151
|
An X, Lecomte MC, Chasis JA, Mohandas N, Gratzer W. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J Biol Chem 2002; 277:31796-800. [PMID: 12105217 DOI: 10.1074/jbc.m204567200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The red cell membrane derives its elasticity and resistance to mechanical stresses from the membrane skeleton, a network composed of spectrin tetramers. These are formed by the head-to-head association of pairs of heterodimers attached at their ends to junctional complexes of several proteins. Here we examine the dynamics of the spectrin dimer-dimer association in the intact membrane. We show that univalent fragments of spectrin, containing the dimer self-association site, will bind to spectrin on the membrane and thereby disrupt the continuity of the protein network. This results in impairment of the mechanical stability of the membrane. When, moreover, the cells are subjected to a continuous low level of shear, even at room temperature, the incorporation of the fragments and the consequent destabilization of the membrane are greatly accentuated. It follows that a modest shearing force, well below that experienced by the red cell in the circulation, is sufficient to sever dimer-dimer links in the network. Our results imply 1) that the membrane accommodates the enormous distortions imposed on it during the passage of the cell through the microvasculature by means of local dissociation of spectrin tetramers to dimers, 2) that the network in situ is in a dynamic state and undergoes a "breathing" action of tetramer dissociation and re-formation.
Collapse
Affiliation(s)
- Xiuli An
- Red Cell Physiology Laboratory, The New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
152
|
Mislow JMK, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM. Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett 2002; 525:135-40. [PMID: 12163176 DOI: 10.1016/s0014-5793(02)03105-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nesprin-1alpha is a spectrin repeat (SR)-containing, transmembrane protein of the inner nuclear membrane, and is highly expressed in muscle cells. A yeast two-hybrid screen for nesprin-1alpha-interacting proteins showed that nesprin-1alpha interacted with itself. Blot overlay experiments revealed that nesprin-1alpha's third SR binds the fifth SR. The carboxy-terminal half of nesprin-1alpha directly bound lamin A, a nuclear intermediate filament protein. Biochemical analysis demonstrated that nesprin-1alpha dimers bind directly to the nucleoplasmic domain of emerin, an inner nuclear membrane protein, with an affinity of 4 nM. Binding was optimal for full nucleoplasmic dimers of nesprin-1alpha, since nesprin fragments SR1-5 and SR5-7 bound emerin as monomers with affinities of 53 nM and 250 mM, respectively. We propose that membrane-anchored nesprin-1alpha antiparallel dimers interact with both emerin and lamin A to provide scaffolding at the inner nuclear membrane.
Collapse
Affiliation(s)
- John M K Mislow
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Park S, Johnson ME, Fung LWM. Nuclear magnetic resonance studies of mutations at the tetramerization region of human alpha spectrin. Blood 2002; 100:283-8. [PMID: 12070038 DOI: 10.1182/blood.v100.1.283] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many spectrin mutations that destabilize tetramer formation and lead to hereditary hemolytic anemias are located at the N-terminal region of alpha-spectrin, with the Arg28 position considered to be a mutation hot spot. We have introduced mutations at positions 28 and 45 into a model peptide, Sp alpha 1-156, consisting of the first 156 residues in the N-terminal region of alpha-spectrin (alpha N). The association of these alpha-spectrin peptides that have single amino acid replacements with a beta-spectrin model peptide, consisting of the C-terminal region of beta-spectrin (beta C), was determined, and structural changes due to amino acid replacements were monitored by nuclear magnetic resonance (NMR). We found evidence for similar and very localized structural changes in Sp alpha 1-156Arg45Thr and Sp alpha 1-156Arg45Ser, although these 2 mutant peptides associated with beta-spectrin peptide with significantly differing affinities. The Sp alpha 1-156Arg28Ser peptide showed an affinity for the beta-spectrin peptide comparable to that of Sp alpha 1-156Arg45Ser, but it exhibited substantial and widespread spectral changes. Our results suggest that both Arg45 replacements induce only minor structural perturbations in the first helix of Sp alpha 1-156, but the Arg28Ser replacement affects both the first helix and the following structural domain. Our results also indicate that the mechanism for reduced spectrin tetramerization is through mutation-induced changes in molecular recognition at the alpha beta-tetramerization site, rather than through conformational disruption, as has been suggested in prior literature.
Collapse
Affiliation(s)
- Sunghyouk Park
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, 60607, USA
| | | | | |
Collapse
|
154
|
Abstract
Three-dimensional (3D) domain swapping creates a bond between two or more protein molecules as they exchange their identical domains. Since the term '3D domain swapping' was first used to describe the dimeric structure of diphtheria toxin, the database of domain-swapped proteins has greatly expanded. Analyses of the now about 40 structurally characterized cases of domain-swapped proteins reveal that most swapped domains are at either the N or C terminus and that the swapped domains are diverse in their primary and secondary structures. In addition to tabulating domain-swapped proteins, we describe in detail several examples of 3D domain swapping which show the swapping of more than one domain in a protein, the structural evidence for 3D domain swapping in amyloid proteins, and the flexibility of hinge loops. We also discuss the physiological relevance of 3D domain swapping and a possible mechanism for 3D domain swapping. The present state of knowledge leads us to suggest that 3D domain swapping can occur under appropriate conditions in any protein with an unconstrained terminus. As domains continue to swap, this review attempts not only a summary of the known domain-swapped proteins, but also a framework for understanding future findings of 3D domain swapping.
Collapse
Affiliation(s)
- Yanshun Liu
- Howard Hughes Medical Institute, UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, Department of Chemistry and Biochemistry and Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
155
|
Rybakova IN, Patel JR, Davies KE, Yurchenco PD, Ervasti JM. Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. Mol Biol Cell 2002; 13:1512-21. [PMID: 12006649 PMCID: PMC111123 DOI: 10.1091/mbc.01-09-0446] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2001] [Revised: 12/21/2001] [Accepted: 01/28/2002] [Indexed: 11/11/2022] Open
Abstract
Dystrophin is widely thought to mechanically link the cortical cytoskeleton with the muscle sarcolemma. Although the dystrophin homolog utrophin can functionally compensate for dystrophin in mice, recent studies question whether utrophin can bind laterally along actin filaments and anchor filaments to the sarcolemma. Herein, we have expressed full-length recombinant utrophin and show that the purified protein is fully soluble with a native molecular weight and molecular dimensions indicative of monomers. We demonstrate that like dystrophin, utrophin can form an extensive lateral association with actin filaments and protect actin filaments from depolymerization in vitro. However, utrophin binds laterally along actin filaments through contribution of acidic spectrin-like repeats rather than the cluster of basic repeats used by dystrophin. We also show that the defective linkage between costameric actin filaments and the sarcolemma in dystrophin-deficient mdx muscle is rescued by overexpression of utrophin. Our results demonstrate that utrophin and dystrophin are functionally interchangeable actin binding proteins, but that the molecular epitopes important for filament binding differ between the two proteins. More generally, our results raise the possibility that spectrin-like repeats may enable some members of the plakin family of cytolinkers to laterally bind and stabilize actin filaments.
