151
|
|
152
|
Abstract
The virus-derived protein Apoptin has the ability to induce p53-independent apoptosis in a variety of human cancer cells while leaving normal cells unharmed. It thus represents a potential anti-cancer therapeutic agent of the future but a proper understanding of Apoptin-induced signalling events is necessary prior to clinical application. The tumor-specific nuclear translocation and phosphorylation of Apoptin by a cellular kinase such as protein kinase C seem to be required for its function but otherwise the mode of tumor selectivity remains unknown. Apoptin has been shown to interact with several cellular proteins including Akt and the anaphase-promoting complex that regulate its activity and promote caspase-dependent apoptosis. This chapter summarizes the available data on tumor-specific pathways sensed by Apoptin and the mechanism of Apoptin-induced cell death.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Kings College London, Guy's Hospital, Floor 2 Room 2.66S, Hodgkin Building, London, UK
| | | |
Collapse
|
153
|
Campos-Melo D, Galleguillos D, Sánchez N, Gysling K, Andrés ME. Nur transcription factors in stress and addiction. Front Mol Neurosci 2013; 6:44. [PMID: 24348325 PMCID: PMC3844937 DOI: 10.3389/fnmol.2013.00044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/09/2013] [Indexed: 12/16/2022] Open
Abstract
The Nur transcription factors Nur77 (NGFI-B, NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3) are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal (HPA) axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Nucleus Millennium in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Danny Galleguillos
- Nucleus Millennium in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Natalia Sánchez
- Nucleus Millennium in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Katia Gysling
- Nucleus Millennium in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - María E Andrés
- Nucleus Millennium in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
154
|
17β-estradiol delays 6-OHDA-induced apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm. Neurotox Res 2013; 25:124-34. [PMID: 24277157 DOI: 10.1007/s12640-013-9442-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (Nurs) represent a large family of gene expression regulating proteins. Gathering evidence indicates an important role for Nurs as transcription factors in dopamine neurotransmission. Nur77, a member of the Nur superfamily, plays a role in mediating the effects of antiparkinsonian and neuroleptic drugs. Besides, Nur77 survival and apoptotic roles depend largely on its subcellular localization. Estrogens are known for their neuroprotective properties, as demonstrated in animal and clinical studies. However, their action on Nur77 translocation pertaining to neuroprotection has not been investigated yet. The aim of our study was to perform a kinetic study on the effect of neurotoxic 6-hydroxydopamine (6-OHDA) and 17β-estradiol (E2) on the subcellular localization of Nur77 with reference to the modulation of apoptosis in PC12 cells. Our results demonstrate that E2 administration alone does not affect Nur77 cytoplasmic/nuclear ratio, mRNA levels, or apoptosis in PC12 cells. The neurotoxin 6-OHDA significantly enhances cytoplasmic localization of Nur77 after merely 3 h, while precipitating apoptosis. 6-OHDA also increases Nur77 transcription, which could partly explain the rise in cytoplasmic localization of the protein. Finally, treatment with both E2 and 6-OHDA delays Nur77 accumulation in the cytoplasm and delays cell death for a few hours in our cellular paradigm. Pre-treatment with E2 does not alter the increase in levels of Nur77 mRNA produced by 6-OHDA, suggesting that a raise in nuclear translocation is likely responsible for the stabilization of the cytoplasmic/nuclear ratio until 6 h. These results suggest an intriguing cooperation between E2 and Nur77 toward cellular fate guidance.
Collapse
|
155
|
Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 2013; 35:1552-61. [PMID: 24246647 DOI: 10.1016/j.biomaterials.2013.10.082] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/31/2013] [Indexed: 11/20/2022]
Abstract
Development of functional biomaterials and drugs with good biocompatibility towards host cells but with high potency against cancer cells is a challenging endeavor. By drawing upon the advantageous features of natural antimicrobial peptides and α-helical proteins, we have designed a new class of short α-helical peptides G(IIKK)(n)I-NH2 (n = 1-4) with different potency and high selectivity against cancer cells. We show that the peptides with n = 3 and 4 kill cancer cells effectively whilst remaining benign to the host cells at their working concentrations, through mechanistic processes similar to their bactericidal effects. The high cell selectivity could stem from their preferential binding to the outer cell membranes containing negative charges and high fluidity. In addition to rapid membrane-permeabilizing capacities, the peptides can also induce the programmed cell death of cancer cells via both mitochondrial pathway and death receptor pathway, without inducing non-specific immunogenic responses. Importantly, these peptides can also inhibit tumor growth in a mouse xenograft model without eliciting side effects. Whilst this study reveals the clinical potential of these peptides as potent drugs and for other medical and healthcare applications, it also points to the significance of fundamental material research in the future development of highly selective peptide functional materials.
Collapse
|
156
|
Luchino J, Hocine M, Amoureux MC, Gibert B, Bernet A, Royet A, Treilleux I, Lécine P, Borg JP, Mehlen P, Chauvet S, Mann F. Semaphorin 3E suppresses tumor cell death triggered by the plexin D1 dependence receptor in metastatic breast cancers. Cancer Cell 2013; 24:673-85. [PMID: 24139859 DOI: 10.1016/j.ccr.2013.09.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 07/26/2013] [Accepted: 09/17/2013] [Indexed: 01/08/2023]
Abstract
The semaphorin guidance molecules and their receptors, the plexins, are often inappropriately expressed in cancers. However, the signaling processes mediated by plexins in tumor cells are still poorly understood. Here, we demonstrate that the Semaphorin 3E (Sema3E) regulates tumor cell survival by suppressing an apoptotic pathway triggered by the Plexin D1 dependence receptor. In mouse models of breast cancer, a ligand trap that sequesters Sema3E inhibited tumor growth and reduced metastasis through a selective tumor cytocidal effect. We further showed that Plexin D1 triggers apoptosis via interaction with the orphan nuclear receptor NR4A1. These results define a critical role of Sema3E/Plexin D1 interaction in tumor resistance to apoptosis and suggest a therapeutic approach based on activation of a dependence receptor pathway.
Collapse
Affiliation(s)
- Jonathan Luchino
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013; 4:321. [PMID: 24198814 PMCID: PMC3813893 DOI: 10.3389/fmicb.2013.00321] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/21/2023] Open
Abstract
Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered.
Collapse
Affiliation(s)
- Kelly C L Mulder
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | |
Collapse
|
158
|
Wang H, Wang X, Wang P, Zhang K, Yang S, Liu Q. Ultrasound enhances the efficacy of chlorin E6-mediated photodynamic therapy in MDA-MB-231 cells. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1713-1724. [PMID: 23830103 DOI: 10.1016/j.ultrasmedbio.2013.03.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 06/02/2023]
Abstract
Sono-photodynamic therapy (SPDT) is a new modality for cancer treatment. Some studies have reported enhanced tumor cytotoxicity when sonodynamic therapy (SDT) is combined with photodynamic therapy (PDT). In this study, we investigated the cytotoxic effect of SPDT-activated chlorin e6 (Ce6) on MDA-MB-231 cells. Ce6 was found to localize mainly in mitochondria, with maximal uptake within 4 h. Cell survival was estimated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide tetrazolium) assay 24 h after irradiation; the combined therapy enhanced cytotoxicity to a greater extent. Apoptosis was analyzed using annexin V-PE/7-ADD (7-aminoactinomycin D) staining as well as DAPI (4', 6-diamidino-2-phenylindole) staining, and the results indicated that the cells with apoptotic characteristics were significantly increased in groups given combined therapy. Rhodamine-123 staining and cytochrome c release revealed more serious damage of mitochondria after combined treatment. The generation of reactive oxygen species detected by flow cytometry was greatly increased in cells treated with the combination therapy, and the loss in cell viability could be effectively rescued with the reactive oxygen species inhibitor N-acetylcysteine. Moreover, enhancement of cell membrane permeability after ultrasound treatment was evaluated using FD-500, and it was found that the much higher uptake of Ce6 might be involved in PDT therapy with pre-treatment ultrasound. These results suggest that ultrasound enhances the cytotoxicity of Ce6-mediated PDT, possibly because of the increased intracellular Ce6 level and ROS formation by ultrasound pre-treatment.
