151
|
Kohaar I, Zhang X, Tan SH, Nousome D, Babcock K, Ravindranath L, Sukumar G, Mcgrath-Martinez E, Rosenberger J, Alba C, Ali A, Young D, Chen Y, Cullen J, Rosner IL, Sesterhenn IA, Dobi A, Chesnut G, Turner C, Dalgard C, Wilkerson MD, Pollard HB, Srivastava S, Petrovics G. Germline mutation landscape of DNA damage repair genes in African Americans with prostate cancer highlights potentially targetable RAD genes. Nat Commun 2022; 13:1361. [PMID: 35292633 PMCID: PMC8924169 DOI: 10.1038/s41467-022-28945-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
In prostate cancer, emerging data highlight the role of DNA damage repair genes (DDRGs) in aggressive forms of the disease. However, DDRG mutations in African American men are not yet fully defined. Here, we profile germline mutations in all known DDRGs (N = 276) using whole genome sequences from blood DNA of a matched cohort of patients with primary prostate cancer comprising of 300 African American and 300 European Ancestry prostate cancer patients, to determine whether the mutation status can enhance patient stratification for specific targeted therapies. Here, we show that only 13 of the 46 DDRGs identified with pathogenic/likely pathogenic mutations are present in both African American and European ancestry patients. Importantly, RAD family genes (RAD51, RAD54L, RAD54B), which are potentially targetable, as well as PMS2 and BRCA1, are among the most frequently mutated DDRGs in African American, but not in European Ancestry patients.
Collapse
Affiliation(s)
- Indu Kohaar
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| | - Xijun Zhang
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Shyh-Han Tan
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Kevin Babcock
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gauthaman Sukumar
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Elisa Mcgrath-Martinez
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - John Rosenberger
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Camille Alba
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Amina Ali
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Denise Young
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yongmei Chen
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | - Inger L Rosner
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA
| | | | - Albert Dobi
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gregory Chesnut
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Urology Service, Walter Reed National Military Medical Center, Bethesda, MD, 20814, USA
| | - Clesson Turner
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Clifton Dalgard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Matthew D Wilkerson
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Harvey B Pollard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA.,Department of Biochemistry and Molecular & Cell biology, Georgetown University School of Medicine, Washington, DC, 20057, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, John P. Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, 20817, USA. .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| |
Collapse
|
152
|
Solimando AG, Kalogirou C, Krebs M. Angiogenesis as Therapeutic Target in Metastatic Prostate Cancer - Narrowing the Gap Between Bench and Bedside. Front Immunol 2022; 13:842038. [PMID: 35222436 PMCID: PMC8866833 DOI: 10.3389/fimmu.2022.842038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis in metastatic castration-resistant prostate cancer (mCRPC) has been extensively investigated as a promising druggable biological process. Nonetheless, targeting angiogenesis has failed to impact overall survival (OS) in patients with mCRPC despite promising preclinical and early clinical data. This discrepancy prompted a literature review highlighting the tumor heterogeneity and biological context of Prostate Cancer (PCa). Narrowing the gap between the bench and bedside appears critical for developing novel therapeutic strategies. Searching clinicaltrials.gov for studies examining angiogenesis inhibition in patients with PCa resulted in n=20 trials with specific angiogenesis inhibitors currently recruiting (as of September 2021). Moreover, several other compounds with known anti-angiogenic properties - such as Metformin or Curcumin - are currently investigated. In general, angiogenesis-targeting strategies in PCa include biomarker-guided treatment stratification - as well as combinatorial approaches. Beyond established angiogenesis inhibitors, PCa therapies aiming at PSMA (Prostate Specific Membrane Antigen) hold the promise to have a substantial anti-angiogenic effect - due to PSMA´s abundant expression in tumor vasculature.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine "G. Baccelli", University of Bari Medical School, Bari, Italy.,Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Charis Kalogirou
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Krebs
- Department of Urology and Pediatric Urology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
153
|
Clark R, Herrera-Caceres J, Kenk M, Fleshner N. Clinical Management of Prostate Cancer in High-Risk Genetic Mutation Carriers. Cancers (Basel) 2022; 14:cancers14041004. [PMID: 35205755 PMCID: PMC8870148 DOI: 10.3390/cancers14041004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Men with certain genetic differences are at much higher risks of developing metastatic and lethal prostate cancer. With the recent introduction of a new class of medications specifically targeted to these gene repair pathways (PARP inhibitors), it is critical to review the state of the literature surrounding the management of men with prostate cancer who have these genetic differences. We review the existing literature to address common clinical questions pertaining to this population. There is an urgent need for further research regarding clinical management in these scenarios as patients are increasingly seeking out genetic testing and consulting healthcare professionals for guidance. Abstract Background: Prostate cancer is a leading cause of death. Approximately one in eight men who are diagnosed with prostate cancer will die of it. Since there is a large difference in mortality between low- and high-risk prostate cancers, it is critical to identify individuals who are at high-risk for disease progression and death. Germline genetic differences are increasingly recognized as contributing to risk of lethal prostate cancer. The objective of this paper is to review prostate cancer management options for men with high-risk germline mutations. Methods: We performed a review of the literature to identify articles regarding management of prostate cancer in individuals with high-risk germline genetic mutations. Results: We identified numerous publications regarding the management of prostate cancer among high-risk germline carriers, but the overall quality of the evidence is low. Conclusions: We performed a review of the literature and compiled clinical considerations for the management of individuals with high-risk germline mutations when they develop prostate cancer. The quality of the evidence is low, and there is an immediate need for further research and the development of consensus guidelines to guide clinical practice for these individuals.
Collapse
Affiliation(s)
- Roderick Clark
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
- Correspondence:
| | | | - Miran Kenk
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
| | - Neil Fleshner
- Division of Urology, University of Toronto, Toronto, ON M5G 1X6, Canada; (M.K.); (N.F.)
| |
Collapse
|
154
|
PARP Inhibitors and Radiometabolic Approaches in Metastatic Castration-Resistant Prostate Cancer: What’s Now, What’s New, and What’s Coming? Cancers (Basel) 2022; 14:cancers14040907. [PMID: 35205654 PMCID: PMC8869833 DOI: 10.3390/cancers14040907] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Prostate cancer still represents an important health problem in men, considering its high frequency. Over the last decade, novel treatment options have emerged, leading to notable clinical benefits. These recent scientific acquisitions are creating the basis to widen the treatment scenario of this tumor, evolving from targeting the androgen receptor axis or the traditional chemotherapy approach. Abstract In recent years, the advances in the knowledge on the molecular characteristics of prostate cancer is allowing to explore novel treatment scenarios. Furthermore, technological discoveries are widening diagnostic and treatment weapons at the clinician disposal. Among these, great relevance is being gained by PARP inhibitors and radiometabolic approaches. The result is that DNA repair genes need to be altered in a high percentage of patients with metastatic prostate cancer, making these patients optimal candidates for PARP inhibitors. These compounds have already been proved to be active in pretreated patients and are currently being investigated in other settings. Radiometabolic approaches combine specific prostate cancer cell ligands to radioactive particles, thus allowing to deliver cytotoxic radiations in cancer cells. Among these, radium-223 and lutetium-177 have shown promising activity in metastatic pretreated prostate cancer patients and further studies are ongoing to expand the applications of this therapeutic approach. In addition, nuclear medicine techniques also have an important diagnostic role in prostate cancer. Herein, we report the state of the art on the knowledge on PARP inhibitors and radiometabolic approaches in advanced prostate cancer and present ongoing clinical trials that will hopefully expand these two treatment fields.
Collapse
|
155
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Gandhi J, Nicoli D, Farnetti E, Piana S, Tafuni A, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines 2022; 10:236. [PMID: 35203446 PMCID: PMC8868626 DOI: 10.3390/biomedicines10020236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Pembrolizumab (anti-PD-1) is allowed in selected metastatic castration-resistant prostate cancer (PC) patients showing microsatellite instability/mismatch repair system deficiency (MSI-H/dMMR). BRCA1/2 loss-of-function is linked to hereditary PCs and homologous recombination DNA-repair system deficiency: poly-ADP-ribose-polymerase inhibitors can be administered to BRCA-mutated PC patients. Recently, docetaxel-refractory metastatic castration-resistant PC patients with BRCA1/2 or ATM somatic mutations had higher response rates to pembrolizumab. PTEN regulates cell cycle/proliferation/apoptosis through pathways including the AKT/mTOR, which upregulates PD-L1 expression in PC. Our systematic literature review (PRISMA guidelines) investigated the potential correlations between PD-L1 and MMR/MSI/BRCA/PTEN statuses in PC, discussing few other relevant genes. Excluding selection biases, 74/677 (11%) PCs showed dMMR/MSI; 8/67 (12%) of dMMR/MSI cases were PD-L1+. dMMR-PCs included ductal (3%) and acinar (14%) PCs (all cases tested for MSI were acinar-PCs). In total, 15/39 (39%) PCs harbored BRCA1/2 aberrations: limited data are available for PD-L1 expression in these patients. 13/137 (10%) PTEN- PCs were PD-L1+; 10/29 (35%) PD-L1+ PCs showed PTEN negativity. SPOP mutations may increase PD-L1 levels, while the potential correlation between PD-L1 and ERG expression in PC should be clarified. Further research should verify how the efficacy of PD-1 inhibitors in metastatic castration-resistant PCs is related to dMMR/MSI, DNA-damage repair genes defects, or PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asuncion 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
156
|
Harris AE, Metzler VM, Lothion-Roy J, Varun D, Woodcock CL, Haigh DB, Endeley C, Haque M, Toss MS, Alsaleem M, Persson JL, Gudas LJ, Rakha E, Robinson BD, Khani F, Martin LM, Moyer JE, Brownlie J, Madhusudan S, Allegrucci C, James VH, Rutland CS, Fray RG, Ntekim A, de Brot S, Mongan NP, Jeyapalan JN. Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1006101. [PMID: 36263323 PMCID: PMC9575553 DOI: 10.3389/fendo.2022.1006101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.