Collapse
Affiliation(s)
- Inna N Rybakova
- Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | |
Collapse
|
156
|
Luo BH, Mehboob S, Hurtuk MG, Pipalia NH, Fung LWM. Important region in the beta-spectrin C-terminus for spectrin tetramer formation. Eur J Haematol 2002; 68:73-9. [PMID: 12038451 DOI: 10.1034/j.1600-0609.2002.01569.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many hereditary hemolytic anemias are due to spectrin mutations at the C-terminal region of beta-spectrin (the betaC region) that destabilize spectrin tetramer formation. However, little is known about the betaC region of spectrin. We have prepared four recombinant beta-peptides of different lengths from human erythrocyte spectrin, all starting at position 1898 of the C-terminal region, but terminating at position 2070, 2071, 2072 or 2073. Native polyacrylamide gel electrophoresis showed that the two peptides terminating at positions 2070 and 2071 did not associate with an N-terminal region alpha-peptide (Spalpha1-156) in the micromolar range. However, the peptides that terminated at positions 2072 and 2073 associated with the alpha-peptide. Circular dichroism results showed that the unassociated helices in both alpha- and beta-peptides became associated, presumably to form a helical bundle, for those beta-peptides that formed an alphabeta complex, but not for those beta-peptides that did not form an alphabeta complex. In addition, upon association, an increase in the alpha-helical content was observed. These results showed that the beta-peptides ending prior to residue 2072 (Thr) would not associate with alpha-peptide, and that no helical bundling of the partial domains was observed. Thus, we suggest that the C-terminal segment of beta-spectrin, starting from residue 2073 (Thr), is not critical to spectrin tetramer formation. However, the C-terminal region ending with residue 2072 is important for its association with alpha-spectrin in forming tetramers.
Collapse
Affiliation(s)
- Bing-Hao Luo
- Department of Chemistry, Loyola University of Chicago, IL 60626, USA
| | | | | | | | | |
Collapse
|
157
|
Mislow JMK, Kim MS, Davis DB, McNally EM. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 2002; 115:61-70. [PMID: 11801724 DOI: 10.1242/jcs.115.1.61] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.
Collapse
Affiliation(s)
- John M K Mislow
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
158
|
Abstract
The spectrin family of proteins represents a discrete group of cytoskeletal proteins comprising principally alpha-actinin, spectrin, dystrophin, and homologues and isoforms. They all share three main structural and functional motifs, namely, the spectrin repeat, EF-hands, and a CH domain-containing actin-binding domain. These proteins are variously involved in organisation of the actin cytoskeleton, membrane cytoskeleton architecture, cell adhesion, and contractile apparatus. The highly modular nature of these molecules has been a hindrance to the determination of their complete structures due to the inherent flexibility imparted on the proteins, but has also been an asset, inasmuch as the individual modules were of a size amenable to structural analysis by both crystallographic and NMR approaches. Representative structures of all the major domains shared by spectrin family proteins have now been solved at atomic resolution, including in some cases multiple domains from several family members. High-resolution structures, coupled with lower resolution methods to determine the overall molecular shape of these proteins, allow us for the first time to build complete atomic structures of the spectrin family of proteins.
Collapse
Affiliation(s)
- Michael J F Broderick
- Institute of Biomedical and Life Sciences, Glasgow Cell Biology Group, University of Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
159
|
O'Neill JW, Kim DE, Johnsen K, Baker D, Zhang KY. Single-site mutations induce 3D domain swapping in the B1 domain of protein L from Peptostreptococcus magnus. Structure 2001; 9:1017-27. [PMID: 11709166 DOI: 10.1016/s0969-2126(01)00667-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Thermodynamic and kinetic studies of the Protein L B1 domain (Ppl) suggest a folding pathway in which, during the folding transition, the first beta hairpin is formed while the second beta hairpin and the alpha helix are largely unstructured. The same mutations in the two beta turns have opposite effects on the folding and unfolding rates. Three of the four residues composing the second beta turn in Ppl have consecutive positive phi angles, indicating strain in the second beta turn. RESULTS We have determined the crystal structures of the beta turn mutants G55A, K54G, and G15A, as well as a core mutant, V49A, in order to investigate how backbone strain affects the overall structure of Ppl. Perturbation of the hydrophobic interactions at the closed interface by the V49A mutation triggered the domain swapping of the C-terminal beta strand that relieved the strain in the second beta turn. Interestingly, the asymmetric unit of V49A contains two monomers and one domain-swapped dimer. The G55A mutation escalated the strain in the second beta turn, and this increased strain shifted the equilibrium toward the domain-swapped dimer. The K54G structure revealed that the increased stability is due to the reduction of strain in the second beta turn, while the G15A structure showed that increased strain alone is insufficient to trigger domain swapping. CONCLUSIONS Domain swapping in Ppl is determined by the balance of two opposing components of the free energy. One is the strain in the second beta turn that favors the dimer, and the other is the entropic cost of dimer formation that favors the monomer. A single-site mutation can disrupt this balance and trigger domain swapping.
Collapse
Affiliation(s)
- J W O'Neill
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
160
|
Abstract
The deformation behavior of certain biologic macromolecules is modeled by the "sticky chain," a freely jointed chain with weak bonds between subsequent joints. Straining the chain leads to thermally assisted breaking of the weak bonds, yielding a characteristic shape of the force-elongation curve, usually with a pronounced plateau, but sometimes displaying a pseudo-Hookean behavior over a wide range of deformations. The number of individual links is assumed to be large, so the stochastic time evolution of the individual events can be approximated by a differential equation. The cases of individual and collective bond breaking are treated and formulae given for various measurable quantities. A threshold strain rate is found, below which the deformation force no longer depends on the deformation velocity. The method is applied to experimental results for the deformation of single molecules like titin or DNA and the results agree with the parameters deduced from the same experiments by the original authors using Monte Carlo (MC) calculations. Despite its intrinsic continuous character, the model, therefore, is applicable even for the deformation of macromolecules with only a few discrete unfolding elements, yielding physical quantities from experimental results using simple formulae instead of a host of MC computations.
Collapse
Affiliation(s)
- I L Jäger
- Department of Metal Physics, University of Leoben and Erich-Schmid-Institut of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria.
| |
Collapse
|
161
|
Zhang Z, Weed SA, Gallagher PG, Morrow JS. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 2001; 98:1645-53. [PMID: 11535493 DOI: 10.1182/blood.v98.6.1645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of spectrin self-association underlies many inherited hemolytic disorders. Using dynamic modeling and energy minimization, the 3-dimensional structure of the self-association domain has been estimated in human erythrocyte spectrin and the structural consequences of 17 elliptogenic mutations determined. The predicted structure of the normal self-association domain was remarkably similar to the crystal structure of the Drosophila alpha-spectrin 14th repeat unit, despite replacement in the human sequence of over 70% of the amino acids relative to fly spectrin, including 2 prolines in the human sequence that appear in helical regions of the fly structure. The predicted structure placed all hydrophilic residues at the surface and identified 4 salt bridges, 9 hydrophobic interactions, and 4 H-bonds that stabilize the native self-association unit. Remarkably, every pathologic point mutation, including seemingly conservative substitutions such as G for A, A for V, or K for R (single-letter amino acid codes), led to conformational rearrangements in the predicted structure. The degree of structural disruption, as measured by root-mean-square deviation of the predicted backbone structure from the Drosophila structure, correlated strongly with the severity of clinical disease associated with each mutation. This approach thus enables an accurate prediction, from the primary sequence, of the clinical consequences of specific point mutations in spectrin. The 3-dimensional structure of the self-association domain derived here is likely to be accurate. It provides a powerful heuristic model for understanding how point mutations disrupt cytoskeletal function in a variety of hemolytic disorders.
