151
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
152
|
Chen Q, Gao K, Xu Y, Sun Y, Pan B, Chen D, Luo C, Cheng X, Liu H, Huang C. Research advance on cold tolerance in chrysanthemum. FRONTIERS IN PLANT SCIENCE 2023; 14:1259229. [PMID: 37828931 PMCID: PMC10565118 DOI: 10.3389/fpls.2023.1259229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Chrysanthemums are one of the top ten most well-known traditional famous flowers in China and one of the top four cut flowers worldwide, holding a significant position in landscape gardening. The cold temperatures of winter restrict the cultivation, introduction, and application of chrysanthemum, resulting in high costs for year-round production. This severely impacts the ornamental and economic value of chrysanthemum. Therefore, research on cold tolerance is of vital importance for guiding chrysanthemum production and application. With the development of genomics, transcriptomics, metabolomics, and other omics approaches, along with high-throughput molecular marker technologies, research on chrysanthemum cold tolerance has been continuously advancing. This article provides a comprehensive overview of the progress in cold tolerance research from various aspects, including chrysanthemum phenotype, physiological mechanisms, the forward genetics, molecular mechanisms, and breeding. The aim is to offer insights into the mechanisms of cold tolerance in chrysanthemum and provide reference for in-depth research and the development of new cold tolerance chrysanthemum varieties.
Collapse
Affiliation(s)
- Qingbing Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Kang Gao
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - YuRan Xu
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - YaHui Sun
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Bo Pan
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Architecture, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
153
|
Lim ARQ, Kong Q, Noor A, Song YQ, Pattanaik S, Yuan L, Ma W. B-BOX-DOMAIN PROTEIN32 modulates seed oil biosynthesis in Arabidopsis by interacting with WRINKLED1. PLANT PHYSIOLOGY 2023; 193:919-922. [PMID: 37467048 DOI: 10.1093/plphys/kiad419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Aqilah Noor
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yu Qing Song
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
154
|
Ren Y, Ma R, Xie M, Fan Y, Feng L, Chen L, Yang H, Wei X, Wang X, Liu K, Cheng P, Wang B. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC PLANT BIOLOGY 2023; 23:441. [PMID: 37726665 PMCID: PMC10510194 DOI: 10.1186/s12870-023-04418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Heat shock factor (HSF), a typical class of transcription factors in plants, has played an essential role in plant growth and developmental stages, signal transduction, and response to biotic and abiotic stresses. The HSF genes families has been identified and characterized in many species through leveraging whole genome sequencing (WGS). However, the identification and systematic analysis of HSF family genes in Rye is limited. RESULTS In this study, 31 HSF genes were identified in Rye, which were unevenly distributed on seven chromosomes. Based on the homology of A. thaliana, we analyzed the number of conserved domains and gene structures of ScHSF genes that were classified into seven subfamilies. To better understand the developmental mechanisms of ScHSF family during evolution, we selected one monocotyledon (Arabidopsis thaliana) and five (Triticum aestivum L., Hordeum vulgare L., Oryza sativa L., Zea mays L., and Aegilops tauschii Coss.) specific representative dicotyledons associated with Rye for comparative homology mapping. The results showed that fragment replication events modulated the expansion of the ScHSF genes family. In addition, interactions between ScHSF proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScHSF expression was complex. A total of 15 representative genes were targeted from seven subfamilies to characterize their gene expression responses in different tissues, fruit developmental stages, three hormones, and six different abiotic stresses. CONCLUSIONS This study demonstrated that ScHSF genes, especially ScHSF1 and ScHSF3, played a key role in Rye development and its response to various hormones and abiotic stresses. These results provided new insights into the evolution of HSF genes in Rye, which could help the success of molecular breeding in Rye.
Collapse
Affiliation(s)
- Yanyan Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhua Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, People's Republic of China
| | - Long Chen
- Tianfu New Area General Aviation Profession Academy, Meishan, 620564, China
| | - Hao Yang
- Agricultural Service Center of Langde Town of Leishan County, Qiandongnan Miao and Dong Autonomous Prefecture, 556019, China
| | - Xiaobao Wei
- Guizhou Provincial Center For Disease Control And Prevention, Guiyang, 550025, People's Republic of China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kouhan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
155
|
Sarkar MAR, Sarkar S, Islam MSU, Zohra FT, Rahman SM. A genome‑wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.). Genomics Inform 2023; 21:e36. [PMID: 37813632 PMCID: PMC10584642 DOI: 10.5808/gi.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.
Collapse
Affiliation(s)
- Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Salim Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
156
|
Su Y, Liu L, Deng Q, Lü Z, Wang Z, He Z, Wang T. Epigenetic architecture of Pseudotaxus chienii: Revealing the synergistic effects of climate and soil variables. Ecol Evol 2023; 13:e10511. [PMID: 37701023 PMCID: PMC10493196 DOI: 10.1002/ece3.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Whether conifers can withstand environmental changes especially temperature fluctuations has been controversial. Epigenetic analysis may provide new perspectives for solving the issue. Pseudotaxus chienii is an endangered gymnosperm species endemic to China. In this study, we have examined the genetic and epigenetic variations in its natural populations aiming to disentangle the synergistic effects of climate and soil on its population (epi)genetic differentiation by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP) techniques. We identified 23 AFLP and 26, 7, and 5 MSAP outliers in P. chienii. Twenty-one of the putative adaptive AFLP loci were found associated with climate and/or soil variables including precipitation, temperature, K, Fe, Zn, and Cu, whereas 21, 7, and 4 MSAP outliers were significantly related to precipitation of wettest month (Bio13), precipitation driest of month (Bio14), percent tree cover (PTC), and soil Fe, Mn, and Cu compositions. Total precipitation and precipitation in the driest seasons were the most influential factors for genetic and epigenetic variation, respectively. In addition, a high full-methylation level and a strong correlation between genetic and epigenetic variation were detected in P. chienii. Climate is found of greater importance than soil in shaping adaptive (epi)genetic differentiation, and the synergistic effects of climate and climate-soil variables were also observed. The identified climate and soil variables should be considered when applying ex situ conservation.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Li Liu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qi Deng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- School of MedicineGuangxi University of Science and TechnologyLiuzhouChina
| | - Zhuyan Lü
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ziqing He
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
157
|
Liu Y, Wang Y, Liao J, Chen Q, Jin W, Li S, Zhu T, Li S. Identification and Characterization of the BBX Gene Family in Bambusa pervariabilis × Dendrocalamopsis grandis and Their Potential Role under Adverse Environmental Stresses. Int J Mol Sci 2023; 24:13465. [PMID: 37686287 PMCID: PMC10488121 DOI: 10.3390/ijms241713465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Zinc finger protein (ZFP) transcription factors play a pivotal role in regulating plant growth, development, and response to biotic and abiotic stresses. Although extensively characterized in model organisms, these genes have yet to be reported in bamboo plants, and their expression information is lacking. Therefore, we identified 21 B-box (BBX) genes from a transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis. Consequently, multiple sequence alignments and an analysis of conserved motifs showed that they all had highly similar structures. The BBX genes were divided into four subgroups according to their phylogenetic relationships and conserved domains. A GO analysis predicted multiple functions of the BBX genes in photomorphogenesis, metabolic processes, and biological regulation. We assessed the expression profiles of 21 BBX genes via qRT-PCR under different adversity conditions. Among them, eight genes were significantly up-regulated under water deficit stress (BBX4, BBX10, BBX11, BBX14, BBX15, BBX16, BBX17, and BBX21), nine under salt stress (BBX2, BBX3, BBX7, BBX9, BBX10, BBX12, BBX15, BBX16, and BBX21), twelve under cold stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21), and twelve under pathogen infestation stress (BBX1, BBX2, BBX4, BBX7, BBX10, BBX12, BBX14, BBX15, BBX17, BBX18, BBX19, and BBX21). Three genes (BBX10, BBX15, and BBX21) were significantly up-regulated under both biotic and abiotic stresses. These results suggest that the BBX gene family is integral to plant growth, development, and response to multivariate stresses. In conclusion, we have comprehensively analyzed the BDBBX genes under various adversity stress conditions, thus providing valuable information for further functional studies of this gene family.