Collapse
Affiliation(s)
- Haiping Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
159
|
Hsieh CL, Peng CC, Chen KC, Peng RY. Rutin (quercetin rutinoside) induced protein-energy malnutrition in chronic kidney disease, but quercetin acted beneficially. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7258-7267. [PMID: 23876017 DOI: 10.1021/jf304595p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nutraceutically, much of the literature has indicated that an aglycon and its related glycoside would act similarly. However, controversial reports are accumulating. We hypothesize that rutin (RT) and quercetin (QT) pharmacodynamically could act differently. To confirm this, doxorubicin (DR) (8.5 mg/kg) was used to induce rat chronic kidney disease (CKD) and then treated with QT and RT (each 70 mg/kg body weight per day) for 13 weeks. QT exhibited better body weight gaining effect (420 ± 45) vs RT, 350 ± 57 g/rat (p < 0.001). DR raised the ratio kidney-to-body weight (%) to 0.82 (p < 0.001) vs RT, 0.62 (p < 0.01), and QT, 0.35 (p < 0.01). DR reduced the glomerular filtration rate to 25.2 vs RT, 48 ± 11.3; QT, 124.7 ± 12.8 (p < 0.001) and the control, 191.5 ± 15.7 mL/h (p < 0.001). DRCKD reduced hematocrit to 29 ± 5; RT, to 28 ± 5 (p < 0.05); QT, to 36 ± 6 vs the control 37.5 ± 4%, (p < 0.01). DRCKD reduced the serum albumin (s-Ab) to 2.1 ± 0.2 (p < 0.001); QT, to 2.7 ± 0.2 (p < 0.05) vs the normal 4.3 ± 0.5 g/dL, yet RT was totally ineffective. DRCKD raised serum cholesterol level to 340 ± 30; vs RT, 260 ± 12; QT, 220 ± 25; and the normal value, 70 ± 25 mg/dL. DRCKD increased serum triglyceride to 260 ± 15 (p < 0.001), RT and QT restored it to 170 ± 25 and 200 ± 15 (p < 0.05) vs the normal 26-145 mg/dL. DRCKD elevated blood urea nitrogen to 38 ± 3 vs RT, to 98 ± 6 mg/dL (p < 0.001), implicating "protein-energy malnutrition". RT stimulated serum creatinine (sCr) production to reach 6.0 ± 0.9 mg/dL (p < 0.001). QT did not alter the sCr level. RT but not QT induced uremia and hypercreatininemia. DR significantly downregulated Bcl-2, but highly upregulated Bax, Bad, and cleaved caspase-3, implicating the intrinsic mitochondrial pathway. DR damaged DNA, but QT completely rescued such an effect and recovered renal amyloidosis and collagen deposition. Conclusively, RT and QT act differently, and RT is inferior to QT with respect to treating CKD.
Collapse
Affiliation(s)
- Chiu-Lan Hsieh
- Graduate Institute of Biotechnology, Changhua University of Education, Changhua, Taiwan
| | | | | | | |
Collapse
|
160
|
Reiner DJ, Yu SJ, Shen H, He Y, Bae E, Wang Y. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons. Neurotox Res 2013; 25:248-61. [PMID: 23884514 DOI: 10.1007/s12640-013-9413-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/03/2023]
Abstract
Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.
Collapse
Affiliation(s)
- David J Reiner
- Neural Protection and Regeneration Section, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, 21224, USA
| | | | | | | | | | | |
Collapse
|
161
|
Yuan D, Huang J, Yuan X, Zhao J, Jiang W. Zinc finger protein 667 expression is upregulated by cerebral ischemic preconditioning and protects cells from oxidative stress. Biomed Rep 2013; 1:534-538. [PMID: 24648981 DOI: 10.3892/br.2013.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022] Open
Abstract
Brain ischemic injury is associated with clinical emergencies such as acute ischemic and hemorrhagic stroke, head trauma, prolonged severe hypotension and cardiac arrest. Ischemic preconditioning (IPC) is the most powerful endogenous mechanism against ischemic injury. However, the majority of IPC treatments are invasive and thus impractical in the clinical setting. Identifying the endogenous neuroprotective mechanism induced by IPC is important for developing new strategies to reduce stroke severity. Zinc finger protein 667 (ZNF667) is a novel zinc finger protein that is upregulated by myocardial IPC. However, its functional role in neuronal ischemia has not been elucidated. In this study, the changes of ZNF667 expression on cerebral IPC and its potential neuroprotective function were investigated. The cerebral ischemia model was established by ameliorated four-vessel occlusion in rats. The northern blot results demonstrated that ZNF667 expression was increased in the hippocampus and cortex at 12 and 24 h after cerebral ischemic pretreatment. To investigate the neuroprotective function of ZNF667, enhanced green fluorescent protein (EGFP)-ZNF667 fusion protein was expressed in C2C12 and brain astrocytoma cells and its subcellular localization was detected by confocal microscopy. EGFP-ZNF667 fusion proteins were localized in the nucleus of C2C12 and brain astrocytoma cells, indicating that ZNF667 may act as a transcription factor in neural cells. To mimic oxidative stress associated with ischemia/reperfusion injury, hydrogen peroxide (H2O2) was used to treat cells. Cell viability was measured by the lactate dehydrogenase (LDH) and WST-1 assays. A decrease in viability was detected in C2C12 and astrocytoma cells following H2O2 treatment, whereas ZNF667 gene overexpression significantly improved cell viability following H2O2 treatment. These results suggested that ZNF667 plays a neuroprotective role by acting as a transcription factor in cerebral IPC.
Collapse
Affiliation(s)
- Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
162
|
Wilson AJ, Liu AY, Roland J, Adebayo OB, Fletcher SA, Slaughter JC, Saskowski J, Crispens MA, Jones HW, James S, Fadare O, Khabele D. TR3 modulates platinum resistance in ovarian cancer. Cancer Res 2013; 73:4758-69. [PMID: 23720056 DOI: 10.1158/0008-5472.can-12-4560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In metastatic ovarian cancer, resistance to platinum chemotherapy is common. Although the orphan nuclear receptor TR3 (nur77/NR4A1) is implicated in mediating chemotherapy-induced apoptosis in cancer cells, its role in ovarian cancer has not been determined. In an ovarian cancer tissue microarray, TR3 protein expression was elevated in stage I tumors, but downregulated in a significant subset of metastatic tumors. Moreover, TR3 expression was significantly lower in platinum-resistant tumors in patients with metastatic disease, and low TR3 staining was associated with poorer overall and progression-free survival. We have identified a direct role for TR3 in cisplatin-induced apoptosis in ovarian cancer cells. Nucleus-to-cytoplasm translocation of TR3 was observed in cisplatin-sensitive (OVCAR8, OVCAR3, and A2780PAR) but not cisplatin-resistant (NCI/ADR-RES and A2780CP20) ovarian cancer cells. Immunofluorescent analyses showed clear overlap between TR3 and mitochondrial Hsp60 in cisplatin-treated cells, which was associated with cytochrome c release. Ovarian cancer cells with stable shRNA- or transient siRNA-mediated TR3 downregulation displayed substantial reduction in cisplatin effects on apoptotic markers and cell growth in vitro and in vivo. Mechanistic studies showed that the cisplatin-induced cytoplasmic TR3 translocation required for apoptosis induction was regulated by JNK activation and inhibition of Akt. Finally, cisplatin resistance was partially overcome by ectopic TR3 overexpression and by treatment with the JNK activator anisomycin and Akt pathway inhibitor, wortmannin. Our results suggest that disruption of TR3 activity, via downregulation or nuclear sequestration, likely contributes to platinum resistance in ovarian cancer. Moreover, we have described a treatment strategy aimed at overcoming platinum resistance by targeting TR3.
Collapse
Affiliation(s)
- Andrew J Wilson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, B1100 Medical Center North, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ji X, Li J, Zhu L, Cai J, Zhang J, Qu Y, Zhang H, Liu B, Zhao R, Zhu Z. CHD1L promotes tumor progression and predicts survival in colorectal carcinoma. J Surg Res 2013; 185:84-91. [PMID: 23746766 DOI: 10.1016/j.jss.2013.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND To evaluate the expression of chromodomain helicase/adenosine triphosphatase DNA binding protein 1-like gene (CHD1L) in colorectal carcinoma (CRC) and its clinical significance. Its oncogenic ability was also investigated. MATERIALS AND METHODS CHD1L amplification and overexpression were detected by fluorescence in situ hybridization, real-time reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 86 patients with CRC. The correlation between the clinical characteristics and prognosis was also determined. To evaluate the tumorigenic ability of CHD1L, it was cloned into expression vector pcDNA3.1(+) and transfected into CRC cell line SW1116. Next, the changes in the biologic behavior of the CRC cells, including cell proliferation, adhesion, migration, and invasion, were examined. Apoptosis and the cell cycle of the CRC cells were detected using flow cytometry. RESULTS We have demonstrated that CHD1L is frequently amplified and overexpressed in CRC. Overexpression of CHD1L correlated with a large tumor size, deep tumor invasion, and a high histologic grade. It also conferred worse disease-free survival. CHD1L-transfected cells possessed a strong oncogenic ability, increasing the tumorigenicity in nude mice, which could be effectively suppressed by small interfering RNA against CHD1L. Functional studies showed that overexpression of CHD1L could promote G1/S-phase cells and inhibit apoptosis. CONCLUSIONS Our results suggest that CHD1L is the target oncogene within the 1q21 amplicon and plays a pivotal role in CRC pathogenesis.
Collapse
Affiliation(s)
- Xiaopin Ji
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Chen HZ, Wen Q, Wang WJ, He JP, Wu Q. The orphan nuclear receptor TR3/Nur77 regulates ER stress and induces apoptosis via interaction with TRAPγ. Int J Biochem Cell Biol 2013; 45:1600-9. [PMID: 23660295 DOI: 10.1016/j.biocel.2013.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/09/2022]
Abstract
The orphan nuclear receptor TR3 (also known as Nur77) belongs to the steroid/thyroid/retinoid nuclear receptor superfamily and plays important roles in regulating cell proliferation, differentiation and apoptosis. No physiological ligand for TR3 has been found thus far; the determination of its binding partners is therefore important to clarify the biological functions of TR3. Here, we identified translocon-associated protein subunit γ (TRAPγ) as a novel TR3 binding partner using a tandem affinity purification method. This interaction between TR3 and TRAPγ was further confirmed, and the interacting regions were mapped. The ligand-binding domain of TR3 was required for TRAPγ binding, and the C terminus of TRAPγ was responsible for its interaction with TR3. When stimulated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or CD437, this TR3-TRAPγ interaction not only induced Ca(2+) depletion in the endoplasmic reticulum (ER) but also promoted the expression of the proapoptotic transcriptional regulator CHOP. Notably, both TR3 and TRAPγ were required for ER stress-induced apoptosis in HepG2 cells. Overall, this study demonstrated a novel, TR3-initiated signaling pathway in which TR3 regulates ER stress and induces apoptosis of hepatoma cells through its interaction with TRAPγ.
