151
|
Hu X, Zuo J. The CCCH zinc finger family of soybean (Glycine max L.): genome-wide identification, expression, domestication, GWAS and haplotype analysis. BMC Genomics 2021; 22:511. [PMID: 34233625 PMCID: PMC8261996 DOI: 10.1186/s12864-021-07787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CCCH zinc finger (zf_CCCH) is a unique subfamily featured one or more zinc finger motif(s) comprising of three Cys and one His residues. The zf_CCCH family have been reported involving in various processes of plant development and adaptation. RESULTS In this study, the zf_CCCH genes were identified via a genome-wide search and were systematically analyzed. 116 Gmzf_CCCHs were obtained and classified into seventeen subfamilies. Gene duplication and expansion analysis showed that tandem and segmental duplications contributed to the expansion of the Gmzf_CCCH gene family, and that segmental duplication play the main role. The expression patterns of Gmzf_CCCH genes were tissue-specific. Eleven domesticated genes were detected involved in the regulation of seed oil and protein synthesis as well as growth and development of soybean through GWAS and haplotype analysis for Gmzf_CCCH genes among the 164 of 302 soybeans resequencing data. Among which, 8 genes play an important role in the synthesis of seed oil or fatty acid, and the frequency of their elite haplotypes changes significantly among wild, landrace and improved cultivars, indicating that they have been strongly selected in the process of soybean domestication. CONCLUSIONS This study provides a scientific foundation for the comprehensive understanding, future cloning and functional studies of Gmzf_CCCH genes in soybean, meanwhile, it was also helpful for the improvement of soybean with high oil content.
Collapse
Affiliation(s)
- Xin Hu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| | - Jianfang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
152
|
|
153
|
Mu X, Shi L, Yan L, Tang N. A 2-Hydroxy-1-naphthaldehyde Schiff Base for Turn-on Fluorescence Detection of Zn 2+ Based on PET Mechanism. J Fluoresc 2021; 31:971-979. [PMID: 33860872 DOI: 10.1007/s10895-021-02732-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Zinc ion is closely related to human health. Its content in human body is small, while the effect is large. However, it is not the more the better, must be in a scientific balance. Therefore, it is significant to the rapid detection of Zn2+ in the environment and organism. Herein, a fluorescent probe based on 2-hydroxy-1-naphthalene formaldehyde and furan-2-carbohydrazide was conveniently synthesized via Schiff base reaction. And this probe has been successfully applied to the accurate and quantitative detection of Zn2+ in real samples, showing turn on fluorescence, good selectivity, very low detection limit, real time response and reusability. In addition, this probe has the potential application to trace Zn2+ in living cells with low cytotoxicity.
Collapse
Affiliation(s)
- Xinyue Mu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, People's Republic of China
| | - Liping Shi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, People's Republic of China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, People's Republic of China.
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, People's Republic of China.
| |
Collapse
|
154
|
A new phenolato-bridged dinuclear manganese(II) complex as a turn-on fluorosensor for Zn2+ ions via Mn2+ ion replacement. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
155
|
Dongare PR, Gore AH. Recent Advances in Colorimetric and Fluorescent Chemosensors for Ionic Species: Design, Principle and Optical Signalling Mechanism. ChemistrySelect 2021. [DOI: 10.1002/slct.202101090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pravin R. Dongare
- Department of Chemistry Shivraj College of Arts Commerce and D. S. Kadam Science College Gadhinglaj Affiliated to Shivaji University Kolhapur Maharashtra 416 502 India
| | - Anil H. Gore
- Department of Chemistry Uka Tarsadia University Bardoli- Mahuva Road, Tarsadi Gujarat 394 350 India
| |
Collapse
|
156
|
El Habbal MH. Combination therapy of zinc and trimethoprim inhibits infection of influenza A virus in chick embryo. Virol J 2021; 18:113. [PMID: 34082750 PMCID: PMC8173514 DOI: 10.1186/s12985-021-01585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Respiratory RNA viruses including influenza virus have been a cause of health and economic hardships. These viruses depend on its host for replication and infection. Influenza virus infection is lethal to the chick embryo. We examined whether a combination of trimethoprim and zinc (Tri-Z), that acts on the host, can reduce the lethal effect of influenza A virus in chick embryo model. METHOD Influenza virus was isolated from patients and propagated in eggs. We determined viral load that infects 50% of eggs (50% egg lethal dose, ELD50). We introduced 10 ELD50 into embryonated eggs and repeated the experiments using 100 ELD50. A mixture of zinc oxide (Zn) and trimethoprim (TMP) (weight/weight ratios ranged from 0.01 to 0.3, Zn/TMP with increment of 0.1) was tested for embryo survival of the infection (n = 12 per ratio, in triplicates). Embryo survival was determined by candling eggs daily for 7 days. Controls of Zn, TMP, saline or convalescent serum were conducted in parallel. The effect of Tri-Z on virus binding to its cell surface receptor was evaluated in a hemagglutination inhibition (HAI) assay using chicken red cells. Tri-Z was prepared to concentration of 10 mg TMP and 1.8 mg Zn per ml, then serial dilutions were made. HAI effect was expressed as scores where ++++ = no effect; 0 = complete HAI effect. RESULTS TMP, Zn or saline separately had no effect on embryo survival, none of the embryos survived influenza virus infection. All embryos treated with convalescent serum survived. Tri-Z, at ratio range of 0.15-0.2 (optimal ratio of 0.18) Zn/TMP, enabled embryos to survive influenza virus despite increasing viral load (> 80% survival at optimal ratio). At concentration of 15 µg/ml of optimal ratio, Tri-Z had total HAI effect (scored 0). However, at clinical concentration of 5 µg/ml, Tri-Z had partial HAI effect (+ +). CONCLUSION Acting on host cells, Tri-Z at optimal ratio can reduce the lethal effect of influenza A virus in chick embryo. Tri-Z has HAI effect. These findings suggest that combination of trimethoprim and zinc at optimal ratio can be provided as treatment for influenza and possibly other respiratory RNA viruses infection in man.