Collapse
Affiliation(s)
- Yi Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Jiao Liao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Qian Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Wentao Jin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Y.W.); (J.L.); (Q.C.); (W.J.); (S.L.); (T.Z.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
158
|
Qin S, Wei F, Liang Y, Tang D, Lin Q, Miao J, Wei K. Genome-wide analysis of the R2R3-MYB gene family in Spatholobus suberectus and identification of its function in flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1219019. [PMID: 37670861 PMCID: PMC10476624 DOI: 10.3389/fpls.2023.1219019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023]
Abstract
Spatholobus suberectus Dunn (S. suberectus), a plant species within the Leguminosae family, has a long history of use in traditional medicines. The dried stem of S. suberectus exhibits various pharmacological activities because it contains various flavonoids. Diverse functions in plants are associated with the R2R3-MYB gene family, including the biosynthesis of flavonoids. Nonetheless, its role remains unelucidated in S. suberectus. Therefore, the newly sequenced S. suberectus genome was utilized to conduct a systematic genome-wide analysis of the R2R3-MYB gene family. The resulting data identified 181 R2R3-SsMYB genes in total, which were then categorized by phylogenetic analysis into 35 subgroups. Among the R2R3-SsMYB genes, 174 were mapped to 9 different chromosomes, and 7 genes were not located on any chromosome. Moreover, similarity in terms of exon-intron structures and motifs was exhibited by most genes in the same subgroup. The expansion of the gene family was primarily driven by segmental duplication events, as demonstrated by collinearity analysis. Notably, most of the duplicated genes underwent purifying selection, which was depicted through the Ka/Ks analysis. In this study, 22 R2R3-SsMYB genes were shown to strongly influence the level of flavonoids. The elevated expression level of these genes was depicted in the tissues with flavonoid accumulation in contrast with other tissues through qRT-PCR data. The resulting data elucidate the structural and functional elements of R2R3-SsMYB genes and present genes that could potentially be utilized for enhancing flavonoid biosynthesis in S. suberectus.
Collapse
Affiliation(s)
- Shuangshuang Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Quan Lin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
159
|
Rieger J, Fitz M, Fischer SM, Wallmeroth N, Flores-Romero H, Fischer NM, Brand LH, García-Sáez AJ, Berendzen KW, Mira-Rodado V. Exploring the Binding Affinity of the ARR2 GARP DNA Binding Domain via Comparative Methods. Genes (Basel) 2023; 14:1638. [PMID: 37628689 PMCID: PMC10454580 DOI: 10.3390/genes14081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Plants have evolved signaling mechanisms such as the multi-step phosphorelay (MSP) to respond to different internal and external stimuli. MSP responses often result in gene transcription regulation that is modulated through transcription factors such as B-type Arabidopsis response regulator (ARR) proteins. Among these proteins, ARR2 is a key component that is expressed ubiquitously and is involved in many aspects of plant development. Although it has been noted that B-type ARRs bind to their cognate genes through a DNA-binding domain termed the GARP domain, little is known about the structure and function of this type of DNA-binding domain; thus, how ARRs bind to DNA at a structural level is still poorly understood. In order to understand how the MSP functions in planta, it is crucial to unravel both the kinetics as well as the structural identity of the components involved in such interactions. For this reason, this work focusses on resolving how the GARP domain of ARR2 (GARP2) binds to the promoter region of ARR5, one of its native target genes in cytokinin signaling. We have established that GARP2 specifically binds to the ARR5 promoter with three different bi-molecular interaction systems-qDPI-ELISA, FCS, and MST-and we also determined the KD of this interaction. In addition, structural modeling of the GARP2 domain confirms that GARP2 entails a HTH motif, and that protein-DNA interaction most likely occurs via the α3-helix and the N-terminal arm of this domain since mutations in this region hinder ARR2's ability to activate transcription.
Collapse
Affiliation(s)
- Janine Rieger
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Michael Fitz
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Stefan Markus Fischer
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Niklas Wallmeroth
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Hector Flores-Romero
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | - Nina Monika Fischer
- Institute for Bioinformatics and Medical Informatics, Tübingen University, 72076 Tübingen, Germany
| | - Luise Helene Brand
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Ana J. García-Sáez
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | | | - Virtudes Mira-Rodado
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
160
|
Deng Z, Yang Z, Liu X, Dai X, Zhang J, Deng K. Genome-Wide Identification and Expression Analysis of C3H Zinc Finger Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12888. [PMID: 37629069 PMCID: PMC10454627 DOI: 10.3390/ijms241612888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factors containing a CCCH structure (C3H) play important roles in plant growth and development, and their stress response, but research on the C3H gene family in potato has not been reported yet. In this study, we used bioinformatics to identify 50 C3H genes in potato and named them StC3H-1 to StC3H-50 according to their location on chromosomes, and we analyzed their physical and chemical properties, chromosome location, phylogenetic relationship, gene structure, collinearity relationship, and cis-regulatory element. The gene expression pattern analysis showed that many StC3H genes are involved in potato growth and development, and their response to diverse environmental stresses. Furthermore, RT-qPCR data showed that the expression of many StC3H genes was induced by high temperatures, indicating that StC3H genes may play important roles in potato response to heat stress. In addition, Some StC3H genes were predominantly expressed in the stolon and developing tubers, suggesting that these StC3H genes may be involved in the regulation of tuber development. Together, these results provide new information on StC3H genes and will be helpful for further revealing the function of StC3H genes in the heat stress response and tuber development in potato.
Collapse
Affiliation(s)
- Zeyi Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Zhijiang Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xinyan Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Z.D.); (Z.Y.); (X.L.); (X.D.); (J.Z.)
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
161
|
Chen C, Hussain N, Ma Y, Zuo L, Jiang Y, Sun X, Gao J. The ARF2-MYB6 module mediates auxin-regulated petal expansion in rose. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4489-4502. [PMID: 37158672 DOI: 10.1093/jxb/erad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
In cut rose (Rosa hybrida), the flower-opening process is closely associated with vase life. Auxin induces the expression of transcription factor genes that function in petal growth via cell expansion. However, the molecular mechanisms underlying the auxin effect during flower opening are not well understood. Here, we identified the auxin-inducible transcription factor gene RhMYB6, whose expression level is high during the early stages of flower opening. Silencing of RhMYB6 delayed flower opening by controlling petal cell expansion through down-regulation of cell expansion-related genes. Furthermore, we demonstrated that the auxin response factor RhARF2 directly interacts with the promoter of RhMYB6 and represses its transcription. Silencing of RhARF2 resulted in larger petal size and delayed petal movement. We also showed that the expression of genes related to ethylene and petal movement showed substantial differences in RhARF2-silenced petals. Our results indicate that auxin-regulated RhARF2 is a critical player that controls flower opening by governing RhMYB6 expression and mediating the crosstalk between auxin and ethylene signaling.
Collapse
Affiliation(s)
- Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nisar Hussain
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanxing Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lanxin Zuo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
162
|
Guo B, Liu M, Yang H, Dai L, Wang L. Brassinosteroids Regulate the Water Deficit and Latex Yield of Rubber Trees. Int J Mol Sci 2023; 24:12857. [PMID: 37629038 PMCID: PMC10454136 DOI: 10.3390/ijms241612857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Brassinolide (BR) is an important plant hormone that regulates the growth and development of plants and the formation of yield. The yield and quality of latex from Hevea brasiliensis are regulated by phytohormones. The understanding of gene network regulation mechanism of latex formation in rubber trees is still very limited. In this research, the rubber tree variety CATAS73397 was selected to analyze the relationship between BR, water deficit resistance, and latex yield. The results showed that BR improves the vitality of rubber trees under water deficit by increasing the rate of photosynthesis, reducing the seepage of osmotic regulatory substances, increasing the synthesis of energy substances, and improving the antioxidant system. Furthermore, BR increased the yield and quality of latex by reducing the plugging index and elevating the lutoid bursting index without decreasing mercaptan, sucrose, and inorganic phosphorus. This was confirmed by an increased expression of genes related to latex flow. RNA-seq analysis further indicated that DEG encoded proteins were enriched in the MAPK signaling pathway, plant hormone signal transduction and sucrose metabolism. Phytohormone content displayed significant differences, in that trans-Zeatin, ethylene, salicylic acid, kinetin, and cytokinin were induced by BR, whereas auxin, abscisic acid, and gibberellin were not. In summary, the current research lays a foundation for comprehending the molecular mechanism of latex formation in rubber trees and explores the potential candidate genes involved in natural rubber biosynthesis to provide useful information for further research in relevant areas.