Collapse
Affiliation(s)
- Hang-zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China.
| | | | | | | | | |
Collapse
|
165
|
Aguirre SA, Pons P, Settembrini BP, Arroyo D, Canavoso LE. Cell death mechanisms during follicular atresia in Dipetalogaster maxima, a vector of Chagas' disease (Hemiptera: Reduviidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:532-541. [PMID: 23500893 DOI: 10.1016/j.jinsphys.2013.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/27/2013] [Accepted: 03/05/2013] [Indexed: 06/01/2023]
Abstract
In this work we have analyzed the involvement of cell death pathways during the process of follicular atresia in the hematophagous insect vector Dipetalogaster maxima. Standardized insect rearing conditions were established to induce a gradual follicular degeneration stage by depriving females of blood meal during post-vitellogenesis. We first characterized the morpho-histological and ultrastructural changes of the ovarian tissue at early and late follicular atresia by light and transmission electron microscopy. Apoptosis was investigated by DAPI nuclear staining, TUNEL labeling and the detection of active caspase-3 by immunofluorescence. Autophagy was assessed by the measurement of acid phosphatase activity in ovarian homogenates and monitored by the detection of the specific marker of autophagic compartments, LC3. High levels of acid phosphatase activity were detected at all atretic stages. However, follicular cells of follicles undergoing incipient degeneration in early atresia exhibited features of apoptosis such as chromatin condensation, DNA fragmentation and the presence of active caspase-3. The ultrastructural findings and the increased levels of LC3-II found at late follicular atresia supported the relevance of autophagy at this atretic stage, although the extent of autophagosome formation demonstrated that this cell death pathway also occurred at early atresia. In late atresia, follicular cells also displayed more drastic changes compatible with necrosis. Taken together, results showed that apoptosis, autophagy and necrosis were operative during follicular atresia in D. maxima. Moreover, it was shown that the relevance of these cell death mechanisms correlates with the time elapsed since the onset of the degenerative process.
Collapse
Affiliation(s)
- Silvina A Aguirre
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas-Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
| | | | | | | | | |
Collapse
|
166
|
Gao W, Liu J, Hu M, Huang M, Cai S, Zeng Z, Lin B, Cao X, Chen J, Zeng JZ, Zhou H, Zhang XK. Regulation of proteolytic cleavage of retinoid X receptor-α by GSK-3β. Carcinogenesis 2013; 34:1208-15. [PMID: 23389291 DOI: 10.1093/carcin/bgt043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently reported that an N-terminally truncated retinoid X receptor-α (tRXRα) produced in cancer cells acts to promote cancer cell growth and survival through AKT activation. However, how RXRα is cleaved and how the cleavage is regulated in cancer cells remain undefined. In this study, we demonstrated that calpain II could cleave RXRα protein in vitro, generating two truncated RXRα products. The cleavage sites in RXRα were mapped by Edman N-terminal sequencing to Gly(90)↓Ser(91) and Lys(118)↓Val(119). Transfection of the resulting cleavage product RXRα/90, but not RXRα/118, resulted in activation of AKT in cancer cells, similar to the effect of tRXRα. In support of the role of calpain II in cancer cells, transfection of calpain II expression vector or its activation by ionomycin enhanced the production of tRXRα, whereas treatment of cells with calpain inhibitors reduced the levels of tRXRα. Co-immunoprecipitation assays also showed an interaction between calpain II and RXRα. In studying the regulation of tRXRα production, we observed that treatment of cells with lithium chloride or knockdown of glycogen synthase kinase-3β (GSK-3β) significantly increased the production of tRXRα. Conversely, overexpression of GSK-3β reduced tRXRα expression. Furthermore, we found that the inhibitory effect of GSK-3β on tRXRα production was due to its suppression of calpain II expression. Taken together, our data demonstrate that GSK-3β plays an important role in regulating tRXRα production by calpain II in cancer cells, providing new insights into the development of new strategies and agents for the prevention and treatment of tRXRα-related cancers.
Collapse
Affiliation(s)
- Weiwei Gao
- School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Muller M, Demeret C. The HPV E2-Host Protein-Protein Interactions: A Complex Hijacking of the Cellular Network. Open Virol J 2012; 6:173-89. [PMID: 23341853 PMCID: PMC3547520 DOI: 10.2174/1874357901206010173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022] Open
Abstract
Over 100 genotypes of human papillomaviruses (HPVs) have been identified as being responsible for unapparent infections or for lesions ranging from benign skin or genital warts to cancer. The pathogenesis of HPV results from complex relationships between viral and host factors, driven in particular by the interplay between the host proteome and the early viral proteins. The E2 protein regulates the transcription, the replication as well as the mitotic segregation of the viral genome through the recruitment of host cell factors to the HPV regulatory region. It is thereby a pivotal factor for the productive viral life cycle and for viral persistence, a major risk factor for cancer development. In addition, the E2 proteins have been shown to engage numerous interactions through which they play important roles in modulating the host cell. Such E2 activities are probably contributing to create cell conditions appropriate for the successive stages of the viral life cycle, and some of these activities have been demonstrated only for the oncogenic high-risk HPV. The recent mapping of E2-host protein-protein interactions with 12 genotypes representative of HPV diversity has shed some light on the large complexity of the host cell hijacking and on its diversity according to viral genotypes. This article reviews the functions of E2 as they emerge from the E2/host proteome interplay, taking into account the large-scale comparative interactomic study.
Collapse
Affiliation(s)
- Mandy Muller
- Unité de Génétique, Papillomavirus et Cancer Humain (GPCH), Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France ; Univ. Paris Diderot, Sorbonne Paris cite, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
168
|
Hubmann R, Hilgarth M, Schnabl S, Ponath E, Reiter M, Demirtas D, Sieghart W, Valent P, Zielinski C, Jäger U, Shehata M. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells. Br J Haematol 2012; 160:618-29. [PMID: 23278106 DOI: 10.1111/bjh.12183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 01/21/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)- dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the γ-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor κB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL.
Collapse
Affiliation(s)
- Rainer Hubmann
- Clinic of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Han YF, Cao GW. Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers. World J Gastroenterol 2012; 18:6865-73. [PMID: 23322982 PMCID: PMC3531668 DOI: 10.3748/wjg.v18.i47.6865] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/27/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023] Open
Abstract
NR4A2 is a transcription factor belonging to the steroid orphan nuclear receptor superfamily. It was originally considered to be essential in the generation and maintenance of dopaminergic neurons, and associated with neurological disorders such as Parkinson’s disease. Recently, NR4A2 has been found to play a critical role in some inflammatory diseases and cancer. NR4A2 can be efficiently trans-activated by some proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β, and vascular endothelial growth factor (VEGF). The nuclear factor-κB signaling pathway serves as a principal regulator of inducible NR4A expression in immune cells. NR4A2 can trans-activate Foxp3, a hallmark specifically expressed in regulatory T (Treg) cells, and plays a critical role in the differentiation, maintenance, and function of Treg cells. NR4A2 in T lymphocytes is pivotal for Treg cell induction and suppression of aberrant induction of Th1 under physiological and pathological conditions. High density of Foxp3+ Treg cells is significantly associated with gastrointestinal inflammation, tumor immune escape, and disease progression. NR4A2 is produced at high levels in CD133+ colorectal carcinoma (CRC) cells and significantly upregulated by cyclooxygenase-2-derived prostaglandin E2 in a cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-dependent manner in CRC cells. The cAMP/PKA signaling pathway is the common pathway of NR4A2-related inflammation and cancer. NR4A2 trans-activates osteopontin, a direct target of the Wnt/β-catenin pathway associated with CRC invasion, metastasis, and poor prognosis. Knockdown of endogenous NR4A2 expression attenuates VEGF-induced endothelial cell proliferation, migration and in vivo angiogenesis. Taken together, NR4A2 emerges as an important nuclear factor linking gastrointestinal inflammation and cancer, especially CRC, and should serve as a candidate therapeutic target for inflammation-related gastrointestinal cancer.
Collapse
|
170
|
Abstract
The consequences of DNA damage depend on the cell type and the severity of the damage. Mild DNA damage can be repaired with or without cell-cycle arrest. More severe and irreparable DNA injury leads to the appearance of cells that carry mutations or causes a shift towards induction of the senescence or cell death programs. Although for many years it was argued that DNA damage kills cells via apoptosis or necrosis, technical and methodological progress during the last few years has helped to reveal that this injury might also activate death by autophagy or mitotic catastrophe, which may then be followed by apoptosis or necrosis. The molecular basis underlying the decision-making process is currently the subject of intense investigation. Here, we review current knowledge about the response to DNA damage and subsequent signaling, with particular attention to cell death induction and the molecular switches between different cell death modalities following damage.
