151
|
Harraghy N, Seiler S, Jacobs K, Hannig M, Menger MD, Herrmann M. Advances in in Vitro and in Vivo Models for Studying the Staphylococcal Factors Involved in Implant Infections. Int J Artif Organs 2018; 29:368-78. [PMID: 16705605 DOI: 10.1177/039139880602900406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implant infections due to staphylococci are one of the greatest threats facing patients receiving implant devices. For many years researchers have sought to understand the mechanisms involved in the adherence of the bacterium to the implanted device and the formation of the unique structure, the biofilm, which protects the indwelling bacteria from the host defence and renders them resistant to antibiotic treatment. A major goal has been to develop in vitro and in vivo models that adequately reflect the real-life situation. From the simple microtiter plate assay and scanning electron microscopy, tools for studying adherence and biofilm formation have since evolved to include specialised equipment for studying adherence, flow cell systems, real-time analysis of biofilm formation using reporter gene assays both in vitro and in vivo, and a wide variety of animal models. In this article, we discuss advances in the last few years in selected in vitro and in vivo models as well as future developments in the study of adherence and biofilm formation by the staphylococci.
Collapse
Affiliation(s)
- N Harraghy
- Institute of Medical Microbiology and Hygiene, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
152
|
Costerton JW, Montanaro L, Arciola CR. Biofilm in Implant Infections: Its Production and Regulation. Int J Artif Organs 2018; 28:1062-8. [PMID: 16353112 DOI: 10.1177/039139880502801103] [Citation(s) in RCA: 507] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A significant proportion of medical implants become the focus of a device-related infection, difficult to eradicate because bacteria that cause these infections live in well-developed biofilms. Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacterial adherence and biofilm production proceed in two steps: first, an attachment to a surface and, second, a cell-to-cell adhesion, with pluristratification of bacteria onto the artificial surface. The first step requires the mediation of bacterial surface proteins, the cardinal of which is similar to S. aureus autolysin and is denominated AtlE. In staphylococci the matrix of extracellular polymeric substances of biofilm is a polymer of β-1,6-linked N-acetylglucosamine (PIA), whose synthesis is mediated by the ica operon. Biofilm formation is partially controlled by quorum sensing, an interbacterial communication mechanism dependent on population density. The principal implants that can be compromised by biofilm associated infections are: central venous catheters, heart valves, ventricular assist devices, coronary stents, neurosurgical ventricular shunts, implantable neurological stimulators, arthro-prostheses, fracture-fixation devices, inflatable penile implants, breast implants, cochlear implants, intra-ocular lenses, dental implants. Biofilms play an important role in the spread of antibiotic resistance. Within the high dense bacterial population, efficient horizontal transfer of resistance and virulence genes takes place. In the future, treatments that inhibit the transcription of biofilm controlling genes might be a successful strategy in inhibiting these infections.
Collapse
Affiliation(s)
- J W Costerton
- Center for Biofilms, School of Dentistry, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
153
|
Vadyvaloo V, Otto M. Molecular Genetics of Staphylococcus Epidermidis Biofilms on Indwelling Medical Devices. Int J Artif Organs 2018; 28:1069-78. [PMID: 16353113 DOI: 10.1177/039139880502801104] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen associated with foreign body infections and nosocomial sepsis. The pathogenicity of S. epidermidis is mostly due to its ability to colonize indwelling polymeric devices and form a thick, multilayered biofilm. Biofilm formation is a major problem in treating S. epidermidis infection as biofilms provide significant resistance to antibiotics and to components of the innate host defenses. Various cell surface associated bacterial factors play a role in adherence and accumulation of the biofilm such as the polysaccharide intercellular adhesin and the autolysin AtlE. Furthermore, recent studies have shown that global regulators such as the agr quorum sensing system, the transcriptional regulator sarA and the alternative sigma factor sigB have an important function in the regulation of biofilm formation. Understanding the many complex mechanisms involved in biofilm formation is a key factor in the search for new anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- V Vadyvaloo
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | | |
Collapse
|
154
|
Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus Epidermidis Biofilms by Medicinal Maggot Lucilia Sericata Excretions/Secretions. Int J Artif Organs 2018; 32:555-64. [DOI: 10.1177/039139880903200904] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic infections are commonly associated with biofilms formed by bacteria such as Staphylococcus epidermidis. With the increase in antibiotic resistant bacteria, maggot debridement therapy has been reintroduced for the treatment of chronic wounds. Studies have shown that the excretion/secretions (ES) of Lucilia sericata larvae (maggots) contain many bioactive compounds which may contribute to the efficacy of maggot therapy. The present study evaluates the effect of L. sericata ES on the formation and disruption of S. epidermidis 7457 and 5179-R1 biofilms. These strains employ either polysaccharide intercellular adhesin (PIA) or accumulation associated protein (Aap) for intercellular adhesion. A semiquantitative biofilm assay was used to measure the formation/disruption of S. epidermidis 7457 and 5179-R1 biofilms by ES. ES activity was characterized according to concentration, incubation time and temperature, thermal stability, and size. Immunofluorescence microscopy was used to ascertain the effect of ES on PIA and Aap. In the presence of ES, S. epidermidis 7457 and 5179-R1 nascent bio film formation was inhibited, and pre-formed biofilms disrupted. ES activity was temperature and time dependent, inactivated by heat treatment, and disruption depended on the mechanism of intercellular adhesion. The molecule(s) responsible was >10 kDa in size and appeared to have protease or glucosaminidase activity. ES interferes with S. epidermidis biofilm formation, specifically degrading factors employed in biofilm accumulation, which would increase bacterial susceptibility to antibiotics and the host's immune system. In purified form, ES-factors may have general applicability for the treatment or prevention of chronic biofilm infections caused by staphylococci.
Collapse
Affiliation(s)
- Llinos G. Harris
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea - UK
| | - Alyson Bexfield
- School of the Environment & Society, Swansea University, Swansea - UK
| | - Yamni Nigam
- Centre for Long Term & Chronic Conditions, Institute for Health Research, School of Health Sciences, Swansea University, Swansea - UK
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Clinic Hamburg-Eppendorf, Hamburg University, Hamburg - Germany
| | | | - Dietrich Mack
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea - UK
| |
Collapse
|
155
|
Costerton WJ, Montanaro L, Balaban N, Arciola CR. Prospecting Gene Therapy of Implant Infections. Int J Artif Organs 2018; 32:689-95. [DOI: 10.1177/039139880903200919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or “antigene” molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising.
Collapse
Affiliation(s)
- William J. Costerton
- Center for Genomic Sciences Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania - USA
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| | - Naomi Balaban
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts - USA
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Experimental Pathology Department, University of Bologna, Bologna - Italy
| |
Collapse
|
156
|
Edwards C, Sheppard NN. Prevention, Diagnosis, and Treatment of Implant Infection in the Distal Upper Extremity. J Hand Surg Am 2018; 43:68-74. [PMID: 29174095 DOI: 10.1016/j.jhsa.2017.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/18/2017] [Indexed: 02/02/2023]
Abstract
Implant related infection is relatively unusual in surgery to the hand and distal upper limb. When such infections occur, the consequences can be devastating. We review the latest guidance and research on the prevention, diagnosis, and management of implant-associated infections in the hand and distal upper limb.
Collapse
Affiliation(s)
- Claire Edwards
- Department of Trauma and Orthopaedics, Norwich Hand Unit, Norwich, United Kingdom; Norwich Biofilms Group, University of East Anglia, Norwich, United Kingdom.
| | - Nicholas N Sheppard
- Department of Plastic Surgery, Norfolk and Norwich University Hospitals Foundation Trust, Norwich, United Kingdom
| |
Collapse
|
157
|
Walker T, Canales M, Noimark S, Page K, Parkin I, Faull J, Bhatti M, Ciric L. A Light-Activated Antimicrobial Surface Is Active Against Bacterial, Viral and Fungal Organisms. Sci Rep 2017; 7:15298. [PMID: 29127333 PMCID: PMC5681661 DOI: 10.1038/s41598-017-15565-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Evidence has shown that environmental surfaces play an important role in the transmission of nosocomial pathogens. Deploying antimicrobial surfaces in hospital wards could reduce the role environmental surfaces play as reservoirs for pathogens. Herein we show a significant reduction in viable counts of Staphylococcus epidermidis, Saccharomyces cerevisiae, and MS2 Bacteriophage after light treatment of a medical grade silicone incorporating crystal violet, methylene blue and 2 nm gold nanoparticles. Furthermore, a migration assay demonstrated that in the presence of light, growth of the fungus-like organism Pythium ultimum and the filamentous fungus Botrytis cinerea was inhibited. Atomic Force Microscopy showed significant alterations to the surface of S. epidermidis, and electron microscopy showed cellular aggregates connected by discrete surface linkages. We have therefore demonstrated that the embedded surface has a broad antimicrobial activity under white light and that the surface treatment causes bacterial envelope damage and cell aggregation.