Collapse
|
157
|
Akanuma G. Diverse relationships between metal ions and the ribosome. Biosci Biotechnol Biochem 2021; 85:1582-1593. [PMID: 33877305 DOI: 10.1093/bbb/zbab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
The ribosome requires metal ions for structural stability and translational activity. These metal ions are important for stabilizing the secondary structure of ribosomal RNA, binding of ribosomal proteins to the ribosome, and for interaction of ribosomal subunits. In this review, various relationships between ribosomes and metal ions, especially Mg2+ and Zn2+, are presented. Mg2+ regulates gene expression by modulating the translational stability and synthesis of ribosomes, which in turn contribute to the cellular homeostasis of Mg2+. In addition, Mg2+ can partly complement the function of ribosomal proteins. Conversely, a reduction in the cellular concentration of Zn2+ induces replacement of ribosomal proteins, which mobilizes free-Zn2+ in the cell and represses translation activity. Evolutional relationships between these metal ions and the ribosome are also discussed.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, Graduate School of Science, Gakushuin University, Toshima-ku, Tokyo, Japan.,Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
158
|
Wang HX, Wei CW, Wang XJ, Xiang HF, Yang XZ, Wu GL, Lin YW. A facile gelator based on phenylalanine derivative is capable of forming fluorescent Zn-metallohydrogel, detecting Zn 2+ in aqueous solutions and imaging Zn 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119378. [PMID: 33401180 DOI: 10.1016/j.saa.2020.119378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Supramolecular hydrogels are attracting soft materials with potential applications. In this study, we synthesized a facile gelator (named 2-QF) based on phenylalanine derivative with a Quinoline group. 2-QF can assemble to form hydrogels at room temperature in different colors under low pH values. Moreover, 2-QF was triggered to form a yellow metallohydrogel (2-QF-Zn) at high pH by the coordination between 2-QF and Zn2+. 2-QF-Zn metallohydrogel showed excellent multi-stimuli responsiveness, especially the reversible "on-off" luminescence switching, as induced by base/acid. In addition, at a low concentration, 2-QF can selectively and visibly identify Zn2+ through fluorescence enhancement, and can detect Zn2+ at physiological pH as a chemosensor. Remarkably, 2-QF and 2-QF-Zn exhibited an excellent biocompatibility without cell cytotoxicity, and 2-QF is able to penetrate live HeLa cells and image intracellular Zn2+ by a turn-on fluorescent response, which makes it a potential candidate for biomedical applications.
Collapse
Affiliation(s)
- Hai-Xia Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xin-Zhi Yang
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Gui-Long Wu
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China.
| |
Collapse
|
159
|
Gillingham MAF, Borghesi F, Montero BK, Migani F, Béchet A, Rendón-Martos M, Amat JA, Dinelli E, Sommer S. Bioaccumulation of trace elements affects chick body condition and gut microbiome in greater flamingos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143250. [PMID: 33248770 DOI: 10.1016/j.scitotenv.2020.143250] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Elevated concentrations of trace elements represent a major concern to wetland ecosystems, since river estuaries are geochemical endpoints that accumulate pollution. Although the negative impact of environmental exposure of highly toxic elements such as Pb and Hg has received substantial attention, we still lack a comprehensive understanding of the effects that these and other common trace elements have on natural populations. We used greater flamingos as a study system within three sites that represent a gradient of pollution. Controlling for environmental sediment exposure, we assessed if signatures of bioaccumulation in feathers for ten trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn and Zn) are associated with two known proxies of health: body condition and the gut bacterial microbiome. We found evidence of an adverse effect of Se, Hg, and Pb bioaccumulation on body condition. Furthermore, bioaccumulation of the elements As, Cu, Se, Pb and Zn influenced different aspects of the gut microbiome. Bioaccumulation of Se led to a shift in the microbiome composition, largely driven by an enrichment of Bacteroides plebeius, which is linked to the breakdown of sulphated polysaccharides of algae. Bacteroides plebeius was negatively associated with chick body condition, suggesting an adverse effect of a microalgae diet rich in Se. Pb bioaccumulation was linked with a decrease in microbial diversity (adjusted-R2 = 10.4%) and an increase in heterogeneity of the microbial community (adjusted-R2 = 10.5%), an indication of impaired gut homeostasis. As, Cu and Zn had more nuanced effects on gut microbiome heterogeneity according to breeding site and bioaccumulation concentration. Our results therefore suggest that in addition to well-studied elements, bioaccumulation of poorly studied elements also adversely affect health of natural populations.
Collapse
Affiliation(s)
- Mark A F Gillingham
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany.
| | - Fabrizio Borghesi
- Bologna University, Department of Biological, Geological and Environmental Sciences (BiGeA), Operative Unit of Ravenna, Via Sant'Alberto, 163, 48123 Ravenna, Italy
| | - B Karina Montero
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany; Animal Ecology and Conservation, Hamburg University, Hamburg, Germany.
| | | | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France.
| | - Manuel Rendón-Martos
- R.N. Laguna de Fuente de Piedra, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Apartado 1, E-29520 Fuente de Piedra, Málaga, Spain.
| | - Juan A Amat
- Department of Wetland Ecology, Estación Biológica de Doñana, (EBD-CSIC), calle Américo Vespucio s/n, E-41092 Sevilla, Spain.
| | - Enrico Dinelli
- Bologna University, Department of Biological, Geological and Environmental Sciences (BiGeA), Operative Unit of Ravenna, Via Sant'Alberto, 163, 48123 Ravenna, Italy.
| | - Simone Sommer
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein Allee 11, D-89069 Ulm, Germany.
| |
Collapse
|
160
|
Aydin Z. A novel phenanthroline-based colorimetric turn-off optical sensor for Zn2+. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
161
|
Das M, Mukherjee S, Brandao P, Seth SK, Giri S, Mati SS, Samanta BC, Laha S, Maity T. Active Bromoaniline-Aldehyde Conjugate Systems and Their Complexes as Versatile Sensors of Multiple Cations with Logic Formulation and Efficient DNA/HSA-Binding Efficacy: Combined Experimental and Theoretical Approach. ACS OMEGA 2021; 6:3659-3674. [PMID: 33585746 PMCID: PMC7876678 DOI: 10.1021/acsomega.0c05189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Two fluorescence active bromoaniline-based Schiff base chemosensors, namely, (E)-4-bromo-2-(((4-bromophenyl)imino)methyl)phenol (HL1 ) and (E)-2-(((4-bromophenyl)imino)methyl)phenol (HL2 ), have been employed for the selective and notable detection of Cu2+ and Zn2+ ions, respectively, with the simultaneous formation of two new metal complexes [Cu(L1)2] (1) and [Zn(L2)2] (2). X-ray single crystal analyses indicate that complexes 1 and 2 are tetra-coordinated systems with substantial CH...π/π...π stacking interactions in the solid-state crystal structures. These two complexes are exploited for the next step detection of Al3+ and Hg2+ where complex 2 exhibits impressive results via turn-off fluorescence quenching in (DMSO/H2O) HEPES buffer medium. The sensing phenomena are optimized by UV-vis spectral analyses as well as theoretical calculations (density functional theory and time-dependent density functional theory). The combined detection phenomena of the ligand (HL2 ) and complex 2 are exclusively utilized for the first time to construct a molecular memory device, intensifying their multisensoric properties. Furthermore, the DNA- and human serum albumin (HSA)-binding efficacies of these two complexes are examined by adopting electronic and fluorometric titration methods. Complex 2 shows a higher DNA-binding ability in comparison with complex 1, whereas in the case of HSA, the reverse situation is observed. Finally, the binding modes of both the complexes with DNA and HSA have been investigated through molecular docking studies, suggesting good agreement with the experimental results.