Collapse
Affiliation(s)
- Anna E. Harris
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Veronika M. Metzler
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Dhruvika Varun
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Daisy B. Haigh
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Chantelle Endeley
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maria Haque
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael S. Toss
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mansour Alsaleem
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Applied Medical Science, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Emad Rakha
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Laura M. Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Juliette Brownlie
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Srinivasan Madhusudan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Cinzia Allegrucci
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Victoria H. James
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Catrin S. Rutland
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Rupert G. Fray
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Simone de Brot
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Nigel P. Mongan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| | - Jennie N. Jeyapalan
- University of Nottingham Biodiscovery Institute, University of Nottingham, University Park, Nottingham, United Kingdom
- *Correspondence: Jennie N. Jeyapalan, ; Nigel P. Mongan, ; ; Atara Ntekim,
| |
Collapse
|
157
|
Ni Raghallaigh H, Eeles R. Genetic predisposition to prostate cancer: an update. Fam Cancer 2022; 21:101-114. [PMID: 33486571 PMCID: PMC8799539 DOI: 10.1007/s10689-021-00227-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 10/26/2022]
Abstract
Improvements in DNA sequencing technology and discoveries made by large scale genome-wide association studies have led to enormous insight into the role of genetic variation in prostate cancer risk. High-risk prostate cancer risk predisposition genes exist in addition to common germline variants conferring low-moderate risk, which together account for over a third of familial prostate cancer risk. Identifying men with additional risk factors such as genetic variants or a positive family history is of clinical importance, as men with such risk factors have a higher incidence of prostate cancer with some evidence to suggest diagnosis at a younger age and poorer outcomes. The medical community remains in disagreement on the benefits of a population prostate cancer screening programme reliant on PSA testing. A reduction in mortality has been demonstrated in many studies, but at the cost of significant amounts of overdiagnosis and overtreatment. Developing targeted screening strategies for high-risk men is currently the subject of investigation in a number of prospective studies. At present, approximately 38% of the familial risk of PrCa can be explained based on published SNPs, with men in the top 1% of the risk profile having a 5.71-fold increase in risk of developing cancer compared with controls. With approximately 170 prostate cancer susceptibility loci now identified in European populations, there is scope to explore the clinical utility of genetic testing and genetic-risk scores in prostate cancer screening and risk stratification, with such data in non-European populations eagerly awaited. This review will focus on both the rare and common germline genetic variation involved in hereditary and familial prostate cancer, and discuss ongoing research in exploring the role of targeted screening in this high-risk group of men.
Collapse
Affiliation(s)
- Holly Ni Raghallaigh
- Oncogenetics Team, Division of Genetics & Epidemiology, The Institute of Cancer Research, Sir Richard Doll Building, 15 Cotswold road, Sutton, SM2 5NG UK
| | - Rosalind Eeles
- Oncogenetics Team, Division of Genetics & Epidemiology, The Institute of Cancer Research, Sir Richard Doll Building, 15 Cotswold road, Sutton, SM2 5NG UK
| |
Collapse
|
158
|
Clements MB, Vertosick EA, Guerrios-Rivera L, De Hoedt AM, Hernandez J, Liss MA, Leach RJ, Freedland SJ, Haese A, Montorsi F, Boorjian SA, Poyet C, Ankerst DP, Vickers AJ. Defining the Impact of Family History on Detection of High-grade Prostate Cancer in a Large Multi-institutional Cohort. Eur Urol 2021; 82:163-169. [PMID: 34980493 PMCID: PMC9243191 DOI: 10.1016/j.eururo.2021.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The risk of high-grade prostate cancer, given a family history of cancer, has been described in the general population, but not among men selected for prostate biopsy in an international cohort. OBJECTIVE To estimate the risk of high-grade prostate cancer on biopsy based on a family history of cancer. DESIGN, SETTING, AND PARTICIPANTS This is a multicenter study of men undergoing prostate biopsy from 2006 to 2019, including 12 sites in North America and Europe. All sites recorded first-degree prostate cancer family histories; four included more detailed data on the number of affected relatives, second-degree relatives with prostate cancer, and breast cancer family history. OUTCOMES MEASUREMENTS AND STATISTICAL ANALYSIS Multivariable logistic regressions evaluated odds of high-grade (Gleason grade group ≥2) prostate cancer. Separate models were fit for family history definitions, including first- and second-degree prostate cancer and breast cancer family histories. RESULTS AND LIMITATIONS A first-degree prostate cancer family history was available for 15 799 men, with a more detailed family history for 4617 (median age 65 yr, both cohorts). Adjusted odds of high-grade prostate cancer were 1.77 times greater (95% confidence interval [CI] 1.57-2.00, p < 0.001, risk ratio [RR] = 1.40) with first-degree prostate cancer, 1.38 (95% CI 1.07-1.77, p = 0.011, RR = 1.22) for second-degree prostate cancer, and 1.30 (95% CI 1.01-1.67, p = 0.040, RR = 1.18) for first-degree breast cancer family histories. Interaction terms revealed that the effect of a family history did not differ based on prostate-specific antigen but differed based on age. This study is limited by missing data on race and prior negative biopsy. CONCLUSIONS Men with indications for biopsy and a family history of prostate or breast cancer can be counseled that they have a moderately increased risk of high-grade prostate cancer, independent of other risk factors. PATIENT SUMMARY In a large international series of men selected for prostate biopsy, finding a high-grade prostate cancer was more likely in men with a family history of prostate or breast cancer.
Collapse
Affiliation(s)
- Matthew B Clements
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily A Vertosick
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lourdes Guerrios-Rivera
- Department of Surgery, Urology Section, Veterans Affairs Caribbean Healthcare System, San Juan, Puerto Rico, USA
| | - Amanda M De Hoedt
- Section of Urology, Durham Veterans Administration Health Care System, Durham, NC, USA
| | - Javier Hernandez
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael A Liss
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robin J Leach
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephen J Freedland
- Section of Urology, Durham Veterans Administration Health Care System, Durham, NC, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander Haese
- Martini-Clinic Prostate Cancer Center, University Clinic Eppendorf, Hamburg, Germany
| | - Francesco Montorsi
- Division of Oncology/Unit of Urology, URI, IRCCS Hospital San Raffaele, Milano, Italy; Department of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | | | - Cedric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Donna P Ankerst
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Mathematics, Technical University of Munich, Garching, Munich, Germany
| | - Andrew J Vickers
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
159
|
Pederzoli F, Bandini M, Raggi D, Ross JS, Spiess PE, Necchi A. The Pros and Cons of "Machination of Medicine" in Genitourinary Oncology Practice. Bladder Cancer 2021; 7:389-393. [PMID: 38993988 PMCID: PMC11181775 DOI: 10.3233/blc-211514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
The increasing availability of genomic sequencing of tumor tissue in oncology provided valuable insights into tumor evolution and offered clinicians the unprecedented opportunity to tailor therapies on each individual patient, according to the treatment-impacting alterations identified in the tumor cells. In addition to the characterization of somatic alterations in tumor samples, the identification of germline (i.e., constitutional) pathogenic variants can provide additional information to guide informed and personalized therapeutic planning for patients and to enable risk-based screening protocols for at-risk relatives. In genitourinary malignancies, only a few associations between germline mutations and cancer risk and behavior have been thoroughly investigated (e.g., alterations in DNA repair genes in prostate cancer or mutations in Lynch syndrome genes in upper tract urothelial carcinoma). To achieve a wider use of both tumor genomic and germline genetic testing, an integrative approach led by scientific societies is necessary to involve physicians, patients and advocacy groups, to develop a shared strategy to advance the field and provide value-based and reproducible standards of care for patients and their families.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Bandini
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Raggi
- Department of Medical Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, USA
- Upstate Medical University, New York, NY, USA
| | | | - Andrea Necchi
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Medical Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
160
|
Sokolova AO, Marshall CH, Lozano R, Gulati R, Ledet EM, De Sarkar N, Grivas P, Higano CS, Montgomery B, Nelson PS, Olmos D, Sokolov V, Schweizer MT, Yezefski TA, Yu EY, Paller CJ, Sartor O, Castro E, Antonarakis ES, Cheng HH. Efficacy of systemic therapies in men with metastatic castration resistant prostate cancer harboring germline ATM versus BRCA2 mutations. Prostate 2021; 81:1382-1389. [PMID: 34516663 PMCID: PMC8563438 DOI: 10.1002/pros.24236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND Among men with metastatic prostate cancer, about 10% have germline alterations in DNA damage response genes. Most studies have examined BRCA2 alone or an aggregate of BRCA1/2 and ATM. Emerging data suggest that ATM mutations may have distinct biology and warrant individual evaluation. The objective of this study is to determine whether response to prostate cancer systemic therapies differs between men with germline mutations in ATM (gATM) and BRCA2 (gBRCA2). METHODS This is an international multicenter retrospective matched cohort study of men with prostate cancer harboring gATM or gBRCA2. PSA50 response (≥50% decline in prostate-specific antigen) was compared using Fisher's exact test. RESULTS AND LIMITATIONS The study included 45 gATM and 45 gBRCA2 patients, matched on stage and year of germline testing. Patients with gATM and gBRCA2 had similar age, Gleason grade, and PSA at diagnosis. We did not observe differences in PSA50 responses to abiraterone, enzalutamide, or docetaxel in metastatic castration resistant prostate cancer between the two groups; however, 0/7 with gATM and 12/14 with gBRCA2 achieved PSA50 response to PARPi (p < .001). Median (95% confidence interval) overall survival from diagnosis to death was 10.9 years (9.5-not reached) versus 9.9 years (7.1-not reached, p = .07) for the gATM and gBRCA2 cohorts, respectively. Limitations include the retrospective design and lack of mutation zygosity data. CONCLUSIONS Conventional therapies can be effective in gATM carriers and should be considered before PARPi, which shows limited efficacy in this group. Men with gATM mutations warrant prioritization for novel treatment strategies.
Collapse
Affiliation(s)
| | - Catherine H. Marshall
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebeca Lozano
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Traslational Research Group, Instituto de Investigación Biomédica de Málaga, Malaga, Spain
| | - Roman Gulati
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Petros Grivas
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Celestia S. Higano
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bruce Montgomery
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
| | - Peter S. Nelson
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Traslational Research Group, Instituto de Investigación Biomédica de Málaga, Malaga, Spain
| | | | - Michael T. Schweizer
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Todd A. Yezefski
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
| | - Evan Y. Yu
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Channing J. Paller
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Oliver Sartor
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Elena Castro
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Genitourinary Cancer Traslational Research Group, Instituto de Investigación Biomédica de Málaga, Malaga, Spain
- Hospital Universitario Virgen de la Victoria y Regional de Málaga, Spain
| | - Emmanuel S. Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Heather H. Cheng
- University of Washington, Department of Medicine, Division of Medical Oncology, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
161
|
Benafif S, Ni Raghallaigh H, McHugh J, Eeles R. Genetics of prostate cancer and its utility in treatment and screening. ADVANCES IN GENETICS 2021; 108:147-199. [PMID: 34844712 DOI: 10.1016/bs.adgen.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Prostate cancer heritability is attributed to a combination of rare, moderate to highly penetrant genetic variants as well as commonly occurring variants conferring modest risks [single nucleotide polymorphisms (SNPs)]. Some of the former type of variants (e.g., BRCA2 mutations) predispose particularly to aggressive prostate cancer and confer poorer prognoses compared to men who do not carry mutations. Molecularly targeted treatments such as PARP inhibitors have improved outcomes in men carrying somatic and/or germline DNA repair gene mutations. Ongoing clinical trials are exploring other molecular targeted approaches based on prostate cancer somatic alterations. Genome wide association studies have identified >250 loci that associate with prostate cancer risk. Multi-ancestry analyses have identified shared as well as population specific risk SNPs. Prostate cancer risk SNPs can be used to estimate a polygenic risk score (PRS) to determine an individual's genetic risk of prostate cancer. The odds ratio of prostate cancer development in men whose PRS lies in the top 1% of the risk profile ranges from 9 to 11. Ongoing studies are investigating the utility of a prostate cancer PRS to target population screening to those at highest risk. With the advent of personalized medicine and development of DNA sequencing technologies, access to clinical genetic testing is increasing, and oncology guidelines from bodies such as NCCN and ESMO have been updated to provide criteria for germline testing of "at risk" healthy men as well as those with prostate cancer. Both germline and somatic prostate cancer research have significantly evolved in the past decade and will lead to further development of precision medicine approaches to prostate cancer treatment as well as potentially developing precision population screening models.