Collapse
MESH Headings
- Amino Acid Sequence
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Animals
- Drosophila/genetics
- Elliptocytosis, Hereditary/diagnosis
- Elliptocytosis, Hereditary/genetics
- Humans
- Models, Molecular
- Molecular Sequence Data
- Point Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrin/chemistry
- Spectrin/genetics
Collapse
Affiliation(s)
- Z Zhang
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | | | | |
Collapse
|
162
|
Ranganathan S, Menhart N, Topouzian N, Fung LW. Laboratory method to study mutational effects on human erythrocyte spectrin tetramerization. Am J Hematol 2001; 67:247-51. [PMID: 11443637 DOI: 10.1002/ajh.1124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have developed a laboratory method combining a random mutagenesis method and a yeast two-hybrid system to study effects of mutation on human erythrocyte spectrin tetramerization. A PCR-based procedure was used to generate random mutations in DNA fragments of the first 55 residues of alpha-spectrin. Each of the DNA fragments from random mutagenesis was fused with a DNA fragment of native spectrin consisting of residues 56 to 368 to give a DNA fragment of the first 368 residues in alpha-spectrin. The alpha-spectrin DNA fragment and a DNA fragment containing the last 449 residues in beta-spectrin were introduced into the yeast two-hybrid system for rapid screening of alpha- and beta-spectrin interaction. Yeast colonies with interacting alpha- and beta-peptides were blue, and those with non-interacting alpha- and beta-peptides were white. Six single amino acid mutations (R27G, Y35N, F38S, L49H, Y53N, and Y53C) and a double amino acid mutation (K16M, I24N) were identified from 8 white colonies, but no mutations were found in the DNA fragments of 14 blue colonies. Thus this simple laboratory method allows us to study effects of mutation on interactions of alpha- and beta-spectrin at the tetramerization site.
Collapse
Affiliation(s)
- S Ranganathan
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | | | |
Collapse
|
163
|
Tang J, Taylor DW, Taylor KA. The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J Mol Biol 2001; 310:845-58. [PMID: 11453692 DOI: 10.1006/jmbi.2001.4789] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of alpha-actinin from rabbit skeletal muscle was determined by cryoelectron microscopy in combination with homology modeling of the separate domain structures based on results previously determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. alpha-Actinin was induced to form two-dimensional arrays on a positively charged lipid monolayer and micrographs were collected from unstained, frozen hydrated specimens at tilt angles from 0 degrees to 60 degrees. Interpretation of the 15 A-resolution three-dimensional structure was done by manually docking homologous models of the three key domains, actin-binding, three-helix motif and the C-terminal calmodulin-like domains. The initial model was refined quantitatively to improve its fit to the experimental reconstruction. The molecular model of alpha-actinin provides the first view of the overall structure of a complete actin cross-linking protein. The structure is characterized by close proximity of the C-terminal, calmodulin-like domain to the linker between the two calponin-homology domains that comprise the actin-binding domain. This location suggests a hypothesis to explain the involvement of the C-terminal domain in Ca(2+)-dependent actin binding of non-muscle isoforms.
Collapse
Affiliation(s)
- J Tang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
164
|
Liaw SH, Chen HZ, Liu GG, Chua KY. Acid-induced polymerization of the group 5 mite allergen from Dermatophagoides pteronyssinus. Biochem Biophys Res Commun 2001; 285:308-12. [PMID: 11444843 DOI: 10.1006/bbrc.2001.5184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
House dust mites are the most important source of indoor allergens and cause allergic diseases. Our studies here suggest that the group 5 allergen from Dermatophagoides pteronyssinus (Der p 5) is monomeric at neutral pH, but forms filaments at low pH. Circular dichroism measurements show Der p 5 is a helical protein, and the protein sequence reveals Der p 5 contains coiled-coil helices. The acid-induced filament assembly could be explained in part by the high content of charged residues (40%) in the coiled-coil structure. Interestingly, some of the known Dermatophagoides allergens also contain a heptad repeat, which could potentially form coiled coils. Therefore, coiled-coil helices may be one of the common structural motifs of mite allergens that contribute to their allergenicity.
Collapse
Affiliation(s)
- S H Liaw
- Department of Life Science, National Yang-Ming University, 155 Li-Nong Street, Sec. 2, Taipei, Taiwan.
| | | | | | | |
Collapse
|
165
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 728] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
166
|
Tse WT, Tang J, Jin O, Korsgren C, John KM, Kung AL, Gwynn B, Peters LL, Lux SE. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J Biol Chem 2001; 276:23974-85. [PMID: 11294830 DOI: 10.1074/jbc.m009307200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated cDNAs that encode a 77-kDa peptide similar to repeats 10-16 of beta-spectrins. Its gene localizes to human chromosome 19q13.13-q13.2 and mouse chromosome 7, at 7.5 centimorgans. A 289-kDa isoform, similar to full-length beta-spectrins, was partially assembled from sequences in the human genomic DNA data base and completely cloned and sequenced. RNA transcripts are seen predominantly in the brain, and Western analysis shows a major peptide that migrates as a 72-kDa band. This new gene, spectrin betaIV, thus encodes a full-length minor isoform (SpbetaIVSigma1) and a truncated major isoform (SpbetaIVSigma5). Immunostaining of cells shows a micropunctate pattern in the cytoplasm and nucleus. In mesenchymal stem cells, the staining concentrates at nuclear dots that stain positively for the promyelocytic leukemia protein (PML). Expression of SpbetaIVSigma5 fused to green fluorescence protein in cells produces nuclear dots that include all PML bodies, which double in number in transfected cells. Deletion analysis shows that partial repeats 10 and 16 of SpbetaIVSigma5 are necessary for nuclear dot formation. Immunostaining of whole-mount nuclear matrices reveals diffuse positivity with accentuation at PML bodies. Spectrin betaIV is the first beta-spectrin associated with a subnuclear structure and may be part of a nuclear scaffold to which gene regulatory machinery binds.
Collapse
Affiliation(s)
- W T Tse
- Division of Hematology/Oncology, Children's Hospital, and the Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Null alpha-actinin mutations in Drosophila are lethal and produce conspicuous defects in muscle structure and function. Here, we used transgene rescue to examine the requirements for alpha-actinin function in vivo. First, we tested the ability of a cDNA-based transgene encoding the adult muscle isoform of alpha-actinin under control of the heterologous ubiquitin promoter to rescue the lethality of null alpha-actinin mutations. Successful rescue indicated that alternative splicing, which also generates larval muscle and non-muscle isoforms, was not essential for viability and that there were no strict spatial or temporal requirements for alpha-actinin expression. Secondly, chimeric transgenes, with functional domains of alpha-actinin replaced by similar domains from spectrin, were tested for their ability to rescue alpha-actinin mutants. Replacement of either the actin binding domain or the EF hand calcium binding domain yielded inactive proteins, indicating that these conserved domains were not functionally equivalent. Thirdly, the length of alpha-actinin was modified by adding a 114 amino acid structural repeat from alpha-spectrin to the center of the rod domain of alpha-actinin. Addition of this sequence module was expected to increase the length of the native alpha-actinin molecule by at least 15%. yet was fully compatible with alpha-actinin function as measured by rescued lethality and flight. Thus, unexpectedly, the exact length of alpha-actinin was not critical to its function in the muscle Z disk.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
168
|
Chapeaurouge A, Johansson JS, Ferreira ST. Folding intermediates of a model three-helix bundle protein. Pressure and cold denaturation studies. J Biol Chem 2001; 276:14861-6. [PMID: 11278529 DOI: 10.1074/jbc.m009622200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stability and equilibrium unfolding of a model three-helix bundle protein, alpha(3)-1, by guanidine hydrochloride (GdnHCl), hydrostatic pressure, and temperature have been investigated. The combined use of these denaturing agents allowed detection of two partially folded states of alpha(3)-1, as monitored by circular dichroism, intrinsic fluorescence emission, and fluorescence of the hydrophobic probe bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid). The overall free-energy change for complete unfolding of alpha(3)-1, determined from GdnHCl unfolding data, is +4.6 kcal/mol. The native state is stabilized by -1.4 kcal/mol relative to a partially folded pressure-denatured intermediate (I(1)). Cold denaturation at high pressure gives rise to a second partially (un)folded conformation (I(2)), suggesting a significant contribution of hydrophobic interactions to the stability of alpha(3)-1. The free energy of stabilization of the native-like state relative to I(2) is evaluated to be -2.5 kcal/mol. Bis-ANS binding to the pressure- and cold-denatured states indicates the existence of significant residual hydrophobic structure in the partially (un)folded states of alpha(3)-1. The demonstration of folding intermediates of alpha(3)-1 lends experimental support to a number of recent protein folding simulation studies of other three-helix bundle proteins that predicted the existence of such intermediates. The results are discussed in terms of the significance of de novo designed proteins for protein folding studies.