Collapse
Affiliation(s)
- Manik Das
- Department
of Chemistry, P. K. College, Contai, Purba Medinipur, West Bengal 721404, India
| | - Somali Mukherjee
- Department
of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Paula Brandao
- Departamento
de Química/CICEC, Universidade de
Aveiro, Aveiro, 3810-193, Portugal
| | | | | | - Soumya Sundar Mati
- Department
of Chemistry, Government General Degree
College, Keshiary 721135, West Bengal India
| | - Bidhan Chandra Samanta
- Department
of Chemistry, Mugberia Gangadhar Mahavidyalaya, Purba Medinipur 721425, West Bengal, India
| | | | - Tithi Maity
- Department
of Chemistry, P. K. College, Contai, Purba Medinipur, West Bengal 721404, India
| |
Collapse
|
162
|
Ghosh Dastidar D, Mukherjee P, Ghosh D, Banerjee D. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
163
|
Kaur N, Kaur B. Anthracene possessing amide functionality as a turn-on fluorescent probe for Cu 2+ and Zn 2+ ions. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1878160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, Punjab, India
| | - Baljeet Kaur
- Department of Chemistry, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|
164
|
Wang P, Zhou D, Liao Y, Wu J. A new peptide-based fluorescent probe for highly selective and sensitive detection of zinc (II) and application in real samples and cells imaging. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
165
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
166
|
Mondal B, Banerjee S, Samanta SK, Senapati S, Tripathy T. Highly selective and sensitive electrochemical sensing of trace Zn
2+
ions, by grafted
Tricholoma
mushroom polysaccharide/Ag composite nanoparticles in aqueous medium. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Barun Mondal
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Shankha Banerjee
- Department of Biotechnology, BJM School of Bioscience Indian Institute of Technology Madras Chennai India
| | - Santu Kumar Samanta
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Bioscience Indian Institute of Technology Madras Chennai India
| | - Tridib Tripathy
- Postgraduate Division of Chemistry Midnapore College (Autonomous) Midnapore India
| |
Collapse
|
167
|
Nuraneeva EN, Guseva GB, Antina EV. A New «off-on» Fluorescence Zinc Ion Sensors Based on Iodo- and Bromosubstituted Dipyrromethenes. J Fluoresc 2021; 31:415-425. [PMID: 33410087 DOI: 10.1007/s10895-020-02670-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Monoiodo- and dibromsubstituted dipyrromethenes HL1 - HL3 were described as a highly sensitive and selective «Off-On» fluorescent chemosensor for Zn2+ based on the chelation-enhanced fluorescence (CHEF) effect. Сoordination reactions of HL1 - HL3 with Zn2+ cations are accompanied by a significant (124 to 215-fold) increase in fluorescence intensity against the background of other metal ions in the binary propanol-1/cyclohexane mixture (1:30). The fluorometric detection limit of Zn2+ ions using HL1 - HL3 sensors is from 3.0∙10-8 to 3.3·10-9 mol/L. The presence of Na+, K+, Ca2+, Mg2+, Mn2+, Ni2+, Co2+, Pb2+ cations does not interfere with the detection of Zn2+. Complexation reactions are accompanied by a visual change in the color of the solution from yellow-orange to pink-raspberry so that the HL1 - HL3 ligands can also be used as a «naked-eye» indicators of the presence of Zn2+ ions.
Collapse
Affiliation(s)
- Ekaterina N Nuraneeva
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, 7, Sheremetevsky Str., 153000, Ivanovo, Russia. .,G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo, Russia.
| | - Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Street, 153045, Ivanovo, Russia
| |
Collapse
|
168
|
Fang H, Geng S, Hao M, Chen Q, Liu M, Liu C, Tian Z, Wang C, Takebe T, Guan JL, Chen Y, Guo Z, He W, Diao J. Simultaneous Zn 2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells. Nat Commun 2021; 12:109. [PMID: 33397937 PMCID: PMC7782730 DOI: 10.1038/s41467-020-20309-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Zn2+ plays important roles in metabolism and signaling regulation. Subcellular Zn2+ compartmentalization is essential for organelle functions and cell biology, but there is currently no method to determine Zn2+ signaling relationships among more than two different organelles with one probe. Here, we report simultaneous Zn2+ tracking in multiple organelles (Zn-STIMO), a method that uses structured illumination microscopy (SIM) and a single Zn2+ fluorescent probe, allowing super-resolution morphology-correlated organelle identification in living cells. To guarantee SIM imaging quality for organelle identification, we develop a new turn-on Zn2+ fluorescent probe, NapBu-BPEA, by regulating the lipophilicity of naphthalimide-derived Zn2+ probes to make it accumulate in multiple organelles except the nucleus. Zn-STIMO with this probe shows that CCCP-induced mitophagy in HeLa cells is associated with labile Zn2+ enhancement. Therefore, direct organelle identification supported by SIM imaging makes Zn-STIMO a reliable method to determine labile Zn2+ dynamics in various organelles with one probe. Finally, SIM imaging of pluripotent stem cell-derived organoids with NapBu-BPEA demonstrates the potential of super-resolution morphology-correlated organelle identification to track biospecies and events in specific organelles within organoids. Subcellular Zn2+ compartmentalisation is essential for cell biology. Here the authors make a turn-on fluorescent Zn2+ probe that localises to multiple organelles, and correlate its location using organelle morphology derived from structured illumination microscopy.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, China
| | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Minglun Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chunyan Liu
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company, Dongying, China
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45267, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
169
|
Wang Q, Shi Y, Chen W, Yang M, Yi C. Synthesis of fluorescent nanoprobe with simultaneous response to intracellular pH and Zn 2+ for tumor cell distinguishment. Mikrochim Acta 2021; 188:9. [PMID: 33389210 DOI: 10.1007/s00604-020-04682-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
A novel dual-functional nanoprobe was designed and synthesized by facile assembly of quinoline derivative (PEIQ) and meso-tetra (4-carboxyphenyl) porphine (TCPP) via electrostatic interaction for simultaneous sensing of fluorescence of Zn2+ and pH. Under the single-wavelength excitation at 400 nm, this nanoprobe not only exhibits "OFF-ON" green fluorescence at 512 nm by specific PEIQ-Zn2+ chelation, but also presents red fluorescence enhancement at 654 nm by H+-triggered TCPP release. The nanoprobe demonstrated excellent sensing performance with a good linear range (Zn2+, 1-40 μM; pH, 5.0-8.0), low detection limit (Zn2+, 0.88 μM), and simultaneous response towards Zn2+ and pH in pure aqueous solution within 2 min. More importantly, this dual-functional nanoprobe demonstrates the capability of discerning cancerous cells from normal cells, as evidenced by the fact that cancerous HepG2 cells in tumor microenvironment exhibit substantially higher red fluorescence and significantly lower green fluorescence than normal HL-7702 cells. The simultaneous, real-time fluorescence imaging of multiple analytes in a living system could be significant for cell analysis and tracking, cancer diagnosis, and even fluorescence-guided surgery of tumors.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yupeng Shi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wandi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