Collapse
Affiliation(s)
- Tim Walker
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, London, UK
| | - Melisa Canales
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, London, UK
| | - Sacha Noimark
- Materials Chemistry Centre, Department of Chemistry, University College London, London, UK
| | - Kristopher Page
- Materials Chemistry Centre, Department of Chemistry, University College London, London, UK
| | - Ivan Parkin
- Materials Chemistry Centre, Department of Chemistry, University College London, London, UK
| | - Jane Faull
- Department of Biological Sciences, Birkbeck College, London, UK
| | - Manni Bhatti
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, London, UK
| | - Lena Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, University College London, London, UK.
| |
Collapse
|
158
|
2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 2017; 14:e503-e551. [PMID: 28919379 DOI: 10.1016/j.hrthm.2017.09.001] [Citation(s) in RCA: 819] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 02/06/2023]
|
159
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
160
|
Parthiban C, Varudharasu D, Shanmugam M, Gopal P, Ragunath C, Thomas L, Nitz M, Ramasubbu N. Structural and functional analysis of de-N-acetylase PgaB from periodontopathogen Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2017; 32:324-340. [PMID: 27706922 PMCID: PMC11471279 DOI: 10.1111/omi.12175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 10/15/2024]
Abstract
The oral pathogen Aggregatibacter actinomycetemcomitans uses pga gene locus for the production of an exopolysaccharide made up of a linear homopolymer of β-1,6-N-acetyl-d-glucosamine (PGA). An enzyme encoded by the pgaB of the pga operon in A. actinomycetemcomitans is a de-N-acetylase, which is used to alter the PGA. The full length enzyme (AaPgaB) and the N-terminal catalytic domain (residues 25-290, AaPgaBN) from A. actinomycetemcomitans were cloned, expressed and purified. The enzymatic activities of the AaPgaB enzymes were determined using 7-acetoxycoumarin-3-carboxylic acid as the substrate. The AaPgaB enzymes displayed significantly lower de-N-acetylase activity compared with the activity of the deacetylase PdaA from Bacillus subtilis, a member of the CE4 family of enzymes. To delineate the differences in the activity and the active site architecture, the structure of AaPgaBN was determined. The AaPgaBN structure has two metal ions in the active site instead of one found in other CE4 enzymes. Based on the crystal structure comparisons among the various CE4 enzymes, two residues, Q51 and R271, were identified in AaPgaB, which could potentially affect the enzyme activity. Of the two mutants generated, Q51E and R271K, the variant Q51E showed enhanced activity compared with AaPgaB, validating the requirement that an activating aspartate residue in the active site is essential for higher activity. In summary, our study provides the first structural evidence for a di-nuclear metal site at the active site of a member of the CE4 family of enzymes, evidence that AaPgaBN is catalytically active and that mutant Q51E exhibits higher de-N-acetylase activity.
Collapse
Affiliation(s)
- C Parthiban
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - D Varudharasu
- Selvam Structure Based Drug Design Laboratory, Selvam College of Technology, Namakkal, Tamilnadu, India
| | - M Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - P Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - C Ragunath
- Scientific Chemical Technologies, Malden, MA, USA
| | - L Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - M Nitz
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - N Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
161
|
Yoshii Y, Okuda KI, Yamada S, Nagakura M, Sugimoto S, Nagano T, Okabe T, Kojima H, Iwamoto T, Kuwano K, Mizunoe Y. Norgestimate inhibits staphylococcal biofilm formation and resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. NPJ Biofilms Microbiomes 2017; 3:18. [PMID: 28758016 PMCID: PMC5522392 DOI: 10.1038/s41522-017-0026-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
Formation of bacterial biofilms on medical devices can cause severe or fatal infectious diseases. In particular, biofilm-associated infections caused by methicillin-resistant Staphylococcus aureus are difficult to eradicate because the biofilm is strongly resistant to antibiotics and the host immune response. There is no effective treatment for biofilm-associated infectionss, except for surgical removal of contaminated medical devices followed by antibiotic therapy. Here we show that norgestimate, an acetylated progestin, effectively inhibits biofilm formation by staphylococcal strains, including methicillin-resistant S. aureus, without inhibiting their growth, decreasing the selective pressure for emergence of resistance. 17-Deacetyl norgestimate, a metabolite of norgestimate, shows much weaker inhibitory activity against staphylococcal biofilm formation, indicating that the acetyl group of norgestimate is important for its activity. Norgestimate inhibits staphylococcal biofilm formation by inhibiting production of polysaccharide intercellular adhesin and proteins in the extracellular matrix. Proteome analysis of S. aureus indicated that norgestimate represses the expression of the cell wall-anchored protein SasG, which promotes intercellular adhesion, and of the glycolytic enzyme enolase, which plays a secondary role in biofilm formation. Notably, norgestimate induces remarkable changes in cell wall morphology, characterized by increased thickness and abnormal rippled septa. Furthermore, norgestimate increases the expression level of penicillin binding protein 2 and resensitizes methicillin-resistant S. aureus to β-lactam antibiotics. These results suggest that norgestimate is a promising lead compound for the development of drugs to treat biofilm-associated infections, as well as for its ability to resensitize methicillin-resistant S. aureus to β-lactam antibiotics. A synthetic molecule related to the hormone progesterone might keep medical devices free of biofilms without promoting antibiotic resistance. Implanted devices that have become contaminated with biofilms generally must be surgically removed prior to treating the underlying infection with antibiotics. Ken-ichi Okuda and colleagues at The Jikei University School of Medicine in Tokyo, with co-workers elsewhere in Japan, found that the synthetic progesterone analog norgestimate inhibits biofilm formation without inhibiting bacterial growth. They regard this selective effect on biofilm formation as a significant advantage, as it reduces the risk of inducing resistance in the targeted bacteria. They demonstrated the effect using staphylococcal bacteria, including the problematic and highly dangerous methicillin-resistant Staphylococcus aureus (MRSA). The research also indicated that norgestimate can resensitize MRSA bacteria to some of the antibiotics they are resistant to.
Collapse
Affiliation(s)
- Yutaka Yoshii
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,Jikei Center for Biofilm Science and Technology, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Ken-Ichi Okuda
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,Jikei Center for Biofilm Science and Technology, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Satomi Yamada
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Mari Nagakura
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,Jikei Center for Biofilm Science and Technology, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Iwamoto
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Yoshimitsu Mizunoe
- Department of Bacteriology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan.,Jikei Center for Biofilm Science and Technology, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461 Japan
| |
Collapse
|
162
|
Abstract
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Collapse
|
163
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
164
|
Yang Y, Thomas J, Li Y, Vilchèze C, Derbyshire KM, Jacobs WR, Ojha AK. Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Mol Microbiol 2017. [PMID: 28628249 DOI: 10.1111/mmi.13734] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most mycobacterial species spontaneously form biofilms, inducing unique growth physiologies and reducing drug sensitivity. Biofilm growth progresses through three genetically programmed stages: substratum attachment, intercellular aggregation and architecture maturation. Growth of Mycobacterium smegmatis biofilms requires multiple factors including a chaperonin (GroEL1) and a nucleoid-associated protein (Lsr2), although how their activities are linked remains unclear. Here it is shown that Lsr2 participates in intercellular aggregation, but substratum attachment of Lsr2 mutants is unaffected, thereby genetically distinguishing these developmental stages. Further, a suppressor mutation in a glycopeptidolipid synthesis gene (mps) that results in hyperaggregation of cells and fully restores the form and functions of Δlsr2 mutant biofilms was identified. Suppression by the mps mutation is specific to Δlsr2; it does not rescue the maturation-deficient biofilms of a ΔgroEL1 mutant, thereby differentiating the process of aggregation from maturation. Gene expression analysis supports a stepwise process of maturation, highlighted by temporally separated, transient inductions of iron and nitrogen import genes. Furthermore, GroEL1 activity is required for induction of nitrogen, but not iron, import genes. Together, the findings begin to define molecular checkpoints during development of mycobacterial biofilms.