Collapse
Affiliation(s)
- A Chapeaurouge
- Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-590, Brazil
| | | | | |
Collapse
|
169
|
Gordon-Smith DJ, Carbajo RJ, Yang JC, Videler H, Runswick MJ, Walker JE, Neuhaus D. Solution structure of a C-terminal coiled-coil domain from bovine IF(1): the inhibitor protein of F(1) ATPase. J Mol Biol 2001; 308:325-39. [PMID: 11327770 DOI: 10.1006/jmbi.2001.4570] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine IF(1) is a basic, 84 amino acid residue protein that inhibits the hydrolytic action of the F(1)F(0) ATP synthase in mitochondria under anaerobic conditions. Its oligomerization state is dependent on pH. At a pH value below 6.5 it forms an active dimer. At higher pH values, two dimers associate to form an inactive tetramer. Here, we present the solution structure of a C-terminal fragment of IF(1) (44-84) containing all five of the histidine residues present in the sequence. Most unusually, the molecule forms an anti-parallel coiled-coil in which three of the five histidine residues occupy key positions at the dimer interface.
Collapse
Affiliation(s)
- D J Gordon-Smith
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
170
|
De Matteis MA, Morrow JS. ADP-ribosylation factor (ARF) as regulator of spectrin assembly at Golgi complex. Methods Enzymol 2001; 329:405-16. [PMID: 11210560 DOI: 10.1016/s0076-6879(01)29101-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M A De Matteis
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti 66030, Italy
| | | |
Collapse
|
171
|
Affiliation(s)
- K M Müller
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3206, USA
| | | | | |
Collapse
|
172
|
Galluzzi L, Paiardini M, Lecomte MC, Magnani M. Identification of the main ubiquitination site in human erythroid alpha-spectrin. FEBS Lett 2001; 489:254-8. [PMID: 11165260 DOI: 10.1016/s0014-5793(00)02333-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Erythroid spectrin is the main component of the red cell membrane skeleton, which is very important in determining the shape, resistance to mechanical stresses and deformability of red cells. Previously we demonstrated that human erythroid alpha-spectrin is ubiquitinated in vitro and in vivo, and using recombinant peptides we identified on repeat 17 the main ubiquitination site of alpha-spectrin. In order to identify the lysine(s) involved in the ubiquitination process, in the present study we mutated the lysines by site-directed mutagenesis. We found that ubiquitination was dramatically inhibited in peptides carrying the mutation of lysine 27 on repeat 17 (mutants K25,27R and K27R). We also demonstrated that the correct folding of this protein is fundamental for its recognition by the ubiquitin conjugating system. Furthermore, the region flanking lysine 27 showed a 75% similarity with the leucine zipper pattern present in many regulatory proteins. Thus, a new potential ubiquitin recognition motif was identified in alpha-spectrin and may be present in several other proteins.
Collapse
Affiliation(s)
- L Galluzzi
- Institute of Biological Chemistry G. Fornaini, University of Urbino, Italy
| | | | | | | |
Collapse
|
173
|
Abstract
It has long been speculated that spectrin, the actin crosslinking and molecular scaffold protein, is involved in the development of apicobasal polarity in epithelia. While spectrins can undoubtedly influence the protein content of specific membrane domains, recent genetic evidence indicates that this activity is not necessary for the establishment or maintenance of this axis. Instead, these studies point to critical roles in tissue stability and morphogenesis. A possible role in cellular contractility is highlighted in this review.
Collapse
Affiliation(s)
- G H Thomas
- Departments of Biology, and Biochemistry and Molecular Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
174
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
175
|
Liao EC, Paw BH, Peters LL, Zapata A, Pratt SJ, Do CP, Lieschke G, Zon LI. Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid beta-spectrin structure, and function in red cell morphogenesis and membrane stability. Development 2000; 127:5123-32. [PMID: 11060238 DOI: 10.1242/dev.127.23.5123] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spectrins are key cytoskeleton proteins with roles in membrane integrity, cell morphology, organelle transport and cell polarity of varied cell types during development. Defects in erythroid spectrins in humans result in congenital hemolytic anemias with altered red cell morphology. Although well characterized in mammals and invertebrates, analysis of the structure and function of non-mammalian vertebrate spectrins has been lacking. The zebrafish riesling (ris) suffers from profound anemia, where the developing red cells fail to assume terminally differentiated erythroid morphology. Using comparative genomics, erythroid beta-spectrin (sptb) was identified as the gene mutated in ris. Zebrafish Sptb shares 62.3% overall identity with the human ortholog and phylogenetic comparisons suggest intragenic duplication and divergence during evolution. Unlike the human and murine orthologs, the pleckstrin homology domain of zebrafish Sptb is not removed in red cells by alternative splicing. In addition, apoptosis and abnormal microtubule marginal band aggregation contribute to hemolysis of mutant erythrocytes, which are features not present in mammalian red cells with sptb defects. This study presents the first genetic characterization of a non-mammalian vertebrate sptb and demonstrates novel features of red cell hemolysis in non-mammalian red cells. Further, we propose that the distinct mammalian erythroid morphology may have evolved from specific modifications of Sptb structure and function.
Collapse
Affiliation(s)
- E C Liao
- Division of Hematology/Oncology, Children's Hospital, Department of Pediatrics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel JM, Zhang JP, Philbrick W, Slepnev V, Ort T, Solimena M. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol 2000; 151:985-1002. [PMID: 11086001 PMCID: PMC2174349 DOI: 10.1083/jcb.151.5.985] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the identification of betaIV spectrin, a novel spectrin isolated as an interactor of the receptor tyrosine phosphatase-like protein ICA512. The betaIV spectrin gene is located on human and mouse chromosomes 19q13.13 and 7b2, respectively. Alternative splicing of betaIV spectrin generates at least four distinct isoforms, numbered betaIVSigma1-betaIVSigma4 spectrin. The longest isoform (betaIVSigma1 spectrin) includes an actin-binding domain, followed by 17 spectrin repeats, a specific domain in which the amino acid sequence ERQES is repeated four times, several putative SH3-binding sites and a pleckstrin homology domain. betaIVSigma2 and betaIVSigma3 spectrin encompass the NH(2)- and COOH-terminal halves of betaIVSigma1 spectrin, respectively, while betaIVSigma4 spectrin lacks the ERQES and the pleckstrin homology domain. Northern blots revealed an abundant expression of betaIV spectrin transcripts in brain and pancreatic islets. By immunoblotting, betaIVSigma1 spectrin is recognized as a protein of 250 kD. Anti-betaIV spectrin antibodies also react with two additional isoforms of 160 and 140 kD. These isoforms differ from betaIVSigma1 spectrin in terms of their distribution on subcellular fractionation, detergent extractability, and phosphorylation. In islets, the immunoreactivity for betaIV spectrin is more prominent in alpha than in beta cells. In brain, betaIV spectrin is enriched in myelinated neurons, where it colocalizes with ankyrin(G) 480/270-kD at axon initial segments and nodes of Ranvier. Likewise, betaIV spectrin is concentrated at the nodes of Ranvier in the rat sciatic nerve. In the rat hippocampus, betaIVSigma1 spectrin is detectable from embryonic day 19, concomitantly with the appearance of immunoreactivity at the initial segments. Thus, we suggest that betaIVSigma1 spectrin interacts with ankyrin(G) 480/270-kD and participates in the clustering of voltage-gated Na(+) channels and cell-adhesion molecules at initial segments and nodes of Ranvier.
