposed ACE2 Inhibitors: SARS-CoV-2 Entry Blockers of Covid-19. Top Curr Chem (Cham) 2021; 379:40. [PMID: 34623536 PMCID: PMC8498772 DOI: 10.1007/s41061-021-00353-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
The highly infectious disease COVID-19 is induced by SARS-coronavirus 2 (SARS-CoV-2), which has spread rapidly around the globe and was announced as a pandemic by the World Health Organization (WHO) in March 2020. SARS-CoV-2 binds to the host cell's angiotensin converting enzyme 2 (ACE2) receptor through the viral surface spike glycoprotein (S-protein). ACE2 is expressed in the oral mucosa and can therefore constitute an essential route for entry of SARS-CoV-2 into hosts through the tongue and lung epithelial cells. At present, no effective treatments for SARS-CoV-2 are yet in place. Blocking entry of the virus by inhibiting ACE2 is more advantageous than inhibiting the subsequent stages of the SARS-CoV-2 life cycle. Based on current published evidence, we have summarized the different in silico based studies and repurposing of anti-viral drugs to target ACE2, SARS-CoV-2 S-Protein: ACE2 and SARS-CoV-2 S-RBD: ACE2. This review will be useful to researchers looking to effectively recognize and deal with SARS-CoV-2, and in the development of repurposed ACE2 inhibitors against COVID-19.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Rahul Pawara
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, 425405, India.
| |
Collapse
|
179
|
Mousavizadeh L, Soltani R, Abedini K, Ghasemi S. The Relation of the Viral Structure of SARS-CoV2, High-Risk Condition, and Plasma Levels of IL-4, IL-10, and IL-15 in COVID-19 Patients compared to SARS and MERS Infections. Curr Mol Med 2021; 22:584-593. [PMID: 34607539 DOI: 10.2174/1566524021666211004110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has high mortality due to the widespread infection and the strong immune system reaction. Interleukins (ILs) are among the main immune factors contributing to the deterioration of the immune response and the formation of cytokine storms in coronavirus disease 2019 (COVID-19) infections. INTRODUCTION This review article investigated the relationship between virus structure, risk factors, and patient plasma interleukin levels in infections caused by the coronavirus family. METHOD The keywords "interleukin," "coronavirus structure," "plasma," and "risk factors" were the main words searched to find a relationship among different interleukins, coronavirus structures, and risk factors in ISI, PUBMED, SCOPUS, and Google Scholar databases. RESULT Patients with high-risk conditions with independent panels of immune system markers are more susceptible to death caused by SARS-CoV2. IL-4, IL-10, and IL-15 are probably secreted at different levels in patients with coronavirus infections despite the similarity of inflammatory markers during coronavirus infections. SARS-CoV2 and SARS-CoV increase the secretion of IL-4 in the Middle East respiratory syndrome coronavirus (MERS-CoV) infection, while it remains unchanged in MERS-CoV infection. MERS-CoV infection demonstrates increased IL-10 levels. However, IL-10 levels increase during SARS-CoV infection, and different levels are recorded in SARS-CoV2. MERS-CoV increases IL-15 secretion while its levels remain unchanged in SARS-CoV2. CONCLUSION In conclusion, the different structures of SARS-CoV2, such as length of spike or nonstructural proteins (NSPs), and susceptibility of patients based on their risk factors may lead to differences in immune marker secretion and pathogenicity. Therefore, identifying and controlling interleukin levels can play a significant role in controlling the symptoms and the development of individual-specific treatments.
Collapse
Affiliation(s)
- Leila Mousavizadeh
- Department of Virus-Host Interaction, Heinrich-Pette-Institut (HPI), Martinistrasse 52, 20251 Hamburg. Germany
| | - Ramin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Kosar Abedini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
180
|
Bae HJ, Cho HJ, Lee CH, Bae MH, Park HS, Jung BC, Shin DG, Cho Y, Hwang J, Han S, Park KH, Jang SY, Lee YS. Electrocardiographic Manifestations in Patients with COVID-19: Daegu in South Korea. Korean Circ J 2021; 51:851-862. [PMID: 34595853 PMCID: PMC8484995 DOI: 10.4070/kcj.2021.0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
As COVID-19 spreads worldwide, cardiac injury in patients infected with COVID-19 becomes a significant concern. Thus, this study investigates the impact of several electrocardiogram parameters and disease severity in COVID-19 patients. The deceased patients showed increased dispersion of QTc and Tpe-c compared with surviving patients (78.2±41.1 vs. 40.8±24.6 ms and 60.2±37.3 vs 40.8±24.5 ms, both p<0.05). The QTc dispersion of more than 56.1 ms could predict the mortality in multivariate analysis (Odd ratio 8.06, 95% Confidence Interval 2.843–25.750). A prolonged QTc dispersion could be an independent predictable factor of mortality. Background and Objectives As the coronavirus disease 2019 (COVID-19) spreads worldwide, cardiac injury in patients infected with COVID-19 becomes a significant concern. Thus, this study investigates the impact of several electrocardiogram (ECG) parameters and disease severity in COVID-19 patients. Methods Seven medical centers in Daegu admitted 822 patients with COVID-19 between February and April 2020. This study examined 267 patients among them who underwent an ECG test and evaluated their biochemical parameters like C-reactive protein (CRP), log N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), cardiac enzyme, and ECG parameters (heart rate, PR interval, QRS interval, T inversion, QT interval, and Tpe [the interval between peak to end in a T wave]). Results Those patients were divided into 3 groups of mild (100 patients), moderate (89 patients), and severe (78 patients) according to clinical severity score. The level of CRP, log NT-proBNP, and creatinine kinase-myocardial band were significantly increased in severe patients. Meanwhile, severe patients exhibited prolonged QT intervals (QTc) and Tpe (Tpe-c) compared to mild or moderate patients. Moreover, deceased patients (58; 21.7%) showed increased dispersion of QTc and Tpe-c compared with surviving patients (78.2±41.1 vs. 40.8±24.6 ms and 60.2±37.3 vs. 40.8±24.5 ms, both p<0.05, respectively). The QTc dispersion of more than 56.1 ms could predict the mortality in multivariate analysis (odd ratio, 11.55; 95% confidence interval, 3.746–42.306). Conclusions COVID-19 infections could involve cardiac injuries, especially cardiac repolarization abnormalities. A prolonged QTc dispersion could be an independent predictable factor of mortality.