Collapse
Affiliation(s)
| | | | | | | | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory for Cultivation & Physiology of Tropical Crops, State Key Laboratory Incubation Base for Cultivation and Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.G.); (M.L.); (H.Y.); (L.D.)
| |
Collapse
|
163
|
Jia Y, Yin X, Yang H, Xiang Y, Ding K, Pan Y, Jiang B, Yong X. Transcriptome Analyses Reveal the Aroma Terpeniods Biosynthesis Pathways of Primula forbesii Franch. and the Functional Characterization of the PfDXS2 Gene. Int J Mol Sci 2023; 24:12730. [PMID: 37628910 PMCID: PMC10454305 DOI: 10.3390/ijms241612730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Primula forbesii Franch. is a unique biennial herb with a strong floral fragrance, making it an excellent material for studying the aroma characteristics of the genus Primula. The floral scent is an important ornamental trait that facilitates fertilization. However, the molecular mechanism regulating the floral scent in Primula is unknown. In order to better understand the biological mechanisms of floral scents in this species, this study used RNA sequencing analysis to discuss the first transcriptome sequence of four flowering stages of P. forbesii, which generated 12 P. forbesii cDNA libraries with 79.64 Gb of clean data that formed 51,849 unigenes. Moreover, 53.26% of the unigenes were annotated using public databases. P. forbesii contained 44 candidate genes covering all known enzymatic steps for the biosynthesis of volatile terpenes, the major contributor to the flower's scent. Finally, 1-deoxy-d-xylulose 5-phosphate synthase gene of P. forbesii (PfDXS2, MK370094), the first key enzyme gene in the 2-c-methyl-d-erythritol 4-phosphate (MEP) pathway of terpenoids, was cloned and functionally verified using virus-induced gene silencing (VIGs). The results showed that PfDXS2-silencing significantly reduced the relative concentrations of main volatile terpenes. This report is the first to present molecular data related to aroma metabolites biosynthesis pathways and the functional characterization of any P. forbesii gene. The data on RNA sequencing provide comprehensive information for further analysis of other plants of the genus Primula.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (H.Y.); (Y.X.); (K.D.); (Y.P.); (B.J.); (X.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Yao X, Lai D, Zhou M, Ruan J, Ma C, Wu W, Weng W, Fan Y, Cheng J. Genome-wide identification, evolution and expression pattern analysis of the GATA gene family in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2023; 14:1163357. [PMID: 37600205 PMCID: PMC10437121 DOI: 10.3389/fpls.2023.1163357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 08/22/2023]
Abstract
The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Dili Lai
- College of Agronomy, Guizhou University, Guiyang, China
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang, China
| | - Yu Fan
- College of Agronomy, Guizhou University, Guiyang, China
| | | |
Collapse
|
165
|
Siriwardana CL, Risinger JR, Carpenter EM, Holt BF. Analysis of gene duplication within the Arabidopsis NUCLEAR FACTOR Y, subunit B (NF-YB) protein family reveals domains under both purifying and diversifying selection. PLoS One 2023; 18:e0289332. [PMID: 37531316 PMCID: PMC10396019 DOI: 10.1371/journal.pone.0289332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Gene duplication is an evolutionary mechanism that provides new genetic material. Since gene duplication is a major driver for molecular evolution, examining the fate of duplicated genes is an area of active research. The fate of duplicated genes can include loss, subfunctionalization, and neofunctionalization. In this manuscript, we chose to experimentally study the fate of duplicated genes using the Arabidopsis NUCLEAR FACTOR Y (NF-Y) transcription factor family. NF-Y transcription factors are heterotrimeric complexes, composed of NF-YA, NF-YB, and NF-YC. NF-YA subunits are responsible for nucleotide-specific binding to a CCAAT cis-regulatory element. NF-YB and NF-YC subunits make less specific, but essential complex-stabilizing contacts with the DNA flanking the core CCAAT pentamer. While ubiquitous in eukaryotes, each NF-Y family has expanded by duplication in the plant lineage. For example, the model plant Arabidopsis contains 10 each of the NF-Y subunits. Here we examine the fate of duplicated NF-YB proteins in Arabidopsis, which are composed of central histone fold domains (HFD) and less conserved flanking regions (N- and C-termini). Specifically, the principal question we wished to address in this manuscript was to what extent can the 10 Arabidopsis NF-YB paralogs functionally substitute the genes NF-YB2 and NF-YB3 in the promotion of photoperiodic flowering? Our results demonstrate that the conserved histone fold domains (HFD) may be under pressure for purifying (negative) selection, while the non-conserved N- and C-termini may be under pressure for diversifying (positive) selection, which explained each paralog's ability to substitute. In conclusion, our data demonstrate that the N- and C-termini may have allowed the duplicated genes to undergo functional diversification, allowing the retention of the duplicated genes.
Collapse
Affiliation(s)
- Chamindika L Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Science and Mathematics, Texas A&M University-Central Texas, Killeen, Texas, United States of America
| | - Jan R Risinger
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Myriad Genetics Corporation, Salt Lake City, Utah, United States of America
| | - Emily Mills Carpenter
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Aquatic Biomonitoring, Austin, Texas, United States of America
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- AgBiome, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
166
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, He Z, Looi LS, Katagiri N, Nagamori A, Suzuki T, Širl M, Soukup A, Satake A, Ito T, Yamaguchi N. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. THE PLANT CELL 2023; 35:2821-2847. [PMID: 37144857 PMCID: PMC10396370 DOI: 10.1093/plcell/koad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Fumi Morishita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Haruka Sawada
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kasumi Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Zemiao He
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Liang Sheng Looi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asumi Nagamori
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Marek Širl
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku 819-0395, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
167
|
Li C, Wan Y, Shang X, Fang S. Integration of transcriptomic and metabolomic analysis unveils the response mechanism of sugar metabolism in Cyclocarya paliurus seedlings subjected to PEG-induced drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107856. [PMID: 37354727 DOI: 10.1016/j.plaphy.2023.107856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja is a multiple function tree species used for functional food and valued timber production. Carbohydrates, especially water-soluble carbohydrates, play an important role in osmotic protection, signal transduction and carbon storage. Under the circumstance of global climate change the abiotic stress would restrict the development of C. paliurus plantation, whereas there is few knowledge on the regulatory mechanisms of sugar metabolism under drought stress in C. paliurus. To investigate the drought response of C. paliurus at molecular level, we conducted an integrated analysis of transcriptomic and metabolomic of C. paliurus at three PEG-induced drought stress levels (0%: control; 15%: moderate drought; 25%: severe drought) in short term. Both moderate and severe drought treatments activated the chemical defense with lowering relative water content, and enhancing the contents of soluble protein, proline and malondialdehyde in the leaves. Meanwhile, alterations in the expression of differentially expressed genes and carbohydrate metabolism profiles were observed among the treatments. Weighted gene co-expression network analysis (WGCNA) showed 3 key modules, 8 structural genes (such as genes encoding beta-fructofuranosidase (INV), sucrose synthase (SUS), raffinose synthase (RS)) and 14 regulatory transcription factors were closely linked to sugar metabolism. Our results provided the foundation to understand the response mechanism of sugar metabolism in C. paliurus under drought stress, and would drive progress in breeding of drought-tolerant varieties and plantation development of the species.
Collapse
Affiliation(s)
- Chenhui Li
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yifeng Wan
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
168
|
Chen G, Xu Y, Gui J, Huang Y, Ma F, Wu W, Han T, Qiu W, Yang L, Song S. Characterization of Dof Transcription Factors and the Heat-Tolerant Function of PeDof-11 in Passion Fruit ( Passiflora edulis). Int J Mol Sci 2023; 24:12091. [PMID: 37569467 PMCID: PMC10418448 DOI: 10.3390/ijms241512091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Abiotic stress is the focus of passion fruit research since it harms the industry, in which high temperature is an important influencing factor. Dof transcription factors (TFs) act as essential regulators in stress conditions. TFs can protect against abiotic stress via a variety of biological processes. There is yet to be published a systematic study of the Dof (PeDof) family of passion fruit. This study discovered 13 PeDof family members by using high-quality genomes, and the members of this characterization were identified by bioinformatics. Transcriptome sequencing and qRT-PCR were used to analyze the induced expression of PeDofs under high-temperature stress during three periods, in which PeDof-11 was significantly induced with high expression. PeDof-11 was then chosen and converted into yeast, tobacco, and Arabidopsis, with the findings demonstrating that PeDof-11 could significantly respond to high-temperature stress. This research lays the groundwork for a better understanding of PeDof gene regulation under high-temperature stress.
Collapse
Affiliation(s)
- Ge Chen
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| | - Jie Gui
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Yongcai Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Funing Ma
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| | - Wenhua Wu
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
| | - Te Han
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210018, China
| | - Wenwu Qiu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Liu Yang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
| | - Shun Song
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; (G.C.); (J.G.); (Y.H.); (W.Q.)
- National Key Laboratory for Tropical Crop Breeding/Tropical Crops Genetic Resources Institute, CATAS/Germplasm Repository of Passiflora, Haikou 571101, China; (Y.X.); (F.M.); (W.W.); (T.H.)
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, CATAS, Sanya 572000, China
| |
Collapse
|
169
|
Zhang L, Yang T, Wang Z, Zhang F, Li N, Jiang W. Genome-Wide Identification and Expression Analysis of the PLATZ Transcription Factor in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2632. [PMID: 37514247 PMCID: PMC10384190 DOI: 10.3390/plants12142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The PLATZ (plant AT protein and zinc-binding protein) transcription factor family is involved in the regulation of plant growth and development and plant stress response. In this study, 24 SlPLATZs were identified from the cultivated tomato genome and classified into four groups based on the similarity of conserved patterns among members of the same subfamily. Fragment duplication was an important way to expand the SlPLATZ gene family in tomatoes, and the sequential order of tomato PLATZ genes in the evolution of monocotyledonous and dicotyledonous plants and the roles they played were hypothesized. Expression profiles based on quantitative real-time reverse transcription PCR showed that SlPLATZ was involved in the growth of different tissues in tomatoes. SlPLATZ21 acts mainly in the leaves. SlPLATZ9, SlPLATZ21, and SlPLATZ23 were primarily involved in the red ripening, expanding, and mature green periods of fruit, respectively. In addition, SlPLATZ1 was found to play an important role in salt stress. This study will lay the foundation for the analysis of the biological functions of SlPLATZ genes and will also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation.