170
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
171
|
Fang H, Wang C, Chen Y, Chen Z, Yao S, Yang S, Dong L, Guo Z, He W. A photoacoustic Zn 2+ sensor based on a merocyanine/xanthene-6-ol hybrid chromophore and its ratiometric imaging in mice. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00132a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HD-Zn was constructed for reversible ratiometric PA Zn2+ imaging in vivo. Zn2+ titration experiments together with a theoretical study suggests that Zn2+ chelation-induced ICT alteration in HD-Zn is responsible for its ratiometric PA sensing ability.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company
- Dongying
- China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Zhongyan Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Shiping Yang
- Key Laboratory of Resource Chemistry
- Shanghai Normal University
- Shanghai 200234
- China
| | - Lei Dong
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Chemistry and Biomedicine Innovation Center (ChemBIC)
- Nanjing University
- Nanjing 210023
| |
Collapse
|
172
|
Wang Z, Li X, Zhou B. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption. Biochem Biophys Res Commun 2020; 533:1004-1011. [PMID: 33012507 DOI: 10.1016/j.bbrc.2020.09.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Zinc is an essential trace element and participates in a variety of biological processes. ZnT (SLC30) family members are generally responsible for zinc efflux across the membrane regulating zinc homeostasis. In mammals, the only predominantly plasma membrane resident ZnT has been reported to be ZnT1, and ZnT1-/ZnT1- mice die at the embryonic stage. In Drosophila, knock down of ZnT1 homologue (dZnT1//ZnT63C/CG17723) results in growth arrest under zinc-limiting conditions. To investigate the essentiality of dZnT1 for zinc homeostasis, as well as its role in dietary zinc uptake especially under normal physiological conditions, we generated dZnT1 mutants by the CRISPER/Cas9 method. Homozygous mutant dZnT1 is lethal, with substantial zinc accumulation in the iron cell region, posterior midgut as well as gastric caeca. Expression of human ZnT1 (hZnT1), in the whole body or in the entire midgut, fully rescued the dZnT1 mutant lethality, whereas tissue-specific expression of hZnT1 in the iron cell region and posterior midgut partially rescued the developmental defect of the dZnT1 mutant. Supplementation of zinc together with clioquinol or hinokitiol conferred a limited but observable rescue upon dZnT1 loss. Our work demonstrated the absolute requirement of dZnT1 in Drosophila survival and indicated that the most essential role of dZnT1 is in the gut.
Collapse
Affiliation(s)
- Zhiqing Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
173
|
Wang J, Cheng X, Zhao H, Yang Q, Xu Z. Downregulation of the zinc transporter SLC39A13 (ZIP13) is responsible for the activation of CaMKII at reperfusion and leads to myocardial ischemia/reperfusion injury in mouse hearts. J Mol Cell Cardiol 2020; 152:69-79. [PMID: 33307093 DOI: 10.1016/j.yjmcc.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
While Zn2+ dyshomeostasis is known to contribute to ischemia/reperfusion (I/R) injury, the roles of zinc transporters that are responsible for Zn2+ homeostasis in the pathogenesis of I/R injury remain to be addressed. This study reports that ZIP13 (SLC39A13), a zinc transporter, plays a role in myocardial I/R injury by modulating the Ca2+ signaling pathway rather than by regulating Zn2+ transport. ZIP13 is downregulated upon reperfusion in mouse hearts or in H9c2 cells at reoxygenation. Ca2+ but not Zn2+ was responsible for ZIP13 downregulation, implying that ZIP13 may play a role in I/R injury through the Ca2+ signaling pathway. In line with our assumption, knockout of ZIP13 resulted in phosphorylation (Thr287) of Ca2+-calmodulin-dependent protein kinase (CaMKII), indicating that downregulation of ZIP13 leads to CaMKII activation. Further studies showed that the heart-specific knockout of ZIP13 enhanced I/R-induced CaMKII phosphorylation in mouse hearts. In contrast, overexpression of ZIP13 suppressed I/R-induced CaMKII phosphorylation. Moreover, the heart-specific knockout of ZIP13 exacerbated myocardial infarction in mouse hearts subjected to I/R, whereas overexpression of ZIP13 reduced infarct size. In addition, knockout of ZIP13 induced increases of mitochondrial Ca2+, ROS, mitochondrial swelling, decrease in the mitochondrial respiration control rate (RCR), and dissipation of mitochondrial membrane potential (ΔΨm) in a CaMKII-dependent manner. These data suggest that downregulation of ZIP13 at reperfusion contributes to myocardial I/R injury through activation of CaMKII and the mitochondrial death pathway.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Xinxin Cheng
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
174
|
Molecular characterization, antibiogram and distribution of zntA gene in zinc-resistant Escherichia coli population recovered from anthropogenically-influenced surface water sources in Nigeria. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
175
|
Chen P, Yan M, Li L, He J, Zhou S, Li Z, Niu C, Bao C, Zhi F, Ma F, Guan Q. The apple DNA-binding one zinc-finger protein MdDof54 promotes drought resistance. HORTICULTURE RESEARCH 2020; 7:195. [PMID: 33328433 PMCID: PMC7704620 DOI: 10.1038/s41438-020-00419-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
DNA-binding one zinc-finger (Dof) proteins constitute a family of transcription factors with a highly conserved Dof domain that contains a C2C2 zinc-finger motif. Although several studies have demonstrated that Dof proteins are involved in multiple plant processes, including development and stress resistance, the functions of these proteins in drought stress resistance are largely unknown. Here, we report the identification of the MdDof54 gene from apple and document its positive roles in apple drought resistance. After long-term drought stress, compared with nontransgenic plants, MdDof54 RNAi plants had significantly shorter heights and weaker root systems; the transgenic plants also had lower shoot and root hydraulic conductivity, as well as lower photosynthesis rates. By contrast, compared with nontransgenic plants, MdDof54-overexpressing plants had higher photosynthesis rates and shoot hydraulic conductivity under long-term drought stress. Moreover, compared with nontransgenic plants, MdDof54-overexpressing plants had higher survival percentages under short-term drought stress, whereas MdDof54 RNAi plants had lower survival percentages. MdDof54 RNAi plants showed significant downregulation of 99 genes and significant upregulation of 992 genes in response to drought, and 366 of these genes were responsive to drought. We used DAP-seq and ChIP-seq analyses to demonstrate that MdDof54 recognizes cis-elements that contain an AAAG motif. Taken together, our results provide new information on the functions of MdDof54 in plant drought stress resistance as well as resources for apple breeding aimed at the improvement of drought resistance.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Lei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Limited, Hawke's Bay, New Zealand
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, P. R. China.