Collapse
Affiliation(s)
- Han-Joon Bae
- Division of Cardiology, Daegu Catholic University College of Medicine, Daegu, Korea
| | - Hyun Jun Cho
- Division of Cardiology, Daegu Fatima General Hospital, Daegu, Korea
| | - Chan-Hee Lee
- Division of Cardiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Myung Hwan Bae
- Division of Cardiology, Kyungpook National University, Daegu, Korea
| | - Hyoung-Seob Park
- Division of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Byung Chun Jung
- Division of Cardiology, Daegu Fatima General Hospital, Daegu, Korea
| | - Dong-Gu Shin
- Division of Cardiology, Yeungnam University College of Medicine, Daegu, Korea
| | - Yongkeun Cho
- Division of Cardiology, Kyungpook National University, Daegu, Korea
| | - Jongmin Hwang
- Division of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Seongwook Han
- Division of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Kyu-Hwan Park
- Division of Cardiology, Daegu Veterans Hospital, Daegu, Korea
| | - Se Yong Jang
- Division of Cardiology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Young Soo Lee
- Division of Cardiology, Daegu Catholic University College of Medicine, Daegu, Korea.
| |
Collapse
|
181
|
Kim KS, Iwanami S, Oda T, Fujita Y, Kuba K, Miyazaki T, Ejima K, Iwami S. Incomplete antiviral treatment may induce longer durations of viral shedding during SARS-CoV-2 infection. Life Sci Alliance 2021; 4:e202101049. [PMID: 34344719 PMCID: PMC8340032 DOI: 10.26508/lsa.202101049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
The duration of viral shedding is determined by a balance between de novo infection and removal of infected cells. That is, if infection is completely blocked with antiviral drugs (100% inhibition), the duration of viral shedding is minimal and is determined by the length of virus production. However, some mathematical models predict that if infected individuals are treated with antiviral drugs with efficacy below 100%, viral shedding may last longer than without treatment because further de novo infections are driven by entry of the virus into partially protected, uninfected cells at a slower rate. Using a simple mathematical model, we quantified SARS-CoV-2 infection dynamics in non-human primates and characterized the kinetics of viral shedding. We counterintuitively found that treatments initiated early, such as 0.5 d after virus inoculation, with intermediate to relatively high efficacy (30-70% inhibition of virus replication) yield a prolonged duration of viral shedding (by about 6.0 d) compared with no treatment.
Collapse
Affiliation(s)
- Kwang Su Kim
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takafumi Oda
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhisa Fujita
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Taiga Miyazaki
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
182
|
Huang J, Gao J, Zhu W, Feng R, Liu Q, Chen X, Huang J, Yang Z, Lin X, Zhang Z, Lin Y. Indicators and prediction models for the severity of Covid-19. Int J Clin Pract 2021; 75:e14571. [PMID: 34170611 PMCID: PMC8420422 DOI: 10.1111/ijcp.14571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Coronavirus disease 2019 (Covid-19) is outbreaking globally. We aimed to analyse the clinical characteristics, cardiac injury, electrocardiogram and computed tomography (CT) features of patients confirmed Covid-19 and explored the prediction models for the severity of Covid-19. METHODS A retrospective and single-centre study enrolled 98 laboratory-confirmed Covid-19 patients. Clinical data, electrocardiogram and CT features were collected and analysed using Statistical Package for the Social Sciences software. RESULTS There were 46 males and 52 females, with a median age of 44 years, categorised into three groups, including mild, moderate and severe/critical Covid-19. The rate of abnormal electrocardiograms in severe/critical group (79%) was significantly higher than that in the mild group (17%) (P = .027), which (r = 0.392, P = .005) positively related to the severity of Covid-19 (OR: 5.71, 95% CI: 0.45-3.04, P = .008). Age older than 60 years old, comorbidities, whether had symptoms on admission, fatigue, CT features, laboratory test results such as platelet count, lymphocyte cell count, eosinophil cell count, CD3+ cell count, CD4+ cell count, CD8+ cell count, the ratio of albumin/globulin decreased and D-dimer, C-reactive protein (CRP), B-type natriuretic peptide (BNP), cardiac troponin I (cTnI) elevated were the risk factors for the increased severity of Covid-19. The logistic model, adjusted by age, lobular involvement score and lymphocyte cell count, could be applied for assessing the severity of Covid-19 (AUC, 0.903; Sensitivity, 90.9%; Specificity, 78.1%). CONCLUSIONS Age >60 years old, chronic comorbidities, lymphocytopoenia and lobular involvement score were associated with the Covid-19 severity. The inflammation induced by Covid-19 caused myocardial injury with elevated BNP and cTnI level and abnormal electrocardiograms.