Collapse
Affiliation(s)
- Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Joseph Thomas
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keith M Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Howard Hughes Medical Institute, Bronx, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
165
|
Downregulation of Autolysin-Encoding Genes by Phage-Derived Lytic Proteins Inhibits Biofilm Formation in Staphylococcus aureus. Antimicrob Agents Chemother 2017; 61:AAC.02724-16. [PMID: 28289031 DOI: 10.1128/aac.02724-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/06/2017] [Indexed: 12/27/2022] Open
Abstract
Phage-derived lytic proteins are a promising alternative to conventional antimicrobials. One of their most interesting properties is that they do not readily select for resistant strains, which is likely due to the fact that their targets are essential for the viability of the bacterial cell. Moreover, genetic engineering allows the design of new "tailor-made" proteins that may exhibit improved antibacterial properties. One example of this is the chimeric protein CHAPSH3b, which consists of a catalytic domain from the virion-associated peptidoglycan hydrolase of phage vB_SauS-phiIPLA88 (HydH5) and the cell wall binding domain of lysostaphin. CHAPSH3b had previously shown the ability to kill Staphylococcus aureus cells. Here, we demonstrate that this lytic protein also has potential for the control of biofilm-embedded S. aureus cells. Additionally, subinhibitory doses of CHAPSH3b can decrease biofilm formation by some S. aureus strains. Transcriptional analysis revealed that exposure of S. aureus cells to this enzyme leads to the downregulation of several genes coding for bacterial autolysins. One of these proteins, namely, the major autolysin AtlA, is known to participate in staphylococcal biofilm development. Interestingly, an atl mutant strain did not display inhibition of biofilm development when grown at subinhibitory concentrations of CHAPSH3b, contrary to the observations made for the parental and complemented strains. Also, deletion of atl led to low-level resistance to CHAPSH3b and the endolysin LysH5. Overall, our results reveal new aspects that should be considered when designing new phage-derived lytic proteins aimed for antimicrobial applications.
Collapse
|
166
|
Gabrielsen C, Kols NI, Øye C, Bergh K, Afset JE. Characterization of the virulence potential of Staphylococcus condimenti isolated from a patient with severe soft tissue infection. New Microbes New Infect 2017; 18:8-14. [PMID: 28480044 PMCID: PMC5406524 DOI: 10.1016/j.nmni.2017.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
The coagulase-negative bacterium Staphylococcus condimenti and closely related species are commonly isolated from or found in starter cultures of fermented sausage as well as fish and soy sauces, and have traditionally been considered nonpathogenic. Recently, however, a case of catheter-related bacteraemia caused by S. condimenti was reported. In the present study we identified and characterized a strain of S. condimenti isolated from a patient with a severe soft tissue infection, comparing it to S. condimenti and S. carnosus type strains in order to elucidate the virulence potential of the clinical strain. Genome comparison showed high degree of conservation between the clinical strain and the type strain used in food industry, as well as with S. carnosus. The genome of the clinical S. condimenti strain contains few horizontally transferred regions and 37 putative virulence genes, including genes with similarity to leucocidin and genes involved in immune evasion, proinflammatory and cytolytic activity. However, it remains to be tested whether these putative virulence genes are expressed and functional. Although uncommon, S. condimenti may cause severe infection in previously healthy persons.
Collapse
Affiliation(s)
- C Gabrielsen
- Department of Medical Microbiology, Clinic of Laboratory Medicine, Norway
| | - N I Kols
- Department of Medical Microbiology, Clinic of Laboratory Medicine, Norway
| | - C Øye
- Department of Orthopedic Surgery, Clinic of Orthopedy, Rheumatology and Dermatology, St Olavs University Hospital, Norway
| | - K Bergh
- Department of Medical Microbiology, Clinic of Laboratory Medicine, Norway
| | - J E Afset
- Department for Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
167
|
Ma R, Qiu S, Jiang Q, Sun H, Xue T, Cai G, Sun B. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. Int J Med Microbiol 2017; 307:257-267. [PMID: 28416278 DOI: 10.1016/j.ijmm.2017.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is an important pathogen that is capable of forming biofilms on biomaterial surfaces to cause biofilm-associated infections. Autoinducer 2 (AI-2), a universal language for interspecies communication, is involved in a variety of physiological activities, although its exact role in Gram-positive bacteria, especially in S. aureus, is not yet thoroughly characterized. Herein we demonstrate that inactivation of luxS, which encodes AI-2 synthase, resulted in increased biofilm formation and higher polysaccharide intercellular adhesion (PIA) production compared with the wild-type strain in S. aureus NCTC8325. The transcript level of rbf, a positive regulator of biofilm formation, was significantly increased in the luxS mutant. All of the parental phenotypes could be restored by genetic complementation and chemically synthesized 4,5-dihydroxy-2,3-pentanedione, the AI-2 precursor molecule, suggesting that AI-2 has a signaling function to regulate rbf transcription and biofilm formation in S. aureus. Phenotypic analysis revealed that the luxS rbf double mutant produced approximately the same amount of biofilms and PIA as the rbf mutant. In addition, real-time quantitative reverse transcription-PCR analysis showed that the icaA transcript level of the rbf mutant was similar to that of the luxS rbf double mutant. These findings demonstrate that the LuxS/AI-2 system regulates PIA-dependent biofilm formation via repression of rbf expression in S. aureus. Furthermore, we demonstrated that Rbf could bind to the sarX and rbf promoters to upregulate their expression.
Collapse
Affiliation(s)
- Ronghua Ma
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shuwan Qiu
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qiu Jiang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haipeng Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ting Xue
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Cai
- School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| | - Baolin Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China.