Collapse
Affiliation(s)
- Lifang Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zepeng Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fulin Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weijie Jiang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
170
|
Wang X, Guo H, Jin Z, Ding Y, Guo M. Comprehensive Characterization of B-Box Zinc Finger Genes in Citrullus lanatus and Their Response to Hormone and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2634. [PMID: 37514248 PMCID: PMC10386417 DOI: 10.3390/plants12142634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Plant B-BOX (BBX) zinc finger transcription factors play crucial roles in growth and development and the stress response. Although the BBX family has been characterized in various plants, systematic analysis in watermelon is still lacking. In this study, 25 watermelon ClBBX genes were identified. ClBBXs were grouped into five clades (Clade I, II, III, IV, and V) based on their conserved domains and phylogenetic relationships. Most of the ClBBXs (84%) might be localized in the nuclei or cytoplasm. The classification of ClBBXs was consistent with their gene structures. They were unevenly distributed in nine chromosomes except for Chr4 and Chr10, with the largest number of six members in Chr2. Segmental duplications were the major factor in ClBBX family expansion. Some BBXs of watermelon and Arabidopsis evolved from a common ancestor. In total, 254 hormonal and stress-responsive cis elements were discovered in ClBBX promoters. ClBBXs were differentially expressed in tissues, and the expression levels of ClBBX15 and 16 were higher in aboveground tissues than in roots, while the patterns of ClBBX21a, 21b, 21c, 28 and 30b were the opposite. With salicylic acid, methyl jasmonate and salt stress conditions, 17, 18 and 18 ClBBXs exhibited significant expression changes, respectively. In addition, many ClBBXs, including ClBBX29b, 30a and 30b, were also responsive to cold and osmotic stress. In summary, the simultaneous response of multiple ClBBXs to hormonal or abiotic stress suggests that they may have functional interactions in the stress hormone network. Clarifying the roles of key ClBBXs in transcriptional regulation and mediating protein interactions will be an important task. Our comprehensive characterization of the watermelon ClBBX family provides vital clues for the in-depth analysis of their biological functions in stress and hormone signaling pathways.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Huidan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhi Jin
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Yina Ding
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
| | - Meng Guo
- School of Enology and Horticulture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
171
|
Wu R, Guo L, Guo Y, Ma L, Xu K, Zhang B, Du L. The G2-Like gene family in Populus trichocarpa: identification, evolution and expression profiles. BMC Genom Data 2023; 24:37. [PMID: 37403017 PMCID: PMC10320924 DOI: 10.1186/s12863-023-01138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
The Golden2-like (GLK) transcription factors are plant-specific transcription factors (TFs) that perform extensive and significant roles in regulating chloroplast development. Here, genome-wide identification, classification, conserved motifs, cis-elements, chromosomal locations, evolution and expression patterns of the PtGLK genes in the woody model plant Populus trichocarpa were analyzed in detail. In total, 55 putative PtGLKs (PtGLK1-PtGLK55) were identified and divided into 11 distinct subfamilies according to the gene structure, motif composition and phylogenetic analysis. Synteny analysis showed that 22 orthologous pairs and highly conservation between regions of GLK genes across P. trichocarpa and Arabidopsis were identified. Furthermore, analysis of the duplication events and divergence times provided insight into the evolutionary patterns of GLK genes. The previously published transcriptome data indicated that PtGLK genes exhibited distinct expression patterns in various tissues and different stages. Additionally, several PtGLKs were significantly upregulated under the responses of cold stress, osmotic stress, and methyl jasmonate (MeJA) and gibberellic acid (GA) treatments, implying that they might take part in abiotic stress and phytohormone responses. Overall, our results provide comprehensive information on the PtGLK gene family and elucidate the potential functional characterization of PtGLK genes in P. trichocarpa.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lin Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueyang Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lehang Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kehang Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Boyu Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
172
|
Chidambara B, Muthaiah G, Sadashiva AT, Reddy MK, Ravishankar KV. Transcriptome analysis during ToLCBaV disease development in contrasting tomato genotypes. 3 Biotech 2023; 13:226. [PMID: 37304404 PMCID: PMC10247599 DOI: 10.1007/s13205-023-03629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Tomato leaf curl Bangalore virus (ToLCBaV) is one of the most important plant viruses. The infection causes substantial yield losses in tomato crop. The current viral disease management is based mainly on introgression of Ty locus into new tomato cultivars. Unfortunately, strains of the leaf curl virus have been evolving and are breaking Ty based tolerance in tomato. In this study, the defence response to ToLCBaV infection has been compared between contrasting tomato genotypes, resistant line (IIHR 2611; without any known Ty markers) and the susceptible line (IIHR 2843). We carried out comparative transcriptome profiling, and gene expression analysis in an effort to identify gene networks that are associated with a novel ToLCBaV resistance. A total of 22,320 genes were examined to identify differentially expressed genes (DEGs). We found that 329 genes of them were expressed significantly and differentially between ToLBaV-infected samples of both IIHR 2611 and IIHR 2843. A good number of DEGs were related to defence response, photosynthesis, response to wounding, toxin catabolic process, glutathione metabolic process, regulation of transcription DNA-template, transcription factor activity, and sequence-specific DNA binding. A few selected genes such as, nudix hydrolase 8, MIK 2-like, RING-H2 finger protein ATL2-like, MAPKKK 18-like, EDR-2, SAG 21 wound-induced basic protein, GRXC6 and P4 were validated using qPCR. The pattern of gene expression was significantly different in resistant and susceptible plants during disease progression. Both positive and negative regulators of virus resistance were found in the present study. These findings will facilitate breeding and genetic engineering efforts to incorporate novel sources of ToLCBaV resistance in tomatoes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03629-5.
Collapse
Affiliation(s)
- Bhavya Chidambara
- Department of Plant Biotechnology, UAS, GKVK, Bengaluru, 560065 India
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089 India
| | - Gayathri Muthaiah
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089 India
| | | | - M. Krishna Reddy
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089 India
| | - Kundapura V. Ravishankar
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560089 India
| |
Collapse
|
173
|
Chai S, Li K, Deng X, Wang L, Jiang Y, Liao J, Yang R, Zhang L. Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:10937. [PMID: 37446115 DOI: 10.3390/ijms241310937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
MADS-box genes constitute a large family of transcription factors that play important roles in plant growth and development. However, our understanding of MADS-box genes involved in anther development and male sterility in Salvia miltiorrhiza is still limited. In this study, 63 MADS-box genes were identified from the genome of the male sterility ecotype Sichuan S. miltiorrhiza (S. miltiorrhiza_SC) unevenly distributed among eight chromosomes. Phylogenetic analysis classified them into two types and 17 subfamilies. They contained 1 to 12 exons and 10 conserved motifs. Evolution analysis showed that segmental duplication was the main force for the expansion of the SmMADS gene family, and duplication gene pairs were under purifying selection. Cis-acting elements analysis demonstrated that the promoter of SmMADS genes contain numerous elements associated with plant growth and development, plant hormones, and stress response. RNA-seq showed that the expression levels of B-class and C-class SmMADS genes were highly expressed during anther development, with SmMADS11 likely playing an important role in regulating anther development and male fertility in S. miltiorrhiza_SC. Overall, this study provides a comprehensive analysis of the MADS-box gene family in S. miltiorrhiza, shedding light on their potential role in anther development and male sterility.
Collapse
Affiliation(s)
- Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kexin Li
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
174
|
Ahmad I, Soni SK, M M, Pandey D. In-silico mining and characterization of MYB family genes in wilt-resistant hybrid guava (Psidium guajava × Psidium molle). J Genet Eng Biotechnol 2023; 21:74. [PMID: 37389653 DOI: 10.1186/s43141-023-00528-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND The MYB family is one of the most significant groups of transcription factors in plants. However, several MYBs have been linked to secondary metabolism and are important for determining the color of fruit's peel and pulp. Despite being a substantial fruit crop in tropical and subtropical areas of the world, wilt-resistant hybrid guava (Psidium guajava × Psidium molle; PGPM) has not yet been the subject of a thorough examination. This study's goal was to assess the expression of MYB in guava fruit pulp, roots, and seeds to predict its function by in silico analysis of the guava root transcriptome data. RESULTS In the current study, we have mined the MYBs family of MYB genes from the transcriptome of the PGPM guava root. We have mined 15 distinct MYB transcription factor genes/transcripts viz MYB3, MYB4, MYB23, MYB86, MYB90, MYB308, MYB5, MYB82, MYB114, MYB6, MYB305, MYB44, MYB51, MYB46, and MYB330. From the analyses, it was found that R2-MYB and R3-MYB domains are conserved in all known guava MYB proteins. The expression of six different MYB TFs was examined using semi-quantitative RT-PCR in "Shweta" pulp (white colour pulp), "Lalit" pulp (red color pulp), "Lalit" root, and "Lalit" seed. CONCLUSION There were 15 MYB family members observed in guava. They were unequally distributed across the chromosomes, most likely as a result of gene duplication. Additionally, the expression patterns of the particular MYBs showed that MYB may be involved in the control of wilt, fruit ripening, seed development, and root development. Our results allow for a more thorough functional characterization of the guava MYB family genes and open the door to additional research into one essential MYB transcription factor family of genes and its involvement in the growth and ripening of guava fruit.