Collapse
Affiliation(s)
- Jiana Huang
- The Six Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jiebing Gao
- The Cardiovascular CenterDepartment of Cardiology and RadiologyInterventional Medical CenterGuangdong Provincial Key Laboratory of Biomedical ImagingGuangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Wenliang Zhu
- Department of PhysiologyThe School of Medicine of Jinan UniversityGuangzhouChina
| | - Ruiling Feng
- Department of OncologyThe First Affiliated Hospital of Shantou UniversityShantouChina
| | - Qianru Liu
- Department of PhysiologyThe School of Medicine of Jinan UniversityGuangzhouChina
| | - Xiumin Chen
- Department of PhysiologyThe School of Medicine of Jinan UniversityGuangzhouChina
| | - Jingmin Huang
- Department of PhysiologyThe School of Medicine of Jinan UniversityGuangzhouChina
| | - Zhe Yang
- The Cardiovascular CenterDepartment of Cardiology and RadiologyInterventional Medical CenterGuangdong Provincial Key Laboratory of Biomedical ImagingGuangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Xiufang Lin
- The Cardiovascular CenterDepartment of Cardiology and RadiologyInterventional Medical CenterGuangdong Provincial Key Laboratory of Biomedical ImagingGuangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Zuoquan Zhang
- The Cardiovascular CenterDepartment of Cardiology and RadiologyInterventional Medical CenterGuangdong Provincial Key Laboratory of Biomedical ImagingGuangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| | - Yubi Lin
- The Cardiovascular CenterDepartment of Cardiology and RadiologyInterventional Medical CenterGuangdong Provincial Key Laboratory of Biomedical ImagingGuangdong Provincial Engineering Research Center of Molecular ImagingThe Fifth Affiliated HospitalSun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
183
|
Nakamura Y, Katano H, Nakajima N, Sato Y, Suzuki T, Sekizuka T, Kuroda M, Izutani Y, Morimoto S, Maruyama J, Koie M, Kitamura T, Ishikura H. SARS-CoV-2 is localized in cardiomyocytes: a postmortem biopsy case. Int J Infect Dis 2021; 111:43-46. [PMID: 34384897 PMCID: PMC8351278 DOI: 10.1016/j.ijid.2021.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/16/2022] Open
Abstract
A 72-year-old patient was admitted to the intensive care unit due to acute respiratory distress syndrome caused by COVID-19. On day 20, the patient experienced shock. The electrocardiogram showed ST segment elevation in leads V3-V6 and severe left ventricular dysfunction with an ejection fraction of 35%-40%. The left ventricle showed basal hypokinesis and apical akinesis, while the creatine kinase level was normal, indicating Takotsubo cardiomyopathy. On day 24, the patient died of multiple organ failure. In post-mortem biopsy, SARS-CoV-2 antigen was detected in cardiomyocytes by immunostaining. Moreover, SARS-CoV-2 RNA was detected in heart tissue. We need to further analyse the direct link between SARS-CoV-2 and cardiomyocytes.
Collapse
Affiliation(s)
- Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Yoshito Izutani
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Shinichi Morimoto
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Junichi Maruyama
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Megumi Koie
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Taisuke Kitamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
184
|
Touyz RM, Boyd MO, Guzik T, Padmanabhan S, McCallum L, Delles C, Mark PB, Petrie JR, Rios F, Montezano AC, Sykes R, Berry C. Cardiovascular and Renal Risk Factors and Complications Associated With COVID-19. CJC Open 2021; 3:1257-1272. [PMID: 34151246 PMCID: PMC8205551 DOI: 10.1016/j.cjco.2021.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Marcus O.E. Boyd
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Linsay McCallum
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - John R. Petrie
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Robert Sykes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation, Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
185
|
Neshar DR. Understanding and management of epidemic disease: A Tibetan Medicine perspective. J Ayurveda Integr Med 2021; 12:743-750. [PMID: 34756634 PMCID: PMC8642642 DOI: 10.1016/j.jaim.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 04/10/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dorjee Rapten Neshar
- Tibetan Medical Centre, 295, 5th Main Mahalakshmi Layout, Bangalore, 560086, India.