Collapse
Affiliation(s)
- S Benafif
- The Institute of Cancer Research, London, United Kingdom.
| | | | - J McHugh
- The Institute of Cancer Research, London, United Kingdom
| | - R Eeles
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
162
|
Advances in urologic oncology "OncoUrology Forum Special Edition": The best of 2020. Actas Urol Esp 2021; 46:214-222. [PMID: 34844900 DOI: 10.1016/j.acuroe.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To provide latest findings of Urologic Oncology on prostate, kidney, and bladder cancer, and analyze its impact on clinical practice as well as future schemes in the medium- and long-term. METHODS This document reviews the abstracts on Uro-Oncology presented at the 2020 Congresses (EUA, AUA, ASCO, ESMO and ASTRO), the publications with the highest impact and especially the new lines of development and progress in Uro-Oncology evaluated by the OncoForum committee. RESULTS The use of prostate-specific membrane antigen (PSMA) radioligands in the diagnosis of prostate cancer may have great potential and utility in the coming years due to their improved sensitivity and specificity. The genetic characterization of the tumor is important at both, germline and somatic levels, due to the significant role of BRCA2 mutations regarding risk. The cohort multiple randomised controlled trial is the most suitable study design at the genitourinary cancer level. The application of big data will lead to process improvements, savings in healthcare costs, and an empowerment of real-life studies through ease of data comparison, management, and storage. CONCLUSIONS The use of new diagnostic techniques with PSMA ligands will provide a more comprehensive diagnostic modality, increase the number of studies about tumor genetic profiling, and enhance their quality. The practical application of artificial intelligence will improve the treatment genitourinary cancer.
Collapse
|
163
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
164
|
Maurice Dror C, Chi KN, Khalaf DJ. Finding the optimal treatment sequence in metastatic castration-resistant prostate cancer-a narrative review. Transl Androl Urol 2021; 10:3931-3945. [PMID: 34804836 PMCID: PMC8575566 DOI: 10.21037/tau-20-1341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
Over the last two decades, there has been significant progress in the treatment of metastatic prostate cancer. Multiple treatments with diverse mechanisms of action have improved clinical outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC) including taxane chemotherapy, immunotherapy, potent androgen receptor pathway inhibitors (ARPI), and radiopharmaceuticals (radium-223). As these treatments have entered standard clinical practise, clinicians have been challenged on how to optimally select and sequence them as the landmark studies establishing their efficacy had control arms with placebo or minimally effective therapy and there is a paucity of prospective trials examining treatment sequencing. More recently, the situation has been further complicated as the earlier up-front use of docetaxel and ARPI with standard gonadal testosterone inhibition has been shown to impart substantial improvements in disease control and survival for patients with castration sensitive prostate cancer. As new therapies enter into clinical practise such as the inhibitors of Poly (ADP-Ribose) Polymerase and Prostate Specific Membrane Antigen (PSMA)-targeted therapy, how to optimally select and sequence available treatments will be a continued dilemma in the absence of validated predictive biomarkers. This review will summarize the literature supporting the use of each active agent in mCRPC. We will propose a framework which will guide the selection of appropriate agents based on prior therapies, disease characteristics and biomarkers.
Collapse
Affiliation(s)
| | - Kim N Chi
- BC Cancer Vancouver, Vancouver, British Columbia, Canada.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
165
|
Aldea M, Lam L, Orillard E, Llacer Perez C, Saint-Ghislain M, Gravis G, Fléchon A, Roubaud G, Barthelemy P, Ricci F, Priou F, Neviere Z, Beaufils M, Laguerre B, Hardy AC, Helissey C, Ratta R, Borchiellini D, Pobel C, Joly F, Castro E, Thiery-Vuillemin A, Baciarello G, Fizazi K. Cabazitaxel activity in men with metastatic castration-resistant prostate cancer with and without DNA damage repair defects. Eur J Cancer 2021; 159:87-97. [PMID: 34742160 DOI: 10.1016/j.ejca.2021.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cabazitaxel was shown to improve overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) after abiraterone/enzalutamine and docetaxel failure, though benefit by the presence of DNA damage repair (DDR) defects is unknown. With the advent of poly(adenosine diphosphate-ribose) polymerase inhibitors (PARPi) in partially overlapping indications with cabazitaxel, we aimed to determine cabazitaxel activity in men with mCRPC according to their DDR status. METHODS This is a retrospective multicenter study that enrolled patients with mCRPC treated with cabazitaxel who had undergone DDR tumour tissue profiling. Patients with at least one deleterious germline or somatic alterations were considered DDR positive (DDR+). Each DDR + patient has been matched with a DDR negative (DDR-) from the same institution who underwent the same test. An exploratory cohort of patients found to be DDR + by liquid biopsy was also included. Prostate specific antigen (PSA) decline≥50% (PSA50), PSA progression-free survival (PFS, PSA-PFS), radiographic PFS (rPFS), clinical PFS or radiographic PFS (c/rPFS) and OS were evaluated. RESULTS Among 190 men (95 DDR+, 95 DDR-) with tissue sequencing, PSA50 was achieved with cabazitaxel in 29/92 (32%) and 33/92 (36%) in patients with DDR+ and DDR- (P = 0.64). The median rPFS was 5.33 months [95%CI 4.34-7.04] versus 5.75 months [95%CI 4.67-7.27] (P = 0.55). The median OS was 15.4 months [95%CI 12.16-26.6] and 11.5 months [95%CI 9.76-14.4] (P = 0.036), respectively. No PSA50 responses on cabazitaxel were observed in BRCA1/2 patients previously treated with PARPi (n = 10). Similar outcomes with cabazitaxel were observed in the liquid biopsy cohort (n = 63 DDR+). CONCLUSIONS Our study suggests that cabazitaxel is active in patients with mCRPC regardless of their DDR status, although its activity in men pretreated with a PARPi may be lower.
Collapse
Affiliation(s)
- Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, University of Paris Saclay, 114 Edouard Vaillant Street, 94805, Villejuif, France
| | - Laurent Lam
- Department of Biostatistics and Epidemiology, Gustave Roussy, 114 Edouard Vaillant Street, 94805, Villejuif, France
| | - Emeline Orillard
- Department of Medical Oncology, Hôpital Jean Minjoz, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Casilda Llacer Perez
- Department of Medical Oncology, Hospitales Virgen de La Victoria y Regional de Málaga, Campus de Teatinos, S/N, 29010, Málaga, Spain
| | - Mathilde Saint-Ghislain
- Department of Medical Oncology, Centre Francois Baclesse, 3 Avenue Du Général Harris, 14000, Caen, France
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Aude Fléchon
- Department of Medical Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, 69008, Lyon, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, 229 Cours de L'Argonne, 33000, Bordeaux, France
| | - Philippe Barthelemy
- Department of Medical Oncology, Hôpitaux Universitaires de Strasbourg/ICANS Strasbourg, 17 Rue Albert Calmette, 67200, Strasbourg, France
| | - Francesco Ricci
- Department of Medical Oncology, Institut Curie, 26 Rue D'Ulm, 75005, Paris, France
| | - Frank Priou
- Department of Medical Oncology, Centre Hospitalier Départemental Vendée, Boulevard Stéphane Moreau, 85000, La Roche-sur-Yon, France
| | - Zoe Neviere
- Department of Medical Oncology, Centre Francois Baclesse, 3 Avenue Du Général Harris, 14000, Caen, France
| | - Mathilde Beaufils
- Department of Medical Oncology, Institut Paoli Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Brigitte Laguerre
- Department of Medical Oncology, Centre Eugène Marquis, Bataille Flandres-Dunkerque Avenue, 35000, Rennes, France
| | - Anne-Claire Hardy
- Department of Medical Oncology, Hôpital Privé des Côtes D'Armor, 10 François Jacob Street, 22190, Plérin, France
| | - Carole Helissey
- Department of Medical Oncology, Hôpital D'Instruction des Armées Begin, 69 Paris Avenue, 94160, Saint-Mandé, France
| | - Raffaele Ratta
- Department of Medical Oncology, Hôpital Foch, 40 Worth Street, 92150, Suresnes, France
| | - Delphine Borchiellini
- Department of Medical Oncology, Centre Antoine Lacassagne, Université Cote D'Azur, 33 Valombrose Avenue, 06100, Nice, France
| | - Cedric Pobel
- Department of Medical Oncology, Hôpital Européen Georges-Pompidou, 20 Leblanc Street, 75015, Paris, France
| | - Florence Joly
- Department of Medical Oncology, Centre Francois Baclesse, 3 Avenue Du Général Harris, 14000, Caen, France
| | - Elena Castro
- Department of Medical Oncology, Hospitales Virgen de La Victoria y Regional de Málaga, Campus de Teatinos, S/N, 29010, Málaga, Spain
| | - Antoine Thiery-Vuillemin
- Department of Medical Oncology, Hôpital Jean Minjoz, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Giulia Baciarello
- Department of Cancer Medicine, Gustave Roussy, University of Paris Saclay, 114 Edouard Vaillant Street, 94805, Villejuif, France
| | - Karim Fizazi
- Department of Cancer Medicine, Gustave Roussy, University of Paris Saclay, 114 Edouard Vaillant Street, 94805, Villejuif, France.