| |
Collapse
|
176
|
Li X, Chen T, Jiang H, Huang J, Huang M, Xu R, Xie Q, Zhu H, Su S. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci 2020; 224:106653. [PMID: 33249353 DOI: 10.1016/j.anireprosci.2020.106653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Methyl farnesoate (MF), a de-epoxidized form of juvenile hormone (JH) Ⅲ in insects, may regulate developmental processes such as reproduction and ovarian maturation in crustaceans. Krüppel homolog 1 (Kr-h1) is a target response gene for the methoprene-tolerant (Met) protein that is a component of the JH signaling pathway in insects. In the present study, Es-Kr-h1 was cloned from E. sinensis and characterized to ascertain whether JH/MF signaling in insects is conserved in crustaceans. The findings with molecular structure analysis indicated Es-Kr-h1 contains seven zinc finger motifs (Zn2-Zn8) commonly conserved in other crustaceans, but the Zn1 motif was not detected to be present. The PCR results indicated that relative abundance of Es-Kr-h1 mRNA transcript in the hepatopancreas was greatest in the Stage Ⅱ, followed by the Stage Ⅳ ovarian developmental categories. The relative abundance of Es-Kr-h1 mRNA transcript in vitro was greater after MF addition to the hepatopancreas, however, not the ovarian tissues. The results from in vivo and eyestalk ablation experiments indicated the relative abundance of Es-Kr-h1 mRNA transcript was greater after MF treatment and bilateral eyestalk removal in the hepatopancreas, however, not ovarian tissues. Notably, there were effects of MF on relative abundance of Es-Kr-h1 mRNA transcript pattern. The Es-Kr-h1 protein, therefore, may be involved in MF-mediated vitellogenesis resulting from the response to Es-Met in E. sinensis, and the JH/MF signaling pathway is potentially conserved in crustaceans.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haojie Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
177
|
Kumar PS, Elango KP. A simple organic probe for ratiometric fluorescent detection of Zn(II), Cd(II) and Hg(II) ions in aqueous solution via varying emission colours to distinguish one another. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118610. [PMID: 32603882 DOI: 10.1016/j.saa.2020.118610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
A bis (thiosemicarbazone) based probe has been synthesized and structurally characterized. The probe exhibits good selectivity towards Zn(II), Cd(II) and Hg(II) ions in an aqueous solution containing 95% water with ratiometric fluorescence changes. The modes of coordination of the probe with these metal ions and binding properties have been examined using different spectral techniques. The binding constants, determined using fluorescence titration data, are found to be 9.8 × 103, 1.39 × 105 and 2.03 × 1013 M-1, respectively for Zn(II), Cd(II) and Hg(II) complexes. The high sensitivity of the probe has been demonstrated by the very low limit of detection i.e. 5.1, 3.4 and 0.51 μM for Zn(II), Cd(II) and Hg(II) ions, respectively. Different coordination mode of these metal ions with the probe has resulted in varying intra-ligand fluorescence (λem nm, Zn(II): 488, Cd(II): 470 and Hg(II): 578) among these metal complexes.
Collapse
Affiliation(s)
- P Saravana Kumar
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram 624302, India.
| |
Collapse
|
178
|
Peng S, Lv J, Liu G, Fan C, Pu S. A photochromic diarylethene-functionalized fluorescent probe for Cd2+ and Zn2+ detections. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
179
|
Jiao SY, Kong LM, Liu GQ, Jia X, Tian J, Liu YG, Zhang LX, Zhang WX, Li YH, Huang Z. A simple and an easy-to-synthesize turn-on fluorescent probe for rapid detection of Zn2+ and its application in bioimaging. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
180
|
Cheng X, Cao J, Gao C, Gao W, Yan S, Yao H, Xu K, Liu X, Xu D, Pan X, Lu J, Chang C, Zhang H, Ma C. Identification of the wheat C3H gene family and expression analysis of candidates associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:524-537. [PMID: 33053501 DOI: 10.1016/j.plaphy.2020.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 05/01/2023]
Abstract
C3H zinc finger transcription factors play important roles in managing various biotic/abiotic stresses in Aarabidopsis, rice, and maize. The functions of these factors in wheat, however, remain largely unclear. We identified 88 TaC3H genes that were divided into four subfamilies in this analysis. Gene structure and conserved domain analyses indicate that most members of the same subfamily have similar structures. A total of 76 paralogous and 48 orthologous pairs were identified and Ka/Ks values were used to analyze replication relationships amongst wheat, rice, and Arabidopsis. Gene ontology (GO) annotation analysis showed that most TaC3H genes possessed molecular functions, while transcriptome results showed that the 88 TaC3H genes responded to water imbibition. Microarray data for 53 TaC3H genes were obtained and heat maps were generated; these results indicate that these genes are expressed in 13 wheat tissues. Subcellular localization prediction analysis indicates that most TaC3H genes are located in the nucleus. Promoter analysis indicates that most TaC3H genes contained cis-elements including ABRE, GARE-motif, and MBS, indicating that these can respond to various biotic/abiotic stresses. Transcriptome data and quantitative real-time PCR analysis of wheat cultivars with contrasting seed dormancy phenotypes show that five genes TaC3H4/-18/-37/-51/-72 were very likely involved in seed dormancy and germination. Exogenous ABA treatment further indicated that these five genes were responsive to ABA, suggesting that there may be a crosstalk between these genes and ABA signaling pathway in controlling seed dormancy and germination. These results provide a theoretical basis for subsequent studies on TaC3H gene function and also contribute to studies on the C3H gene in other species.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Kangle Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xue Liu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Dongmei Xu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| |
Collapse
|
181
|
Wang P, Wang S, Chen L, Wang W, Wang B, Liao Y. A novel peptide-based fluorescent probe for sensitive detection of zinc (II) and its applicability in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118549. [PMID: 32526399 DOI: 10.1016/j.saa.2020.118549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
In this work, we report SPSS synthesis of a new peptide-based fluorescent probe (L) capable of detecting Zn2+ with little interference in 100% aqueous solutions at physiological pH. Furthermore, L showed excellent sensitivity, with a detection limit of 26.77 nM. The 2:1 binding ratio between L and Zn2+ was determined using fluorometric titration, Job's plot and ESI-MS analyses. The "off-on-off" type fluorescence change of L was demonstrated by alternately adding Zn2+ and EDTA based on a formation-separation process of the complex, indicating that L could serve as a reversible probe. Moreover, MTT studies demonstrated that L has low biotoxicity, and could be successfully used for detection of Zn2+ and EDTA in live cells.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Sihan Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Li Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Wenting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Baohui Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| |
Collapse
|
182
|
Lu M, Qiu S, Cui S, Pu S. A double target fluorescent sensor based on diarylethene for detection of Al3+ and Zn2+. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
183
|