Collapse
Affiliation(s)
- Israr Ahmad
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Sumit K Soni
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India.
| | - Muthukumar M
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| | - Devendra Pandey
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh, 226101, India
| |
Collapse
|
175
|
Li J, Zhao Y, Zhang Y, Ye F, Hou Z, Zhang Y, Hao L, Li G, Shao J, Tan M. Genome-wide analysis of MdPLATZ genes and their expression during axillary bud outgrowth in apple (Malus domestica Borkh.). BMC Genomics 2023; 24:329. [PMID: 37322464 DOI: 10.1186/s12864-023-09399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Branching is a plastic character that affects plant architecture and spatial structure. The trait is controlled by a variety of plant hormones through coordination with environmental signals. Plant AT-rich sequence and zinc-binding protein (PLATZ) is a transcription factor that plays an important role in plant growth and development. However, systematic research on the role of the PLATZ family in apple branching has not been conducted previously. RESULTS In this study, a total of 17 PLATZ genes were identified and characterized from the apple genome. The 83 PLATZ proteins from apple, tomato, Arabidopsis, rice, and maize were classified into three groups based on the topological structure of the phylogenetic tree. The phylogenetic relationships, conserved motifs, gene structure, regulatory cis-acting elements, and microRNAs of the MdPLATZ family members were predicted. Expression analysis revealed that MdPLATZ genes exhibited distinct expression patterns in different tissues. The expression patterns of the MdPLATZ genes were systematically investigated in response to treatments that impact apple branching [thidazuron (TDZ) and decapitation]. The expression of MdPLATZ1, 6, 7, 8, 9, 15, and 16 was regulated during axillary bud outgrowth based on RNA-sequencing data obtained from apple axillary buds treated by decapitation or exogenous TDZ application. Quantitative real-time PCR analysis showed that MdPLATZ6 was strongly downregulated in response to the TDZ and decapitation treatments, however, MdPLATZ15 was significantly upregulated in response to TDZ, but exhibited little response to decapitation. Furthermore, the co-expression network showed that PLATZ might be involved in shoot branching by regulating branching-related genes or mediating cytokinin or auxin pathway. CONCLUSION The results provide valuable information for further functional investigation of MdPLATZ genes in the control of axillary bud outgrowth in apple.
Collapse
Affiliation(s)
- Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yongliang Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yaohui Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Feng Ye
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Zhengcun Hou
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yuhang Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Longjie Hao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| |
Collapse
|
176
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
177
|
Gao G, Yang F, Wang C, Duan X, Li M, Ma Y, Wang F, Qi H. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. PLANT PHYSIOLOGY 2023; 192:1378-1395. [PMID: 36938625 PMCID: PMC10231561 DOI: 10.1093/plphys/kiad155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Soluble sugar accumulation in fruit ripening determines fleshy fruit quality. However, the molecular mechanism for this process is not yet understood. Here, we showed a transcriptional repressor, CmMYB44 regulates sucrose accumulation and ethylene synthesis in oriental melon (Cucumis. melo var. makuwa Makino) fruit. Overexpressing CmMYB44 suppressed sucrose accumulation and ethylene production. Furthermore, CmMYB44 repressed the transcriptional activation of CmSPS1 (sucrose phosphate synthase 1) and CmACO1 (ACC oxidase 1), two key genes in sucrose and ethylene accumulation, respectively. During the later stages of fruit ripening, the repressive effect of CmMYB44 on CmSPS1 and CmACO1 could be released by overexpressing CmERFI-2 (ethylene response factor I-2) and exogenous ethylene in "HS" fruit (high sucrose accumulation fruit). CmERFI-2 acted upstream of CmMYB44 as a repressor by directly binding the CmMYB44 promoter region, indirectly stimulating the expression level of CmSPS1 and CmACO1. Taken together, we provided a molecular regulatory pathway mediated by CmMYB44, which determines the degree of sucrose and ethylene accumulation in oriental melon fruit and sheds light on transcriptional responses triggered by ethylene sensing that enable the process of fruit ripening.
Collapse
Affiliation(s)
- Ge Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Fan Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Cheng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Xiaoyu Duan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Meng Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
178
|
Wang X, Zhao S, Zhou R, Liu Y, Guo L, Hu H. Identification of Vitis vinifera MYB transcription factors and their response against grapevine berry inner necrosis virus. BMC PLANT BIOLOGY 2023; 23:279. [PMID: 37231351 DOI: 10.1186/s12870-023-04296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND The myeloblastosis (MYB) superfamily is the largest transcription factor family in plants that play diverse roles during stress responses. However, the biotic stress-responsive MYB transcription factors of the grapevine have not been systematically studied. In China, grapevine berries are often infected with the grapevine berry inner necrosis virus (GINV), which eventually reduces the nutritional quality and commodity value. RESULTS The present study identified and characterized 265 VvMYB or VvMYB-related genes of the "Crimson seedless" grapevine. Based on DNA-binding domain analysis, these VvMYB proteins were classified into four subfamilies, including MYB-related, 2R-MYB, 3R-MYB, and 4R-MYB. Phylogenetic analysis divided the MYB transcription factors into 26 subgroups. Overexpression of VvMYB58 suppressed GINV abundance in the grapevine. Further qPCR indicated that among 41 randomly selected VvMYB genes, 12 were induced during GINV infection, while 28 were downregulated. These findings suggest that VvMYB genes actively regulate defense response in the grapevine. CONCLUSION A deeper understanding of the MYB TFs engaged in GINV defense response will help devise better management strategies. The present study also provides a foundation for further research on the functions of the MYB transcription factors.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China.
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China.
| | - Shanshan Zhao
- School of Food Science, Henan Institute of Science and Technology, Henan, 453003, P. R. China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yunli Liu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Longlong Guo
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Huiling Hu
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Henan, 453003, P. R. China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
179
|
He W, Luo L, Xie R, Chai J, Wang H, Wang Y, Chen Q, Wu Z, Yang S, Li M, Lin Y, Zhang Y, Luo Y, Zhang Y, Tang H, Wang X. Genome-Wide Identification and Functional Analysis of the AP2/ERF Transcription Factor Family in Citrus Rootstock under Waterlogging Stress. Int J Mol Sci 2023; 24:ijms24108989. [PMID: 37240335 DOI: 10.3390/ijms24108989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Citrus plants are sensitive to waterlogging, and the roots are the first plant organ affected by hypoxic stress. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) can modulate plant growth and development. However, the information on AP2/ERF genes in citrus rootstock and their involvement in waterlogging conditions is limited. Previously, a rootstock cultivar, Citrus junos cv. Pujiang Xiangcheng was found to be highly tolerant to waterlogging stress. In this study, a total of 119 AP2/ERF members were identified in the C. junos genome. Conserved motif and gene structure analyses indicated the evolutionary conservation of PjAP2/ERFs. Syntenic gene analysis revealed 22 collinearity pairs among the 119 PjAP2/ERFs. The expression profiles under waterlogging stress showed differential expression of PjAP2/ERFs, of which, PjERF13 was highly expressed in both root and leaf. Furthermore, the heterologous expression of PjERF13 significantly enhanced the tolerance of transgenic tobacco to waterlogging stress. The overexpression of PjERF13 decreased the oxidative damage in the transgenic plants by reducing the H2O2 and MDA contents and increasing the antioxidant enzyme activities in the root and leaf. Overall, the current study provided basic information on the AP2/ERF family in the citrus rootstock and uncovered their potential function in positively regulating the waterlogging stress response.