Collapse
Affiliation(s)
- S Berghs
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Park S, Johnson ME, Fung LW. NMR analysis of secondary structure and dynamics of a recombinant peptide from the N-terminal region of human erythroid alpha-spectrin. FEBS Lett 2000; 485:81-6. [PMID: 11086170 DOI: 10.1016/s0014-5793(00)02186-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have studied the nuclear magnetic resonance solution secondary structure of the N-terminal region in human erythroid alpha-spectrin using a recombinant model peptide of alpha-spectrin consisting of residues 1-156. Pulsed field gradient diffusion coefficient measurements show that the model peptide exists as a monomer under the solution conditions used. The first 20 residues are in a random coil conformation, followed by a helix of 25 residues and then a random coil segment before the next helix. The random coil nature of this linker was confirmed by the presence of fast internal motion from (15)N relaxation measurements. The second, third and fourth helices are thought to form the triple helical bundle structural domain, consistent with previous studies. Our study shows that the N-terminal region of alpha-spectrin prior to the first structural domain forms a well behaved helix without its beta-spectrin partner.
Collapse
Affiliation(s)
- S Park
- Center for Pharmaceutical Biotechnology, Chicago, IL 60657-7173, USA
| | | | | |
Collapse
|
178
|
Abstract
The red blood cell membrane (RBCM) is a primary model for animal cell plasma membranes. One of its major organizing centers is the cytoplasmic domain of band 3 (cdb3), which links multiple proteins to the membrane. Included among its peripheral protein ligands are ankyrin (the major bridge to the spectrin-actin skeleton), protein 4.1, protein 4.2, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, deoxyhemoglobin, p72syk protein tyrosine kinase, and hemichromes. The crystal structure of cdb3 is reported at 0.26 nm (2.6 Å) resolution. A tight symmetric dimer is formed by cdb3; it is stabilized by interlocked dimerization arms contributed by both monomers. Each subunit also includes a larger peripheral protein binding domain with an α+ β-fold. The binding sites of several peripheral proteins are localized in the structure, and the nature of the major conformational change that regulates membrane-skeletal interactions is evaluated. An improved structural definition of the protein network at the inner surface of the RBCM is now possible.
Collapse
|
179
|
Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 2000. [DOI: 10.1182/blood.v96.9.2925] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe red blood cell membrane (RBCM) is a primary model for animal cell plasma membranes. One of its major organizing centers is the cytoplasmic domain of band 3 (cdb3), which links multiple proteins to the membrane. Included among its peripheral protein ligands are ankyrin (the major bridge to the spectrin-actin skeleton), protein 4.1, protein 4.2, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, deoxyhemoglobin, p72syk protein tyrosine kinase, and hemichromes. The crystal structure of cdb3 is reported at 0.26 nm (2.6 Å) resolution. A tight symmetric dimer is formed by cdb3; it is stabilized by interlocked dimerization arms contributed by both monomers. Each subunit also includes a larger peripheral protein binding domain with an α+ β-fold. The binding sites of several peripheral proteins are localized in the structure, and the nature of the major conformational change that regulates membrane-skeletal interactions is evaluated. An improved structural definition of the protein network at the inner surface of the RBCM is now possible.
Collapse
|
180
|
Apel ED, Lewis RM, Grady RM, Sanes JR. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 2000; 275:31986-95. [PMID: 10878022 DOI: 10.1074/jbc.m004775200] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a novel protein, Syne-1, that is associated with nuclear envelopes in skeletal, cardiac, and smooth muscle cells. Syne-1 contains multiple spectrin repeats similar to those found in dystrophin and utrophin, as well as a domain homologous to the carboxyl-terminal of Klarsicht, a protein associated with nuclei and required for a subset of nuclear migrations in Drosophila. In adult skeletal muscle fibers, levels of Syne-1 are highest in the nuclei that lie beneath the postsynaptic membrane at the neuromuscular junction. These nuclei are transcriptionally specialized, expressing genes for synaptic components at higher levels than extrasynaptic nuclei in the same cytoplasm. Syne-1 is the first protein found to be selectively associated with synaptic nuclei. Syne-1 becomes concentrated in synaptic nuclei postnatally. It remains synaptically enriched following denervation or degeneration/regeneration, and is also present at high levels in the central nuclei of dystrophic myotubes. The location and structure of Syne-1 suggest that it may participate in the migration of myonuclei in myotubes and/or their anchoring at the postsynaptic apparatus. Finally, we identify a homologous gene, syne-2, that is expressed in an overlapping but distinct pattern.
Collapse
Affiliation(s)
- E D Apel
- Department of Anatomy and Neurobiology and Department of Pediatrics, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
181
|
Wen H, Ao S. RBP95, a novel leucine zipper protein, binds to the retinoblastoma protein. Biochem Biophys Res Commun 2000; 275:141-8. [PMID: 10944455 DOI: 10.1006/bbrc.2000.3242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We recently identified a novel cDNA encoding a retinoblastoma protein (pRb)-associated protein. It was named RBP95, which was composed of 838 amino acid residues with a calculated molecular size of 94,789 Da. Northern blot analysis showed a single mRNA of about 4. 5 kb ubiquitously expressed in human tissues. RH mapping results showed that RBP95 is mapped to chromosome region 16p11.2-11.1. Sequence analysis indicated that RBP95 contains a conserved pRb-binding motif LXCXE. Interaction between pRb and RBP95 was confirmed in vivo and in vitro. This interaction requires the LXCXE motif of RBP95 and the entire pocket region of pRb. Each point-mutant of the conserved amino acid residues in pRb-binding motif of RBP95 would destroy its interaction with pRb. RBP95 also contains a basic region leucine zipper and could homodimerize through its leucine zipper region. RBP95 was located in the nucleus with a special pattern when expressed as a GFP fusion in HeLa cells. All these findings suggested that RBP95, a new member of pRb-associated protein, may function as a regulation factor in the process of RNA polymerase II-mediated transcription and/or transcriptional processing.
Collapse
Affiliation(s)
- H Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Shanghai, 200031, People's Republic of China
| | | |
Collapse
|
182
|
Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem 2000; 275:21385-95. [PMID: 10764729 DOI: 10.1074/jbc.c000159200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four mammalian beta-spectrin genes are currently recognized, all encode proteins of approximately 240-280,000 M(r) and display 17 triple helical homologous approximately 106-residue repeat units. In Drosophila and Caenorhabditis elegans, a variant beta spectrin with unusual properties has been recognized. Termed beta heavy (beta(H)), this spectrin contains 30 spectrin repeats, has a molecular weight in excess of 400,000, and associates with the apical domain of polarized epithelia. We have cloned and characterized from a human retina cDNA library a mammalian ortholog of Drosophila beta(H) spectrin, and in accord with standard spectrin naming conventions we term this new mammalian spectrin beta 5 (betaV). The gene for human betaV spectrin (HUBSPECV) is on chromosome 15q21. The 11, 722-nucleotide cDNA of betaV spectrin is generated from 68 exons and is predicted to encode a protein with a molecular weight of 416,960. Like its fly counterpart, the derived amino acid sequence of this unusual mammalian spectrin displays 30 spectrin repeats, a modestly conserved actin-binding domain, a conserved membrane association domain 1, a conserved self-association domain, and a pleckstrin homology domain near its COOH terminus. Its putative ankyrin-binding domain is poorly conserved and may be inactive. These structural features suggest that betaV spectrin is likely to form heterodimers and oligomers with alpha spectrin and to interact directly with cellular membranes. Unlike its Drosophila ortholog, betaV spectrin does not contain an SH3 domain but displays in repeat 5 a 45-residue insertion that displays 42% identity to amino acids 85-115 of the E4 protein of type 75 human papilloma virus. Human betaV spectrin is expressed at low levels in many tissues. By indirect immunofluorescence, it is detected prominently in the outer segments of photoreceptor rods and cones and in the basolateral membrane and cytosol of gastric epithelial cells. Unlike its Drosophila ortholog, a distinct apical distribution of betaV spectrin is inapparent in the epithelial cell populations examined, although it is confined to the outer segments of photoreceptor cells. The complete cDNA sequence of human betaV spectrin is available from GenBank(TM) as accession number.