Xu H, Zhu C, Chen Y, Bai Y, Han Z, Yao S, Jiao Y, Yuan H, He W, Guo Z. A FRET-based fluorescent Zn 2+ sensor: 3D ratiometric imaging, flow cytometric tracking and cisplatin-induced Zn 2+ fluctuation monitoring. Chem Sci 2020; 11:11037-11041. [PMID: 34123194 PMCID: PMC8162301 DOI: 10.1039/d0sc03037f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monitoring labile Zn2+ homeostasis is of great importance for the study of physiological functions of Zn2+ in biological systems. Here we report a novel ratiometric fluorescent Zn2+ sensor, CPBT, which was constructed based on chelation-induced alteration of FRET efficiency. CPBT was readily cell membrane permeable and showed a slight preferential localization in the endoplasmic reticulum. With this sensor, 3D ratiometric Zn2+ imaging was first realized in the head of zebra fish larvae via Z-stack mode. CPBT could track labile Zn2+ in a large number of cells through ratiometric flow cytometric assay. More interestingly, both ratiometric fluorescence imaging and flow cytometric assay demonstrated that the labile Zn2+ level in MCF-7 cells (cisplatin-sensitive) decreased while that in SKOV3 cells (cisplatin-insensitive) increased after cisplatin treatment, indicating that Zn2+ may play an important role in cisplatin induced signaling pathways in these cancer cells. A Zn2+ sensor exhibiting 3D ratiometric imaging and flow cytometric ability was constructed based on the FRET mechanism, and cisplatin-induced endogenous labile Zn2+ fluctuations were monitored in real time.![]()
Collapse
Affiliation(s)
- Hongxia Xu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yang Jiao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
184
|
Jin J, Guo Y, Dong X, Liu J, He Y. Methylation-associated silencing of miR-193b improves the radiotherapy sensitivity of esophageal cancer cells by targeting cyclin D1 in areas with zinc deficiency. Radiother Oncol 2020; 150:104-113. [DOI: 10.1016/j.radonc.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/24/2023]
|
185
|
Baraibar AM, Hernández-Guijo JM. Micromolar concentrations of Zn 2+ depress cellular excitability through a blockade of calcium current in rat adrenal slices. Toxicology 2020; 444:152543. [PMID: 32858065 DOI: 10.1016/j.tox.2020.152543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022]
Abstract
The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 μM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 μM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.
Collapse
Affiliation(s)
- Andrés M Baraibar
- Department of Neuroscience, University of Minnesota, 4-260 Wallin Medical Biosciences Building, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Teófilo Hernando, Facultad de Medicina, Univ. Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029, Madrid, Spain.
| |
Collapse
|
186
|
Elsheikha HM, Alkurashi M, Palfreman S, Castellanos M, Kong K, Ning E, Elsaied NA, Geraki K, MacNaughtan W. Impact of Neospora caninum Infection on the Bioenergetics and Transcriptome of Cerebrovascular Endothelial Cells. Pathogens 2020; 9:pathogens9090710. [PMID: 32872199 PMCID: PMC7559149 DOI: 10.3390/pathogens9090710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells.
Collapse
Affiliation(s)
- Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
- Correspondence: ; Tel.: +44-0115-951-6445
| | - Mamdowh Alkurashi
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
- Animal Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suzy Palfreman
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
| | - Marcos Castellanos
- Nottingham Arabidopsis Stock Centre, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK;
| | - Kenny Kong
- School of Physics and Astronomy, University Park, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Evita Ning
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK;
| | - Nashwa A. Elsaied
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK; (M.A.); (S.P.); (N.A.E.)
| | | | - William MacNaughtan
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK;
| |
Collapse
|
187
|
A Novel Donor-Acceptor Fluorescent Sensor for Zn 2+ with High Selectivity and its Application in Test Paper. J Fluoresc 2020; 30:1567-1574. [PMID: 32852731 DOI: 10.1007/s10895-020-02609-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
A novel donor-acceptor fluorescent sensor was designed and synthesized. The sensor exhibited high selectivity and sensitivity to Zn2+ in acetonitrile solution. When 3.0 equiv. of Zn2+ was added gradually, the emission intensity at 500 nm increased 54-fold, accompanied by the fluorescent color of the solution changed from dark to green. Job's plot and ESI-MS were carried out to verify a 1:1 stoichiometric complex was formed between the sensor and Zn2+. The limit of detection (LOD) to Zn2+ was measured to be 2.81 × 10-9 mol L-1. Moreover, the sensor not only could be used to detect Zn2+ in practical water samples with high accuracy, but also could be made into test paper for the qualitative detection for Zn2+.
Collapse
|
188
|
A cyanobiphenyl-based ratiometric fluorescent sensor for highly selective and sensitive detection of Zn2+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
189
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
190
|
Ahmad R, Ishaque W, Khan M, Ashraf U, Riaz MA, Ghulam S, Ahmad A, Rizwan M, Ali S, Alkahtani S, Abdel-Daim MM. Relief Role of Lysine Chelated Zinc (Zn) on 6-Week-Old Maize Plants under Tannery Wastewater Irrigation Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:5161. [PMID: 32708934 PMCID: PMC7400338 DOI: 10.3390/ijerph17145161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 01/24/2023]
Abstract
Tannery wastewater mainly comes from leather industries. It has high organic load, high salinity, and many other pollutants, including chromium (Cr). Tannery wastewater is generally used for crop irrigation in some areas of Pakistan and worldwide, due to the low availability of good quality of irrigation water. As tannery wastewater has many nutrients in it, its lower concentration benefits the plant growth, but at a higher concentration, it damages the plants. Chromium in tannery wastewater accumulates in plants, and causes stress at physiological and biochemical levels. In recent times, the role of micronutrient-amino acid chelated compounds has been found to be helpful in reducing abiotic stress in plants. In our present study, we used lysine chelated zinc (Zn-lys) as foliar application on maize (Zea mays L.), growing in different concentrations of tannery wastewater. Zinc (Zn) is required by plants for growth, and lysine is an essential amino acid. Maize plants were grown in tannery wastewater in four concentrations (0, 25%, 50%, and 100%) and Zn-lys was applied as a foliar spray in three concentrations (0 mM, 12.5 mM, and 25 mM) during plant growth. Plants were cautiously harvested right after 6 weeks of treatment. Foliar spray of Zn-lys on maize increased the biomass and improved the plant growth. Photosynthetic pigments such as total chlorophyll, chlorophyll a, chlorophyll b and contents of carotenoids also increased with Zn-lys application. In contrast to control plants, the hydrogen peroxide (H2O2) contents were increased up to 12%, 50%, and 68% in leaves, as well as 16%, 51% and 89% in roots at 25%, 50%, and 100% tannery water application, respectively, without Zn-lys treatments. Zn-lys significantly reduced the damages caused by oxidative stress in maize plant by decreasing the overproduction of H2O2 and malondialdehyde (MDA) in maize that were produced, due to the application of high amount of tannery wastewater alone. The total free amino acids and soluble protein decreased by 10%, 31% and 64% and 18%, 61% and 122% at 25%, 50% and 100% tannery water treatment. Zn-lys application increased the amino acids production and antioxidant activities in maize plants. Zn contents increased, and Cr contents decreased, in different parts of plants with Zn-lys application. Overall, a high concentration of tannery wastewater adversely affected the plant growth, but the supplementation of Zn-lys assertively affected the plant growth and enhanced the nutritional quality, by enhancing Zn and decreasing Cr levels in plants simultaneously irrigated with tannery wastewater.