| |
Collapse
|
186
|
Onohuean H, Al-kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Batiha GES. Covid-19 and development of heart failure: mystery and truth. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2013-2021. [PMID: 34480616 PMCID: PMC8417660 DOI: 10.1007/s00210-021-02147-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (Covid-19) is a novel worldwide pandemic caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During Covid-19 pandemic, socioeconomic deprivation, social isolation, and reduced physical activities may induce heart failure (HF), destabilization, and cause more complications. HF appears as a potential hazard due to SARS-CoV-2 infection, chiefly in elderly patients with underlying comorbidities. In reality, the expression of cardiac ACE2 is implicated as a target point for SARS-CoV-2-induced acute cardiac injury. In SARS-CoV-2 infection, like other febrile illnesses, high blood viscosity, exaggerated pro-inflammatory response, multisystem inflammatory syndrome, and endothelial dysfunction-induced coagulation disorders may increase risk of HF development. Hypoxic respiratory failure, as in pulmonary edema, severe acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) may affect heart hemodynamic stability due to the development of pulmonary hypertension. Indeed, Covid-19-induced HF could be through the development of cytokine storm, characterized by high proliferation pro-inflammatory cytokines. In cytokine storm-mediated cardiac dysfunction, there is a positive correlation between levels of pro-inflammatory cytokine and myocarditis-induced acute cardiac injury biomarkers. Therefore, Covid-19-induced HF is more complex and related from a molecular background in releasing pro-inflammatory cytokines to the neuro-metabolic derangements that together affect cardiomyocyte functions and development of HF. Anti-heart failure medications, mainly digoxin and carvedilol, have potent anti-SARS-CoV-2 and anti-inflammatory properties that may mitigate Covid-19 severity and development of HF. In conclusion, SARS-CoV-2 infection may lead to the development of HF due to direct acute cardiac injury or through the development of cytokine storms, which depress cardiomyocyte function and cardiac contractility. Anti-heart failure drugs, mainly digoxin and carvedilol, may attenuate severity of HF by reducing the infectivity of SARS-CoV-2 and prevent the development of cytokine storms in severely affected Covid-19 patients.
Collapse
Affiliation(s)
- Hope Onohuean
- Department of Pharmacology and Toxicology, Biopharmaceutics Unit, School of Pharmacy, Kampala International University, Western-Campus, Kampala, Uganda
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511 Egypt
| |
Collapse
|
187
|
Tsyganova EV, Glukhoedova NV, Zhilenkova AS, Fedoseeva TI, Iushchuk EN, Smetneva NS. COVID-19 and features of cardiovascular involvement. TERAPEVT ARKH 2021; 93:1091-1099. [DOI: 10.26442/00403660.2021.09.201036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023]
Abstract
The article provides an overview of current information on the pathogenesis of COVID-19 and organ-specific lesions developing in this disease. The data on inflammation and its biochemical markers, on the features of coagulopathy, endothelial damage and microthrombosis are presented in detail. Particular attention is paid to the role of receptors for angiotensin converting enzyme type 2 and transmembrane serine protease type 2 in the development of organ-specific lesions in COVID-19. The pathogenesis of damage to the cardiovascular system is considered in detail with the presentation of data from foreign literature on changes in the myocardium and the author's results of transthoracic echocardiographic examination in patients who have undergone COVID-19.
Collapse
|
188
|
Bobescu E, Marceanu LG, Covaciu A, Vladau LA. Thrombosis, an important piece in the COVID-19 puzzle: From pathophysiology to therapy. Anatol J Cardiol 2021; 25:601-608. [PMID: 34498590 DOI: 10.5152/anatoljcardiol.2021.475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A lot of data about coronavirus disease 2019 (COVID-19) have been already published; however, these still form only a part of the pandemic puzzle. Once we have all the pieces of the puzzle, we will be able to successfully treat this disease with its multiple challenges. COVID-19 has a high thrombogenic potential. In this study, we aimed to review published data about COVID-19 associated thrombosis from pathophysiology to treatment and the role in patient evolution. We searched for articles and studies published online through MEDLINE/PubMed database, Google Scholar, ScienceDirect, Wiley Online Library, and Nature Public Health Emergency Collection. We found numerous articles regarding COVID-19 infection but selected only those focused on thrombosis. D-dimers have a predictive value in identifying thrombosis and a high level correlates with the severity of the infection and death. Most patients who were on chronic anticoagulant therapy before contracting the virus had a better prognosis. Heparin has other favorable effects such as a direct antiviral and anti-inflammatory effect in addition to its anticoagulant effect. COVID-19 infections are frequently complicated by thrombotic pathology. High plasma level of D-dimers is a predictive factor for severe prognosis, and the recommended anticoagulant, associated with low mortality, is heparin followed by a direct oral anticoagulant. Randomized studies in large groups of patients and therapeutic guidelines are still needed on this subject.
Collapse
Affiliation(s)
- Elena Bobescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov; Brasov- Romania;Department of Cardiology, Clinical County Emergency Hospital Brasov; Brasov-Romania
| | - Luigi Geo Marceanu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov; Brasov- Romania
| | - Alexandru Covaciu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov; Brasov- Romania;Department of Cardiology, Clinical County Emergency Hospital Brasov; Brasov-Romania
| | - Larisa Alexandra Vladau
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov; Brasov- Romania;Department of Cardiology, Clinical County Emergency Hospital Brasov; Brasov-Romania
| |
Collapse
|
189
|
Rezq S, Huffman AM, Basnet J, Yanes Cardozo LL, Romero DG. Cardiac and Renal SARS-CoV-2 Viral Entry Protein Regulation by Androgens and Diet: Implications for Polycystic Ovary Syndrome and COVID-19. Int J Mol Sci 2021; 22:ijms22189746. [PMID: 34575910 PMCID: PMC8470275 DOI: 10.3390/ijms22189746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
The susceptibility and the severity of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with hyperandrogenism, obesity, and preexisting pulmonary, metabolic, renal, and cardiac conditions. Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with obesity, hyperandrogenism, and cardiometabolic dysregulations. We analyzed cardiac, renal, circulatory, and urinary SARS-CoV-2 viral entry proteins (ACE2, TMPRSS2, TMPRSS4, furin, cathepsin L, and ADAM17) and androgen receptor (AR) expression, in a peripubertal androgen exposure model of PCOS. Peripubertal female mice were treated with dihydrotestosterone (DHT) and low (LFD) or high (HFD) fat diet for 90 days. HFD exacerbated DHT-induced increase in body weight, fat mass, and cardiac and renal hypertrophy. In the heart, DHT upregulated AR protein in both LFD and HFD, ACE2 in HFD, and ADAM17 in LFD. In the kidney, AR protein expression was upregulated by both DHT and HFD. Moreover, ACE2 and ADAM17 were upregulated by DHT in both diets. Renal TMPRSS2, furin, and cathepsin L were upregulated by DHT and differentially modulated by the diet. DHT upregulated urinary ACE2 in both diets, while neither treatment modified serum ACE2. Renal AR mRNA expression positively correlated with Ace2, Tmprss2, furin, cathepsin L, and ADAM17. Our findings suggest that women with PCOS could be a population with a high risk of COVID-19-associated cardiac and renal complications. Furthermore, our study suggests that weight loss by lifestyle modifications (i.e., diet) could potentially mitigate COVID-19-associated deleterious cardiorenal outcomes in women with PCOS.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Alexandra M. Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Jelina Basnet
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA; (S.R.); (A.M.H.); (J.B.); (L.L.Y.C.)