Collapse
|
171
|
Wang GH, Jiang FQ, Duan YH, Zeng ZP, Chen F, Dai Y, Chen JB, Liu JX, Liu J, Zhou H, Chen HF, Zeng JZ, Su Y, Yao XS, Zhang XK. Targeting truncated retinoid X receptor-α by CF31 induces TNF-α-dependent apoptosis. Cancer Res 2012; 73:307-18. [PMID: 23151904 DOI: 10.1158/0008-5472.can-12-2038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A truncated version of retinoid X receptor-α, tRXR-α, promotes cancer cell survival by activating the phosphoinositide 3-kinase (PI3K)/AKT pathway. However, targeting the tRXR-α-mediated survival pathway for cancer treatment remains to be explored. We report here our identification of a new natural product molecule, CF31, a xanthone isolated from Cratoxylum formosum ssp. pruniflorum, and the biologic evaluation of its regulation of the tRXR-α-mediated PI3K/AKT pathway. CF31 binds RXR-α and its binding results in inhibition of RXR-α transactivation. Through RXR-α mutational analysis and computational studies, we show that Arg316 of RXR-α, known to form salt bridges with certain RXR-α ligands, such as 9-cis-retinoic acid (9-cis-RA), is not required for the antagonist effect of CF31, showing a distinct binding mode. Evaluation of several CF31 analogs suggests that the antagonist effect is mainly attributed to an interference with Leu451 of helix H12 in RXR-α. CF31 is a potent inhibitor of AKT activation in various cancer cell lines. When combined with TNF-α, it suppresses TNF-α activation of AKT by inhibiting TNF-α-induced tRXR-α interaction with the p85α regulatory subunit of PI3K. CF31 inhibition of TNF-α activation of AKT also results in TNF-α-dependent activation of caspase-8 and apoptosis. Together, our results show that CF31 is an effective converter of TNF-α signaling from survival to death by targeting tRXR-α in a unique mode and suggest that identification of a natural product that targets an RXR-mediated cell survival pathway that regulates PI3K/AKT may offer a new therapeutic strategy to kill cancer cells.
Collapse
Affiliation(s)
- Guang-Hui Wang
- School of Pharmaceutical Science, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Ji R, Sanchez CM, Chou CL, Chen XB, Woodward DF, Regan JW. Prostanoid EP₁ receptors mediate up-regulation of the orphan nuclear receptor Nurr1 by cAMP-independent activation of protein kinase A, CREB and NF-κB. Br J Pharmacol 2012; 166:1033-46. [PMID: 22188298 DOI: 10.1111/j.1476-5381.2011.01817.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostaglandin E(2) (PGE(2)) stimulation of the G protein-coupled prostanoid EP(1) receptor was found to up-regulate the expression of Nur-related factor 1 (Nurr1) (NR4A2), a transcription factor in the NR4A subfamily of nuclear receptors. The present studies characterize the molecular mechanism of this up-regulation. EXPERIMENTAL APPROACH The expression of Nurr1 was examined by immunoblot analysis, the polymerase chain reaction and reporter gene assays in human embryonic kidney (HEK) cells stably expressing the recombinant EP(1) receptor and in SH-SY5Y neuroblastoma cells expressing endogenous EP(1) receptors. Signalling pathway inhibitors were used to examine the roles of Rho, PKA, the cAMP response element binding protein (CREB) and NF-κB on the PGE(2) stimulated up-regulation of Nurr1. CREB and NF-κB signalling were also examined by immunoblot analysis and reporter gene assays. KEY RESULTS The EP(1) receptor mediated up-regulation of Nurr1 was blocked with inhibitors of Rho, PKA, NF-κB and CREB; but PGE(2) failed to significantly stimulate intracellular cAMP formation. PGE(2) stimulation of the EP1 receptor induced the phosphorylation and activation of CREB and NF-κB, which could be blocked by inhibition of PKA. CONCLUSIONS AND IMPLICATIONS PGE(2) stimulation of the human EP(1) receptor up-regulates the expression of Nurr1 by a mechanism involving the sequential activation of the Rho, PKA, CREB and NF-κB signalling pathways. EP(1) receptors are implicated in tumorigenesis and the up-regulation of Nurr1 may underlie the anti-apoptotic effects of PGE(2) .
Collapse
Affiliation(s)
- R Ji
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
173
|
Zhan YY, He JP, Chen HZ, Wang WJ, Cai JC. Orphan receptor TR3 is essential for the maintenance of stem-like properties in gastric cancer cells. Cancer Lett 2012; 329:37-44. [PMID: 23043761 DOI: 10.1016/j.canlet.2012.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
The orphan receptor TR3 is an important regulator of cell proliferation and apoptosis. However, whether TR3 is involved in regulating the stem-like properties of cancer cells remains unknown. The present study shows that TR3 expression is increased in gastric tumorsphere cells and is positively correlated with cancer stem cell (CSC) characteristics. Knocking down TR3 leads to the suppression of its stem-like properties in both gastric cancer cells and tumorsphere cells. This process involves the decreased expression of the stemness-related genes Oct-4 and Nanog and the invasion-related gene MMP-9. We further identify Nanog as a new target for the transcription factor TR3. Together, these data demonstrate for the first time that TR3 is essential for the maintenance of stem-like properties in human gastric cancer cells and implicate TR3 as a new therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yan-yan Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Xiamen University and Xiamen Cancer Center, Xiamen, Fujian, China
| | | | | | | | | |
Collapse
|
174
|
Bouzas-Rodríguez J, Zárraga-Granados G, Sánchez-Carbente MDR, Rodríguez-Valentín R, Gracida X, Anell-Rendón D, Covarrubias L, Castro-Obregón S. The nuclear receptor NR4A1 induces a form of cell death dependent on autophagy in mammalian cells. PLoS One 2012; 7:e46422. [PMID: 23071566 PMCID: PMC3465341 DOI: 10.1371/journal.pone.0046422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
The control of cell death is a biological process essential for proper development, and for preventing devastating pathologies like cancer and neurodegeneration. On the other hand, autophagy regulation is essential for protein and organelle degradation, and its dysfunction is associated with overlapping pathologies like cancer and neurodegeneration, but also for microbial infection and aging. In the present report we show that two evolutionarily unrelated receptors--Neurokinin 1 Receptor (NK(1)R,) a G-protein coupled receptor, and Insulin-like Growth Factor 1 Receptor (IGF1R), a tyrosine kinase receptor--both induce non-apoptotic cell death with autophagic features and requiring the activity of the autophagic core machinery proteins PI3K-III, Beclin-1 and Atg7. Remarkably, this form of cell death occurs in apoptosis-competent cells. The signal transduction pathways engaged by these receptors both converged on the activation of the nuclear receptor NR4A1, which has previously been shown to play a critical role in some paradigms of apoptosis and in NK(1)R-induced cell death. The activity of NR4A1 was necessary for IGF1R-induced cell death, as well as for a canonical model of cell death by autophagy induced by the presence of a pan-caspase inhibitor, suggesting that NR4A1 is a general modulator of this kind of cell death. During cell death by autophagy, NR4A1 was transcriptionally competent, even though a fraction of it was present in the cytoplasm. Interestingly, NR4A1 interacts with the tumor suppressor p53 but not with Beclin-1 complex. Therefore the mechanism to promote cell death by autophagy might involve regulation of gene expression, as well as protein interactions. Understanding the molecular basis of autophagy and cell death mediation by NR4A1, should provide novel insights and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jimena Bouzas-Rodríguez
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gabriela Zárraga-Granados
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Maria del Rayo Sánchez-Carbente
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Rocío Rodríguez-Valentín
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Xicotencatl Gracida
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Dámaris Anell-Rendón
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Covarrubias
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Susana Castro-Obregón
- Developmental Genetics and Molecular Physiology Department, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
175
|
Xinxing W, Hong F, Rui Z, Yun Z, Jingbo G, Lingjia Q. Phosphorylated nerve growth factor-induced clone B (NGFI-B) translocates from the nucleus to mitochondria of stressed rat cardiomyocytes and induces apoptosis. Stress 2012; 15:545-53. [PMID: 22128883 DOI: 10.3109/10253890.2011.644603] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress induces cardiac dysfunction and cardiomyocyte injury, and while current data indicate that mitochondria play a key role in this process, the mechanisms remain unknown. In this study, we found that in rats, restraint stress induced nerve growth factor-induced clone B (NGFI-B) translocation from the nucleus to mitochondria in cardiomyocytes. This translocation promoted cytochrome c release from mitochondria to the cytoplasm, which ultimately resulted in cardiomyocyte apoptosis. We also found that stress induced oversecretion of glucocorticoids and activated the protein kinase A (PKA) pathway in cardiomyocytes. Enhanced PKA activity increased NGFI-B serine phosphorylation, which caused NGFI-B to translocate from the nucleus to mitochondria. Moreover, a PKA peptide inhibitor blocked NGFI-B serine phosphorylation and translocation. Our data demonstrate that stress affects cardiomyocytes by inducing NGFI-B mitochondrial translocation via serine phosphorylation, which in turn initiates mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Wang Xinxing
- Institute of Health & Environmental Medicine, Tianjin, China
| | | | | | | | | | | |
Collapse
|
176
|
Lee SO, Andey T, Jin UH, Kim K, Sachdeva M, Safe S. The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene 2012; 31:3265-3276. [PMID: 22081070 PMCID: PMC3299891 DOI: 10.1038/onc.2011.504] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