| |
Collapse
|
168
|
Jeong DW, Heo S, Lee JH. Safety assessment of Tetragenococcus halophilus isolates from doenjang, a Korean high-salt-fermented soybean paste. Food Microbiol 2017; 62:92-98. [PMID: 27889172 DOI: 10.1016/j.fm.2016.10.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/18/2022]
Abstract
We assessed the safety of 49 Tetragenococcus halophilus strains isolated from doenjang in Korea. Minimum inhibitory concentration assays showed that all strains can be considered as susceptible to ampicillin, erythromycin, penicillin G, tetracycline, and vancomycin, but resistant to ciprofloxacin based on the Enterococcus breakpoint values provided by the European Committee on Antimicrobial Susceptibility testing in 2015. Ciprofloxacin resistance was sufficiently high to consider the potential for acquisition of transmissible determinants. Two strains exhibiting potentially acquired resistance to chloramphenicol and gentamicin, and chloramphenicol alone, were identified. None of the strains exhibited α-hemolytic activity or biofilm formation; two strains exhibited weak β-hemolytic activity. Doenjang isolates produced an average of 3338.6 ppm of tyramine in the laboratory, considerably higher than the levels produced by two reference strains. All of the test strains exhibited similar cadaverine, histamine, and putrescine production patterns. Most T. halophilus strains could grow at a NaCl concentration >18%, exhibited acid production at 15% NaCl, and expressed strain-specific protease and lipase activities. The potential acquisition of transmissible determinants for antibiotic resistance and tyramine production identified in this study necessitate the need for a thorough safety assessment of T. halophilus before it can be considered for use in food fermentation processes.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Sojeong Heo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
169
|
Zapotoczna M, Boksmati N, Donohue S, Bahtiar B, Boland A, Somali HA, Cox A, Humphreys H, O'Gara JP, Brennan M, O'Neill E. Novel anti-staphylococcal and anti-biofilm properties of two anti-malarial compounds: MMV665953 {1-(3-chloro-4-fluorophenyl)-3-(3,4-dichlorophenyl)urea} and MMV665807 {5-chloro-2-hydroxy-N-[3-(trifluoromethyl)phenyl]benzamide}. J Med Microbiol 2017; 66:377-387. [PMID: 28327271 DOI: 10.1099/jmm.0.000446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The treatment of device-related infections is challenging and current anti-microbial compounds have poor anti-biofilm activity. We aimed to identify and characterize novel compounds effective in the eradication of Staphylococcus aureus biofilms. METHODOLOGY Two novel compounds, MMV665953 {1-(3-chloro-4-fluorophenyl)-3-(3,4-dichlorophenyl)urea} and MMV665807{5-chloro-2-hydroxy-N-[3-(trifluoromethyl)phenyl]benzamide}, effective in killing S. aureus biofilms, were identified by screening of the open access 'malaria box' chemical library. The minimum bactericidal concentrations, half-maximal inhibition concentration (IC50) values and minimal biofilm killing concentrations effective in the killing of biofilm were determined against meticillin-resistant S. aureus and meticillin-sensitive S. aureus. Fibrin-embedded biofilms were grown under in vivo-relevant conditions, and viability was measured using a resazurin-conversion assay and confocal microscopy. The potential for the development of resistance and cytotoxicity was also assessed. RESULTS MMV665953 and MMV665807 were bactericidal against S. aureus isolates. The IC50 against S. aureus biofilms was at 0.15-0.58 mg l-1 after 24 h treatment, whereas the concentration required to eradicate all tested biofilms was 4 mg l-1, making the compounds more bactericidal than conventional antibiotics. The cytotoxicity against human keratinocytes and primary endothelial cells was determined as IC50 7.47 and 0.18 mg l-1 for MMV665953, and as 1.895 and 0.076 mg l-1 for MMV665807. Neither compound was haemolytic nor caused platelet activation. MMV665953 and MMV665807 derivatives with reduced cytotoxicity exhibited a concomitant loss in anti-staphylococcal activity. CONCLUSION MMV665953 and MMV665807 are more bactericidal against S. aureus biofilms than currently used anti-staphylococcal antibiotics and represent a valuable structural basis for further investigation in the treatment of staphylococcal biofilm-related infections.
Collapse
Affiliation(s)
- Marta Zapotoczna
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nabila Boksmati
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sinead Donohue
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Baizurina Bahtiar
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Boland
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamzah Al Somali
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alysia Cox
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - James P O'Gara
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Marian Brennan
- Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eoghan O'Neill
- Department of Microbiology, Connolly Hospital, Dublin, Ireland.,Department of Clinical Microbiology, Education and Research Centre, Beaumont Hospital, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
170
|
The Staphylococcus epidermidis gdpS regulates biofilm formation independently of its protein-coding function. Microb Pathog 2017; 105:264-271. [PMID: 28259672 DOI: 10.1016/j.micpath.2017.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
The second messenger cyclic di-guanylate (c-di-GMP) plays an important role in controlling the switch between planktonic and biofilm lifestyles. The synthesis of c-di-GMP is catalyzed by di-guanylate cyclases (DGCs) and the enzymes are characterized by the presence of a conserved GGDEF domain. In the sequenced staphylococcal genomes, gdpS is the only gene encoding a GGDEF domain-containing protein. Previous studies have shown that gdpS contributes to staphylococcal biofilm formation, but its effect remains under debate. In the present study, we deleted gdpS in Staphylococcus epidermidis strain RP62A. Disruption of gdpS in this strain impaired biofilm formation under both static and dynamic flow conditions, suggesting that gdpS act as a positive regulator of biofilm development in this high-biofilm-forming isolate. The predicted translational start site of gdpS in S. epidermidis differs between the Refseq database and the Genbank database. By using site-directed mutagenesis and Western blot analysis, we determined GdpS is translated from the start codon annotated in the Refseq database. In addition, mutation in the GGDEF domain did not affect the ability of gdpS to complement the biofilm defect of the gdpS mutant. Heterologous di-guanylate cyclases expressed in trans failed to complement the gdpS mutant. These results confirmed that gdpS modulates staphylococcal biofilm independently of c-di-GMP signaling pathway. Furthermore, mutations of the start codon did not abolish the capacity of gdpS to enhance biofilm formation. Taken together, these findings indicated that the S. epidermidis gdpS regulates biofilm formation independently of its protein-coding function.
Collapse
|
171
|
A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus. mBio 2017; 8:mBio.02282-16. [PMID: 28143981 PMCID: PMC5285506 DOI: 10.1128/mbio.02282-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA)/poly-N-acetylglucosamine (PNAG)-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148–159, 2016, https://doi.org/10.1111/1348-0421.12359). A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586) and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF) SAOUHSC_2898 (satf2584). Our results suggest that ORF SAOUHSC_2898 (satf2584) and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584) and Ica protein expression in S. aureus. During the search for molecular mechanisms underlying biofilm overproduction of Staphylococcus aureus TF2758, we found a putative transcriptional regulator gene designated rob within a 7-gene cluster showing a high transcriptional expression level by microarray analysis. The deletion of rob in non-biofilm-producing FK300, an rsbU-repaired derivative of NCTC8325-4, significantly increased biofilm elaboration and PIA/PNAG production. The search for a gene(s) in the 7-gene cluster for biofilm elaboration controlled by rob identified ORF SAOUHSC_2898. Besides binding to its own promoter region to control ORF SAOUHSC_2898 expression, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is a new important regulator of biofilm elaboration through its control of SAOUHSC_2898 and Ica protein expression in S. aureus.
Collapse
|
172
|
Felipe V, Morgante CA, Somale PS, Varroni F, Zingaretti ML, Bachetti RA, Correa SG, Porporatto C. Evaluation of the biofilm forming ability and its associated genes in Staphylococcus species isolates from bovine mastitis in Argentinean dairy farms. Microb Pathog 2017; 104:278-286. [PMID: 28131956 DOI: 10.1016/j.micpath.2017.01.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 01/18/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus and coagulase-negative staphylococci (CNS) are important causes of intramammary infection in dairy cattle, and their ability to produce biofilm is considered an important virulence property in the pathogenesis of mastitis. However, the published date on mechanisms and factors involved in infection persistence in the mammary gland remains unclear. The aim of this study was to investigate whether the main Staphylococcus species involved in bovine intramammary infections possess specific characteristics that promote colonization of the udder. We evaluated the biofilm-forming ability and distribution of adhesion- and biofilm-associated genes of Staphylococcus spp. isolated from bovine mastitis infected animals in Argentinean dairy farms. For this purpose, the phenotypic biofilm formation ability of 209 Staphylococcus spp. from bovine mastitis was investigated. All isolates produced biofilm in vitro, being 35,0% and 45,0% of the 127 S. aureus or 51,0% and 29,0% of the 82 CNS strong and moderate biofilm producers respectively. All S. aureus samples were PCR-positive for icaA, icaD, clfA, clfB and fnbpA genes, 76.3% were positive for fnbpB gene and 11.0% were positive for bap gene. In CNS isolates, the positive rates for icaA and icaD were 73.2%, while for clfA, clfB, fnbpA fnbpB and bap genes the percentage were lower. The results demonstrate that in Staphylococcus spp. biofilm formation, the polysaccharide and the adhesion- and biofilm-associated genes are of overall importance on bovine mastitis in Argentina. Therefore, future works should focus on these pathogenic specific factors for the development of more effective therapies of control, being essential to consider the ability of isolates to produce biofilm.