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Women’s Health Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Cardio Renal Research Center, University of Mississippi Medical Center, 2500 N, State Street, Jackson, MS 39216, USA
- Correspondence: ; Tel.: +1-601-984-1523; Fax: +1-601-984-1501
| |
Collapse
|
190
|
Hosse C, Büttner L, Fleckenstein FN, Hamper CM, Jonczyk M, Scholz O, Aigner A, Böning G. CT-Based Risk Stratification for Intensive Care Need and Survival in COVID-19 Patients-A Simple Solution. Diagnostics (Basel) 2021; 11:diagnostics11091616. [PMID: 34573957 PMCID: PMC8465083 DOI: 10.3390/diagnostics11091616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated a simple semi-quantitative (SSQ) method for determining pulmonary involvement in computed tomography (CT) scans of COVID-19 patients. The extent of lung involvement in the first available CT was assessed with the SSQ method and subjectively. We identified risk factors for the need of invasive ventilation, intensive care unit (ICU) admission and for time to death after infection. Additionally, the diagnostic performance of both methods was evaluated. With the SSQ method, a 10% increase in the affected lung area was found to significantly increase the risk for need of ICU treatment with an odds ratio (OR) of 1.68 and for invasive ventilation with an OR of 1.35. Male sex, age, and pre-existing chronic lung disease were also associated with higher risks. A larger affected lung area was associated with a higher instantaneous risk of dying (hazard ratio (HR) of 1.11) independently of other risk factors. SSQ measurement was slightly superior to the subjective approach with an AUC of 73.5% for need of ICU treatment and 72.7% for invasive ventilation. SSQ assessment of the affected lung in the first available CT scans of COVID-19 patients may support early identification of those with higher risks for need of ICU treatment, invasive ventilation, or death.
Collapse
Affiliation(s)
- Clarissa Hosse
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
| | - Laura Büttner
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
- Correspondence:
| | - Florian Nima Fleckenstein
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Christina Maria Hamper
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
| | - Martin Jonczyk
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Oriane Scholz
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
| | - Annette Aigner
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Georg Böning
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.H.); (F.N.F.); (C.M.H.); (M.J.); (O.S.); (G.B.)
| |
Collapse
|
191
|
Sobh E, Reihan MS, Hifnawy TMS, Abdelsalam KG, Awad SS, Mahmoud NMH, Sindi NA, Alhadrami HA. Cardiovascular system and coronavirus disease-2019 (COVID-19): mutual injuries and unexpected outcomes. Egypt Heart J 2021; 73:77. [PMID: 34478001 PMCID: PMC8414463 DOI: 10.1186/s43044-021-00202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cardiovascular system involvement in coronavirus disease-2019 (COVID-19) has gained great interest in the scientific community. MAIN BODY Several studies reported increased morbidity and mortality among COVID-19 patients who had comorbidities, especially cardiovascular diseases like hypertension and acute coronary syndrome (ACS). COVID-19 may be associated with cardiovascular complications as arrhythmia, myocarditis, and thromboembolic events. We aimed to illustrate the interactions of COVID-19 disease and the cardiovascular system and the consequences on clinical decision as well as public health. CONCLUSIONS COVID-19 has negative consequences on the cardiovascular system. A high index of suspicion should be present to avoid poor prognosis of those presenting with unusual presentation.
Collapse
Affiliation(s)
- Eman Sobh
- Chest Diseases Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Medina, Saudi Arabia.