The orphan nuclear receptor TR3 (NR41A and Nur77) is overexpressed in most lung cancer patients and is a negative prognostic factor for patient survival. The function of TR3 was investigated in non-small-cell lung cancer A549 and H460 cells, and knockdown of TR3 by RNA interference (siTR3) inhibited cancer cell growth and induced apoptosis. The prosurvival activity of TR3 was due, in part, to formation of a p300/TR3/ specificity protein 1 complex bound to GC-rich promoter regions of survivin and other Sp-regulated genes (mechanism 1). However, in p53 wild-type A549 and H460 cells, siTR3 inhibited the mTORC1 pathway, and this was due to activation of p53 and induction of the p53-responsive gene sestrin 2, which subsequently activated the mTORC1 inhibitor AMP-activated protein kinase α (AMPKα) (mechanism 2). This demonstrates that the pro-oncogenic activity of TR3 in lung cancer cells was due to inhibition of p53 and activation of mTORC1. 1,1-Bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) is a recently discovered inhibitor of TR3, which mimics the effects of siTR3. DIM-C-pPhOH inhibited growth and induced apoptosis in lung cancer cells and lung tumors in murine orthotopic and metastatic models, and this was accompanied by decreased expression of survivin and inhibition of mTORC1 signaling, demonstrating that inactivators of TR3 represent a novel class of mTORC1 inhibitors.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Aged
- Animals
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Enzyme Activation/drug effects
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Indoles/pharmacology
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Middle Aged
- Multiprotein Complexes
- Nuclear Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenols/pharmacology
- Prognosis
- Proteins/metabolism
- RNA Interference
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | - Terrick Andey
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Un-Ho Jin
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | - Kyounghyun Kim
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | - Mandip Sachdeva
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Stephen Safe
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843, USA
| |
Collapse
|
177
|
Li X, Lee SO, Safe S. Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3'-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochem Pharmacol 2012; 83:1445-1455. [PMID: 22405837 PMCID: PMC3408083 DOI: 10.1016/j.bcp.2012.02.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/27/2022]
Abstract
NR4A2 (Nurr1) is an orphan nuclear receptor with no known endogenous ligands and is highly expressed in many cancer cell lines including Panc1 and Panc28 pancreatic cancer cells. Structure-dependent activation of NR4A2 by a series of 1,1-bis(3'-indolyl)-1-(aromatic)methane (C-DIM) analogs was determined in pancreatic cancer cells transfected with yeast GAL4-Nurr1 chimeras and a UASx5-luc reporter gene or constructs containing response elements that bind NR4A2. Among 23 different structural analogs, phenyl groups containing p-substituted trifluoromethyl, t-butyl, cyano, bromo, iodo and trifluoromethoxy groups were the most active compounds in transactivation assay. The p-bromophenyl analog (DIM-C-pPhBr) was used as a model for structure-activity studies among a series of ortho-, meta- and para-bromophenyl isomers and the corresponding indole 2- and N-methyl analogs. Results show that NR4A2 activation was maximal with the p-bromophenyl analog and methylation of the indole NH group abrogated activity. Moreover, using GAL4-Nurr1 (full length) or GAL-Nurr1-A/B and GAL4-Nurr1-(C-F) chimeras expressing N- and C-terminal domains of Nurr1, respectively, DIM-C-pPhBr activated all three constructs and these responses were differentially affected by kinase inhibitors. DIM-C-pPhBr also modulated expression of several Nurr1-regulated genes in pancreatic cancer cells including vasoactive intestinal peptide (VIP), and the immunohistochemical and western blot analyses indicated that DIM-C-pPhBr activates nuclear NR4A2.
Collapse
Affiliation(s)
- Xi Li
- College of Medicine Texas A&M Health Science Center 1114 TAMU College Station, TX 77843
| | - Syng-Ook Lee
- Institute for Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
| | - Stephen Safe
- Institute for Biosciences and Technology Texas A&M Health Science Center 2121 W. Holcombe Blvd. Houston, TX 77030
- Department of Veterinary Physiology and Pharmacology Texas A&M University 4466 TAMU College Station, TX 77843
| |
Collapse
|
178
|
Boldingh Debernard KA, Mathisen GH, Paulsen RE. Differences in NGFI-B, Nurr1, and NOR-1 expression and nucleocytoplasmic translocation in glutamate-treated neurons. Neurochem Int 2012; 61:79-88. [PMID: 22525717 DOI: 10.1016/j.neuint.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
Abstract
NGFI-B (NR4A1, Nur77 or TR3) together with Nurr1 (NR4A2) and NOR-1 (NR4A3) constitute the NR4A subgroup of orphan nuclear receptors. They play critical roles in proliferation, differentiation, survival and apoptosis in different cell types, including neurons, immature T-cells, and different cancer cells. As ligand-independent and constitutively active receptors, the diverse biological activities of NGFI-B, Nurr1 and NOR-1 depend on their levels of expression, post-translational modifications and subcellular localization. Nuclear localization of the NR4A proteins leads to transcriptional activity, whereas NGFI-B and recently also NOR-1 have been shown to induce apoptosis by a more direct mechanism when localized at mitochondria. In the present study we investigated mRNA expression and subcellular translocation of the NR4A proteins during glutamate excitotoxicity in rat cerebellar granule neurons. NGFI-B and Nurr1 mRNA, but not NOR-1 mRNA, were induced by treatments associated with calcium influx, although their regulation seemed to be different. NR4A(gfp) fusion proteins showed a predominant nuclear localization in untreated cells. After glutamate treatment NGFI-B(gfp) translocated to cytosol and mitochondria within a few hours, whereas Nurr1(gfp) translocation was delayed, and NOR-1(gfp) mainly stayed in the nucleus. Subcellular targeting of NGFI-B seems to be tightly regulated, as a single mutation of threonine 142 altered NGFI-B(gfp) localization. Differences in expression and subcellular translocation of NGFI-B, Nurr1, and NOR-1 may reflect different functions in neurons in glutamate excitotoxicity.
Collapse
|
179
|
Papac-Milicevic N, Breuss JM, Zaujec J, Ryban L, Plyushch T, Wagner GA, Fenzl S, Dremsek P, Cabaravdic M, Steiner M, Glass CK, Binder CJ, Uhrin P, Binder BR. The interferon stimulated gene 12 inactivates vasculoprotective functions of NR4A nuclear receptors. Circ Res 2012; 110:e50-63. [PMID: 22427340 DOI: 10.1161/circresaha.111.258814] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Innate and adaptive immune responses alter numerous homeostatic processes that are controlled by nuclear hormone receptors. NR4A1 is a nuclear receptor that is induced in vascular pathologies, where it mediates protection. OBJECTIVE The underlying mechanisms that regulate the activity of NR4A1 during vascular injury are not clear. We therefore searched for modulators of NR4A1 function that are present during vascular inflammation. METHODS AND RESULTS We report that the protein encoded by interferon stimulated gene 12 (ISG12), is a novel interaction partner of NR4A1 that inhibits the transcriptional activities of NR4A1 by mediating its Crm1-dependent nuclear export. Using 2 models of vascular injury, we show that ISG12-deficient mice are protected from neointima formation. This effect is dependent on the presence of NR4A1, as mice deficient for both ISG12 and NR4A1 exhibit neointima formation similar to wild-type mice. CONCLUSIONS These findings identify a previously unrecognized feedback loop activated by interferons that inhibits the vasculoprotective functions of NR4A nuclear receptors, providing a potential new therapeutic target for interferon-driven pathologies.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/immunology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/prevention & control
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Feedback, Physiological
- Femoral Artery/injuries
- Femoral Artery/metabolism
- Femoral Artery/pathology
- Gene Expression Regulation
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Interferons/metabolism
- Karyopherins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Interaction Domains and Motifs
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Receptors, Cytoplasmic and Nuclear/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
- Vascular System Injuries/genetics
- Vascular System Injuries/immunology
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Vascular System Injuries/prevention & control
- Exportin 1 Protein
Collapse
Affiliation(s)
- Nikolina Papac-Milicevic
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Balasubramanian S, Jansen M, Valerius MT, Humphreys BD, Strom TB. Orphan nuclear receptor Nur77 promotes acute kidney injury and renal epithelial apoptosis. J Am Soc Nephrol 2012; 23:674-86. [PMID: 22343121 DOI: 10.1681/asn.2011070646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nur77 and its family members Nurr1 and Nor-1 are inducible orphan nuclear receptors that orchestrate cellular responses to diverse extracellular signals. In epithelia, Nur77 can act as a potent proapoptotic molecule in response to cellular stress, suggesting a possible role for this nuclear receptor in the tissue response to injury. Here, we found that Nur77 promotes epithelial cell apoptosis after AKI. Injury of proximal tubular epithelial cells rapidly and strongly induced Nur77, Nor-1, and Nurr1 both in vitro and in vivo. After renal ischemia-reperfusion, Nurr77-deficient mice exhibited less apoptosis of tubular epithelial cells and better renal function than wild-type mice. Nur77-mediated renal injury involved a conformational change of Bcl2 and an increase in the protein levels of proapoptotic Bcl-xS. Ligand-activated retinoic acid receptors repressed Nur77 induction and function. Pretreatment of wild-type mice with retinoic acid before renal ischemia-reperfusion blunted the induction of Nur77, conferred protection of renal function, attenuated renal histologic injury, and reduced the expression of epithelial-derived proinflammatory cytokines. Retinoic acid also inhibited hypoxia-mediated induction of proinflammatory cytokines in cultured renal epithelial cells. Results obtained from proximal tubule cultures derived from Nur77-deficient mice suggested that the inhibition of Nur77 expression mediated the renoprotective effects of retinoic acid. In summary, Nur77 promotes epithelial apoptosis after ischemia-reperfusion injury, and retinoic acid-mediated inhibition of Nur77 expression is a promising therapeutic strategy for the prevention of AKI.