| |
Collapse
|
166
|
Ledet EM, Sartor O. Letter to the Editor: "Family history and pathogenic/likely pathogenic germline variants in prostate cancer patients". Prostate 2021; 81:1262-1263. [PMID: 34464469 DOI: 10.1002/pros.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Elisa M Ledet
- Department of Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA
| | - Oliver Sartor
- Department of Medicine, Tulane Cancer Center, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
167
|
Marchand-Créty C. [Germline testing for patients with metastatic and localized high-risk prostate cancer: Towards a widespread use?]. Bull Cancer 2021; 108:994-998. [PMID: 34656301 DOI: 10.1016/j.bulcan.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/07/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022]
|
168
|
Zhu Y, Wei Y, Zeng H, Li Y, Ng CF, Zhou F, He C, Sun G, Ni Y, Chiu PKF, Teoh JYC, Wang B, Pan J, Wan F, Dai B, Qin X, Lin G, Gan H, Wu J, Ye D. Inherited Mutations in Chinese Men With Prostate Cancer. J Natl Compr Canc Netw 2021; 20:54-62. [PMID: 34653963 DOI: 10.6004/jnccn.2021.7010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although China accounts for 7.8% of worldwide new prostate cancer (PCa) cases and 14.5% of new deaths according to GLOBOCAN 2020, the risk of PCa associated with germline mutations is poorly defined, hampered in part by lack of nationwide evidence. Here, we sequenced 19 PCa predisposition genes in 1,836 Chinese patients with PCa and estimated disease risk associated with inherited mutations. PATIENTS AND METHODS Patients were recruited from 4 tertiary cancer centers (n=1,160) and a commercial laboratory (n=676). Germline DNA was sequenced using a multigene panel, and pathogenic/likely pathogenic (P/LP) mutation frequencies in patients with PCa were compared with populations from the gnomAD (Genome Aggregation Database) and ChinaMAP (China Metabolic Analytics Project) databases. Clinical characteristics and progression-free survival were assessed by mutation status. RESULTS Of 1,160 patients from hospitals, 89.7% had Gleason scores ≥8, and 65.6% had metastases. P/LP mutations were identified in 8.49% of Chinese patients with PCa. Association with PCa risk was significant for mutations in ATM (odds ratio [OR], 5.9; 95% CI, 3.1-11.1), BRCA2 (OR, 15.3; 95% CI, 10.0-23.2), MSH2 (OR, 15.8; 95% CI, 4.2-59.6), and PALB2 (OR, 5.9; 95% CI, 2.7-13.2). Compared with those without mutations, patients with mutations in ATM, BRCA2, MSH2, or PALB2 showed a poor outcome with treatment using androgen deprivation therapy and abiraterone (hazard ratio, 2.19 [95% CI, 1.34-3.58] and 2.47 [95% CI, 1.23-4.96], respectively) but similar benefit from docetaxel. CONCLUSIONS The present multicenter study confirmed that a significant proportion of Chinese patients with PCa had inherited mutations and identified predisposition genes in this underreported ethnicity. These data provide empirical evidence for precision prevention and prognostic estimation in Chinese patients with PCa.
Collapse
Affiliation(s)
- Yao Zhu
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Yu Wei
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Hao Zeng
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Yonghong Li
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Chi-Fai Ng
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Fangjian Zhou
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Caiyun He
- 5Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou.,8Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou; and
| | - Guangxi Sun
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Yuchao Ni
- 3Department of Urology, and.,4Institute of Urology, West China Hospital, Sichuan University, Chengdu
| | - Peter K F Chiu
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Jeremy Y C Teoh
- 6Department of Surgery, and.,7SH Ho Urology Center, Chinese University of Hong Kong, Hong Kong
| | - Beihe Wang
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Jian Pan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Fangning Wan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Bo Dai
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Xiaojian Qin
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Guowen Lin
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Hualei Gan
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,9Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junlong Wu
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| | - Dingwei Ye
- 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|
169
|
Chao OS, Goodman OB. DNA-PKc inhibition overcomes taxane resistance by promoting taxane-induced DNA damage in prostate cancer cells. Prostate 2021; 81:1032-1048. [PMID: 34297853 DOI: 10.1002/pros.24200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Overcoming taxane resistance remains a major clinical challenge in metastatic castrate-resistant prostate cancer (mCRPC). Loss of DNA repair proteins is associated with resistance to anti-microtubule agents. We propose that alterations in DNA damage response (DDR) pathway contribute to taxane resistance, and identification of these alterations may provide a potential therapeutic target to resensitize docetaxel-refractory mCRPC to taxane-based therapy. METHODS Alterations in DDR gene expression in our prostate cancer cell line model of docetaxel-resistance (DU145-DxR) derived from DU-145 cells were determined by DDR pathway-specific polymerase chain reaction array and immunoblotting. The PRKDC gene encoding DNA-PKc (DNA-dependent protein kinase catalytic unit), was noted to be overexpressed and evaluated for its role in docetaxel resistance. Cell viability and clonogenic survival of docetaxel-treated DU145-DxR cells were assessed after pharmacologic inhibition of DNA-PKc with three different inhibitors-NU7441, LTURM34, and M3814. Response to second-line cytotoxic agents, cabazitaxel and etoposide upon DNA-PKc inhibition was also tested. The impact of DNA-PKc upregulation on DNA damage repair was evaluated by comet assay and analysis of double-strand breaks marker, γH2AX and Rad51. Lastly, DNA-PKc inhibitor's effect on MDR1 activity was assessed by rhodamine 123 efflux assay. RESULTS DDR pathway-specific gene profiling revealed significant upregulation of PRKDC and CDK7, and downregulation of MSH3 in DU145-DxR cells. Compared to parental DU145, DU145-DxR cells sustained significantly less DNA damage when exposed to etoposide and docetaxel. Pharmacologic inhibition of DNA-PKc, a component of NHEJ repair machinery, with all three inhibitors, significantly resensitized DU145-DxR cells to docetaxel. Furthermore, DNA-PKc inhibition also resensitized DU145-DxR to cabazitaxel and etoposide, which demonstrated cross-resistance. Inhibition of DNA-PKc led to increased DNA damage in etoposide- and docetaxel-treated DU145-DxR cells. Finally, DNA-PKc inhibition did not affect MDR1 activity, indicating that DNA-PKc inhibitors resensitized taxane-resistant cells via an MDR1-independent mechanism. CONCLUSION This study supports a role of DDR genes, particularly, DNA-PKc in promoting resistance to taxanes in mCRPC. Targeting prostatic DNA-PKc may provide a novel strategy to restore taxane sensitivity in taxane-refractory mCRPC.
Collapse
Affiliation(s)
- Olivia S Chao
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
| | - Oscar B Goodman
- College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, USA
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
170
|
Avances en Uro-Oncología «OncoUrology Forum Special Edition»: lo mejor del 2020. Actas Urol Esp 2021. [DOI: 10.1016/j.acuro.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
171
|
Cheng H, Wang Y, Liu C, Wu T, Chen S, Chen M. Development and Verification of a Prostate Cancer Prognostic Signature Based on an Immunogenomic Landscape Analysis. Front Oncol 2021; 11:711258. [PMID: 34568039 PMCID: PMC8459614 DOI: 10.3389/fonc.2021.711258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Prostate cancer (PCa) has a high incidence among older men. Until now, there are no immunological markers available to predict PCa patients’ survival. Therefore, it is necessary to explore the immunological characteristics of PCa. Methods First, we retrieved RNA-seq and clinical data of 499 PCa and 52 normal prostate tissue samples from the Cancer Genome Atlas (TCGA). We identified 193 differentially expressed immune-related genes (IRGs) between PCa and normal prostate tissues. Functional enrichment analyses showed that the immune system can participate in PCa initiation. Then, we constructed a correlation network between transcription factors (TFs) and IRGs. We performed univariate and multivariate Cox regression analyses and identified five key prognostic IRGs (S100A2, NOX1, IGHV7-81, AMH, and AGTR1). Finally, a predictive nomogram was established and verified by the C-index. Results We successfully constructed and validated an immune-related PCa prediction model. The signature could independently predict PCa patients’ survival. Results showed that high-immune-risk patients were correlated with advanced stage. We also validated the S100A2 expression in vitro using PCa and normal prostate tissues. We found that higher S100A2 expressions were related to lower biochemical recurrences. Additionally, higher AMH expressions were related to higher Gleason score, lymph node metastasis and positive rate, and tumor stages, and higher ATGR1 expressions were related to lower PSA value. Conclusion Overall, we detected five IRGs (S100A2, NOX1, IGHV7-81, AMH, and AGTR1) that can be used as independent PCa prognostic factors.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Tiange Wu
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital Affiliated to Southestern China University, Nanjing, China
| |
Collapse
|
172
|
LeVee A, Lin CY, Posadas E, Figlin R, Bhowmick NA, Di Vizio D, Ellis L, Rosser CJ, Freeman MR, Theodorescu D, Freedland SJ, Gong J. Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection. Onco Targets Ther 2021; 14:4819-4832. [PMID: 34552338 PMCID: PMC8450162 DOI: 10.2147/ott.s315170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive and fatal disease with a median survival of 36 months. With the advent of genetic sequencing to identify individual genomic profiles and acquired tumor-specific pathways, targeted therapies have revolutionized cancer treatment, including the treatment strategy in mCRPC. Poly(adenosine 5'-diphosphate) ribose polymerase inhibitors (PARPi) are oral drugs that target mutations in the homologous recombination repair (HRR) pathway, which are found in approximately 27% of prostate cancer patients. In May 2020, the first PARP inhibitor, olaparib, was approved by the US Food and Drug Administration for men with mCRPC with HHR gene mutations based on the findings of the Phase III PROfound trial that showed improved overall survival in men with mCRPC who received olaparib and whose disease had progressed on a novel hormonal agent. This review summarizes the current evidence and clinical utility of olaparib as treatment in men with mCRPC. We describe the mechanism of action of PARPi, key clinical trials of olaparib in men with mCRPC, and ongoing Phase II and III clinical trials investigating olaparib in combination therapy and as front-line therapy in mCRPC.
Collapse
Affiliation(s)
- Alexis LeVee
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ching Ying Lin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin Posadas
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert Figlin
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil A Bhowmick
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Charlos J Rosser
- Department of Surgery, Division of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Department of Surgery, Division of Cancer Biology and Therapeutics, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen J Freedland
- Department of Surgery, Division of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Section of Urology, Durham VA Medical Center, Durham, NC, USA
| | - Jun Gong
- Department of Medicine, Division of Hematology and Oncology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
173
|
How I faced my prostate cancer: a molecular biologist's perspective. NPJ Precis Oncol 2021; 5:88. [PMID: 34561542 PMCID: PMC8463686 DOI: 10.1038/s41698-021-00229-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
|
174
|
Henríquez I, Roach M, Morgan TM, Bossi A, Gómez JA, Abuchaibe O, Couñago F. Current and Emerging Therapies for Metastatic Castration-Resistant Prostate Cancer (mCRPC). Biomedicines 2021; 9:1247. [PMID: 34572433 PMCID: PMC8468423 DOI: 10.3390/biomedicines9091247] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) encompasses a heterogeneous wide range of molecular tumor behavior and a high risk of progression. Early detection and treatment are therefore crucial in these patients. Treatment has improved drastically in recent years and many novel therapeutic agents are currently under investigation. However, due to the rapidly changing therapeutic landscape in mCRPC, it is difficult for clinicians to keep up to date with the latest innovations in this area. In the present narrative review, we discuss the current and emerging therapies for mCRPC as well as the clinical and molecular factors that can help predict which patients are most likely to benefit from these novel agents.