Collapse
Affiliation(s)
- P R Stabach
- Department of Pathology and the Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
183
|
Cherry L, Fung LW, Menhart N. Flexibility of the alpha-spectrin N-terminus by EPR and fluorescence polarization. Biophys J 2000; 79:526-35. [PMID: 10866978 PMCID: PMC1300956 DOI: 10.1016/s0006-3495(00)76314-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure and flexibility of the biologically important alpha-spectrin amino terminal region was examined by the use of fluorescence and EPR spectroscopy. The region studied has been previously demonstrated to be essential for the alpha-spectrin:beta-spectrin association of the tetramerization site. Appropriate spectroscopic probe moieties were coupled to this region in a recombinant fragment of human erythroid alpha-spectrin. There was good agreement between the EPR and fluorescence techniques in most of this region. Mobility determinations indicated that a portion of the region was relatively immobilized. This is significant, since although predictive methods have indicated that this region should be alpha-helical, previous experimental evidence obtained on smaller synthetic peptides had indicated that this region was disordered. Observed rigidity appears to be incompatible with such a disordered state, and has important ramifications for the flexibility of this molecule that is so integral to its role in stabilizing erythrocyte membranes.
Collapse
Affiliation(s)
- L Cherry
- Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA
| | | | | |
Collapse
|
184
|
Abstract
The paradox of how the Golgi and other organelles can sort a continuous flux of protein and lipid but maintain temporal and morphological stability remains unresolved. Recent discoveries highlight a role for the cytoskeleton in guiding the structure and dynamics of organelles. Perhaps one of the more striking, albeit less expected, of these discoveries is the recognition that a spectrin skeleton associates with many organelles and contributes to the maintenance of Golgi structure and the efficiency of protein trafficking in the early secretory pathway. Spectrin interacts directly with phosphoinositides and with membrane proteins. The small GTPase ARF, a key player in Golgi dynamics, regulates the assembly of the Golgi spectrin skeleton through its ability to control phosphoinositide levels in Golgi membranes, whereas adapter molecules such as ankyrin link spectrin to other membrane proteins. Direct interactions of spectrin with actin and centractin (ARP1) provide a link to dynein, myosin and presumably other motors involved with intracellular transport. Building on the recognized ability of spectrin to organize macromolecular complexes of membrane and cytosolic proteins into a multifaceted scaffold linked to filamentous structural elements (termed linked mosaics), recent evidence supports a similar role for spectrin in organelle function and the secretory pathway. Two working models accommodate much of the available data: the Golgi mesh hypothesis and the spectrin ankyrin adapter protein tethering system (SAATS) hypothesis.
Collapse
Affiliation(s)
- M A De Matteis
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy.
| | | |
Collapse
|
185
|
Johnson RC, Penzes P, Eipper BA, Mains RE. Isoforms of kalirin, a neuronal Dbl family member, generated through use of different 5'- and 3'-ends along with an internal translational initiation site. J Biol Chem 2000; 275:19324-33. [PMID: 10777487 DOI: 10.1074/jbc.m000676200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kalirin is a neuron-specific GDP/GTP exchange factor for Rho subfamily GTP-binding proteins. The major Kalirin transcripts in adult rat brain were identified. Most include a Sec14p-like putative lipid-binding motif followed by nine spectrin-like repeats and a Dbl homology/pleckstrin homology (DH-PH) domain. Kalirin proteins with four different NH(2) termini are generated through the use of five different 5'-ends; three of the proteins differ only at the extreme NH(2) terminus, and one is truncated because translation is initiated at a methionine in the 5th spectrin repeat. Four different 3'-ends yield Kalirin proteins with additional functional domains. Kalirin-7 (7-kilobase pair mRNA) terminates with a PDZ-binding motif, which in Kalirin-8 is replaced by an SH3 domain. Kalirin-9 contains another pair of DH-PH and SH3 domains. Kalirin-12 additionally encodes a putative Ser/Thr protein kinase. Antisera specific for different COOH termini established Kalirin-7 as the most abundant in cortex, with significant amounts of Kalirin-9 and Kalirin-12; Kalirin-7 was less prevalent in cerebellum and olfactory bulb. Kalirin proteins lacking the Sec14p-like domain and first four spectrin-like repeats were much less prevalent. Form-specific antisera demonstrated that different forms of Kalirin were localized to distinct subcellular regions of cultured neurons. Members of the family of Kalirin proteins may subserve different functions at these different locations.
Collapse
Affiliation(s)
- R C Johnson
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
186
|
Abstract
We have prepared two fragments of the human dystrophin rod domain, each containing eight spectrin-like repeating units, by expression in Escherichia coli. The first corresponds to the central portion of the rod, the other to three repeats from the N-terminal end, fused to five repeats from the C-terminal end. The latter makes up the entire mutant rod, found in a patient with mild (Becker-type) muscular dystrophy. Both fragments were found to possess an ordered, stable structure, and had the form of short rod-like particles in the electron microscope. Molecular weight determinations by sedimentation equilibrium revealed that both polypeptides were monomeric in solution, suggesting that the dystrophin rod domain is incapable of forming an antiparallel homodimer. This supports the inference from sequence analyses [Winder et al., 1995: FEBS Lett. 369:27-33, 1996: Biochem. Soc. Trans. 24:2805] that the dystrophin rod domain lacks the arrangement of sites required for lateral self-association, and that dystrophin, unlike the other known proteins of the spectrin superfamily, may thus exist as a monomer.
Collapse
Affiliation(s)
- E Kahana
- Medical Research Council Muscle and Cell Motility Unit, King's College, London, England
| | | | | |
Collapse
|
187
|
Abstract
The three-helix bundle is a common structural motif among natural proteins. It has been observed in numerous important proteins, such as fibrinogen, laminin, spectrin, dystrofin, hemagglutinin, and mannose binding proteins. The three-helix bundle is a simple structure in which three alpha-helices pack against each other, with a slight left-handed twist. Because of its simplicity relative to other structural motifs, the three-helix bundle can be conveniently used both to clarify the forces responsible for the protein folding and stability, and for the design of novel proteins. In this paper we describe the design, synthesis, and characterization of three peptides that self-assemble into antiparallel, heterotrimeric coiled coils. The experimental results, obtained from CD spectroscopy and ultracentrifugation equilibrium sedimentation, indicate that the mixture of the three peptides preferentially forms heterotrimers; moreover, these aggregates represent attractive systems for combinatorial design of libraries of pseudo C3 symmetric ligands or binding sites.