Collapse
Affiliation(s)
- Verónica Felipe
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina; Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Carolina A Morgante
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Paola S Somale
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Florencia Varroni
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - María L Zingaretti
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Romina A Bachetti
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carina Porporatto
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María (UNVM), Villa María, Argentina; Centro de Investigaciones y Transferencia de Villa María (CIT-VM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María, Argentina.
| |
Collapse
|
173
|
Martins KB, Faccioli PY, Bonesso MF, Fernandes S, Oliveira AA, Dantas A, Zafalon LF, Cunha MDLRS. Characteristics of resistance and virulence factors in different species of coagulase-negative staphylococci isolated from milk of healthy sheep and animals with subclinical mastitis. J Dairy Sci 2017; 100:2184-2195. [PMID: 28109594 DOI: 10.3168/jds.2016-11583] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
Abstract
Coagulase-negative staphylococci (CNS) are among the main responsible agents for mastitis in sheep. Cure rates can be reduced due to several causes, such as those related to virulence factors presented by microorganisms. This study aims at characterizing the virulence and resistance factors to antimicrobial agents in different CNS species isolated from sheep milk. After collecting milk samples, the samples were analyzed and the CNS species were identified. After identification, the susceptibility-sensitivity profile was examined using the disk diffusion technique for 10 antimicrobial agents. The DNA was extracted to detect the presence of the mecA gene, biofilm (icaADBC, bap, and bhp) and toxin genes (sea, seb, sec, sed, tst, and luk-PV) by PCR. Samples carrying toxin genes had their expression assessed using the reverse-transcription PCR technique. The biofilm production was assessed using the adherence method on a polystyrene plate. One hundred twelve CNS samples were isolated, 53 (47.3%) from animals with subclinical mastitis and 59 (52.7%) from healthy animals. Drugs tested have shown to be efficient for most CNS samples. The largest resistance percentage of CNS was found for the penicillin (17.0%) and tetracycline (10.7%) and 4 samples carried the mecA gene. As for the biofilm genes, the icaADBC operon was found in 10 (8.9%) samples, the bap gene was found in 16 (14.3%), and the bhp gene was found in 3 (2.7%). In addition, 69 (61.6%) samples produced biofilm. The survey of toxin genes has shown that 70 (62.5%) samples showed some toxin-encoding gene. However, none of the samples has expressed any of the genes from those toxins studied.
Collapse
Affiliation(s)
- Katheryne B Martins
- Department of Microbiology and Immunology, Biosciences Institute, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 510.
| | - Patricia Y Faccioli
- Department of Microbiology and Immunology, Biosciences Institute, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 510
| | - Mariana F Bonesso
- Department of Microbiology and Immunology, Biosciences Institute, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 510
| | - Simone Fernandes
- Department of Livestock, Lageado Farm, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 237
| | - Aline A Oliveira
- Department of Livestock, Lageado Farm, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 237
| | - Ariane Dantas
- Department of Livestock, Lageado Farm, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 237
| | | | - Maria de Lourdes R S Cunha
- Department of Microbiology and Immunology, Biosciences Institute, Universidade Estadual Paulista (UNESP), Botucatu/SP, Brazil 510
| |
Collapse
|
174
|
Salgueiro VC, Iorio NLP, Ferreira MC, Chamon RC, Dos Santos KRN. Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates. BMC Microbiol 2017; 17:15. [PMID: 28086793 PMCID: PMC5237318 DOI: 10.1186/s12866-017-0930-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023] Open
Abstract
Background Staphylococcus epidermidis is an opportunistic pathogen involved in hospital-acquired infections, particularly in those related to medical devices. This study characterized 50 genetically unrelated S. epidermidis isolates from bloodstream infections (BSIs, n = 31) and nares (n = 19) of neonates in relation to staphylococcal chromosomal cassette mec (SCCmec) type, biofilm production and associated genes, and the arginine catabolic mobile elements (ACME), in order to detect virulence factors that could discriminate a potential invasiveness isolate or predict an increasing pathogenicity. Results Isolates from both groups showed no difference for biofilm production and ACME genes detection. However, BSI isolates harbored more frequently the sdrF and sesI genes (p < 0.05), whereas biofilm producer isolates were associated with presence of the aap gene. The sdrF gene was also significantly more in the biofilm producer isolates from BSI. The SCCmec type IV and the ccr2 complex were related to BSI isolates (p < 0.05), while 83% of the nasal isolates were non-typeable for the SCCmec elements, with the mec complex and ccr undetectable as the most frequent profile. Conclusions Despite the great clonal diversity displayed by S. epidermidis isolates from neonates, BSI isolates harbored more frequently the sdrF and sesI adhesin genes, while nasal isolates were very variable in SCCmec composition. These aspects could be advantageous to improve colonization in the host increasing its pathogenicity.
Collapse
Affiliation(s)
- Vivian Carolina Salgueiro
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Natalia Lopes Pontes Iorio
- Departamento de Ciências Básicas, Universidade Federal Fluminense, R. Dr. Silvio Henrique Braune, no 22, Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcelle Cristina Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Raiane Cardoso Chamon
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Kátia Regina Netto Dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil.
| |
Collapse
|
175
|
Sustained Nitric Oxide-Releasing Nanoparticles Interfere with Methicillin-Resistant Staphylococcus aureus Adhesion and Biofilm Formation in a Rat Central Venous Catheter Model. Antimicrob Agents Chemother 2016; 61:AAC.02020-16. [PMID: 27821454 DOI: 10.1128/aac.02020-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is frequently isolated in the setting of infections of indwelling medical devices, which are mediated by the microbe's ability to form biofilms on a variety of surfaces. Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in patients with prolonged hospitalizations. In this study, we demonstrate that sustained nitric oxide-releasing nanoparticles (NO-np) interfere with S. aureus adhesion and prevent biofilm formation on a rat central venous catheter (CVC) model of infection. Confocal and scanning electron microscopy showed that NO-np-treated staphylococcal biofilms displayed considerably reduced thicknesses and bacterial numbers compared to those of control biofilms in vitro and in vivo, respectively. Although both phenotypes, planktonic and biofilm-associated staphylococci, of multiple clinical strains were susceptible to NO-np, bacteria within biofilms were more resistant to killing than their planktonic counterparts. Furthermore, chitosan, a biopolymer found in the exoskeleton of crustaceans and structurally integrated into the nanoparticles, seems to add considerable antimicrobial activity to the technology. Our findings suggest promising development and translational potential of NO-np for use as a prophylactic or therapeutic against bacterial biofilms on CVCs and other medical devices.
Collapse
|
176
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
177
|
Salimena APS, Lange CC, Camussone C, Signorini M, Calvinho LF, Brito MAVP, Borges CAV, Guimarães AS, Ribeiro JB, Mendonça LC, Piccoli RH. Genotypic and phenotypic detection of capsular polysaccharide and biofilm formation in Staphylococcus aureus isolated from bovine milk collected from Brazilian dairy farms. Vet Res Commun 2016; 40:97-106. [PMID: 27255108 DOI: 10.1007/s11259-016-9658-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is a pathogen that frequently causes mastitis in bovine herds worldwide. This pathogen produces several virulence factors, including cell-associated adhesins, toxic and cytolytic exoproteins, and capsular polysaccharides. The aim of the present study was to test for the presence of genes involved in capsular polysaccharide production and biofilm formation in S. aureus isolated from bovine mastitis samples collected from 119 dairy herds located in three different Brazilian regions, as well as to assay the production of capsular polysaccharides and biofilm, in vitro. The detection of the cap, icaAD, and bap genes was performed using PCR. The detection and quantification of capsular polysaccharide production was performed using ELISA assays. The ability of the isolates to form a biofilm was examined using the polystyrene surface of microtiter plates. All 159 S. aureus isolates investigated harboured the cap gene: 80 % carried the cap5 gene and 20 % carried the cap8 gene. Sixty-nine percent of the isolates expressed capsular polysaccharide (CP) in vitro, 58 % expressed CP5 and 11 % expressed CP8. All of the isolates harboured the icaA and icaD genes, and 95.6 % of the isolates carried the bap gene. Of the 159 isolates analysed, 97.5 % were biofilm producers. A significant association between the capsular genotype and phenotype and the amount of biofilm formation was detected: cap5/CP5 isolates tended to form more biofilm and to produce a thinner CP layer than cap8/CP8 isolates. The results indicate a high potential for pathogenicity among S. aureus isolated from bovine milk collected from three different regions in Brazil.