Collapse
Affiliation(s)
- Savithri Balasubramanian
- Department of Medicine, The Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
182
|
Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci U S A 2012; 109:3891-6. [PMID: 22345564 DOI: 10.1073/pnas.1200090109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immature thymocytes expressing autoreactive T-cell receptors (TCR) can adopt differing cell fates: clonal deletion by apoptosis or deviation into alternative lineages such as FoxP3(+) regulatory T cells (Treg). We revisited the role of the transcription factor Nr4a1 (Nur77), an immediate-early response gene induced by TCR engagement. Nr4a1KO mice show clear quantitative defects in antigen-induced clonal deletion. The impact of the Nr4a1 deletion is not enhanced by deletion of the proapoptotic factor Bim. In addition, Nr4a1 curtails initial differentiation into the Treg lineage in TCR transgenic mice and in nontransgenic mice. Transcriptional profiling of Nr4a1KO thymocytes under selection conditions reveals that Nr4a1 activates the transcription of several targets, consistent with these diverse actions: (i) Nr4a1 partakes in the induction of Bim after TCR triggering; (ii) perhaps paradoxically, Nr4a1 positively controls several transcripts of the Treg signature, in particular Ikzf2 and Tnfrsf9; (iii) consistent with its prosurvival and metabolic role in the liver, Nr4a1 is also required for the induction by TCR of a coordinated set of enzymes of the glycolytic and Krebs cycle pathways, which we propose may antagonize Treg selection as does activation of mTOR/Akt. Thus, Nr4a1 appears to act as a balancing molecule in fate determination at a critical juncture of T-cell differentiation.
Collapse
|
183
|
Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 2012; 159:393-402. [PMID: 22286008 DOI: 10.1016/j.jconrel.2012.01.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Previously, stearyl triphenylphosphonium (STPP)-modified liposomes (STPP-L) were reported to target mitochondria. To overcome a non-specific cytotoxicity of STPP-L, we synthesized a novel polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate with the TPP group attached to the distal end of the PEG block (TPP-PEG-PE). This conjugate was incorporated into the liposomal lipid bilayer, and the modified liposomes were studied for their toxicity, mitochondrial targeting, and efficacy in delivering paclitaxel (PTX) to cancer cells in vitro and in vivo. These TPP-PEG-PE-modified liposomes (TPP-PEG-L), surface grafted with as high as 8 mol% of the conjugate, were less cytotoxic compared to STPP-L or PEGylated STPP-L. At the same time, TPP-PEG-L demonstrated efficient mitochondrial targeting in cancer cells as shown by confocal microscopy in co-localization experiments with stained mitochondria. PTX-loaded TPP-PEG-L demonstrated enhanced PTX-induced cytotoxicity and anti-tumor efficacy in cell culture and mouse experiments compared to PTX-loaded unmodified plain liposomes (PL). Thus, TPP-PEG-PE can serve as a targeting ligand to prepare non-toxic liposomes as mitochondria-targeted drug delivery systems (DDS).
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 312 Mugar Hall, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
184
|
Yao LM, He JP, Chen HZ, Wang Y, Wang WJ, Wu R, Yu CD, Wu Q. Orphan receptor TR3 participates in cisplatin-induced apoptosis via Chk2 phosphorylation to repress intestinal tumorigenesis. Carcinogenesis 2011; 33:301-11. [DOI: 10.1093/carcin/bgr287] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
185
|
Liu S, Yu H, Kumar SM, Martin JS, Bing Z, Sheng W, Bosenberg M, Xu X. Norcantharidin induces melanoma cell apoptosis through activation of TR3 dependent pathway. Cancer Biol Ther 2011; 12:1005-14. [PMID: 22123174 DOI: 10.4161/cbt.12.11.18380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Norcantharidin (NCTD) has been reported to induce tumor cell apoptosis. However, the underlying mechanism behinds its antitumor effect remains elusive. We have previously shown that TR3 expression is significantly decreased in metastatic melanomas and involved in melanoma cell apoptosis. In this study, we showed that NCTD inhibited melanoma cell proliferation and induced apoptosis in a dose related manner. NCTD induced translocation of TR3 from nucleus to mitochondria where it co-localized with Bcl-2 in melanoma cells. NCTD also increased cytochome c release from mitochondria to the cytoplasm. These changes were accompanied by increased expression of Bax and cleaved caspase-3 along with decreased expression of Bcl2 and NF-κB2. The effects of NCTD were inhibited by knockdown of TR3 expression using TR3 specific shRNA in melanoma cells. Furthermore, NCTD significantly decreased tumor volume and improved survival of Tyr::CreER; BRAF(Ca/+); Pten(lox/lox) transgenic mice. Our data indicates that NCTD inhibits melanoma growth by inducing tumor cell apoptosis via activation of a TR3 dependent pathway. These results suggest that NCTD is a potential therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Characterization of the multiple sclerosis traits: Nuclear receptors (NR) impaired apoptosis pathway and the role of 1-alpha 25-dihydroxyvitamin D3. J Neurol Sci 2011; 311:9-14. [DOI: 10.1016/j.jns.2011.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/29/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
187
|
Ducruet AF, Sosunov SA, Visovatti SH, Petrovic-Djergovic D, Mack WJ, Connolly ES, Pinsky DJ. Paradoxical exacerbation of neuronal injury in reperfused stroke despite improved blood flow and reduced inflammation in early growth response-1 gene-deleted mice. Neurol Res 2011; 33:717-25. [PMID: 21756551 DOI: 10.1179/1743132810y.0000000022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Early growth response gene-1 (Egr-1) coordinates the rapid upregulation of diverse inflammatory and coagulation-related genes following ischemia/reperfusion. Genetic deletion of Egr-1 results in attenuated post-ischemic injury in diverse tissue systems. In the present study, we utilized a murine model of transient middle cerebral artery occlusion to probe the functional effects of Egr-1 deletion following cerebral ischemia/reperfusion. METHODS The time course of Egr-1 expression was established by Northern/Western blot analysis, and immunocytochemistry localized Egr-1 to specific cell populations. Flow cytometry was then employed to characterize the ischemic cellular infiltrate of both wild-type (+/+) and Egr-1-null (-/-) mice. Next, the functional effect of Egr-1 deletion was investigated in Egr-1-deficient mice and their wild-type littermates subjected to middle cerebral artery occlusion. Infarct volumes, neurological scores, and reperfusion cerebral blood flow were compared between cohorts. RESULTS Rapid upregulation of Egr-1 was observed in the ischemic hemisphere, and localized primarily to neurons and mononuclear cells. Egr-1 deletion led to a suppression of infiltrating neutrophils and activated microglia/macrophages (P<0.001). Additionally, although Egr-1 deletion enhanced post-ischemic cerebral blood flow, Egr-1-deficient mice suffered larger infarcts (P=0.01) and demonstrated a trend towards worse neurological scores (P=0.06) than wild-type controls. DISCUSSION Despite a reduction in the proportion of infiltrating inflammatory cells/activated microglia and improvement in post-ischemic reperfusion, Egr-1-deficient animals suffer larger infarcts in our model. Therefore, cerebral Egr-1 expression may function to protect neurons despite its adverse modulatory consequences for inflammation and thrombosis.
Collapse
Affiliation(s)
- Andrew F Ducruet
- Department of Neurological Surgery, Columbia University, New York 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
188
|
Colley SM, Leedman PJ. Steroid Receptor RNA Activator – A nuclear receptor coregulator with multiple partners: Insights and challenges. Biochimie 2011; 93:1966-72. [DOI: 10.1016/j.biochi.2011.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 07/04/2011] [Indexed: 11/28/2022]
|
189
|
Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene 2011; 31:2876-87. [PMID: 22002310 DOI: 10.1038/onc.2011.463] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pin1 regulates a subset of phosphoproteins by isomerizing phospho-Ser/Thr-Pro motifs via a 'post-phosphorylation' mechanism. Here, we characterize TR3 as a novel Pin1 substrate, and the mitogenic function of TR3 depends on Pin1-induced isomerization. There are at least three phospho-Ser-Pro motifs on TR3 that bind to Pin1. The Ser95-Pro motif of TR3 is the key site through which Pin1 enhances TR3 stability by retarding its degradation. Pin1 can also catalyze TR3 through phospho-Ser431-Pro motif, which is phosphorylated by extracellular signal-regulated kinase 2 (ERK2), resulting in enhanced TR3 transactivation. Furthermore, Pin1 not only facilitates TR3 targeting to the promoter of cyclin D2, a novel downstream target of TR3, but also promotes TR3 to recruit p300, thereby inducing cell proliferation. Importantly, we found that Pin1 is indispensable for TR3 to promote tumor growth both in vitro and in vivo. Our study thus suggests that Pin1 has an important role in cell proliferation by isomerizing TR3.