Collapse
Affiliation(s)
- Iván Henríquez
- Department of Radiation Oncology, Hospital Universitario Sant Joan, 43204 Reus, Spain;
| | - Mack Roach
- UCSF Helen Diller Family Comprehensive Cancer Center, Department of Radiation Oncology, San Francisco, CA 94143, USA;
| | - Todd M. Morgan
- Rogel Cancer Center, Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alberto Bossi
- Prostate Brachytherapy Unit, Department of Radiation Oncology, Genito Urinary Oncology, Goustave Roussy, 94805 Paris, France;
| | - Junior A. Gómez
- Department of Radiation Oncology, Hospital Universitario Sant Joan, 43204 Reus, Spain;
| | - Oscar Abuchaibe
- Virgilio Galvis Ramirez Cancer Centre, Department of Radiation Oncology, Bucaramanga 681004, Colombia;
| | - Felipe Couñago
- Department of Radiation Oncology, Clinical Department, Faculty of Biomedicine, Hospital Universitario Quirónsalud Madrid, Hospital La Luz, Universidad Europea, 28223 Madrid, Spain;
| |
Collapse
|
175
|
Ghose A, Moschetta M, Pappas-Gogos G, Sheriff M, Boussios S. Genetic Aberrations of DNA Repair Pathways in Prostate Cancer: Translation to the Clinic. Int J Mol Sci 2021; 22:ijms22189783. [PMID: 34575947 PMCID: PMC8471942 DOI: 10.3390/ijms22189783] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Due to the large-scale sequencing efforts, there is currently a better understanding of the genomic landscape of PC. The identification of defects in DNA repair genes has led to clinical studies that provide a strong rationale for developing poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents in this molecularly defined subset of patients. The identification of molecularly defined subgroups of patients has also other clinical implications; for example, we now know that carriers of breast cancer 2 (BRCA2) pathogenic sequence variants (PSVs) have increased levels of serum prostate specific antigen (PSA) at diagnosis, increased proportion of high Gleason tumors, elevated rates of nodal and distant metastases, and high recurrence rate; BRCA2 PSVs confer lower overall survival (OS). Distinct tumor PSV, methylation, and expression patterns have been identified in BRCA2 compared with non-BRCA2 mutant prostate tumors. Several DNA damage response and repair (DDR)-targeting agents are currently being evaluated either as single agents or in combination in patients with PC. In this review article, we highlight the biology and clinical implications of deleterious inherited or acquired DNA repair pathway aberrations in PC and offer an overview of new agents being developed for the treatment of PC.
Collapse
Affiliation(s)
- Aruni Ghose
- Barts Cancer Centre, Department of Medical Oncology, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21, CH-1011 Lausanne, Switzerland;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
176
|
Cattrini C, España R, Mennitto A, Bersanelli M, Castro E, Olmos D, Lorente D, Gennari A. Optimal Sequencing and Predictive Biomarkers in Patients with Advanced Prostate Cancer. Cancers (Basel) 2021; 13:4522. [PMID: 34572748 PMCID: PMC8467385 DOI: 10.3390/cancers13184522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment landscape of advanced prostate cancer has completely changed during the last decades. Chemotherapy (docetaxel, cabazitaxel), androgen-receptor signaling inhibitors (ARSi) (abiraterone acetate, enzalutamide), and radium-223 have revolutionized the management of metastatic castration-resistant prostate cancer (mCRPC). Lutetium-177-PSMA-617 is also going to become another treatment option for these patients. In addition, docetaxel, abiraterone acetate, apalutamide, enzalutamide, and radiotherapy to primary tumor have demonstrated the ability to significantly prolong the survival of patients with metastatic hormone-sensitive prostate cancer (mHSPC). Finally, apalutamide, enzalutamide, and darolutamide have recently provided impactful data in patients with nonmetastatic castration-resistant disease (nmCRPC). However, which is the best treatment sequence for patients with advanced prostate cancer? This comprehensive review aims at discussing the available literature data to identify the optimal sequencing approaches in patients with prostate cancer at different disease stages. Our work also highlights the potential impact of predictive biomarkers in treatment sequencing and exploring the role of specific agents (i.e., olaparib, rucaparib, talazoparib, niraparib, and ipatasertib) in biomarker-selected populations of patients with prostate cancer (i.e., those harboring alterations in DNA damage and response genes or PTEN).
Collapse
Affiliation(s)
- Carlo Cattrini
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Rodrigo España
- Urology Unit, Hospital Regional de Málaga, University of Malaga, 29910 Málaga, Spain;
| | - Alessia Mennitto
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| | - Melissa Bersanelli
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elena Castro
- Genitourinary Cancer Translational Research Group, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain;
- Medical Oncology, UGCI, Hospitales Universitarios Virgen de la Victoria y Regional de Málaga, 29010 Málaga, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain;
- Genitourinary Cancer Translational Research Group, The Institute of Biomedical Research in Málaga, 29010 Málaga, Spain
| | - David Lorente
- Medical Oncology, Hospital Provincial de Castellón, 12002 Castellón de la Plana, Spain
| | - Alessandra Gennari
- Medical Oncology, “Maggiore della Carità” University Hospital, 28100 Novara, Italy; (C.C.); (A.M.); (A.G.)
- Department of Translational Medicine (DIMET), University of Eastern Piedmont (UPO), 28100 Novara, Italy
| |
Collapse
|
177
|
Jiang L, Bai Z, Zhu S, Zhao T, Yang Y, Li Z, Chen D, Wu Z, Wang Y, Zhou F, Li Y. A novel germline BRCA2 mutation in a Chinese patient with prostate cancer sensitive to platinum chemotherapy: a case report. BMC Urol 2021; 21:114. [PMID: 34425813 PMCID: PMC8381549 DOI: 10.1186/s12894-021-00879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Germline BRCA2 mutation is associated with an aggressive prostate cancer phenotype and indicates higher risk for hereditary cancer. Recently, numerous studies have attempted to identify the genomic landscape of prostate cancer to better understand the genomic drivers of this disease and look for the molecular targets to guide treatment selection. Case presentation We report a 67-year-old patient diagnosed with prostate cancer who experienced rapid disease progression after androgen deprivation therapy and subsequent docetaxel treatment. The patient had a strong family history of malignancy as his mother was diagnosed with breast cancer and his father was died of lung cancer. Next generation sequencing demonstrated a novel pathogenic germline BRCA2 mutation (p.Gly2181Glufs*10) in the patient. His mother with breast cancer and his son were found to have the same BRCA2 mutation. The patient experienced impressive and durable responses to carboplatin treatment. Conclusions This case demonstrated that the carboplatin could have a dramatic antitumor effect on patients with prostate cancer with germline BRCA2 mutations and family history will help to ensure that patients and their families can be provided with proper genetic counseling.
Collapse
Affiliation(s)
- Lijuan Jiang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zunguang Bai
- Department of Urology, The Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Shoulun Zhu
- Department of Urology, The Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Tingting Zhao
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, 200120, China
| | - Yining Yang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, 200120, China
| | - Zhiyong Li
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong Chen
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yonghong Li
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
178
|
de Bono JS, Mehra N, Scagliotti GV, Castro E, Dorff T, Stirling A, Stenzl A, Fleming MT, Higano CS, Saad F, Buttigliero C, van Oort IM, Laird AD, Mata M, Chen HC, Healy CG, Czibere A, Fizazi K. Talazoparib monotherapy in metastatic castration-resistant prostate cancer with DNA repair alterations (TALAPRO-1): an open-label, phase 2 trial. Lancet Oncol 2021; 22:1250-1264. [PMID: 34388386 DOI: 10.1016/s1470-2045(21)00376-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have antitumour activity against metastatic castration-resistant prostate cancers with DNA damage response (DDR) alterations in genes involved directly or indirectly in homologous recombination repair (HRR). In this study, we assessed the PARP inhibitor talazoparib in metastatic castration-resistant prostate cancers with DDR-HRR alterations. METHODS In this open-label, phase 2 trial (TALAPRO-1), participants were recruited from 43 hospitals, cancer centres, and medical centres in Australia, Austria, Belgium, Brazil, France, Germany, Hungary, Italy, the Netherlands, Poland, Spain, South Korea, the UK, and the USA. Patients were eligible if they were men aged 18 years or older with progressive, metastatic, castration-resistant prostate cancers of adenocarcinoma histology, measurable soft-tissue disease (per Response Evaluation Criteria in Solid Tumors version 1.1 [RECIST 1.1]), an Eastern Cooperative Oncology Group performance status of 0-2, DDR-HRR gene alterations reported to sensitise to PARP inhibitors (ie, ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C), had received one or two taxane-based chemotherapy regimens for metastatic disease, and progressed on enzalutamide or abiraterone, or both, for metastatic castration-resistant prostate cancers. Eligible patients were given oral talazoparib (1 mg per day; or 0·75 mg per day in patients with moderate renal impairment) until disease progression, unacceptable toxicity, investigator decision, withdrawal of consent, or death. The primary endpoint was confirmed objective response rate, defined as best overall soft-tissue response of complete or partial response per RECIST 1.1, by blinded independent central review. The primary endpoint was assessed in patients who received study drug, had measurable soft-tissue disease, and had a gene alteration in one of the predefined DDR-HRR genes. Safety was assessed in all patients who received at least one dose of the study drug. This study is registered with ClinicalTrials.gov, NCT03148795, and is ongoing. FINDINGS Between Oct 18, 2017, and March 20, 2020, 128 patients were enrolled, of whom 127 received at least one dose of talazoparib (safety population) and 104 had measurable soft-tissue disease (antitumour activity population). Data cutoff for this analysis was Sept 4, 2020. After a median follow-up of 16·4 months (IQR 11·1-22·1), the objective response rate was 29·8% (31 of 104 patients; 95% CI 21·2-39·6). The most common grade 3-4 treatment-emergent adverse events were anaemia (39 [31%] of 127 patients), thrombocytopenia (11 [9%]), and neutropenia (ten [8%]). Serious treatment-emergent adverse events were reported in 43 (34%) patients. There were no treatment-related deaths. INTERPRETATION Talazoparib showed durable antitumour activity in men with advanced metastatic castration-resistant prostate cancers with DDR-HRR gene alterations who had been heavily pretreated. The favourable benefit-risk profile supports the study of talazoparib in larger, randomised clinical trials, including in patients with non-BRCA alterations. FUNDING Pfizer/Medivation.
Collapse
Affiliation(s)
- Johann S de Bono
- The Institute of Cancer Research and Royal Marsden Hospital, London, UK.