Collapse
Affiliation(s)
- Alessandra P S Salimena
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
- Food Science Department, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Carla C Lange
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil.
| | - Cecilia Camussone
- Rafaela Agricultural Experimental Station, INTA, Ruta 34, Km 227, (2300) Rafaela, Santa Fe, Argentina
| | - Marcelo Signorini
- Rafaela Agricultural Experimental Station, INTA, Ruta 34, Km 227, (2300) Rafaela, Santa Fe, Argentina
| | - Luis F Calvinho
- Rafaela Agricultural Experimental Station, INTA, Ruta 34, Km 227, (2300) Rafaela, Santa Fe, Argentina
| | - Maria A V P Brito
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
| | - Cristiano A V Borges
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
| | - Alessandro S Guimarães
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
| | - João B Ribeiro
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
| | - Letícia C Mendonça
- Embrapa Dairy Cattle Research Center, Rua Eugênio do Nascimento 610, 36038-330, Juiz de Fora, Minas Gerais, Brazil
| | - Roberta H Piccoli
- Food Science Department, Federal University of Lavras, PO Box 3037, 37200-000, Lavras, Minas Gerais, Brazil
| |
Collapse
|
178
|
Jeong DW, Lee B, Her JY, Lee KG, Lee JH. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int J Food Microbiol 2016; 236:9-16. [PMID: 27427871 DOI: 10.1016/j.ijfoodmicro.2016.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/10/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022]
Abstract
To select starters for the production of meju and doenjang, traditional Korean fermented soybean foods, we assessed the safety and technological properties of their predominant isolates, Staphylococcus saprophyticus, Staphylococcus succinus and Staphylococcus xylosus. Phenotypic antibiotic resistance, hemolysis and biofilm formation were strain-specific. None of the S. succinus isolates exhibited antibiotic resistance or hemolytic activities. Thirty-three selected strains, identified through safety assessments of 81 coagulase-negative staphylococci (CNS) isolates, produced cadaverine, putrescine, and tyramine, but not histamine in the laboratory setting. The production of these three biogenic amines may, however, be insignificant considering the high levels of tyramine produced by the control, Enterococcus faecalis. The 33 CNS strains could grow on tryptic soy agar containing 21% NaCl (w/v), exhibited acid producing activity at 15% NaCl, and expressed strain-specific protease and lipase activities. S. succinus 14BME1, the selected starter candidate, produced significant amounts of benzeneacetic acid, 2,3-butanediol, trimethylpyrazine, and tetramethylpyrazine through soybean fermentation.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Bitnara Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jae-Young Her
- Department of Food Science and Biotechnology, Dongguk University, Ilsan 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University, Ilsan 10326, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
179
|
Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clin Microbiol Rev 2016; 29:401-27. [PMID: 26960941 DOI: 10.1128/cmr.00069-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small colony variants (SCVs) were first described more than 100 years ago for Staphylococcus aureus and various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted.
Collapse
|
180
|
Versatility of Biofilm Matrix Molecules in Staphylococcus epidermidis Clinical Isolates and Importance of Polysaccharide Intercellular Adhesin Expression during High Shear Stress. mSphere 2016; 1:mSphere00165-16. [PMID: 27747298 PMCID: PMC5064449 DOI: 10.1128/msphere.00165-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis. Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCEStaphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis.
Collapse
|
181
|
Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein. Biophys Chem 2016; 217:32-41. [DOI: 10.1016/j.bpc.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
|
182
|
Eradication of Staphylococcus aureus Catheter-Related Biofilm Infections Using ML:8 and Citrox. Antimicrob Agents Chemother 2016; 60:5968-75. [PMID: 27458213 DOI: 10.1128/aac.00910-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022] Open
Abstract
Staphylococci are a leading cause of catheter-related infections (CRIs) due to biofilm formation. CRIs are typically managed by either device removal or systemic antibiotics, often in combination with catheter lock solutions (CLSs). CLSs provide high concentrations of the antimicrobial agent at the site of infection. However, the most effective CLSs against staphylococcal biofilm-associated infections have yet to be determined. The purpose of this study was to evaluate the efficacy and suitability of two newly described antimicrobial agents, ML:8 and Citrox, as CLSs against Staphylococcus aureus biofilms. ML:8 (1% [vol/vol]) and Citrox (1% [vol/vol]), containing caprylic acid and flavonoids, respectively, were used to treat S. aureus biofilms grown in vitro using newly described static and flow biofilm assays. Both agents reduced biofilm viability >97% after 24 h of treatment. Using a rat model of CRI, ML:8 was shown to inactivate early-stage S. aureus biofilms in vivo, while Citrox inactivated established, mature in vivo biofilms. Cytotoxicity and hemolytic activity of ML:8 and Citrox were equivalent to those of other commercially available CLSs. Neither ML:8 nor Citrox induced a cytokine response in human whole blood, and exposure of S. aureus to either agent for 90 days was not associated with any increase in resistance. Taken together, these data reveal the therapeutic potential of these agents for the treatment of S. aureus catheter-related biofilm infections.
Collapse
|
183
|
Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun 2016; 84:2933-43. [PMID: 27481237 DOI: 10.1128/iai.00290-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Poly-N-acetylglucosamine (PNAG) is a major component of the Staphylococcus epidermidis biofilm extracellular matrix. However, it is not yet clear how this polysaccharide impacts the host immune response and infection-associated pathology. Faster neutrophil recruitment and bacterial clearance were observed in mice challenged intraperitoneally with S. epidermidis biofilm cells of the PNAG-producing 9142 strain than in mice similarly challenged with the isogenic PNAG-defective M10 mutant. Moreover, intraperitoneal priming with 9142 cells exacerbated liver inflammatory pathology induced by a subsequent intravenous S. epidermidis challenge, compared to priming with M10 cells. The 9142-primed mice had elevated splenic CD4(+) T cells producing gamma interferon and interleukin-17A, indicating that PNAG promoted cell-mediated immunity. Curiously, despite having more marked liver tissue pathology, 9142-primed mice also had splenic T regulatory cells with greater suppressive activity than those of their M10-primed counterparts. By showing that PNAG production by S. epidermidis biofilm cells exacerbates host inflammatory pathology, these results together suggest that this polysaccharide contributes to the clinical features associated with biofilm-derived infections.
Collapse
|
184
|
Abstract
Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Karla J Daniels
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
185
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|
186
|
Skurnik D, Cywes-Bentley C, Pier GB. The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Rev Vaccines 2016; 15:1041-53. [PMID: 26918288 PMCID: PMC4985264 DOI: 10.1586/14760584.2016.1159135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/24/2016] [Indexed: 11/08/2022]
Abstract
A challenging component of vaccine development is the large serologic diversity of protective antigens. Remarkably, there is a conserved surface/capsular polysaccharide, one of the most effective vaccine targets, expressed by a large number of bacterial, fungal and eukaryotic pathogens: poly-N-acetyl glucosamine (PNAG). Natural antibodies to PNAG are poorly effective at mediating in vitro microbial killing or in vivo protection. Removing most of the acetate substituents to produce a deacetylated glycoform, or using synthetic oligosaccharides of poly-β-1-6-linked glucosamine conjugated to carrier proteins, results in vaccines that elicit high levels of broad-based immunity. A fully human monoclonal antibody is highly active in laboratory and preclinical studies and has been successfully tested in a phase-I setting. Both the synthetic oligosaccharide conjugate vaccine and MAb will be further tested in humans starting in 2016; but, even if effective against only a fraction of the PNAG-producing pathogens, a major advance in vaccine-preventable diseases will occur.
Collapse
Affiliation(s)
- David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, Phone: 617-525-2269; FAX: 617-525-2510
| |
Collapse
|
187
|
Vanzieleghem T, Couniot N, Herman-Bausier P, Flandre D, Dufrêne YF, Mahillon J. Role of Ionic Strength in Staphylococcal Cell Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7277-7283. [PMID: 27364477 DOI: 10.1021/acs.langmuir.6b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell aggregation plays a key role in biofilm formation and pathogenesis of Staphylococcus species. Although the molecular basis of aggregation in Staphylococci has already been extensively investigated, the influence of environmental factors, such as ionic strength, remains poorly understood. In this paper, we report a new type of cellular aggregation of Staphylococci that depends solely on ionic strength. Seven strains out of 14, all belonging to staphylococcal species, formed large cell clusters within minutes in buffers of ionic strength ranging from 1.5 to 50 mM, whereas isolates belonging to other Gram-positive species did not display this phenotype. Atomic force microscopy (AFM) with chemically functionalized tips provided direct evidence that ionic strength modulates cell surface adhesive properties through changes in cell surface charge. The optimal ionic strength for aggregation was found to be strain dependent, but in all cases, bacterial aggregates formed at an ionic strength of 1.5-50 mM were rapidly dispersed in a solution of higher ionic strength, indicating a reversibility of the cell aggregation process. These findings suggest that some staphylococcal isolates can respond to ionic strength as an external stimulus to trigger rapid cell aggregation in a way that has not yet been reported.