Collapse
|
190
|
Sun Z, Cao X, Jiang MM, Qiu Y, Zhou H, Chen L, Qin B, Wu H, Jiang F, Chen J, Liu J, Dai Y, Chen HF, Hu QY, Wu Z, Zeng JZ, Yao XS, Zhang XK. Inhibition of β-catenin signaling by nongenomic action of orphan nuclear receptor Nur77. Oncogene 2011; 31:2653-67. [PMID: 21986938 PMCID: PMC3257393 DOI: 10.1038/onc.2011.448] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dysregulation of β-catenin turnover due to mutations of its regulatory proteins including adenomatous polyposis coli (APC) and p53 is implicated in the pathogenesis of cancer. Thus, intensive effort is being made to search for alternative approaches to reduce abnormally activated β-catenin in cancer cells. Nur77, an orphan member of the nuclear receptor superfamily, has a role in the growth and apoptosis of cancer cells. Here, we reported that Nur77 could inhibit transcriptional activity of β-catenin by inducing β-catenin degradation via proteasomal degradation pathway that is glycogen synthase kinase 3β and Siah-1 independent. Nur77 induction of β-catenin degradation required both the N-terminal region of Nur77, which was involved in Nur77 ubiquitination, and the C-terminal region, which was responsible for β-catenin binding. Nur77/ΔDBD, a Nur77 mutant lacking its DNA-binding domain, resided in the cytoplasm, interacted with β-catenin, and induced β-catenin degradation, demonstrating that Nur77-mediated β-catenin degradation was independent of its DNA binding and transactivation, and might occur in the cytoplasm. In addition, we reported our identification of two digitalis-like compounds (DLCs), H-9 and ATE-i2-b4, which potently induced Nur77 expression and β-catenin degradation in SW620 colon cancer cells expressing mutant APC protein in vitro and in animals. DLC-induced Nur77 protein was mainly found in the cytoplasm, and inhibition of Nur77 nuclear export by the CRM1-dependent nuclear export inhibitor leptomycin B or Jun N-terminal kinase inhibitor prevented the effect of DLC on inducing β-catenin degradation. Together, our results demonstrate that β-catenin can be degraded by cytoplasmic Nur77 through their interaction and identify H-9 and ATE-i2-b4 as potent activators of the Nur77-mediated pathway for β-catenin degradation.
Collapse
Affiliation(s)
- Z Sun
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Delayed translocation of NGFI–B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid. Biochem Biophys Res Commun 2011; 414:90-5. [DOI: 10.1016/j.bbrc.2011.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/03/2011] [Indexed: 01/15/2023]
|
192
|
Krimmer SG, Pan H, Liu J, Yang J, Kopeček J. Synthesis and characterization of poly(ε-caprolactone)-block-poly[N-(2-hydroxypropyl)methacrylamide] micelles for drug delivery. Macromol Biosci 2011; 11:1041-51. [PMID: 21567954 PMCID: PMC4598047 DOI: 10.1002/mabi.201100019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/25/2011] [Indexed: 10/09/2023]
Abstract
Amphiphilic block copolymers based on HPMA and ε-CL were synthesized by ring-opening polymerization of ε-CL followed by RAFT polymerization of HPMA. A copolymer composed of 34 kDa PHPMA and 8.5 kDa PCL associated into micelles with CMC of 5.4 µg · mL(-1) . A novel retinoid, 3-Cl-AHPC-OMe, was incorporated into micelles with 25 wt.-% loading by dialysis method. The effective diameter of drug loading micelles was 117 nm. Incubation of micelles in PBS at 37 °C indicated 86 wt.-% of the drug was released after 96 h. Cytotoxicity studies performed with C4-2 prostate cancer cells showed the IC(50) dose was 1.96 µM after 72 h of incubation, whereas the micelles without drug showed no cytotoxicity.
Collapse
Affiliation(s)
- Stefan G. Krimmer
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Huaizhong Pan
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jihua Liu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA. Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
193
|
Orphan nuclear transcription factor TR3/Nur77 regulates microvessel permeability by targeting endothelial nitric oxide synthase and destabilizing endothelial junctions. Proc Natl Acad Sci U S A 2011; 108:12066-71. [PMID: 21730126 DOI: 10.1073/pnas.1018438108] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-level basal vascular permeability (BVP) provides nutrients to normal tissues, and increased vascular permeability is characteristic of inflammation and cancer. We recently reported that VEGF-A, a potent vascular permeabilizing and angiogenic factor, exerts much of its angiogenic activity by up-regulating expression of TR3/Nur77, an orphan nuclear transcription factor, in vascular endothelial cells (EC). To determine whether TR3/Nur77 had a more general role in regulating vascular permeability, we found that histamine, serotonin, and platelet-activating factor, small molecule vascular permeabilizing agents, also increased TR3/Nur77 expression acutely in EC. BVP and the acute vascular hyperpermeability (AVH) induced by these vascular permeabilizing factors were greatly decreased in Nur77(-/-) mice, and both BVP and AVH correlated with Nur77 expression levels in several different mouse strains. BVP and AVH were enhanced in transgenic mice in which Nur77 was selectively overexpressed in vascular EC, whereas both were suppressed in mice overexpressing dominant-negative Nur77. Chronic vascular hyperpermeability (CVH) was induced long before the onset of angiogenesis in a modified, in vivo Matrigel assay that included PT67 cells packaging retroviruses expressing Nur77-sense, whereas inclusion of cells packaging viruses expressing Nur77-antisense prevented VEGF-A-induced CVH. TR3/Nur77 modulated vascular permeability by increasing endothelial nitric-oxide synthase expression and by downregulating several EC junction proteins that maintain vascular homeostasis. Both functions required TR3/Nur77 transcriptional activity. Taking these data together, TR3/Nur77 is up-regulated by several vascular permeabilizing agents and has critical roles in mediating BVP, AVH, and CVH.
Collapse
|
194
|
Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 2011; 12:778-85. [PMID: 21725321 PMCID: PMC3324395 DOI: 10.1038/ni.2063] [Citation(s) in RCA: 498] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022]
Abstract
The transcription factors that regulate differentiation into the monocyte subset in bone marrow have not yet been identified. Here we found that the orphan nuclear receptor NR4A1 controlled the differentiation of Ly6C- monocytes. Ly6C- monocytes, which function in a surveillance role in circulation, were absent from Nr4a1-/- mice. Normal numbers of myeloid progenitor cells were present in Nr4a1-/- mice, which indicated that the defect occurred during later stages of monocyte development. The defect was cell intrinsic, as wild-type mice that received bone marrow from Nr4a1-/- mice developed fewer patrolling monocytes than did recipients of wild-type bone marrow. The Ly6C- monocytes remaining in the bone marrow of Nr4a1-/- mice were arrested in S phase of the cell cycle and underwent apoptosis. Thus, NR4A1 functions as a master regulator of the differentiation and survival of 'patrolling' Ly6C- monocytes.
Collapse
Affiliation(s)
- Richard N Hanna
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Di Francesco AM, Ubezio P, Torella AR, Meco D, Pierri F, Barone G, Cusano G, Pisano C, D'Incalci M, Riccardi R. Enhanced cell cycle perturbation and apoptosis mediate the synergistic effects of ST1926 and ATRA in neuroblastoma preclinical models. Invest New Drugs 2011; 30:1319-30. [PMID: 21633925 DOI: 10.1007/s10637-011-9689-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/10/2011] [Indexed: 11/28/2022]
Abstract
Retinoic acid therapy is nowadays an important component of treatment for residual disease of stage IV neuroblastoma after multimodal therapy. Nevertheless, arising resistance and treatment toxicity could represent relevant limiting factors. In the present study, we show that retinoic acid enhances the cytostatic and apoptogenic properties of the novel adamantyl retinoid ST1926 in a panel of neuroblastoma cells with different p53 status and caspase 8 expression, resulting in synergistic effects as assessed by Combination Index and Isobologram analysis. Under conditions where the two drugs alone produced no toxic effects, their combination resulted in enhanced G2-M arrest and sub-G1 population as shown by BrdU pulse-chase and labeling experiments. PARP cleavage, caspase 3, 8 and 9 activation and modulation of DR4 and FAS were indicative of enhanced apoptosis triggered by the co-incubation of the two drugs whereas neither ST1926-mediated genotoxic damage nor ATRA-differentiating effects were affected by the combined treatment. Caspase-3 and 8-mediated apoptosis appeared to play an important role in the drugs synergism. In fact, the addition of a pan-caspase inhibitor ZVAD-FMK reverted this effect in SK-N-DZ cells, and synergism was confined to limited drugs doses in HTLA cells not expressing caspase-8. Although not modulated, p53 appeared to enhance cells responsiveness to retinoid/ATRA combination. In vivo studies in the most sensitive neuroblastoma model SK-N-DZ, confirmed enhanced activity of the drugs combination vs single treatments. The study provides important lines of evidence that such a drugs combination could represent a less toxic and more effective approach for maintenance treatment in children with neuroblastoma.