Collapse
Affiliation(s)
- Rehan Ahmad
- Department of Environmental Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.A.); (M.K.)
| | - Wajid Ishaque
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan; (W.I.); (M.A.R.)
| | - Mumtaz Khan
- Department of Environmental Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan; (R.A.); (M.K.)
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Muhammad Atif Riaz
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan; (W.I.); (M.A.R.)
| | - Said Ghulam
- Department of Soil Science, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Awais Ahmad
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan;
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan;
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (M.M.A.-D.)
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.A.); (M.M.A.-D.)
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
191
|
Taniya S, Khanra S, Ta S, Chatterjee S, Salam N, Das D. Exploring a new dinuclear Fe(iii) complex for the fixation of atmospheric CO 2 and optical recognition of nano-molar levels of Zn 2+ ions. RSC Adv 2020; 10:22284-22290. [PMID: 35516642 PMCID: PMC9054533 DOI: 10.1039/d0ra01698e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
A dinuclear Fe(iii) complex (F1) of an imine derivative (L1) derived from 3-ethoxy-2-hydroxy-benzaldehyde and hydrazine, structurally characterised via single crystal X-ray studies, is employed for the catalytic conversion of epoxides to cyclic carbonates utilizing carbon dioxide. In addition, F1 is employed for the selective optical recognition of nano-molar levels of Zn2+ (42.23 nM) via a metal displacement approach. The Job plot reveals interactions between F1 and Zn2+ at a 1 : 3 molar ratio with an association constant of 7.71 × 104 M−1. Studies on the catecholase-like activity of F1 reveal a kcat value of 4.42 × 103 h−1. A new Fe(iii) complex (F1), structurally characterised using single crystal X-ray studies, was explored for CO2 fixation, Zn2+ recognition and catecholase activity.![]()
Collapse
Affiliation(s)
- Seikh Taniya
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Somnath Khanra
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Sabyasachi Ta
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Sudeshna Chatterjee
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Noor Salam
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| | - Debasis Das
- Department of Chemistry, The University of Burdwan Burdwan 713104 W.B. India +91-342-2530452 +91-342-2533913 ext. 424
| |
Collapse
|
192
|
Two light responsive WRKY genes exhibit positive and negative correlation with picroside content in Picrorhiza kurrooa Royle ex Benth, an endangered medicinal herb. 3 Biotech 2020; 10:255. [PMID: 32432017 DOI: 10.1007/s13205-020-02249-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022] Open
Abstract
Picrorhiza kurrooa is an endangered herb known to produce the medicinally important picrosides through isoprenoid pathway. The present work showed the functionality of WRKY motifs (TGAC cis-acting elements) present in the promoters of regulatory genes 3-hydroxy-3-methylglutaryl coenzyme A reductase (Pkhmgr) and 1-deoxy-d-xylulose-5-phosphate synthase (Pkdxs) of the picrosides biosynthetic pathway by electrophoretic mobility shift assay. Also, the two WRKY genes, PkdWRKY and PksWRKY, were characterized and found to contain double and single characteristic WRKY domains, respectively along with a zinc-finger motif in each domain. Expression analysis revealed that PkdWRKY and PksWRKY exhibited a positive and negative correlation, respectively, with picrosides content under the environment of light and in different tissues. Functional evaluation in yeast showed DNA binding ability of both PksWRKY and PkdWRKY; however, only PkdWRKY exhibited transcriptional activation ability. Transient overexpression of PkdWRKY and PksWRKY in tobacco modulated the expression of selected native genes of tobacco involved in MVA and MEP pathway suggesting functionality of PkdWRKY and PksWRKY in planta. Collectively, data suggested that PkdWRKY and PksWRKY might be positive and negative regulators, respectively in the picrosides biosynthetic pathway.
Collapse
|
193
|
A Naked Eye and Turn‐On Fluorescence Detection of Zn
2+
Ion by Imidazole‐Quinoline‐Based Fluorophore and Its Application in Live‐Cell Imaging. ChemistrySelect 2020. [DOI: 10.1002/slct.202001109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
194
|
Wang B, Liang Z, Tan H, Duan W, Luo M. Red-emission carbon dots-quercetin systems as ratiometric fluorescent nanoprobes towards Zn 2+ and adenosine triphosphate. Mikrochim Acta 2020; 187:345. [PMID: 32447459 DOI: 10.1007/s00604-020-04316-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/08/2020] [Indexed: 12/18/2022]
Abstract
Carbon dots (CDs) emitting red fluorescence (610 nm) were synthesized by solvent thermal treatment of p-phenylenediamine in toluene. Upon 440 nm excitation, quercetin (QCT) alone endowed slight effects on the red fluorescence of CDs. Once Zn2+ was further introduced, the QCT-Zn2+ complex was quickly formed. This complex absorbs excitation light and emits bright green fluorescence at 480 nm. The red fluorescence of CDs was greatly quenched owing to the inner-filter effect. The ratio of fluorescence intensity at 480 nm and 610 nm (I480/I610) gradually increases with increasing concentration (c) of Zn2+. Al3+ exhibits the same phenomen like Zn2+. Fluoride ions form a more stable complex with Al3+ than QCT-Al3+ complex but have a negligible effect on the QCT-Zn2+ complex. The possible interference of Al3+ on Zn2+ can thus be avoided by adding certain amount of F-. The CD-QCT-F- system was constructed as a ratio-metric fluorescent nanoprobe toward Zn2+ with determination range of 0.14-30 μM and limit of detection (LOD) of 0.14 μM. Due to the stronger affinity of adenosine triphosphate (ATP) to Zn2+ than QCT, the I480/I610 value of CD-QCT-F--Zn2+ system gradually decreases with increasing cATP. The ratiometric fluorescent nanoprobe toward ATP was established with detection ranges of 0.55-10 and 10-35 μM and a LOD of 0.55 μM. The above two probes enable the quantitative determination of Zn2+ and ATP in tap and lake water samples with satisfactory recoveries. Graphical abstract Schematic representation of the ratiometric fluorescent nanoprobes based on the carbon dots (CDs)-quercetin (QCT) system towards Zn2+ and adenosine triphosphate (ATP) with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Baogang Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China. .,Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, People's Republic of China.