Collapse
Affiliation(s)
- Thomas Vanzieleghem
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Numa Couniot
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Herman-Bausier
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Denis Flandre
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Applied Microbiology, Earth and Life Institute, ‡Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), and §Institute of Life Sciences, Université catholique de Louvain , Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
188
|
Fux CA, Uehlinger D, Bodmer T, Droz S, Zellweger C, Mühlemann K. Dynamics of Hemodialysis Catheter Colonization by Coagulase-Negative Staphylococci. Infect Control Hosp Epidemiol 2016; 26:567-74. [PMID: 16018433 DOI: 10.1086/502586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractObjectives:Catheter colonization is a necessary but poorly characterized step in the pathogenesis of catheter-related infections. Colonization dynamics of central venous hemodialysis catheters were studied with emphasis on coagulase-negative staphylococci (CoNS) and their population genetics, antibiotic resistance, and biofilm formation. The homogeneity of CoNS colony morphotypes was evaluated.Design:Prospective, longitudinal study during 1,158 catheter-days with microbiological analysis of skin swabs, weekly catheter blood and brush samples, and catheter tips.Setting:Hemodialysis unit of a university hospital.Patients:Twenty-six patients with 24 non-tunneled and 5 tunneled catheters.Results:Nineteen (65.5%) of the catheters became colonized, 17 by CoNS. CoNS colonization of the inner lumen was observed in 17.2% of the catheters and was first detectable after 3 weeks. Colonization of the outer surface occurred in 44.8% of the catheters within a minimum of 2 weeks. PFGE of 53 CoNS revealed 10 clones and 20 unique isolates. Isolates from clones were more frequent in catheter blood and brush cultures than were unique isolates (41% vs 15%), were resistant to more antibiotics (median, 7 vs 2), and tended to more often carry theicaAgene (64.1% vs 40%). Four (23.5%) of the catheters showed colonization with a mixture of CoNS based on PFGE. The time from catheter insertion to such mixed CoNS colonization was longer than that for colonization with one CoNS PFGE pattern only (42 vs 25 days).Conclusions:Colonization of hemodialysis catheters is dominated by multidrug-resistant,icaA-positive CoNS clones. Mixed CoNS colonization occurs, but is delayed, suggesting a process of sequential superinfection (Infect Control Hosp Epidemiol2005;26:567-574).
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Bacteremia/etiology
- Biofilms/growth & development
- Catheterization, Central Venous/adverse effects
- Catheterization, Central Venous/instrumentation
- Catheters, Indwelling/microbiology
- Coagulase
- Cross Infection/etiology
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial
- Electrophoresis, Gel, Pulsed-Field
- Equipment Contamination/statistics & numerical data
- Equipment Design
- Female
- Hospitals, University
- Humans
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Prospective Studies
- Renal Dialysis/adverse effects
- Renal Dialysis/instrumentation
- Staphylococcal Infections/etiology
- Staphylococcus/genetics
- Staphylococcus/growth & development
- Superinfection/etiology
- Switzerland
- Time Factors
Collapse
Affiliation(s)
- Christoph A Fux
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
189
|
Kumar B, Pathak R, Mary PB, Jha D, Sardana K, Gautam HK. New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
190
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
191
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
192
|
Weiser J, Henke HA, Hector N, Both A, Christner M, Büttner H, Kaplan JB, Rohde H. Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion. Int J Med Microbiol 2016; 306:471-8. [PMID: 27292911 DOI: 10.1016/j.ijmm.2016.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Biofilm-associated Staphylococcus epidermidis implant infections are notoriously reluctant to antibiotic treatment. Here we studied the effect of sub-inhibitory concentrations of penicillin, oxacillin, vancomycin, daptomycin, linezolid and tigecycline on S. epidermidis 1585 biofilm formation, expression of extracellular matrix binding protein (Embp) and potential implications for S. epidermidis - macrophage interactions. Penicillin, vancomycin, daptomycin, and linezolid had no biofilm augmenting effect at any of the concentrations tested. In contrast, at sub-inhibitory concentrations tigecycline and oxacillin exhibited significant biofilm inducing activity. In S. epidermidis 1585, SarA is a negative regulator of giant 1 MDa Embp, and down regulation of sarA induces Embp-dependent assembly of a multi-layered biofilm architecture. Dot blot immune assays, confocal laser scanning microscopy, and qPCR showed that under biofilm inducing conditions, tigecycline augmented embp expression compared to the control grown without antibiotics. Conversely, expression of regulator sarA was suppressed, suggesting that tigecycline exerts its effects on embp expression through SarA. Tigecycline failed to induce biofilm formation in embp transposon mutant 1585-M135, proving that under these conditions Embp up-regulation is necessary for biofilm accumulation. As a functional consequence, tigecycline induced biofilm formation significantly impaired the up-take of S. epidermidis by mouse macrophage-like cell line J774A.1. Our data provide novel evidence for the molecular basis of antibiotic induced biofilm formation, a phenotype associated with inherently increased antimicrobial tolerance. While this could explain failure of antimicrobial therapies, persistence of S. epidermidis infections in the presence of sub-inhibitory antimicrobials is additionally propelled by biofilm-related impairment of macrophage-mediated pathogen eradication.
Collapse
Affiliation(s)
- Julian Weiser
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Hanae A Henke
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Nina Hector
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Jeffery B Kaplan
- Department of Biology, American University, Washington, DC 20016, USA
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany.
| |
Collapse
|
193
|
Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, Jansen KU, Gurtman A, Anderson AS. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev Vaccines 2016; 15:1373-1392. [PMID: 27118628 DOI: 10.1080/14760584.2016.1179583] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus is both a commensal organism and also an important opportunistic human pathogen, causing a variety of community and hospital-associated pathologies, such as bacteremia-sepsis, endocarditis, pneumonia, osteomyelitis, arthritis and skin diseases. The resurgence of S. aureus during the last decade in many settings has been facilitated not only by bacterial antibiotic resistance mechanisms but also by the emergence of new S. aureus clonal types with increased expression of virulence factors and the capacity to neutralize the host immune response. Prevention of the spread of S. aureus infection relies on the use of contact precautions and adequate procedures for infection control that so far have not been fully effective. Prevention using a prophylactic vaccine would complement these processes, having the potential to bring additional, significant progress toward decreasing invasive disease due to S. aureus.
Collapse
Affiliation(s)
- Gustavo H Dayan
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Naglaa Mohamed
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Ingrid L Scully
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - David Cooper
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Elizabeth Begier
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Joseph Eiden
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | - Kathrin U Jansen
- a Pfizer Vaccine Research and Development , Pearl River , NY , USA
| | | | | |
Collapse
|
194
|
Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother 2016; 60:2639-51. [PMID: 26856828 DOI: 10.1128/aac.02070-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation.
Collapse
|
195
|
Sheppard DC, Howell PL. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria. J Biol Chem 2016; 291:12529-12537. [PMID: 27129222 DOI: 10.1074/jbc.r116.720995] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exopolysaccharides play an important structural and functional role in the development and maintenance of microbial biofilms. Although the majority of research to date has focused on the exopolysaccharide systems of biofilm-forming bacteria, recent studies have demonstrated that medically relevant fungi such as Candida albicans and Aspergillus fumigatus also form biofilms during infection. These fungal biofilms share many similarities with those of bacteria, including the presence of secreted exopolysaccharides as core components of the extracellular matrix. This review will highlight our current understanding of fungal biofilm exopolysaccharides, as well as the parallels that can be drawn with those of their bacterial counterparts.