Collapse
Affiliation(s)
- Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiufeng Chai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwei Wu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaofeng Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
180
|
Zhan J, Zhong J, Cheng J, Wang Y, Hu K. Map-based cloning of the APRR2 gene controlling green stigma in bitter gourd ( Momordica charantia). FRONTIERS IN PLANT SCIENCE 2023; 14:1128926. [PMID: 37235005 PMCID: PMC10208069 DOI: 10.3389/fpls.2023.1128926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 05/28/2023]
Abstract
Bitter gourd is an economically important vegetable and medicinal crop distinguished by its bitter fruits. Its stigma color is widely used to assess the distinctiveness, uniformity, and stability of bitter gourd varieties. However, limited researches have been dedicated to genetic basis of its stigma color. In this study, we employed bulked segregant analysis (BSA) sequencing to identify a single dominant locus McSTC1 located on pseudochromosome 6 through genetic mapping of an F2 population (n =241) derived from the cross between green and yellow stigma parental lines. An F2-derived F3 segregation population (n = 847) was further adopted for fine mapping, which delimited the McSTC1 locus to a 13.87 kb region containing one predicted gene McAPRR2 (Mc06g1638), a homolog of the Arabidopsis two-component response regulator-like gene AtAPRR2. Sequence alignment analysis of McAPRR2 revealed that a 15 bp insertion at exon 9 results in a truncated GLK domain of its encoded protein, which existed in 19 bitter gourd varieties with yellow stigma. A genome-wide synteny search of the bitter gourd McAPRR2 genes in Cucurbitaceae family revealed its close relationship with other cucurbits APRR2 genes that are corresponding to white or light green fruit skin. Our findings provide insights into the molecular marker-assisted breeding of bitter gourd stigma color and the mechanism of gene regulation for stigma color.
Collapse
Affiliation(s)
- Jinyi Zhan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
181
|
Wang F, Zhou Z, Zhu L, Gu Y, Guo B, Lv C, Zhu J, Xu R. Genome-wide analysis of the MADS-box gene family involved in salt and waterlogging tolerance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178065. [PMID: 37229117 PMCID: PMC10203460 DOI: 10.3389/fpls.2023.1178065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/27/2023]
Abstract
MADS-box transcription factors are crucial members of regulatory networks underlying multiple developmental pathways and abiotic stress regulatory networks in plants. Studies on stress resistance-related functions of MADS-box genes are very limited in barley. To gain insight into this gene family and elucidate their roles in salt and waterlogging stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in barley. A whole-genome survey of barley revealed 83 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (AP1, SEP1, AGL12, STK, AGL16, SVP and MIKC*) lineages based on phylogeny, protein motif structure. Twenty conserved motifs were determined and each HvMADS contained one to six motifs. We also found tandem repeat duplication was the driven force for HvMADS gene family expansion. Additionally, the co-expression regulatory network of 10 and 14 HvMADS genes was predicted in response to salt and waterlogging stress, and we proposed HvMADS11,13 and 35 as candidate genes for further exploration of the functions in abiotic stress. The extensive annotations and transcriptome profiling reported in this study ultimately provides the basis for MADS functional characterization in genetic engineering of barley and other gramineous crops.
Collapse
|
182
|
Yu A, Zou H, Li P, Yao X, Zhou Z, Gu X, Sun R, Liu A. Genomic characterization of the NAC transcription factors, directed at understanding their functions involved in endocarp lignification of iron walnut ( Juglans sigillata Dode). Front Genet 2023; 14:1168142. [PMID: 37229193 PMCID: PMC10203416 DOI: 10.3389/fgene.2023.1168142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factors (TF), one of the largest plant-specific gene families, play important roles in the regulation of plant growth and development, stress response and disease resistance. In particular, several NAC TFs have been identified as master regulators of secondary cell wall (SCW) biosynthesis. Iron walnut (Juglans sigillata Dode), an economically important nut and oilseed tree, has been widely planted in the southwest China. The thick and high lignified shell derived endocarp tissues, however, brings troubles in processing processes of products in industry. It is indispensable to dissect the molecular mechanism of thick endocarp formation for further genetic improvement of iron walnut. In the present study, based on genome reference of iron walnut, 117 NAC genes, in total, were identified and characterized in silico, which involves only computational analysis to provide insight into gene function and regulation. We found that the amino acids encoded by these NAC genes varied from 103 to 1,264 in length, and conserved motif numbers ranged from 2 to 10. The JsiNAC genes were unevenly distributed across the genome of 16 chromosomes, and 96 of these genes were identified as segmental duplication genes. Furthermore, 117 JsiNAC genes were divided into 14 subfamilies (A-N) according to the phylogenetic tree based on NAC family members of Arabidopsis thaliana and common walnut (Juglans regia). Furthermore, tissue-specific expression pattern analysis demonstrated that a majority of NAC genes were constitutively expressed in five different tissues (bud, root, fruit, endocarp, and stem xylem), while a total of 19 genes were specifically expressed in endocarp, and most of them also showed high and specific expression levels in the middle and late stages during iron walnut endocarp development. Our result provided a new insight into the gene structure and function of JsiNACs in iron walnut, and identified key candidate JsiNAC genes involved in endocarp development, probably providing mechanistic insight into shell thickness formation across nut species.
Collapse
|
183
|
Muthuramalingam P, Muthamil S, Shilpha J, Venkatramanan V, Priya A, Kim J, Shin Y, Chen JT, Baskar V, Park K, Shin H. Molecular Insights into Abiotic Stresses in Mango. PLANTS (BASEL, SWITZERLAND) 2023; 12:1939. [PMID: 37653856 PMCID: PMC10224100 DOI: 10.3390/plants12101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea;
| | - Jayabalan Shilpha
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
| | | | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Jinwook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Yunji Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Venkidasamy Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Kyoungmi Park
- Department of Horticulture Research, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 52733, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| |
Collapse
|
184
|
Lee YS, Shiu SH, Grotewold E. Evolution and diversification of the ACT-like domain associated with plant basic helix-loop-helix transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2219469120. [PMID: 37126718 PMCID: PMC10175843 DOI: 10.1073/pnas.2219469120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins are one of the largest families of transcription factor (TF) in eukaryotes, and ~30% of all flowering plants' bHLH TFs contain the aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain at variable distances C-terminal from the bHLH. However, the evolutionary history and functional consequences of the bHLH/ACT-like domain association remain unknown. Here, we show that this domain association is unique to the plantae kingdom with green algae (chlorophytes) harboring a small number of bHLH genes with variable frequency of ACT-like domain's presence. bHLH-associated ACT-like domains form a monophyletic group, indicating a common origin. Indeed, phylogenetic analysis results suggest that the association of ACT-like and bHLH domains occurred early in Plantae by recruitment of an ACT-like domain in a common ancestor with widely distributed ACT DOMAIN REPEAT (ACR) genes by an ancestral bHLH gene. We determined the functional significance of this association by showing that Chlamydomonas reinhardtii ACT-like domains mediate homodimer formation and negatively affect DNA binding of the associated bHLH domains. We show that, while ACT-like domains have experienced faster selection than the associated bHLH domain, their rates of evolution are strongly and positively correlated, suggesting that the evolution of the ACT-like domains was constrained by the bHLH domains. This study proposes an evolutionary trajectory for the association of ACT-like and bHLH domains with the experimental characterization of the functional consequence in the regulation of plant-specific processes, highlighting the impacts of functional domain coevolution.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI48824
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
185
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
186
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
187
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
188
|
Duan B, Xie X, Jiang Y, Zhu N, Zheng H, Liu Y, Hua X, Zhao Y, Sun Y. GhMYB44 enhances stomatal closure to confer drought stress tolerance in cotton and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107692. [PMID: 37058965 DOI: 10.1016/j.plaphy.2023.107692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
MYB genes play crucial roles in plant response to abiotic stress. However, the function of MYB genes in cotton during abiotic stress is less well elucidated. Here, we found an R2R3-type MYB gene, GhMYB44, was induced by simulated drought (PEG6000) and ABA in three cotton varieties. After drought stress, the GhMYB44-silenced plants showed substantial changes at the physiological level, including significantly increased malondialdehyde content and decreased SOD activity. Silencing the GhMYB44 gene increased stomatal aperture and water loss rate, reduced plant drought tolerance. Transgenic Arabidopsis thaliana over-expressed GhMYB44 (GhMYB44-OE) enhanced resistance to mannitol-simulated osmotic stress. The stomatal aperture of the GhMYB44-OE Arabidopsis was significantly smaller than those of the wild type (WT), and the GhMYB44-OE Arabidopsis increased tolerance to drought stress. Transgenic Arabidopsis had higher germination rate under ABA treatment compared to WT, and the transcript levels of AtABI1, AtPP2CA and AtHAB1 were suppressed in GhMYB44-OE plants, indicating a potential role of GhMYB44 in the ABA signal pathway. These results showed that GhMYB44 acts as a positive regulator in plant response to drought stress, potentially useful for engineering drought-tolerant cotton.