Collapse
Affiliation(s)
- Angela Maria Di Francesco
- Laboratory of Pharmacology, Division of Pediatric Oncology, Catholic University of Rome, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Harn HJ, Lin SZ, Lin PC, Liu CY, Liu PY, Chang LF, Yen SY, Hsieh DK, Liu FC, Tai DF, Chiou TW. Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas. Neuro Oncol 2011; 13:635-48. [PMID: 21565841 DOI: 10.1093/neuonc/nor021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown that the natural compound z-butylidenephthalide (Bdph), isolated from the chloroform extract of Angelica sinensis, has antitumor effects. Because of the limitation of the blood-brain barrier, the Bdph dosage required for treatment of glioma is relatively high. To solve this problem, we developed a local-release system with Bdph incorporated into a biodegradable polyanhydride material, p(CPP-SA; Bdph-Wafer), and investigated its antitumor effects. On the basis of in vitro release kinetics, we demonstrated that the Bdph-Wafer released 50% of the available Bdph by the sixth day, and the release reached a plateau phase (90% of Bdph) by the 30th day. To investigate the in situ antitumor effects of the Bdph-Wafer on glioblastoma multiforme (GBM), we used 2 xenograft animal models-F344 rats (for rat GBM) and nude mice (for human GBM)-which were injected with RG2 and DBTRG-05MG cells, respectively, for tumor formation and subsequently treated subcutaneously with Bdph-Wafers. We observed a significant inhibitory effect on tumor growth, with no significant adverse effects on the rodents. Moreover, we demonstrated that the antitumor effect of Bdph on RG2 cells was via the PKC pathway, which upregulated Nurr77 and promoted its translocation from the nucleus to the cytoplasm. Finally, to study the effect of the interstitial administration of Bdph in cranial brain tumor, Bdph-Wafers were surgically placed in FGF-SV40 transgenic mice. Our Bdph-Wafer significantly reduced tumor size in a dose-dependent manner. In summary, our study showed that p(CPP-SA) containing Bdph delivered a sufficient concentration of Bdph to the tumor site and effectively inhibited the tumor growth in the glioma.
Collapse
Affiliation(s)
- Horng-Jyh Harn
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Xia Z, Farhana L, Correa RG, Das JK, Castro DJ, Yu J, Oshima RG, Reed JC, Fontana JA, Dawson MI. Heteroatom-Substituted Analogues of Orphan Nuclear Receptor Small Heterodimer Partner Ligand and Apoptosis Inducer (E)-4-[3-(1-Adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic Acid. J Med Chem 2011; 54:3793-816. [DOI: 10.1021/jm200051z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zebin Xia
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Lulu Farhana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Ricardo G. Correa
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Jayanta K. Das
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - David J. Castro
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Jinghua Yu
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Robert G. Oshima
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - John C. Reed
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Joseph A. Fontana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Marcia I. Dawson
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
198
|
Yang H, Nie Y, Li Y, Wan YJY. ERK1/2 deactivation enhances cytoplasmic Nur77 expression level and improves the apoptotic effect of fenretinide in human liver cancer cells. Biochem Pharmacol 2011; 81:910-6. [PMID: 21241664 PMCID: PMC3059345 DOI: 10.1016/j.bcp.2011.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 01/06/2023]
Abstract
Fenretinide, a synthetic retinoid, is a promising anticancer agent based on many in vitro, animal, and chemoprevention clinical trial studies. However, cells such as HepG2 human liver cancer cells are resistant to the apoptotic effect of fenretinide. Previously, we have shown that fenretinide-induced apoptosis is Nur77 dependent, and the sensitivity of the cancer cells to fenretinide-induced apoptosis is positively associated with cytoplasmic enrichment of Nur77. The goal of current study was to identify means to modulate nuclear export of Nur77 in order to improve the efficacy of fenretinide. Fenretinide treatment deactivated ERK1/2 in Huh7 cells, but activated ERK1/2 in HepG2 cells, which was positively associated with the sensitivity of cells to the apoptotic effect of fenretinide. Neither fenretinide nor ERK1/2 inhibitor PD98059 alone could affect the survival of HepG2 cells, but the combination of both induced cell death and increased caspase 3/7 activity. In fenretinide sensitive Huh7 cells, activation of ERK1/2 by epidermal growth factor (EGF) prevented fenretinide-induced cell death and caspase 3/7 induction. In addition, modulation of ERK1/2 changed the intracellular localization of Nur77. Fenretinide/PD98059-induced cell death of HepG2 cell was positively associated with induction and cytoplasmic location as well as mitochondria enrichment of Nur77. The effect was specific for ERK1/2 because other mitogen activated protein kinases such as P38, Akt, and JNK did not have correlated changes in their phosphorylation levels. Taken together, the current study demonstrates that ERK1/2-modulated Nur77 intracellular location dictates the efficacy of fenretinide-induced apoptosis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroenterology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66212
| | - Yuqiang Nie
- Department of Gastroenterology, First Municipal’s People Hospital of Guangzhou, Guangzhou Medical University, China
| | - Yuyuan Li
- Department of Gastroenterology, First Municipal’s People Hospital of Guangzhou, Guangzhou Medical University, China
| | - Yu-Jui Yvonne Wan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66212
- Department of Gastroenterology, First Municipal’s People Hospital of Guangzhou, Guangzhou Medical University, China
| |
Collapse
|
199
|
Yang H, Zhan Q, Wan YJY. Enrichment of Nur77 mediated by retinoic acid receptor β leads to apoptosis of human hepatocellular carcinoma cells induced by fenretinide and histone deacetylase inhibitors. Hepatology 2011; 53:865-74. [PMID: 21319187 PMCID: PMC3077573 DOI: 10.1002/hep.24101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 11/22/2010] [Indexed: 12/15/2022]
Abstract
UNLABELLED The synthetic retinoid fenretinide is one of the most promising clinically tested retinoids. Previously, we have shown that fenretinide induces apoptosis of Huh7 cells, but HepG2 cells are relatively resistant to fenretinide-induced apoptosis. This study examines the interactive role of fenretinide and histone deacetylase inhibitors (HDACi) in inducing apoptosis of human hepatocellular carcinoma (HCC) cells and the underlying mechanism. Trichostatin A and scriptaid can either enhance fenretinide-induced apoptosis in the fenretinide sensitive HCC cells (Huh7 and Hep3B) or sensitize the fenretinide resistant cells (HepG2) to become sensitive to the apoptotic effect of fenretinide in a cancer cell-specific manner. The sensitivity of cells to fenretinide-induced apoptosis was not associated with reactive oxygen species production nor with antioxidant gene expression. However, the level of retinoic acid receptor β (RARβ) and Nur77 (NR4A1) was important for inducing apoptosis. Upon fenretinide and HDACi treatment, the expression of RARβ and Nur77 were induced and colocalized in the cytosol. The induction of Nur77 protein level, but not the messenger RNA level, was RARβ-dependent. In addition, RARβ interacted with Nur77. Nur77 was essential for fenretinide-induced and HDACi-induced apoptosis of Huh7 cells. Induction of the expression, the interaction, and the nuclear export of RARβ and Nur77 mediate fenretinide-induced and HDACi-induced apoptosis. CONCLUSION Our findings suggest that targeting Nur77 and RARβ simultaneously provides an effective way to induce HCC cell death.
Collapse
Affiliation(s)
- Hui Yang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66212
- Department of Gastroenterology, Second Affiliated Hospital, Guangzhou Medical College, Guangzhou, China
- Department of Gastroenterology, First Municipal’s People Hospital of Guangzhou, Guangzhou Medical College, China
| | - Qi Zhan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66212
| | - Yu-Jui Yvonne Wan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66212
- Department of Gastroenterology, First Municipal’s People Hospital of Guangzhou, Guangzhou Medical College, China
| |
Collapse
|
200
|
Abstract
INTRODUCTION Nuclear receptor 4A1(NR4A1) (testicular receptor 3 (TR3), nuclear hormone receptor (Nur)77) is a member of the nuclear receptor superfamily of transcription factors and is highly expressed in multiple tumor types. RNA interference studies indicate that NR4A1 exhibits growth-promoting, angiogenic and prosurvival activity in most cancers. AREAS COVERED Studies on several apoptosis-inducing agents that activate nuclear export of NR4A1, which subsequently forms a mitochondrial NR4A1-bcl-2 complex that induces the intrinsic pathway for apoptosis are discussed. Cytosporone B and related compounds that induce NR4A1-dependent apoptosis in cancer cells through both modulation of nuclear NR4A1 and nuclear export are discussed. A relatively new class of diindolylmethane analogs (C-DIMs) including 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) (NR4A1 activator) and 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) (NR4A1 deactivator) are discussed in more detail. These anticancer drugs (C-DIMs) act strictly through nuclear NR4A1 and induce apoptosis in cancer cells and tumors. EXPERT OPINION It is clear that NR4A1 plays an important pro-oncogenic role in cancer cells and tumors, and there is increasing evidence that this receptor can be targeted by anticancer drugs that induce cell death via NR4A1-dependent and -independent pathways. Since many of these compounds exhibit relatively low toxicity, they represent an important class of mechanism-based anticancer drugs with excellent potential for clinical applications.
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|