Collapse
Affiliation(s)
- Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec H4A 3J1; Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec H4A 3J1.
| | - P Lynne Howell
- Program in Molecular Structure & Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
196
|
Abstract
Microbes produce a biofilm matrix consisting of proteins, extracellular DNA, and polysaccharides that is integral in the formation of bacterial communities. Historical studies of polysaccharides revealed that their overproduction often alters the colony morphology and can be diagnostic in identifying certain species. The polysaccharide component of the matrix can provide many diverse benefits to the cells in the biofilm, including adhesion, protection, and structure. Aggregative polysaccharides act as molecular glue, allowing the bacterial cells to adhere to each other as well as surfaces. Adhesion facilitates the colonization of both biotic and abiotic surfaces by allowing the bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a nutrient source. Polysaccharides can also provide protection from a wide range of stresses, such as desiccation, immune effectors, and predators such as phagocytic cells and amoebae. Finally, polysaccharides can provide structure to biofilms, allowing stratification of the bacterial community and establishing gradients of nutrients and waste products. This can be advantageous for the bacteria by establishing a heterogeneous population that is prepared to endure stresses created by the rapidly changing environments that many bacteria encounter. The diverse range of polysaccharide structures, properties, and roles highlight the importance of this matrix constituent to the successful adaptation of bacteria to nearly every niche. Here, we present an overview of the current knowledge regarding the diversity and benefits that polysaccharide production provides to bacterial communities within biofilms.
Collapse
|
197
|
Harris LG, Murray S, Pascoe B, Bray J, Meric G, Magerios L, Wilkinson TS, Jeeves R, Rohde H, Schwarz S, de Lencastre H, Miragaia M, Rolo J, Bowden R, Jolley KA, Maiden MCJ, Mack D, Sheppard SK. Biofilm Morphotypes and Population Structure among Staphylococcus epidermidis from Commensal and Clinical Samples. PLoS One 2016; 11:e0151240. [PMID: 26978068 PMCID: PMC4792440 DOI: 10.1371/journal.pone.0151240] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/24/2016] [Indexed: 12/02/2022] Open
Abstract
Bacterial species comprise related genotypes that can display divergent phenotypes with important clinical implications. Staphylococcus epidermidis is a common cause of nosocomial infections and, critical to its pathogenesis, is its ability to adhere and form biofilms on surfaces, thereby moderating the effect of the host’s immune response and antibiotics. Commensal S. epidermidis populations are thought to differ from those associated with disease in factors involved in adhesion and biofilm accumulation. We quantified the differences in biofilm formation in 98 S. epidermidis isolates from various sources, and investigated population structure based on ribosomal multilocus typing (rMLST) and the presence/absence of genes involved in adhesion and biofilm formation. All isolates were able to adhere and form biofilms in in vitro growth assays and confocal microscopy allowed classification into 5 biofilm morphotypes based on their thickness, biovolume and roughness. Phylogenetic reconstruction grouped isolates into three separate clades, with the isolates in the main disease associated clade displaying diversity in morphotype. Of the biofilm morphology characteristics, only biofilm thickness had a significant association with clade distribution. The distribution of some known adhesion-associated genes (aap and sesE) among isolates showed a significant association with the species clonal frame. These data challenge the assumption that biofilm-associated genes, such as those on the ica operon, are genetic markers for less invasive S. epidermidis isolates, and suggest that phenotypic characteristics, such as adhesion and biofilm formation, are not fixed by clonal descent but are influenced by the presence of various genes that are mobile among lineages.
Collapse
Affiliation(s)
- Llinos G. Harris
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Susan Murray
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Ben Pascoe
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
- MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - James Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Guillaume Meric
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Leonardos Magerios
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Thomas S. Wilkinson
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Rose Jeeves
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie & Hygiene, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | - Herminia de Lencastre
- Laboratory for Molecular Genetics, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
| | - Maria Miragaia
- Laboratory for Molecular Genetics, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Joana Rolo
- Laboratory for Molecular Genetics, Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Rory Bowden
- The Wellcome Trust Centre for Human Genetics, Oxford Genomics Centre, Oxford, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Dietrich Mack
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
- Institut für Medizinische Diagnostik GmbH, Mikrobiologie/Infektiologie, Ingelheim, Germany
| | - Samuel K. Sheppard
- Medical Microbiology & Infectious Diseases, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
- MRC CLIMB Consortium, Institute of Life Science, Swansea University, Swansea, United Kingdom
- * E-mail:
| |
Collapse
|
198
|
Christensen GJM, Scholz CFP, Enghild J, Rohde H, Kilian M, Thürmer A, Brzuszkiewicz E, Lomholt HB, Brüggemann H. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 2016; 17:152. [PMID: 26924200 PMCID: PMC4770681 DOI: 10.1186/s12864-016-2489-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Background Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes. Results First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12 S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20 S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins. Conclusions Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jan Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Holger Rohde
- Institute of Medical Microbiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany.
| | - Hans B Lomholt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | | |
Collapse
|
199
|
Pinilla G, Muñoz LC, Salazar LM, Navarrete J, Guevara A. DISEÑO DE PÉPTIDOS BASADO EN LA SECUENCIA ANÁLOGA AL REPRESOR NEGATIVO icaR DE Staphylococcus sp. REVISTA COLOMBIANA DE QUÍMICA 2016. [DOI: 10.15446/rev.colomb.quim.v44n2.55213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>La biopelícula como un mecanismo de virulencia en Staphylococcus involucrada en infecciones intrahospitalarias es regulada por un represor negativo, responsable de la transcripción completa del operón. La búsqueda de dominios funcionales por modulación computacional de permitió hallar las secuencias peptídicas con actividad biológica análoga a la proteína <em>ica</em>R. Mediante biología computacional se diseñaron péptidos empleando el programa de predicción AntiBP (http: //www. imtech.res.in/ raghava/antibp/); la síntesis química se hizo por N<sup>α</sup>-Fmoc y se caracterizaron y purificaron tres moléculas por RP-HPLC y MALDI-TOF. Se evaluó su seguridad biológica mediante ensayo de actividad citotóxica realizada sobre macrófagos murinos de la línea J774 y la actividad hemolítica se determinó mediante el uso de glóbulos rojos. Los tres péptidos caracterizados IR1, IR2 e IR3, presentaron estructura secundaria predominantemente alfa helicoidal, alto grado de pureza y alto score antimicrobiano; además, mostraron baja toxicidad, evidenciada por la actividad citotóxica y hemolítica en las concentraciones ensayadas y en comparación con los controles usados, que permitiría su potencial uso como moléculas candidatas o principios activos con actividad análoga al represor nativo, frente a la biopelícula de los Staphylococcus.</p>
Collapse
|
200
|
Chessa D, Ganau G, Spiga L, Bulla A, Mazzarello V, Campus GV, Rubino S. Staphylococcus aureus and Staphylococcus epidermidis Virulence Strains as Causative Agents of Persistent Infections in Breast Implants. PLoS One 2016; 11:e0146668. [PMID: 26811915 PMCID: PMC4727902 DOI: 10.1371/journal.pone.0146668] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are currently considered two of the most important pathogens in nosocomial infections associated with catheters and other medical implants and are also the main contaminants of medical instruments. However because these species of Staphylococcus are part of the normal bacterial flora of human skin and mucosal surfaces, it is difficult to discern when a microbial isolate is the cause of infection or is detected on samples as a consequence of contamination. Rapid identification of invasive strains of Staphylococcus infections is crucial for correctly diagnosing and treating infections. The aim of the present study was to identify specific genes to distinguish between invasive and contaminating S. epidermidis and S. aureus strains isolated on medical devices; the majority of our samples were collected from breast prostheses. As a first step, we compared the adhesion ability of these samples with their efficacy in forming biofilms; second, we explored whether it is possible to determine if isolated pathogens were more virulent compared with international controls. In addition, this work may provide additional information on these pathogens, which are traditionally considered harmful bacteria in humans, and may increase our knowledge of virulence factors for these types of infections.
Collapse
Affiliation(s)
- Daniela Chessa
- Microbiology and Immunology Unit, Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
- * E-mail:
| | - Giulia Ganau
- Microbiology and Immunology Unit, Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
| | - Luisella Spiga
- Microbiology and Immunology Unit, Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
| | - Antonio Bulla
- Plastic Surgery Unit, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - Vittorio Mazzarello
- Microbiology and Immunology Unit, Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
| | - Gian Vittorio Campus
- Plastic Surgery Unit, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Rubino
- Microbiology and Immunology Unit, Department of Biomedical Science, School of Medicine, University of Sassari, Sassari, Italy
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|