Collapse
Affiliation(s)
- Bailin Duan
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaofang Xie
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanhua Jiang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ning Zhu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuxin Liu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuejun Hua
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanyan Zhao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
189
|
Yang D, Shin HY, Kang HK, Shang Y, Park SY, Jeong DH, Nam KH. Reciprocal inhibition of expression between RAV1 and BES1 modulates plant growth and development in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1226-1240. [PMID: 36511120 DOI: 10.1111/jipb.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/10/2022] [Indexed: 05/13/2023]
Abstract
RAV1 (Related to ABI3/VP1) is a plant-specific B3 and AP2 domain-containing transcription factor that acts as a negative regulator of growth in many plant species. The expression of RAV1 is downregulated by brassinosteroids (BRs); large-scale transcriptome analyses have shown that the expression of RAV1 was previously targeted by BRI1-EMS-SUPPRESOR1 (BES1) and BRASSINAZOLE-RESISTANT1 (BZR1), which are critical transcription factors for the BR-signaling process. Using RAV1-overexpressing transgenic plants, we showed that RAV1 overexpression reduced the BR signaling capacity, resulting in the downregulation of BR biosynthetic genes and BES1 expression. Furthermore, we demonstrated that BES1, not BZR1, is directly bound to the RAV1 promoter and repressed RAV1 expression, and vice versa; RAV1 is also bound to the BES1 promoter and repressed BES1 expression. This mutual inhibition was specific to RAV1 and BES1 because RAV1 exhibited binding activity to the BZR1 promoter but did not repress BZR1 expression. We observed that constitutively activated BR signaling phenotypes in bes1-D were attenuated by the repression of endogenous BES1 expression in transgenic bes1-D plants overexpressing RAV1. RNA-sequencing analysis of RAV1-overexpressing transgenic plants and bes1-D mutant plants revealed differentially expressed genes by RAV1 and BES1 and genes that were oppositely co-regulated by RAV1 and BES1. RAV1 and BES1 regulated different transcriptomes but co-regulated a specific set of genes responsible for the balance between growth and defense. These results suggested that the mutual inhibitory transcriptional activities of RAV1 and BES1 provide fine regulatory mechanisms for plant growth and development.
Collapse
Affiliation(s)
- Dami Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyun-Young Shin
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyun Kyung Kang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yun Shang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research, Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - So Young Park
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dong-Hoon Jeong
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyoung Hee Nam
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research, Institute for Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
190
|
Pazhamala LT, Giri J. Plant phosphate status influences root biotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2829-2844. [PMID: 36516418 DOI: 10.1093/jxb/erac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
191
|
Zhan N, Xu K, Ji G, Yan G, Chen B, Wu X, Cai G. Research Progress in High-Efficiency Utilization of Nitrogen in Rapeseed. Int J Mol Sci 2023; 24:ijms24097752. [PMID: 37175459 PMCID: PMC10177885 DOI: 10.3390/ijms24097752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen (N) is one of the most important mineral elements for plant growth and development and a key factor for improving crop yield. Rapeseed, Brassica napus, is the largest oil crop in China, producing more than 50% of the domestic vegetable oil. However, high N fertilizer input with low utilization efficiency not only increases the production cost but also causes serious environmental pollution. Therefore, the breeding of rapeseed with high N efficiency is of great strategic significance to ensure the security of grain and oil and the sustainable development of the rapeseed industry. In order to provide reference for genetic improvement of rapeseed N-efficient utilization, in this article, we mainly reviewed the recent research progress of rapeseed N efficiency, including rapeseed N efficiency evaluation, N-efficient germplasm screening, and N-efficient physiological and molecular genetic mechanisms.
Collapse
Affiliation(s)
- Na Zhan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gaoxiang Ji
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
192
|
Liu Y, Chen S, Chen J, Wang J, Wei M, Tian X, Chen L, Ma J. Comprehensive analysis and expression profiles of the AP2/ERF gene family during spring bud break in tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2023; 23:206. [PMID: 37081399 PMCID: PMC10116778 DOI: 10.1186/s12870-023-04221-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (AP2/ERFs) are important regulators of plant physiological and biochemical metabolism. Evidence suggests that AP2/ERFs may be involved in the regulation of bud break in woody perennials. Green tea is economically vital in China, and its production value is significantly affected by the time of spring bud break of tea plant. However, the relationship between AP2/ERFs in tea plant and spring bud break remains largely unknown. RESULTS A total of 178 AP2/ERF genes (CsAP2/ERFs) were identified in the genome of tea plant. Based on the phylogenetic analysis, these genes could be classified into five subfamilies. The analysis of gene duplication events demonstrated that whole genome duplication (WGD) or segmental duplication was the primary way of CsAP2/ERFs amplification. According to the result of the Ka/Ks value calculation, purification selection dominated the evolution of CsAP2/ERFs. Furthermore, gene composition and structure analyses of CsAP2/ERFs indicated that different subfamilies contained a variety of gene structures and conserved motifs, potentially resulting in functional differences among five subfamilies. The promoters of CsAP2/ERFs also contained various signal-sensing elements, such as abscisic acid responsive elements, light responsive elements and low temperature responsive elements. The evidence presented here offers a theoretical foundation for the diverse functions of CsAP2/ERFs. Additionally, the expressions of CsAP2/ERFs during spring bud break of tea plant were analyzed by RNA-seq and grouped into clusters A-F according to their expression patterns. The gene expression changes in clusters A and B were more synchronized with the spring bud break of tea plant. Moreover, several potential correlation genes, such as D-type cyclin genes, were screened out through weighted correlation network analysis (WGCNA). Temperature and light treatment experiments individually identified nine candidate CsAP2/ERFs that may be related to the spring bud break of tea plant. CONCLUSIONS This study provides new evidence for role of the CsAP2/ERFs in the spring bud break of tea plant, establishes a theoretical foundation for analyzing the molecular mechanism of the spring bud break of tea plant, and contributes to the improvement of tea cultivars.
Collapse
Affiliation(s)
- Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Junyu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Mengyuan Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xiaomiao Tian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| |
Collapse
|
193
|
Yi W, Luan A, Liu C, Wu J, Zhang W, Zhong Z, Wang Z, Yang M, Chen C, He Y. Genome-wide identification, phylogeny, and expression analysis of GRF transcription factors in pineapple ( Ananas comosus). FRONTIERS IN PLANT SCIENCE 2023; 14:1159223. [PMID: 37123828 PMCID: PMC10140365 DOI: 10.3389/fpls.2023.1159223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Background Pineapple is the only commercially grown fruit crop in the Bromeliaceae family and has significant agricultural, industrial, economic, and ornamental value. GRF (growth-regulating factor) proteins are important transcription factors that have evolved in seed plants (embryophytes). They contain two conserved domains, QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys), and regulate multiple aspects of plant growth and stress response, including floral organ development, leaf growth, and hormone responses. The GRF family has been characterized in a number of plant species, but little is known about this family in pineapple and other bromeliads. Main discoveries We identified eight GRF transcription factor genes in pineapple, and phylogenetic analysis placed them into five subfamilies (I, III, IV, V, VI). Segmental duplication appeared to be the major contributor to expansion of the AcGRF family, and the family has undergone strong purifying selection during evolution. Relative to that of other gene families, the gene structure of the GRF family showed less conservation. Analysis of promoter cis-elements suggested that AcGRF genes are widely involved in plant growth and development. Transcriptome data and qRT-PCR results showed that, with the exception of AcGRF5, the AcGRFs were preferentially expressed in the early stage of floral organ development and AcGRF2 was strongly expressed in ovules. Gibberellin treatment significantly induced AcGRF7/8 expression, suggesting that these two genes may be involved in the molecular regulatory pathway by which gibberellin promotes pineapple fruit expansion. Conclusion AcGRF proteins appear to play a role in the regulation of floral organ development and the response to gibberellin. The information reported here provides a foundation for further study of the functions of AcGRF genes and the traits they regulate.
Collapse
Affiliation(s)
- Wen Yi
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Aiping Luan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jing Wu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Zhang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziqin Zhong
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhengpeng Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Mingzhe Yang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chengjie Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Areas, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
194
|
Cui J, Qiu T, Li L, Cui S. De novo full-length transcriptome analysis of two ecotypes of Phragmites australis (swamp reed and dune reed) provides new insights into the transcriptomic complexity of dune reed and its long-term adaptation to desert environments. BMC Genomics 2023; 24:180. [PMID: 37020272 PMCID: PMC10077656 DOI: 10.1186/s12864-023-09271-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies. RESULTS In this study, we obtained the first De novo non-redundant Full-Length Non-Chimeric (FLNC) transcriptome databases for swamp reeds (SR), dune reeds (DR) and the All of Phragmites australis (merged of iso-seq data from SR and DR), using PacBio Iso-Seq technology and combining tools such as Iso-Seq3 and Cogent. We then identified and described long non-coding RNAs (LncRNA), transcription factor (TF) and alternative splicing (AS) events in reeds based on a transcriptome database. Meanwhile, we have identified and developed for the first time a large number of candidates expressed sequence tag-SSR (EST-SSRs) markers in reeds based on UniTransModels. In addition, through differential gene expression analysis of wild-type and homogenous cultures, we found a large number of transcription factors that may be associated with desert stress tolerance in the dune reed, and revealed that members of the Lhc family have an important role in the long-term adaptation of dune reeds to desert environments. CONCLUSIONS Our results provide a positive and usable genetic resource for Phragmites australis with a widespread adaptability and resistance, and provide a genetic database for subsequent reeds genome annotation and functional genomic studies.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Tianhang Qiu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, 100048, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Haidian District, Beijing, 100048, China.