| | - Muhammad Saad Reihan
- Cardiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
- Alghad International College of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Tamer M S Hifnawy
- Public Health and Community Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Khloud Gamal Abdelsalam
- Biochemistry Unit, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Sohaila Sabry Awad
- Independent Researcher, Bachelor Degree of Biochemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Nariman A Sindi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani A Alhadrami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agent Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
192
|
Karnik M, Beeraka NM, Uthaiah CA, Nataraj SM, Bettadapura ADS, Aliev G, Madhunapantula SV. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Mol Neurobiol 2021; 58:4535-4563. [PMID: 34089508 PMCID: PMC8179092 DOI: 10.1007/s12035-021-02399-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
Collapse
Affiliation(s)
- Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
| | - Chinnappa A Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Suma M Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Anjali Devi S Bettadapura
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, San Antonio, TX, #330, USA
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| |
Collapse
|
193
|
Azu OO, Olojede SO, Lawal SK, Oseni SO, Rennie CO, Offo U, Naidu ECS. Novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection: Microbiologic perspectives and anatomic considerations for sanctuary sites. J Infect Public Health 2021; 14:1237-1246. [PMID: 34455307 PMCID: PMC8378066 DOI: 10.1016/j.jiph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction A significant chunk of global life – the economy, sports, aviation, academic, and entertainment activities – has significantly been affected by the ravaging outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) with devastating consequences on morbidity and mortality in many countries of the world. Methods This review utilized search engines such as google scholar, PubMed, ResearchGate, and web of science to retrieve articles and information using keywords like “Coronavirus”, “SARS-CoV-2”, “COVID-19”, “Origin of coronavirus and SARS-CoV-2”, “microbiology of coronavirus”, “microbiology of SARS-CoV-2”, COVID-19”, “Coronavirus reservoir sites”, “Anatomic sanctuary sites and SARS-CoV-2”, biological barriers and coronavirus”, biological barrier and SARS-CoV-2”. Results While this pandemic has caught the global scientific community at its lowest level of preparedness, it has inadvertently created a unified and wholesome approach towards developing potential vaccine (s) candidates by escalating clinical trial protocols in many countries of Europe, China and the United States. Interestingly, viral pathobiology continues to be an evolving aspect that potentially shows that the management of the current outbreak may largely depend on the discovery of a vaccine as the administration of known antiviral drugs are proving to offer some respite. Unfortunately, discontinuation and longtime administration of these drugs have been implicated in endocrine, reproductive and neurological disorders owing to the development of pathological lesions at anatomical sanctuary sites such as the brain and testis, as well as the presence of complex biological barriers that permit the entry of viruses but selective to the entrance of chemical substances and drugs. Conclusion This review focuses on the microbiologic perspectives and importance of anatomical sanctuary sites in the possible viral rebound or reinfection into the system and their implications in viral re-entry and development of reproductive and neurological disorders in COVID-19 patients.
Collapse
Affiliation(s)
- Onyemaechi O Azu
- Department of Anatomy, School of Medicine, University of Namibia, Private Bag, Windhoek, 13301, Namibia.
| | - Samuel O Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Sodiq K Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Saheed O Oseni
- Department of Biological Sciences, Florida Atlantic University, Davie, FL 33314, USA
| | - Carmen O Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Ugochukwu Offo
- Department of Pre-Clinical Sciences, University of Limpopo, South Africa
| | - Edwin C S Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| |
Collapse
|
194
|
Ishikura H, Maruyama J, Hoshino K, Matsuoka Y, Yano M, Arimura T, Katano H, Kato S, Kitamura T, Nakamura Y. Coronavirus disease (COVID-19) associated delayed-onset fulminant myocarditis in patient with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. J Infect Chemother 2021; 27:1760-1764. [PMID: 34446351 PMCID: PMC8358135 DOI: 10.1016/j.jiac.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
A healthy 35-year-old man was admitted to a rural hospital with coronavirus disease (COVID-19). During 14 days of hospitalization, he had no symptoms and was not given supplemental oxygen. About 3 weeks after discharge, he was re-admitted to the same hospital with new-onset continuous fever and general weakness. At the time of his second admission, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RT-PCR was performed on a retro-nasal swab and the result was negative. Four days after admission, the patient was transferred to our intensive care unit (ICU) following deterioration of his respiratory and haemodynamic conditions, where he received mechanical ventilation, intra-aortic balloon pumping, and veno-arterial extracorporeal membrane oxygenation. A nasopharyngeal swab was obtained again at ICU admission, but RT-PCR was negative for SARS-CoV-2. All antibody titres measured against other viruses were low. Blood cultures were negative, and no bacteria were observed in sputum samples. However, SARS-CoV-2 RNA was detected by RT-PCR from sections obtained by myocardial biopsy. The patient's final diagnosis was delayed-onset SARS-CoV-2-induced fulminant myocarditis (FM). We strongly suggested that one of the proposed mechanisms of COVID-19-related myocardial injury will be the direct invasion of SARS-CoV-2 into cardiomyocytes even if delayed-onset. And this is the first case of delayed-onset FM in which diagnosis of active myocarditis was proven by pathological examination following endomyocardial biopsy and SARS-CoV-2 was detected in the myocardium by RT-PCR.
Collapse
Affiliation(s)
- Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Junichi Maruyama
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Kota Hoshino
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yuta Matsuoka
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Masaya Yano
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Tadaaki Arimura
- Department of Internal Medicine, Cardiology, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Seiya Kato
- Division of Pathology, Saiseikai Fukuoka General Hospital, 1-3-46 Tenjin, Chuo-ku, Fukuoka, 810-0001, Japan.