| | - Zhu Liang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Hui Tan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Wenmeng Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Mina Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| |
Collapse
|
195
|
Jung W, Sengupta K, Wendel BM, Helmann JD, Chen P. Biphasic unbinding of a metalloregulator from DNA for transcription (de)repression in Live Bacteria. Nucleic Acids Res 2020; 48:2199-2208. [PMID: 32009151 PMCID: PMC7049717 DOI: 10.1093/nar/gkaa056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/12/2022] Open
Abstract
Microorganisms use zinc-sensing regulators to alter gene expression in response to changes in the availability of zinc, an essential micronutrient. Under zinc-replete conditions, the Fur-family metalloregulator Zur binds to DNA tightly in its metallated repressor form to Zur box operator sites, repressing the transcription of zinc uptake transporters. Derepression comes from unbinding of the regulator, which, under zinc-starvation conditions, exists in its metal-deficient non-repressor forms having no significant affinity with Zur box. While the mechanism of transcription repression by Zur is well-studied, little is known on how derepression by Zur could be facilitated. Using single-molecule/single-cell measurements, we find that in live Escherichia coli cells, Zur's unbinding rate from DNA is sensitive to Zur protein concentration in a first-of-its-kind biphasic manner, initially impeded and then facilitated with increasing Zur concentration. These results challenge conventional models of protein unbinding being unimolecular processes and independent of protein concentration. The facilitated unbinding component likely occurs via a ternary complex formation mechanism. The impeded unbinding component likely results from Zur oligomerization on chromosome involving inter-protein salt-bridges. Unexpectedly, a non-repressor form of Zur is found to bind chromosome tightly, likely at non-consensus sequence sites. These unusual behaviors could provide functional advantages in Zur's facile switching between repression and derepression.
Collapse
Affiliation(s)
- Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kushal Sengupta
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian M Wendel
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
196
|
Yu M, Xie D, Kadakia RT, Wang W, Que EL. Harnessing chemical exchange: 19F magnetic resonance OFF/ON zinc sensing with a Tm(iii) complex. Chem Commun (Camb) 2020; 56:6257-6260. [PMID: 32373870 DOI: 10.1039/d0cc01876g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A fluorinated, thulium(iii) complex (Tm-PFZ-1) serves as an off-on 19F magnetic resonance probe for Zn(ii). Rapid exchange among different conformations combined with paramagnetic relaxation and chemical shift effects of Tm(iii) effectively eliminate the 19F NMR/MRI signal in Tm-PFZ-1. Chelation of Zn(ii) induces increased structural rigidity and reduces exchange rate, affording a robust 19F NMR/MRI signal. Tm-PFZ-1 represents a first-in-class paramagnetic 19F MR agent that exploits a novel sensing mechanism for Zn(ii) and is the first 19F MR-based scaffold to provide an "off-on" response to Zn(ii) in aqueous solution.
Collapse
Affiliation(s)
- Meng Yu
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St Stop A5300, Austin, Texas 78712, USA.
| | | | | | | | | |
Collapse
|
197
|
Musib D, Devi LR, Raza MK, Chanu SB, Roy M. A New Thiophene-based Aggregation-induced Emission Chemosensor for Selective Detection of Zn2+ Ions and Its Turn Off. CHEM LETT 2020. [DOI: 10.1246/cl.200001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - L. Reena Devi
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-560012, Karnataka, India
| | - S. Binita Chanu
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology, Manipur, Langol 795004, Imphal (Manipur), India
| |
Collapse
|
198
|
Zhang C, Gao R, Zhang L, Liu C, Yang Z, Zhao S. Design and Synthesis of a Ratiometric Photoacoustic Probe for In Situ Imaging of Zinc Ions in Deep Tissue In Vivo. Anal Chem 2020; 92:6382-6390. [DOI: 10.1021/acs.analchem.9b05431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
199
|
Zhao SP, Song XY, Guo LL, Zhang XZ, Zheng WJ. Genome-Wide Analysis of the Shi-Related Sequence Family and Functional Identification of GmSRS18 Involving in Drought and Salt Stresses in Soybean. Int J Mol Sci 2020; 21:E1810. [PMID: 32155727 PMCID: PMC7084930 DOI: 10.3390/ijms21051810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
The plant-special SHI-RELATED SEQUENCE (SRS) family plays vital roles in various biological processes. However, the genome-wide analysis and abiotic stress-related functions of this family were less reported in soybean. In this work, 21 members of soybean SRS family were identified, which were divided into three groups (Group I, II, and III). The chromosome location and gene structure were analyzed, which indicated that the members in the same group may have similar functions. The analysis of stress-related cis-elements showed that the SRS family may be involved in abiotic stress signaling pathway. The analysis of expression patterns in various tissues demonstrated that SRS family may play crucial roles in special tissue-dependent regulatory networks. The data based on soybean RNA sequencing (RNA-seq) and quantitative Real-Time PCR (qRT-PCR) proved that SRS genes were induced by drought, NaCl, and exogenous abscisic acid (ABA). GmSRS18 significantly induced by drought and NaCl was selected for further functional verification. GmSRS18, encoding a cell nuclear protein, could negatively regulate drought and salt resistance in transgenic Arabidopsis. It can affect stress-related physiological index, including chlorophyll, proline, and relative electrolyte leakage. Additionally, it inhibited the expression levels of stress-related marker genes. Taken together, these results provide valuable information for understanding the classification of soybean SRS transcription factors and indicates that SRS plays important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xin-Yuan Song
- Agro-biotechnology Research Institute, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Lin-Lin Guo
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China; (S.-P.Z.); (X.-Z.Z.)
| |
Collapse
|
200
|
Tharmalingam B, Mathivanan M, Mani KS, Kaminsky W, Raghunath A, Jothi M, Perumal E, Murugesapandian B. Selective detection of pyrophosphate anion by zinc ensemble of C3-symmetric triaminoguanidine-pyrrole conjugate and its biosensing applications. Anal Chim Acta 2020; 1103:192-201. [DOI: 10.1016/j.aca.2019.12.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
|