| |
Collapse
|
195
|
Xie C, Li C, Wang F, Zhang F, Liu J, Wang J, Zhang X, Kong X, Ding Z. NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in Arabidopsis. MOLECULAR PLANT 2023; 16:709-725. [PMID: 36809880 DOI: 10.1016/j.molp.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Precise spatiotemporal control of the timing and extent of asymmetric cell divisions (ACDs) is essential for plant development. In the Arabidopsis root, ground tissue maturation involves an additional ACD of the endodermis that maintains the inner cell layer as the endodermis and generates the middle cortex to the outside. Through regulation of the cell cycle regulator CYCLIND6;1 (CYCD6;1), the transcription factors SCARECROW (SCR) and SHORT-ROOT (SHR) play critical roles in this process. In the present study, we found that loss of function of NAC1, a NAC transcription factor family gene, causes markedly increased periclinal cell divisions in the root endodermis. Importantly, NAC1 directly represses the transcription of CYCD6;1 by recruiting the co-repressor TOPLESS (TPL), creating a fine-tuned mechanism to maintain proper root ground tissue patterning by limiting production of middle cortex cells. Biochemical and genetic analyses further showed that NAC1 physically interacts with SCR and SHR to restrict excessive periclinal cell divisions in the endodermis during root middle cortex formation. Although NAC1-TPL is recruited to the CYCD6;1 promoter and represses its transcription in an SCR-dependent manner, NAC1 and SHR antagonize each other to regulate the expression of CYCD6;1. Collectively, our study provides mechanistic insights into how the NAC1-TPL module integrates with the master transcriptional regulators SCR and SHR to control root ground tissue patterning by fine-tuning spatiotemporal expression of CYCD6;1 in Arabidopsis.
Collapse
Affiliation(s)
- Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiansheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
196
|
Yun-Yao Y, Xi Z, Ming-Zheng H, Zeng-Hui H, Jing W, Nan M, Ping-Sheng L, Xiao-Feng Z. LiMYB108 is involved in floral monoterpene biosynthesis induced by light intensity in Lilium 'Siberia'. PLANT CELL REPORTS 2023; 42:763-773. [PMID: 36810812 DOI: 10.1007/s00299-023-02995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We find that the MYB family transcription factor, LiMYB108, has a novel function to regulate the floral fragrance affected by light intensity. Floral fragrance determines the commercial value of flowers and is influenced by many environmental factors, especially light intensity. However, the mechanism by which light intensity affects the release of floral fragrance is unclear. Here, we isolated an R2R3-type MYB transcription factor LiMYB108, the expression of which was induced by light intensity and located in the nucleus. Light of 200 and 600 μmol m-1 s-1 significantly increased the expression of LiMYB108, which was consistent with the improving trend of monoterpene synthesis under light. Virus-induced gene silencing (VIGS) of LiMYB108 in Lilium not only significantly inhibited the synthesis of ocimene and linalool, but also decreased the expression of LoTPS1; however, transient overexpression of LiMYB108 exerted opposite effects. Furthermore, yeast one-hybrid assays, dual-luciferase assays, and electrophoretic mobility shift assays (EMSA) demonstrated that LiMYB108 directly activated the expression of LoTPS1 by binding to the MYB binding site (MBS) (CAGTTG). Our findings demonstrate that light intensity triggered the high expression of LiMYB108, and then LiMYB108 as a transcription factor to activate the expression of LoTPS1, thus promoting the synthesis of the ocimene and linalool, which are important components of floral fragrance. These results provide new insights into the effects of light intensity on floral fragrance synthesis.
Collapse
Affiliation(s)
- Yang Yun-Yao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhang Xi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Han Ming-Zheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hu Zeng-Hui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Wu Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ma Nan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Leng Ping-Sheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| | - Zhou Xiao-Feng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
197
|
Ji X, Xin Z, Yuan Y, Wang M, Lu X, Li J, Zhang Y, Niu L, Jiang CZ, Sun D. A petunia transcription factor, PhOBF1, regulates flower senescence by modulating gibberellin biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad022. [PMID: 37786859 PMCID: PMC10541524 DOI: 10.1093/hr/uhad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 10/04/2023]
Abstract
Flower senescence is commonly enhanced by the endogenous hormone ethylene and suppressed by the gibberellins (GAs) in plants. However, the detailed mechanisms for the antagonism of these hormones during flower senescence remain elusive. In this study, we characterized one up-regulated gene PhOBF1, belonging to the basic leucine zipper transcription factor family, in senescing petals of petunia (Petunia hybrida). Exogenous treatments with ethylene and GA3 provoked a dramatic increase in PhOBF1 transcripts. Compared with wild-type plants, PhOBF1-RNAi transgenic petunia plants exhibited shortened flower longevity, while overexpression of PhOBF1 resulted in delayed flower senescence. Transcript abundances of two senescence-related genes PhSAG12 and PhSAG29 were higher in PhOBF1-silenced plants but lower in PhOBF1-overexpressing plants. Silencing and overexpression of PhOBF1 affected expression levels of a few genes involved in the GA biosynthesis and signaling pathways, as well as accumulation levels of bioactive GAs GA1 and GA3. Application of GA3 restored the accelerated petal senescence to normal levels in PhOBF1-RNAi transgenic petunia lines, and reduced ethylene release and transcription of three ethylene biosynthetic genes PhACO1, PhACS1, and PhACS2. Moreover, PhOBF1 was observed to specifically bind to the PhGA20ox3 promoter containing a G-box motif. Transient silencing of PhGA20ox3 in petunia plants through tobacco rattle virus-based virus-induced gene silencing method led to accelerated corolla senescence. Our results suggest that PhOBF1 functions as a negative regulator of ethylene-mediated flower senescence by modulating the GA production.
Collapse
Affiliation(s)
- Xiaotong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Xin
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Lu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
198
|
Mao H, Zhang W, Lv J, Yang J, Yang S, Jia B, Song J, Wu M, Pei W, Ma J, Zhang B, Zhang J, Wang L, Yu J. Overexpression of cotton Trihelix transcription factor GhGT-3b_A04 enhances resistance to Verticillium dahliae and affects plant growth in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153947. [PMID: 36898190 DOI: 10.1016/j.jplph.2023.153947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Verticillium wilt is a soil-borne fungal disease that severely affects cotton fiber yield and quality. Herein, a cotton Trihelix family gene, GhGT-3b_A04, was strongly induced by the fungal pathogen Verticillium dahliae. Overexpression of the gene in Arabidopsis thaliana enhanced the plant's resistance to Verticillium wilt but inhibited the growth of rosette leaves. In addition, the primary root length, root hair number, and root hair length increased in GhGT-3b_A04-overexpressing plants. The density and length of trichomes on the rosette leaves also increased. GhGT-3b_A04 localized to the nucleus, and transcriptome analysis revealed that it induced gene expression for salicylic acid synthesis and signal transduction and activated gene expression for disease resistance. The gene expression for auxin signal transduction and trichome development was reduced in GhGT-3b_A04-overexpressing plants. Our results highlight important regulatory genes for Verticillium wilt resistance and cotton fiber quality improvement. The identification of GhGT-3b_A04 and other important regulatory genes can provide crucial reference information for future research on transgenic cotton breeding.
Collapse
Affiliation(s)
- Haoming Mao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Wenqing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Junyuan Lv
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jiaxiang Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Shuxian Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Bing Jia
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jikun Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Man Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Wenfeng Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jianjiang Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Bingbing Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 880033, USA.
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
199
|
Zhu N, Duan B, Zheng H, Mu R, Zhao Y, Ke L, Sun Y. An R2R3 MYB gene GhMYB3 functions in drought stress by negatively regulating stomata movement and ROS accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107648. [PMID: 37001303 DOI: 10.1016/j.plaphy.2023.107648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
MYB transcription factors are one of the largest TF families involved in plant growth and development as well as biotic and abiotic stresses. In this study, we report the identification and functional characterization of a stress-responsive MYB gene (GhMYB3) from drought stress related transcriptome of upland cotton. GhMYB3, belonging to the R2R3-type, has high sequence similarity with AtMYB3 and was localized in the nucleus. Silence of GhMYB3 enhanced the drought tolerance of cotton seedlings and plants, reduced the water loss rate, and enhanced stomatal closure. In addition, GhMYB3i lines exhibited less ROS accumulation, as well as higher antioxidant enzyme activity and increased content of anthocyanins and proanthocyanidins than WT plants after drought stress. The expression level of flavonoid biosynthesis- and stress-related genes were up-regulated in GhMYB3i lines under drought stress condition. These results demonstrated that GhMYB3 acted as a negative regulator in upland cotton response to drought stress by regulating stomatal closure and ROS accumulation.
Collapse
Affiliation(s)
- Ning Zhu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bailin Duan
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
200
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|