Collapse
Affiliation(s)
- A Lombardi
- Centro Interdipartimentale di Ricerca su Peptidi Bioattivi, University of Napoli, Federico II, Italy
| | | | | |
Collapse
|
188
|
O'Toole PJ, Morrison IE, Cherry RJ. Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:39-46. [PMID: 10825429 DOI: 10.1016/s0005-2736(00)00168-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of human erythrocyte spectrin to large unilamellar vesicles (LUVET) formed by the extrusion technique has been studied using fluoresceinphosphatidylethanolamine (FPE) as a reporter of electrostatic membrane potential. Spectrin aliquots were added to a suspension of FPE-labelled LUVETs to elucidate both the type of charge involved and the dissociation constants for spectrin binding to various lipids. All binding experiments showed serial increases in FPE fluorescence intensity upon serial additions of spectrin, indicative of increasing positive charge at the membrane surface. This proves for the first time that although exhibiting an overall net negative charge, spectrin binds to lipid surfaces by presenting positive charges to the lipid surface. Binding curves were obtained from the change in fluorescence intensity upon each spectrin addition and analysed to determine dissociation constants. A K(d) of 0.14+/-0.12 microM was found for spectrin binding to FPE-labelled phosphatidylcholine/phosphatidylserine (PC/PS) LUVETs at 22 degrees C in high salt conditions. A similar K(d) of 0.17+/-0.11 microM was obtained for spectrin binding to neutral LUVETs composed of PC. However, binding was found to be much weaker for PC/PS LUVETs under low salt conditions with a K(d) of 1.22+/-0.48 microM.
Collapse
Affiliation(s)
- P J O'Toole
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, Colchester, UK.
| | | | | |
Collapse
|
189
|
Hammarlund M, Davis WS, Jorgensen EM. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J Cell Biol 2000; 149:931-42. [PMID: 10811832 PMCID: PMC2174563 DOI: 10.1083/jcb.149.4.931] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2000] [Accepted: 04/13/2000] [Indexed: 11/24/2022] Open
Abstract
beta-Spectrin is a major component of the membrane skeleton, a structure found at the plasma membrane of most animal cells. beta-Spectrin and the membrane skeleton have been proposed to stabilize cell membranes, generate cell polarity, or localize specific membrane proteins. We demonstrate that the Caenorhabditis elegans homologue of beta-spectrin is encoded by the unc-70 gene. unc-70 null mutants develop slowly, and the adults are paralyzed and dumpy. However, the membrane integrity is not impaired in unc-70 animals, nor is cell polarity affected. Thus, beta-spectrin is not essential for general membrane integrity or for cell polarity. However, beta-spectrin is required for a subset of processes at cell membranes. In neurons, the loss of beta-spectrin leads to abnormal axon outgrowth. In muscles, a loss of beta-spectrin leads to disorganization of the myofilament lattice, discontinuities in the dense bodies, and a reduction or loss of the sarcoplasmic reticulum. These defects are consistent with beta-spectrin function in anchoring proteins at cell membranes.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Warren S. Davis
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| | - Erik M. Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840
| |
Collapse
|
190
|
Galluzzi L, Nicolas G, Paiardini M, Magnani M, Lecomte MC. Identification of ubiquitinated repeats in human erythroid alpha-spectrin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2812-9. [PMID: 10785404 DOI: 10.1046/j.1432-1327.2000.01322.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spectrin role(s) is (are) very important for the shape and the physical properties of red cells, such as deformability and resistance to mechanical stresses. Moreover a variety of spectrin diseases are known. We have previously demonstrated [Corsi, D., Galluzzi, L., Crinelli, R. & Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935] that human erythroid alpha-spectrin is ubiquitinated in vitro and in vivo. In order to define the ubiquitinated repeats of this long protein and find out a possible function, we have produced recombinant peptides encompassing the alphaIII-, alphaIV-, alphaV- and EF hand domains of alpha-spectrin chain. These peptides were tested in in vitro ubiquitin conjugation assays and two regions susceptibles to ubiquitination were found. The first one, in the alphaIV-domain, includes the repeat 17 and the second one, in the alphaV-domain, includes the repeat 20 and a part of repeat 21. We also demonstrated that the susceptibility to ubiquitination of the alphaV-domain is reduced by interaction with the corresponding portion of beta-spectrin chain (betaIV-domain). Thus, at least ubiquitination of alphaV-domain is susceptible to cytoskeleton assembly and spectrin dimerization.
Collapse
Affiliation(s)
- L Galluzzi
- Institute of Biological Chemistry 'G. Fornaini', University of Urbino, Italy
| | | | | | | | | |
Collapse
|
191
|
Begg GE, Harper SL, Morris MB, Speicher DW. Initiation of spectrin dimerization involves complementary electrostatic interactions between paired triple-helical bundles. J Biol Chem 2000; 275:3279-87. [PMID: 10652315 DOI: 10.1074/jbc.275.5.3279] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spectrin heterodimer is formed by the antiparallel lateral association of an alpha and a beta subunit, each of which comprises largely a series of homologous triple-helical motifs. Initiation of dimer assembly involves strong binding between complementary motifs near the actin-binding end of the dimer. In this study, the mechanism of lateral spectrin association at this dimer nucleation site was investigated using the analytical ultracentrifuge to analyze heterodimers formed from recombinant peptides containing two or four homologous motifs from each subunit (alpha20-21/beta1-2; alpha18-21/beta1-4). Both the two-motif and four-motif dimer associations were weakened substantially with increasing salt concentration, indicating that electrostatic interactions are important for the dimer initiation process. Modeling of the electrostatic potential on the surface of the alpha20 and beta2 motifs showed that the side of the motifs comprising the A and B helices is the most favorable for association, with an area of positive electrostatic potential on the AB face of the beta2 motif opposite negative potential on the AB face of the alpha20 motif and vise versa. Protease protection analysis of the alpha20-21/beta1-2 dimer showed that multiple trypsin and proteinase K sites in the A helices of the beta2 and alpha21 motifs become buried upon dimer formation. Together, these data support a model where complementary long range electrostatic interactions on the AB faces of the triple-helical motifs in the dimer nucleation site initiate the correct pairing of motifs, i.e. alpha21-beta1 and alpha20-beta2. After initial docking of these complementary triple-helical motifs, this association is probably stabilized by subsequent formation of stronger hydrophobic interactions in a complex involving the A helices of both subunits and possibly most of the AB faces. The beta subunit A helix in particular appears to be buried in the dimer interface.
Collapse
Affiliation(s)
- G E Begg
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
192
|
Abstract
Spectrin, a vital component in human erythrocyte, is composed of alpha- and beta-subunits, which associate to form (alphabeta)2 tetramers. The tetramerization site is believed to involve the alpha-spectrin N-terminus and the beta-spectrin C-terminus. Abnormal interactions in this region may lead to blood disorders. It has been proposed that both termini consist of partial structural domains and that tetramerization involves the association of these partial domains. We have studied the N-terminal region of a model peptide for alpha-spectrin by making a series of double spin-labeled peptides and studying their dipolar interaction by electron paramagnetic resonance methods. Our results indicate that residues 21-42 of the N-terminus region exhibit an alpha-helical conformation, even in the absence of B-spectrin.
Collapse
Affiliation(s)
- L Cherry
- Department of Chemistry, Loyola University of Chicago, IL 60626, USA
| | | | | |
Collapse
|
193
|
Leung CL, Sun D, Zheng M, Knowles DR, Liem RK. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 1999; 147:1275-86. [PMID: 10601340 PMCID: PMC2168091 DOI: 10.1083/jcb.147.6.1275] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 10/29/1999] [Indexed: 11/29/2022] Open
Abstract
We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends-PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH(2) terminus. However, unlike dystonin, mACF7 does not contain a coiled-coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest-specific protein, Gas2. In this paper, we demonstrate that the NH(2)-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.