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giorgio V Scagliotti
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Elena Castro
- Hospital Universitario Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Mark T Fleming
- Virginia Oncology Associates, US Oncology Research, Norfolk, VA, USA
| | - Celestia S Higano
- University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l'Université de Montréal (CHUM/CRCHUM), Montréal, QC, Canada
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| |
Collapse
|
179
|
Tsaur I, Heidegger I, Bektic J, Kafka M, van den Bergh RCN, Hunting JCB, Thomas A, Brandt MP, Höfner T, Debedde E, Thibault C, Ermacora P, Zattoni F, Foti S, Kretschmer A, Ploussard G, Rodler S, von Amsberg G, Tilki D, Surcel C, Rosenzweig B, Gadot M, Gandaglia G, Dotzauer R. A real-world comparison of docetaxel versus abiraterone acetate for metastatic hormone-sensitive prostate cancer. Cancer Med 2021; 10:6354-6364. [PMID: 34374489 PMCID: PMC8446402 DOI: 10.1002/cam4.4184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background Docetaxel (D) or secondary hormonal therapy (SHT) each combined with androgen deprivation therapy (ADT) represent possible treatment options in males with metastasized hormone‐sensitive prostate cancer (mHSPC). Real‐world data comparing different protocols are lacking yet. Thus, our objective was to compare the efficacy and safety of abiraterone acetate (AA)+ADT versus D+ADT in mHSPC. Methods In a retrospective multicenter analysis including males with mHSPC treated with either of the aforementioned protocols, overall survival (OS), progression‐free survival 1 (PFS1), and progression‐free survival 2 (PFS2) were assessed for both cohorts. Median time to event was tested by Kaplan–Meier method and log‐rank test. The Cox‐proportional hazards model was used for univariate and multivariate regression analyses. Results Overall, 196 patients were included. The AA+ADT cohort had a longer PFS1 in the log‐rank testing (23 vs. 13 mos., p < 0.001), a longer PFS2 (48 vs. 33 mos., p = 0.006), and longer OS (80 vs. 61 mos., p = 0.040). In the multivariate analyses AA+ADT outperformed D+ADT in terms of PFS1 (HR = 0.34, 95% CI = 0.183–0.623; p = 0.001) and PFS2 (HR = 0.33 95% CI = 0.128–0.827; p = 0.018), respectively, while OS and toxicity rate were similar between both groups. Conclusions AA+ADT is mainly associated with a similar efficacy and overall toxicity rate as D+ADT. Further prospective research is required for validation of the clinical value of the observed benefit of AA+ADT for progression‐free end‐points.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medicine Mainz, Mainz, Germany
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Jarmo C B Hunting
- Department of Urology, St Antonius Hospital, Utrecht, The Netherlands
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medicine Mainz, Mainz, Germany
| | - Maximilian P Brandt
- Department of Urology and Pediatric Urology, University Medicine Mainz, Mainz, Germany
| | - Thomas Höfner
- Department of Urology and Pediatric Urology, University Medicine Mainz, Mainz, Germany
| | - Eliott Debedde
- Department of Medical Oncology, European Georges Pompidou Hospital, Assistance Publique des Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Constance Thibault
- Department of Medical Oncology, European Georges Pompidou Hospital, Assistance Publique des Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Paola Ermacora
- Unit of Urology, Santa Maria della Misericordia Academic Medical Center Hospital, Udine, Italy
| | - Fabio Zattoni
- Unit of Urology, Santa Maria della Misericordia Academic Medical Center Hospital, Udine, Italy
| | - Silvia Foti
- Division of Oncology/Unit of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Toulouse, France.,Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Severin Rodler
- Department of Urology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Gunhild von Amsberg
- Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, University Hospital-Hamburg Eppendorf, Hamburg, Germany
| | - Christian Surcel
- Center of Urologic Surgery, Dialysis and Renal Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Barak Rosenzweig
- Department of Urology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Gadot
- Oncology Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Giorgio Gandaglia
- Division of Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Robert Dotzauer
- Department of Urology and Pediatric Urology, University Medicine Mainz, Mainz, Germany
| | | |
Collapse
|
180
|
Loeb S, Li R, Sanchez Nolasco T, Byrne N, Cheng HH, Becker D, Leader AE, Giri VN. Barriers and facilitators of germline genetic evaluation for prostate cancer. Prostate 2021; 81:754-764. [PMID: 34057231 DOI: 10.1002/pros.24172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genetic counseling and germline testing have an increasingly important role for patients with prostate cancer (PCa); however, recent data suggests they are underutilized. Our objective was to perform a qualitative study of the barriers and facilitators of germline genetic evaluation among physicians who manage PCa. METHODS We conducted semi-structured interviews with medical oncologists, radiation oncologists, and urologists from different U.S. practice settings until thematic saturation was achieved at n = 14. The interview guide was based on the Tailored Implementation in Chronic Diseases Framework to identify key determinants of practice. Interview transcripts were independently coded by ≥2 investigators using a constant comparative method. RESULTS The decision to perform or refer for germline genetic evaluation is affected by factors at multiple levels. Although patient factors sometimes play a role, the dominant themes in the decision to conduct germline genetic evaluation were at the physician and organizational level. Physician knowledge, coordination of care, perceptions of the guidelines, and concerns about cost were most frequently discussed as the main factors affecting utilization of germline genetic evaluation. CONCLUSIONS There are currently numerous barriers to implementation of germline genetic evaluation for PCa. Efforts to expand physician education, to develop tools to enhance genetics in practice, and to facilitate coordination of care surrounding genetic evaluation are important to promote guideline-concordant care.
Collapse
Affiliation(s)
- Stacy Loeb
- Department of Urology, New York University, New York, New York, USA
- Department of Population Health, New York University, New York, New York, USA
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, New York, USA
| | - Randall Li
- Department of Urology, New York University, New York, New York, USA
| | - Tatiana Sanchez Nolasco
- Department of Urology, New York University, New York, New York, USA
- Department of Population Health, New York University, New York, New York, USA
| | - Nataliya Byrne
- Department of Urology, New York University, New York, New York, USA
- Department of Population Health, New York University, New York, New York, USA
| | - Heather H Cheng
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington State, USA
| | - Daniel Becker
- Department of Surgery/Urology, Manhattan Veterans Affairs, New York, New York, USA
- Department of Medicine, New York University, New York, NY, USA
| | - Amy E Leader
- Division of Population Science, Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Veda N Giri
- Division of Population Science, Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
181
|
Circulating androgen receptor gene amplification and resistance to 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: results of a Phase 2 trial. Br J Cancer 2021; 125:1226-1232. [PMID: 34333554 DOI: 10.1038/s41416-021-01508-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND In a Phase 2 clinical trial, we aimed to determine the lutetium-177 [177Lu]-PSMA-617 activity and the clinical utility of levels of plasma androgen receptor (AR) gene in patients with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). METHODS We determined AR copy number in pretreatment plasma samples. We used logistic regression to estimate the odds ratio (OR) and 95% confidence intervals (95% CIs) in order to evaluate the independent relevance of AR status and to evaluate patients with early progressive disease (PD) defined as treatment interruption occurring within 4 months after the start of 177Lu-PSMA-617. RESULTS Twelve of the 15 (80%) with AR gene gain and 5 of the 25 (20%) patients with no gain of AR had early PD (p = 0.0002). The OR for patients without PSA response having AR gain was 3.69 (95% CI 0.83-16.36, p = 0.085). The OR for patients with early PD having AR gain was 16.00, (95% CI 3.23-79.27, p = 0.0007). Overall, median PFS and OS were 7.5 and 12.4 months, respectively. AR-gained had a significant shorter OS compared to AR-normal patients (7.4 vs 19.1 months, p = 0.020). No treatment interruptions due to adverse effects were reported. DISCUSSION Plasma AR status helped to indicate mCRPC with early resistance to 177Lu-PSMA-617. TRIAL REGISTRATION NCT03454750.
Collapse
|
182
|
Nientiedt C, Budczies J, Endris V, Kirchner M, Schwab C, Jurcic C, Behnisch R, Hoveida S, Lantwin P, Kaczorowski A, Geisler C, Dieffenbacher S, Falkenbach F, Franke D, Görtz M, Heller M, Himmelsbach R, Pecqueux C, Rath M, Reimold P, Schütz V, Simunovic I, Walter E, Hofer L, Gasch C, Schönberg G, Pursche L, Hatiboglu G, Nyarangi-Dix J, Sültmann H, Zschäbitz S, Koerber SA, Jäger D, Debus J, Duensing A, Schirmacher P, Hohenfellner M, Stenzinger A, Duensing S. Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer. Urol Oncol 2021; 40:8.e11-8.e18. [PMID: 34325986 DOI: 10.1016/j.urolonc.2021.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mutations in DNA damage repair genes, in particular genes involved in homology-directed repair, define a subgroup of men with prostate cancer with a more unfavorable prognosis but a therapeutic vulnerability to PARP inhibition. In current practice, mutational testing of prostate cancer patients is commonly done late i.e., when the tumor is castration resistant. In addition, most sequencing panels do not include TP53, one of the most crucial tumor suppressor genes in human cancer. In this proof-of-concept study, we sought to extend the clinical use of these molecular markers by exploring the early prognostic impact of mutations in TP53 and DNA damage repair genes in men with primary, nonmetastatic prostate cancer undergoing radical prostatectomy (RPX). METHODS Tumor specimens from a cohort of 68 RPX patients with intermediate (n = 11, 16.2%) or high-risk (n = 57, 83.8%) disease were analyzed by targeted next generation sequencing using a 37 DNA damage repair and checkpoint gene panel including TP53. Sequencing results were correlated to clinicopathologic variables as well as PSA persistence or time to PSA failure. In addition, the distribution of TP53 and DNA damage repair gene mutations was analyzed in three large publicly available datasets (TCGA, MSKCC and SU2C). RESULTS Of 68 primary prostate cancers analyzed, 23 (33.8%) were found to harbor a mutation in either TP53 (n = 12, 17.6%) or a DNA damage repair gene (n = 11, 16.2%). The vast majority of these mutations (22 of 23, 95.7%) were detected in primary tumors from patients with high-risk features. These mutations were mutually exclusive in our cohort and additional data mining suggests an enrichment of DNA damage repair gene mutations in TP53 wild-type tumors. Mutations in either TP53 or a DNA damage repair gene were associated with a significantly worse prognosis after RPX. Importantly, the presence of TP53/DNA damage repair gene mutations was an independent risk factor for PSA failure or PSA persistence in multivariate Cox regression models. CONCLUSION TP53 or DNA damage repair gene mutations are frequently detected in primary prostate cancer with high-risk features and define a subgroup of patients with an increased risk for PSA failure or persistence after RPX. The significant adverse impact of these alterations on patient prognosis may be exploited to identify men with prostate cancer who may benefit from a more intensified treatment.
Collapse
Affiliation(s)
- Cathleen Nientiedt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Christina Jurcic
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130, Heidelberg, Germany
| | - Shirin Hoveida
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - Philippa Lantwin
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - Christine Geisler
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Svenja Dieffenbacher
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Fabian Falkenbach
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Desiree Franke
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Magdalena Görtz
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Martina Heller
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Ruth Himmelsbach
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Carine Pecqueux
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Mathias Rath
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Philipp Reimold
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Viktoria Schütz
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Iva Simunovic
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Elena Walter
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Luisa Hofer
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Claudia Gasch
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Gita Schönberg
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Lars Pursche
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Gencay Hatiboglu
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Joanne Nyarangi-Dix
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Stefan A Koerber
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, Heidelberg, Germany
| | - Anette Duensing
- Cancer Therapeutics Program and Department of Pathology, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, USA; Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 420, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany.