| | - Taisuke Kitamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
195
|
Henningsen MJ, Khatam-Lashgari A, Olsen KB, Jacobsen C, Brøchner CB, Banner J. Translational deep phenotyping of deaths related to the COVID-19 pandemic: protocol for a prospective observational autopsy study. BMJ Open 2021; 11:e049083. [PMID: 34452963 PMCID: PMC8406463 DOI: 10.1136/bmjopen-2021-049083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The COVID-19 pandemic is an international emergency with an extreme socioeconomic impact and a high mortality and disease burden. The COVID-19 outbreak is neither fully understood nor fully pictured. Autopsy studies can help understand the pathogenesis of COVID-19 and has already resulted in better treatment of patients. Structured and systematic autopsy of COVID-19-related deaths will enhance the mapping of pathophysiological pathways, not possible in the living. Furthermore, it provides an opportunity to envision factors translationally for the purpose of disease prevention in this and future pandemics. This is the protocol for an autopsy study that offers an umbrella for deep and diverse investigations of COVID-19-related deaths, including a systematic investigation of 'long' COVID-19 by means of extensive and systematic tissue sampling. METHODS AND ANALYSIS A COVID-19-specific autopsy algorithm has been created to cover all cases undergoing clinical or forensic autopsy in Denmark. The algorithm describes advanced tissue sampling and a translational analytical follow-up for deep phenotyping. The translational approach covers registry data, postmortem imaging, gross autopsy findings, microscopic organ changes, postmortem toxicology, postmortem biochemical investigation, microbiological profiling and immunological status at the time of death, and future research projects covering genetics and epigenetics on an organ level. ETHICS AND DISSEMINATION This study has been approved by the Regional Ethics Committee of the Region of Greater Copenhagen (No: H-20078436) and the Danish Data Protection Agency (No: 2002-54-1080). Next of kin gave informed consent to research. The study results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER This study is purely observational and, as such, does not meet the criteria of the International Committee of Medical Journal Editors for clinical trials; thus, there is no need for registration in a database of research trials, such as clinical trials. To facilitate cooperation in research, provide transparency on case recruitment for publications to come and to avoid unnecessary duplicate work, we nevertheless wish to publish our protocol.
Collapse
Affiliation(s)
- Mikkel Jon Henningsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Apameh Khatam-Lashgari
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Kristine Boisen Olsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
196
|
Chen Y, Zhang YN, Yan R, Wang G, Zhang Y, Zhang ZR, Li Y, Ou J, Chu W, Liang Z, Wang Y, Chen YL, Chen G, Wang Q, Zhou Q, Zhang B, Wang C. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther 2021; 6:315. [PMID: 34433803 PMCID: PMC8385704 DOI: 10.1038/s41392-021-00740-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution of coronaviruses, such as SARS-CoV-2, makes broad-spectrum coronavirus preventional or therapeutical strategies highly sought after. Here we report a human angiotensin-converting enzyme 2 (ACE2)-targeting monoclonal antibody, 3E8, blocked the S1-subunits and pseudo-typed virus constructs from multiple coronaviruses including SARS-CoV-2, SARS-CoV-2 mutant variants (SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1, and P.1), SARS-CoV and HCoV-NL63, without markedly affecting the physiological activities of ACE2 or causing severe toxicity in ACE2 “knock-in” mice. 3E8 also blocked live SARS-CoV-2 infection in vitro and in a prophylactic mouse model of COVID-19. Cryo-EM and “alanine walk” studies revealed the key binding residues on ACE2 interacting with the CDR3 domain of 3E8 heavy chain. Although full evaluation of safety in non-human primates is necessary before clinical development of 3E8, we provided a potentially potent and “broad-spectrum” management strategy against all coronaviruses that utilize ACE2 as entry receptors and disclosed an anti-coronavirus epitope on human ACE2.
Collapse
Affiliation(s)
- Yuning Chen
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Nan Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China
| | - Renhong Yan
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Guifeng Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhe-Rui Zhang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianxia Ou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wendi Chu
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Liang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongmei Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Li Chen
- Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China.,Fudan University, School of Pharmacy, Shanghai, China
| | - Ganjun Chen
- Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China
| | - Qi Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhou
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, and Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-ScienceChinese Academy of Sciences, Wuhan, Hubei, China. .,Drug Discovery Center for Infectious Disease, Nankai University, Tianjin, China.
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,Dartsbio Pharmaceuticals, Zhongshan, Guangdong, China. .,Fudan University, School of Pharmacy, Shanghai, China.
| |
Collapse
|
197
|
A Patient Infected with SARS-CoV-2 Presenting with Complete Heart Block. Case Rep Cardiol 2021; 2021:5011294. [PMID: 34422414 PMCID: PMC8371649 DOI: 10.1155/2021/5011294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/12/2021] [Accepted: 07/24/2021] [Indexed: 01/21/2023] Open
Abstract
Complete heart block is a rare presentation in a patient with COVID-19 infection that may result when the virus enters the myocardial cell by the angiotensin-converting enzyme-2 receptor. Here, we report a case of forty-nine-year male with COVID-19 with complete heart block (CHB).
Collapse
|
198
|
Shylesh C M S, V S A, S K K, P UD. Renin-angiotensin system modulators in COVID-19 patients with hypertension: friend or foe? Clin Exp Hypertens 2021; 44:1-10. [PMID: 34414841 DOI: 10.1080/10641963.2021.1963070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: ACE2, a component of the non-classic renin-angiotensin system (RAS), acts as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV 2) spike protein, which enables the entry of the virus into the host cells. Non-classical ACE2 is one of two types of ACE2 that has a protective effect on vascular and respiratory cells. RAS modulators like angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are among the first-line treatment for hypertensive patients. An upregulation in ACE2 levels with RAS modulators was observed in few preclinical studies, which raised concerns regarding possible increased infectivity among patients treated with RAS modulators.Method: For shortlisting the outcome effects, open-ended, English-restricted databases, published literature, and various clinical studies performed utilizing RAS modulators in COVID 19 patients were considered. Conclusion: Current evidence reveals no increased risk of COVID-19 infection among hypertensive patients on ACEIs/ARBs compared to other antihypertensive medications. Several studies have demonstrated no detrimental effects of RAS modulators on clinical severity, hospital/intensive care unit stay, ventilation and mortality. Hence, we can conclude that neither ARBs nor ACEIs treatment will cause any side effects or undesirable interactions in COVID-19 infected hypertensive patients.