Collapse
Affiliation(s)
- Conrad L. Leung
- Department of Pathology and Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Dongming Sun
- Department of Pathology and Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Min Zheng
- Department of Pathology and Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - David R. Knowles
- Department of Pathology and Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Ronald K.H. Liem
- Department of Pathology and Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
194
|
Abstract
Newly determined structures of the alpha-helical repeats that make up the key 'rod' domains of spectrin and alpha-actinin - which serve as spacers between their actin-binding domains - have provided important insights into how these proteins function as molecular shock absorbers in cells.
Collapse
Affiliation(s)
- A McGough
- Verna & Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
195
|
Abstract
In red blood cells, the integrity of the spectrin network is essential for normal cell shape and elasticity. To understand the molecular basis for spectrin's mechanical properties, one must determine how spectrin subunits interact with each other. The newly described crystallographic structures of two consecutive homologous repeats of human alpha-actinin, a member of the spectrin superfamily, shed new light on alpha-actinin interchain binding properties. Here I present evidence that interchain binding at the tail end of the spectrin molecule is likely to occur via a mechanism similar to that observed for alpha-actinin.
Collapse
Affiliation(s)
- A Viel
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Bldg. 149, 13th Street, Charlestown, MA 02129,
| |
Collapse
|
196
|
Zarnescu DC, Thomas CM. Apical spectrin is essential for epithelial morphogenesis but not apicobasal polarity in Drosophila. J Cell Biol 1999; 146:1075-86. [PMID: 10477760 PMCID: PMC2169487 DOI: 10.1083/jcb.146.5.1075] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in cell shape and position drive morphogenesis in epithelia and depend on the polarized nature of its constituent cells. The spectrin-based membrane skeleton is thought to be a key player in the establishment and/or maintenance of cell shape and polarity. We report that apical beta(Heavy)-spectrin (beta(H)), a terminal web protein that is also associated with the zonula adherens, is essential for normal epithelial morphogenesis of the Drosophila follicle cell epithelium during oogenesis. Elimination of beta(H) by the karst mutation prevents apical constriction of the follicle cells during mid-oogenesis, and is accompanied by a gross breakup of the zonula adherens. We also report that the integrity of the migratory border cell cluster, a group of anterior follicle cells that delaminates from the follicle epithelium, is disrupted. Elimination of beta(H) prevents the stable recruitment of alpha-spectrin to the apical domain, but does not result in a loss of apicobasal polarity, as would be predicted from current models describing the role of spectrin in the establishment of cell polarity. These results demonstrate a direct role for apical (alphabeta(H))(2)-spectrin in epithelial morphogenesis driven by apical contraction, and suggest that apical and basolateral spectrin do not play identical roles in the generation of apicobasal polarity.
Collapse
Affiliation(s)
- Daniela C. Zarnescu
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Claire M Thomas
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
197
|
Srinivasan C, Minadeo N, Toon J, Graham D, Mota de Freitas D, Geraldes CF. Competition between Na(+) and Li(+) for unsealed and cytoskeleton-depleted human red blood cell membrane: a (23)Na multiple quantum filtered and (7)Li NMR relaxation study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1999; 140:206-217. [PMID: 10479564 DOI: 10.1006/jmre.1999.1813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Evidence for competition between Li(+) and Na(+) for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li(+) upon the (23)Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na(+)-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li(+) on the (23)Na TQF and DQF signal intensity probed Li(+)/Na(+) competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na(+) to isotropic membrane sites, but had no effect on Li(+)/Na(+) competition for those sites. Through the observed (23)Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na(+) motion, we found anisotropic membrane binding sites for Na(+) when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer-tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na(+) motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li(+) addition initially quenched the isotropic signal the most, indicating preferential Li(+)/Na(+) competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li(+) addition competed with Na(+) for those sites, quenching the anisotropic signal. (7)Li T(1) relaxation data for Li(+)-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na(+) at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na(+) for the RBC membrane, but increases the affinity of Li(+) by 50%. This clearly indicates that cytoskeleton depletion favors Li(+) relative to Na(+) binding, and thus Li(+)/Na(+) competition for its isotropic sites. Thus, this relaxation technique proves to be very sensitive to alkali metal binding to the membrane, detecting a more pronounced steric hindrance effect of the cytoskeleton network to binding of the larger hydrated Li(+) ion to the membrane phosphate groups.
Collapse
Affiliation(s)
- C Srinivasan
- Department of Chemistry, Loyola University of Chicago, 6525 N. Sheridan Road, Chicago, Illinois 60626, USA
| | | | | | | | | | | |
Collapse
|
198
|
Djinović-Carugo K, Young P, Gautel M, Saraste M. Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments. Cell 1999; 98:537-46. [PMID: 10481917 DOI: 10.1016/s0092-8674(00)81981-9] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have determined the crystal structure of the two central repeats in the alpha-actinin rod at 2.5 A resolution. The repeats are connected by a helical linker and form a symmetric, antiparallel dimer in which the repeats are aligned rather than staggered. Using this structure, which reveals the structural principle that governs the architecture of alpha-actinin, we have devised a plausible model of the entire alpha-actinin rod. The electrostatic properties explain how the two alpha-actinin subunits assemble in an antiparallel fashion, placing the actin-binding sites at both ends of the rod. This molecular architecture results in a protein that is able to form cross-links between actin filaments.
Collapse
Affiliation(s)
- K Djinović-Carugo
- Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
199
|
Abstract
Spectrin is a vital component of the cytoskeleton, conferring flexibility on cells and providing a scaffold for a variety of proteins. It is composed of tandem, antiparallel coiled-coil repeats. We report four related crystal structures at 1.45 A, 2.0 A, 3.1 A, and 4.0 A resolution of two connected repeats of chicken brain alpha-spectrin. In all of the structures, the linker region between adjacent units is alpha-helical without breaks, kinks, or obvious boundaries. Two features observed in the structures are (1) conformational rearrangement in one repeat, resulting in movement of the position of a loop, and (2) varying degrees of bending at the linker region. These features form the basis of two different models of flexibility: a conformational rearrangement and a bending model. These models provide novel atomic details of spectrin flexibility.
Collapse
Affiliation(s)
- V L Grum
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
200
|
O'Toole PJ, Wolfe C, Ladha S, Cherry RJ. Rapid diffusion of spectrin bound to a lipid surface. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1419:64-70. [PMID: 10366671 DOI: 10.1016/s0005-2736(99)00048-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human erythrocyte spectrin was labelled with the probe 5, 5'-disulfato-1-(6-hexanoic acid N-hydroxysuccinimide ester)-1'-ethyl-3,3,3',3'-tetramethylindocarbocyanine (Cy3). Cy3-spectrin was bound to the outer surface of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles and its diffusion measured by fluorescence recovery after photobleaching (FRAP). It was found that at 30 degrees C, above the lipid gel to liquid-crystalline phase transition of the lipids, Cy3-spectrin had an unexpectedly high diffusion coefficient D=(2.1+/-0.6)x10(-7)) cm2/s. At the phase transition, diffusion of Cy3-spectrin was only slightly lower; D=(1.3+/-0.3)x10(-7) cm2/s, whereas at 14 degrees C, well below the lipid phase transition, diffusion was found to be much slower with D=(3.1+/-0.12)x10(-9) cm2/s. The fast diffusion of Cy3-spectrin on the lipid surface implies that the individual bonds which bind spectrin to the lipid surface must rapidly be made and broken. In the light of these results, spectrin-lipid interactions alone appear unlikely to have any significant role in supporting the cell membrane. Probably, the interactions serve only to localise the spectrin at the inner lipid surface in order to facilitate formation of the cytoskeleton.
Collapse
Affiliation(s)
- P J O'Toole
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | | | | | | |
Collapse
|