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, Heidelberg, Germany.
| |
Collapse
|
183
|
Taza F, Holler AE, Fu W, Wang H, Adra N, Albany C, Ashkar R, Cheng HH, Sokolova AO, Agarwal N, Kessel A, Bryce A, Nafissi N, Barata P, Sartor AO, Bastos D, Smaletz O, Berchuck JE, Taplin ME, Aggarwal R, Sternberg CN, Vlachostergios PJ, Alva AS, Su C, Marshall CH, Antonarakis ES. Differential Activity of PARP Inhibitors in BRCA1- Versus BRCA2-Altered Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2021; 5:PO.21.00070. [PMID: 34778690 PMCID: PMC8575434 DOI: 10.1200/po.21.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and rucaparib) are US Food and Drug Administration-approved for patients with metastatic castration-resistant prostate cancer (mCRPC) harboring BRCA1/2 mutations, but the relative efficacy of PARP inhibition in BRCA1- versus BRCA2-altered mCRPC is understudied. METHODS We conducted a multicenter retrospective analysis involving 12 sites. We collected genomic and clinical data from 123 patients with BRCA1/2-altered mCRPC who were treated with PARP inhibitors. The primary efficacy end point was the prostate-specific antigen (PSA) response (≥ 50% PSA decline) rate. Secondary end points were PSA progression-free survival (PSA-PFS), clinical or radiographic PFS, and overall survival. We compared clinical outcomes, and other genomic characteristics, among BRCA1- versus BRCA2-altered mCRPC. RESULTS A total of 123 patients (13 BRCA1 and 110 BRCA2) were included. PARP inhibitors used were olaparib (n = 116), rucaparib (n = 3), talazoparib (n = 2), and veliparib (n = 2). At diagnosis, 72% of patients had Gleason 8-10 disease. BRCA1 patients were more likely to have metastatic disease at presentation (69% v 37%; P = .04). Age, baseline PSA, metastatic distribution, and types of previous systemic therapies were similar between groups. There were equal proportions of germline mutations (51% v 46%; P = .78) in both groups. BRCA1 patients had more monoallelic (56% v 41%; P = .49) and concurrent TP53 (55% v 36%; P = .32) mutations. PSA50 responses in BRCA1- versus BRCA2-altered patients were 23% versus 63%, respectively (P = .01). BRCA2 patients achieved longer PSA-PFS (HR, 1.94; 95% CI, 0.92 to 4.09; P = .08), PFS (HR, 2.08; 95% CI, 0.99 to 4.40; P = .05), and overall survival (HR, 3.01; 95% CI, 1.32 to 6.83; P = .008). Biallelic (compared with monoallelic) mutations, truncating (compared with missense) mutations, and absence of a concurrent TP53 mutation were associated with PARP inhibitor sensitivity. CONCLUSION PARP inhibitor efficacy is diminished in BRCA1- versus BRCA2-altered mCRPC. This is not due to an imbalance in germline mutations but might be related to more monoallelic mutations and/or concurrent TP53 alterations in the BRCA1 group.
Collapse
Affiliation(s)
- Fadi Taza
- Johns Hopkins University School of Medicine, Baltimore, MD
- Medstar Health Georgetown University, Baltimore, MD
| | | | - Wei Fu
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hao Wang
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nabil Adra
- Indiana University School of Medicine, Indianapolis, IN
| | | | - Ryan Ashkar
- Indiana University School of Medicine, Indianapolis, IN
| | - Heather H. Cheng
- University of Washington and Fred Hutch Cancer Research Center Seattle, Washington, DC
| | - Alexandra O. Sokolova
- University of Washington and Fred Hutch Cancer Research Center Seattle, Washington, DC
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Adam Kessel
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | | | - Pedro Barata
- Tulane University School of Medicine, New Orleans, LA
| | | | - Diogo Bastos
- Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Oren Smaletz
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Rahul Aggarwal
- University of California San Francisco, San Francisco, CA
| | - Cora N. Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | | | | | | | | | | |
Collapse
|
184
|
Magraner-Pardo L, Laskowski RA, Pons T, Thornton JM. A computational and structural analysis of germline and somatic variants affecting the DDR mechanism, and their impact on human diseases. Sci Rep 2021; 11:14268. [PMID: 34253785 PMCID: PMC8275599 DOI: 10.1038/s41598-021-93715-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
DNA-Damage Response (DDR) proteins are crucial for maintaining the integrity of the genome by identifying and repairing errors in DNA. Variants affecting their function can have severe consequences since failure to repair damaged DNA can result in cells turning cancerous. Here, we compare germline and somatic variants in DDR genes, specifically looking at their locations in the corresponding three-dimensional (3D) structures, Pfam domains, and protein–protein interaction interfaces. We show that somatic variants in metastatic cases are more likely to be found in Pfam domains and protein interaction interfaces than are pathogenic germline variants or variants of unknown significance (VUS). We also show that there are hotspots in the structures of ATM and BRCA2 proteins where pathogenic germline, and recurrent somatic variants from primary and metastatic tumours, cluster together in 3D. Moreover, in the ATM, BRCA1 and BRCA2 genes from prostate cancer patients, the distributions of germline benign, pathogenic, VUS, and recurrent somatic variants differ across Pfam domains. Together, these results provide a better characterisation of the most recurrent affected regions in DDRs and could help in the understanding of individual susceptibility to tumour development.
Collapse
Affiliation(s)
- Lorena Magraner-Pardo
- Prostate Cancer Clinical Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| |
Collapse
|
185
|
Boussios S, Rassy E, Shah S, Ioannidou E, Sheriff M, Pavlidis N. Aberrations of DNA repair pathways in prostate cancer: a cornerstone of precision oncology. Expert Opin Ther Targets 2021; 25:329-333. [PMID: 34225539 DOI: 10.1080/14728222.2021.1951226] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Stergios Boussios
- King's College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London, UK.,Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.,AELIA Organization, Thessaloniki, Greece
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, Villejuif, France
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds, Suffolk, UK
| | - Matin Sheriff
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
| | - Nicholas Pavlidis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
186
|
Schiewer MJ, Knudsen KE. Basic Science and Molecular Genetics of Prostate Cancer Aggressiveness. Urol Clin North Am 2021; 48:339-347. [PMID: 34210489 DOI: 10.1016/j.ucl.2021.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen receptor function, tumor cell plasticity, loss of tumor suppressors, and defects in DNA repair genes affect aggressive features of prostate cancer. Prostate cancer development, progression, and aggressive behavior are often attributable to function of the androgen receptor. Tumor cell plasticity, neuroendocrine features, and loss of tumor suppressors lend aggressive behavior to prostate cancer cells. DNA repair defects have ramifications for prostate cancer cell behavior.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Urology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA; Department of Cancer Biology, Urology Research Laboratory, Thomas Jefferson University, Sidney Kimmel Cancer Center, 233 South 10th Street BLSB 804, Philadelphia, PA 19107, USA.
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Medical Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, 233 South 10th Street BLSB 1050, Philadelphia, PA 19107, USA. https://twitter.com/SKCCDirector
| |
Collapse
|
187
|
Abstract
Metastasis is the main cause of death for cancer patients, but our ability to improve clinical outcome first requires a better understanding of the dynamics, cellular mechanisms, and kinetics of metastasis. In prostate cancer (PCa), metastatic tumor cells preferentially colonize to bone. However, a lack of applicable mouse models has limited our ability to study this process accurately. Here, we describe a strategy to bypass this limitation: human PCa cells are injected into immunodeficient mice (at tibia, the left ventricle of heart and the iliac artery). Using this novel technique, the metastatic capabilities of these human PCa cells (e.g., colonization and proliferation potential) can be analyzed in bone with an in vivo imaging system.
Collapse
|
188
|
Abstract
Recent studies show that the prevalence of germline pathogenic and likely pathogenic variants (also known as mutations) in DNA repair genes in metastatic prostate cancer is higher than previously recognized and higher than in unaffected men. Specific gene dysfunction is important in prostate cancer initiation and/or evolution to metastases. This article reviews key literature on individual genes, recognizing BRCA2 as the gene most commonly altered in the metastatic setting. This article discusses the importance of representative and diverse inclusion, and efforts to advance management for at-risk carrier populations to maximize clinical benefit.
Collapse
Affiliation(s)
- Alexandra O Sokolova
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; VA Puget Sound Health Care System, Seattle, WA, USA
| | | | - Heather H Cheng
- Department of Medicine (Div. Oncology), University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
189
|
Helfand BT, Xu J. Germline Testing for Prostate Cancer Prognosis: Implications for Active Surveillance. Urol Clin North Am 2021; 48:401-409. [PMID: 34210494 DOI: 10.1016/j.ucl.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Available evidence supports routine implementation of germline genetic testing for many aspects of prostate cancer (PCa) decision making. The purpose of obtaining genetic testing for newly diagnosed men would be focused on identifying mutations that predispose to aggressive PCa. Based on an evidence-based review, the authors review germline rare pathogenic mutations in several genes that are significantly associated with aggressiveness, metastases, and mortality. Then recent studies of these germline mutations in predicting tumor grade reclassification among patients undergoing active surveillance are discussed. Single nucleotide polymorphisms-based polygenic risk scores in differentiating PCa aggressiveness and prognosis are reviewed.
Collapse
Affiliation(s)
- Brian T Helfand
- Program for Personalized Cancer Care, Division of Urology, NorthShore University HealthSystem, 1001 University Place, Evanston, IL 60201, USA.
| | - Jianfeng Xu
- Program for Personalized Cancer Care, Division of Urology, NorthShore University HealthSystem, 1001 University Place, Evanston, IL 60201, USA
| |
Collapse
|
190
|
Siebert AL, Szymaniak BM, Numan Y, Morgans AK. Genetically Informed Prostate Cancer Treatment for Metastatic Disease. Urol Clin North Am 2021; 48:365-371. [PMID: 34210491 DOI: 10.1016/j.ucl.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Germline testing should be performed to support treatment selection for patients with metastatic prostate cancer, and should be identified in patients with high-risk localized disease. Patients with germline BRCA1/2 mutations should be educated regarding additional personal cancer risk, and risk for family members. Guidelines recommend that all men with metastatic prostate cancer should also undergo somatic tissue and germline testing for priority genes BRCA1/2, PALB2, ATM, and MSH2/6. The advent of high throughput sequencing enables patients to be tested for a more comprehensive panel of germline and somatic mutations.