Collapse
Affiliation(s)
- Shakhi Shylesh C M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041
| |
Collapse
|
199
|
Liu T, Wu D, Yan W, Wang X, Zhang X, Ma K, Chen H, Zeng Z, Qin Y, Wang H, Xing M, Xu D, Li W, Ni M, Zhu L, Chen L, Chen G, Qi W, Wu T, Yu H, Huang J, Han M, Zhu W, Guo W, Luo X, Chen T, Ning Q. Twelve-month systemic consequences of COVID-19 in patients discharged from hospital: a prospective cohort study in Wuhan, China. Clin Infect Dis 2021; 74:1953-1965. [PMID: 34390330 PMCID: PMC9187317 DOI: 10.1093/cid/ciab703] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/08/2023] Open
Abstract
Background Follow-up study of coronavirus disease 2019 (COVID-19) survivors has rarely been reported. We aimed to investigate longitudinal changes in the characteristics of COVID-19 survivors after discharge. Methods A total of 594 COVID-19 survivors discharged from Tongji Hospital in Wuhan from February 10 to April 30, 2020 were included and followed up until May 17, 2021. Laboratory and radiological findings, pulmonary function tests, electrocardiogram, symptoms and signs were analyzed. Results 257 (51.2%) patients had at least one symptom at 3 months post-discharge, which decreased to 169 (40.0%) and 138 (28.4%) at 6-month and 12-month visit respectively. During follow-up period, insomnia, chest tightness, and fatigue were the most prevalent symptoms. Most laboratory parameters returned to normal, whereas increased incidence of abnormal liver and renal function and cardiovascular injury was evidenced after discharge. Fibrous stripes (213; 42.4%), pleural thickening and adhesions (188; 37.5%) and enlarged lymph nodes (120; 23.9%) were the most common radiographical findings at 3 months post-discharge. The abnormalities of pulmonary function included obstructive, restrictive, and mixed, which were 5.5%, 4.0%, 0.9% at 6 months post, and 1.9%, 4.7%, 0.2% at 12 months. Electrocardiogram abnormalities occurred in 256 (51.0%) patients at 3 months post-discharge, including arrhythmia, ST-T change and conduction block, which increased to 258 (61.1%) cases at 6-month visit and were maintained at high frequency (242;49.8%) at 12-month visit. Conclusions Physiological, laboratory, radiological, or electrocardiogram abnormalities, particularly those related to renal, cardiovascular, and liver functions are common in patients who recovered from coronavirus disease 2019 (COVID-19) up to 12 months post-discharge.
Collapse
Affiliation(s)
- Tingting Liu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Zhang
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilong Chen
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilin Zeng
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- National Medical Center for Major Public Health Events, Wuhan, China.,Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Li
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Ni
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chen
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weipeng Qi
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijing Yu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaquan Huang
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- National Medical Center for Major Public Health Events, Wuhan, China.,Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Guo
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Wuhan, China.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- National Medical Center for Major Public Health Events, Wuhan, China.,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
200
|
Zdanyte M, Rath D. Cardiovascular Risk Assessment in COVID-19. Hamostaseologie 2021; 41:350-355. [PMID: 34380170 DOI: 10.1055/a-1539-8711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 bezeichnet eine der schlimmsten Krisen unserer Generation und stellt (nicht nur) für das Gesundheitssystem eine schwer bewältigbare Herausforderung dar. Mortalität und Morbidität sind im Vergleich zu anderen saisonalen Erkrankungen wie der Influenza deutlich erhöht. COVID-19 bedroht allerdings nicht die gesamte Bevölkerung in gleichem Maße. Hochrisikopatienten sind älter und leiden an kardiovaskulären Erkrankungen wie Bluthochdruck, Diabetes mellitus oder einer koronaren Herzerkrankung. Um das Risiko für einen schweren Erkrankungsverlaufs zu quantifizieren bedarf es einer multimodalen Herangehensweise. Verschiedene Risikostratifizierungssysteme stehen zu Verfügung um ungünstige Verläufe wie Intensivbehandlung oder Gesamtmortalität vorauszusagen. Biomarker wie Troponin-I, D-Dimere und NT pro-BNP kombiniert mit echokardiographischen Parametern wie links- und rechtsventrikulärer Pumpfunktion sowie pulmonalarteriellem Druck können hilfreich sein um Hochrisikopatienten zu identifizieren, die ein intensiviertes Monitoring und eine stringentere Behandlung benötigen. Da kardiovaskuläre Risikofaktoren und Komorbiditäten von großer Bedeutung zur Abschätzung des Verlaufs einer SARS-CoV-2 Infektion sind, könnten alle hospitalisierten COVID-19 Patienten von einer routinemäßigen kardiologischen Betreuung durch ein COVID-19-Heart-Team profitieren. Ein frühzeitiges Erkennen von (kardiovaskulären) Hochrisikopatienten könnte das Management erleichtern sowie die Prognose einer schweren SARS-CoV-2 Infektion verbessern.
Collapse
Affiliation(s)
- Monika Zdanyte
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|