Collapse
Affiliation(s)
- Aisha L Siebert
- Department of Urology, Feinberg School of Medicine at Northwestern University, 676 North St. Clair Street, Arkes 23-010, Chicago, IL 60611, USA
| | - Brittany M Szymaniak
- Department of Urology, Feinberg School of Medicine at Northwestern University, 675 North Saint Clair Street, Suite 20-150, Chicago, IL 60611, USA
| | - Yazan Numan
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine at Northwestern University, 676 North St. Clair Street, Suite 850, Chicago, IL 60611, USA
| | - Alicia K Morgans
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine at Northwestern University, 676 North St. Clair Street, Suite 850, Chicago, IL 60611, USA.
| |
Collapse
|
191
|
Zhang J, Sun J, Bakht S, Hassan W. Recent Development and Future Prospects of Molecular Targeted Therapy in Prostate Cancer. Curr Mol Pharmacol 2021; 15:159-169. [PMID: 34102978 DOI: 10.2174/1874467214666210608141102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PC) is a rapidly increasing ailment worldwide. The previous decade has observed a rapid advancement in PC therapies that was evident from the number of FDA approvals during this phase. Androgen deprivation therapies (ADT) have traditionally remained a mainstay for the management of PCs, but the past decade has experienced the emergence of newer classes of drugs that can be used with or without the administration of ADT. FDA approved poly (ADP-ribose) polymerase inhibitors (PARPi), such as olaparib and rucaparib, after successful clinical trials against gene-mutated metastatic castration-resistant prostate cancer. Furthermore, drugs like apalutamide, darolutamide, and enzalutamide with an androgen-targeted mechanism of action have manifested superior results in non-metastatic castration-resistant prostate cancer (nmCRPC), metastatic castration-sensitive prostate cancer (mCSPC), and metastatic castration-resistant prostate cancer (mCRPC), respectively, with or without previously administered docetaxel. Relugolix, an oral gonadotropin-releasing hormone antagonist, and a combination of abiraterone acetate plus prednisone were also approved by FDA after a successful trial in advanced PC and mCRPC, respectively. This review aims to analyze the FDA-approved agents in PC during the last decade and provide a summary of their clinical trials. It also presents an overview of the ongoing progress of prospective molecules still under trial.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, First center Hospital of Baoding city, Hebei, 071000, China
| | - Jirui Sun
- Department of Pathology, First center Hospital of Baoding city, Hebei, 071000, China
| | - Sahar Bakht
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| |
Collapse
|
192
|
Conteduca V, Wetterskog D, Castro E, Scarpi E, Romero-Laorden N, Gurioli G, Jayaram A, Lolli C, Schepisi G, Wingate A, Casadei C, Lozano R, Brighi N, Aragón IM, Marin-Aguilera M, Gonzalez-Billalabeitia E, Mellado B, Olmos D, Attard G, De Giorgi U. Plasma androgen receptor and response to adapted and standard docetaxel regimen in castration-resistant prostate cancer: A multicenter biomarker study. Eur J Cancer 2021; 152:49-59. [PMID: 34077818 DOI: 10.1016/j.ejca.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Plasma AR status has been identified as a potential biomarker of response in metastatic castration-resistant prostate cancer (mCRPC) patients receiving docetaxel or AR-targeted therapies. However, the relevance of plasma AR in the overall management of CRPC patients receiving different docetaxel doses is unknown. PATIENTS AND METHODS This was a multi-institution study of associations between baseline plasma AR copy number status, assessed by droplet digital PCR, and outcome in 325 mCRPC patients receiving docetaxel at standard or adapted regimen at the discretion of the treating physician. Upon analysis, patients were assigned randomly to either a training (n = 217) or validation (n = 108) cohort. RESULTS In the training cohort, AR-gained patients treated with adapted docetaxel regimen had a significantly worse median progression-free survival (PFS) (3.8 vs 6.3 months, hazard ratio [HR] 2.58, 95% confidence interval [CI] 1.34-4.95, p < 0.0001), median overall survival (10.8 vs 20.6 months, HR 1.98, 95% CI 1.09-3.62, p = 0.0064) and PSA response (PSA > -50%: odds ratio 4.88 95%CI 1.55-14.32, p = 0.013) as compared to plasma AR normal patients. These findings were all confirmed in the validation cohort. However, in patients treated with standard docetaxel regimen, these differences were not seen. The interaction between AR CN status and dose reduction of docetaxel was considered as independent factor for PFS in both the training and validation cohort (HR 2.84, 95% CI 1.41-5.73, p = 0.003, and HR 4.79, 95% CI 1.79-12.82, p = 0.002). CONCLUSION Despite the retrospective non-randomised design of this study, our hypothesis-generating findings could suggest plasma AR as a potential biomarker for optimal docetaxel timing and dose in mCRPC patients. Prospective trials are warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | | | - Elena Castro
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre
| | - Emanuela Scarpi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Cristian Lolli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Wingate
- University College London Cancer Institute, London, UK
| | - Chiara Casadei
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Rebeca Lozano
- Centro Nacional Investigaciones Oncologica, Madrid, Spain
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Isabel M Aragón
- Genitourinary Translational Research Unit, Institute of Biomedical Research, Malaga, Spain
| | | | - Enrique Gonzalez-Billalabeitia
- Department of Hematology & Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, Spain
| | - Begoña Mellado
- Medical Oncology Department, IDIBAPS, Hospital Clínico y Provincial, Barcelona, Spain
| | - David Olmos
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre
| | | | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
193
|
Jayaram A, Wingate A, Wetterskog D, Wheeler G, Sternberg C, Jones R, Berruti A, Lefresne F, Lahaye M, Thomas S, Gormley M, Meacham F, Garg K, Lim L, Merseburger A, Tombal B, Ricci D, Attard G. Plasma tumor gene conversions after one cycle abiraterone acetate for metastatic castration-resistant prostate cancer: a biomarker analysis of a multicenter international trial. Ann Oncol 2021; 32:726-735. [DOI: 10.1016/j.annonc.2021.03.196] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
|
194
|
Clinical implications of genomic alterations in metastatic prostate cancer. Prostate Cancer Prostatic Dis 2021; 24:310-322. [PMID: 33452452 DOI: 10.1038/s41391-020-00308-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
There has been a rapid expansion in treatment options for the management of metastatic prostate cancer, but individual patient outcomes can be variable due to inter-patient tumor heterogeneity. Fortunately, the disease can be stratified on the basis of common somatic features, providing potential for the development of clinically useful prognostic and predictive biomarkers. Tissue biopsy programs and studies leveraging circulating tumor DNA (ctDNA) have revealed specific genomic alterations that are associated with aggressive disease biology. In this review, we discuss the potential for genomic subtyping to improve prognostication and to help guide treatment selection. We summarize data on associations between AR pathway alterations and patient response to AR signaling inhibitors and other standards of care. We describe the links between detection of different types of DNA damage repair defects and clinical outcomes with targeted therapies such as poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors or immune checkpoint inhibitors. PI3K signaling pathway inhibitors are also in advanced clinical development and we report upon the potential for these and other novel targeted therapies to have impact in specific molecular subsets of metastatic prostate cancer. Finally, we discuss the growing use of blood-based analytes for prognostic and predictive biomarker development, and summarize ongoing prospective biomarker-driven clinical trials.
Collapse
|
195
|
Tukachinsky H, Madison RW, Chung JH, Gjoerup OV, Severson EA, Dennis L, Fendler BJ, Morley S, Zhong L, Graf RP, Ross JS, Alexander BM, Abida W, Chowdhury S, Ryan CJ, Fizazi K, Golsorkhi T, Watkins SP, Simmons A, Loehr A, Venstrom JM, Oxnard GR. Genomic Analysis of Circulating Tumor DNA in 3,334 Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clin Cancer Res 2021; 27:3094-3105. [PMID: 33558422 PMCID: PMC9295199 DOI: 10.1158/1078-0432.ccr-20-4805] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Comprehensive genomic profiling (CGP) is of increasing value for patients with metastatic castration-resistant prostate cancer (mCRPC). mCRPC tends to metastasize to bone, making tissue biopsies challenging to obtain. We hypothesized CGP of cell-free circulating tumor DNA (ctDNA) could offer a minimally invasive alternative to detect targetable genomic alterations (GA) that inform clinical care. EXPERIMENTAL DESIGN Using plasma from 3,334 patients with mCRPC (including 1,674 screening samples from TRITON2/3), we evaluated the landscape of GAs detected in ctDNA and assessed concordance with tissue-based CGP. RESULTS A total of 3,129 patients (94%) had detectable ctDNA with a median ctDNA fraction of 7.5%; BRCA1/2 was mutated in 295 (8.8%). In concordance analysis, 72 of 837 patients had BRCA1/2 mutations detected in tissue, 67 (93%) of which were also identified using ctDNA, including 100% of predicted germline variants. ctDNA harbored some BRCA1/2 alterations not identified by tissue testing, and ctDNA was enriched in therapy resistance alterations, as well as possible clonal hematopoiesis mutations (e.g., in ATM and CHEK2). Potential androgen receptor resistance alterations were detected in 940 of 2,213 patients (42%), including amplifications, polyclonal and compound mutations, rearrangements, and novel deletions in exon 8. CONCLUSIONS Genomic analysis of ctDNA from patients with mCRPC recapitulates the genomic landscape detected in tissue biopsies, with a high level of agreement in detection of BRCA1/2 mutations, but more acquired resistance alterations detected in ctDNA. CGP of ctDNA is a compelling clinical complement to tissue CGP, with reflex to tissue CGP if negative for actionable variants.See related commentary by Hawkey and Armstrong, p. 2961.
Collapse
Affiliation(s)
| | | | - Jon H Chung
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | | | - Lucas Dennis
- Foundation Medicine Inc., Cambridge, Massachusetts
| | | | | | - Lei Zhong
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Ryon P Graf
- Foundation Medicine Inc., Cambridge, Massachusetts
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, Massachusetts
- Upstate Medical University, Syracuse, New York
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simon Chowdhury
- Guy's, King's, and St. Thomas' Hospital, London, England, United Kingdom
| | - Charles J Ryan
- University of Minnesota Medical School, Minneapolis, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Epstein JI, Amin MB, Fine SW, Algaba F, Aron M, Baydar DE, Beltran AL, Brimo F, Cheville JC, Colecchia M, Comperat E, da Cunha IW, Delprado W, DeMarzo AM, Giannico GA, Gordetsky JB, Guo CC, Hansel DE, Hirsch MS, Huang J, Humphrey PA, Jimenez RE, Khani F, Kong Q, Kryvenko ON, Kunju LP, Lal P, Latour M, Lotan T, Maclean F, Magi-Galluzzi C, Mehra R, Menon S, Miyamoto H, Montironi R, Netto GJ, Nguyen JK, Osunkoya AO, Parwani A, Robinson BD, Rubin MA, Shah RB, So JS, Takahashi H, Tavora F, Tretiakova MS, True L, Wobker SE, Yang XJ, Zhou M, Zynger DL, Trpkov K. The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Arch Pathol Lab Med 2021; 145:461-493. [PMID: 32589068 DOI: 10.5858/arpa.2020-0015-ra] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Controversies and uncertainty persist in prostate cancer grading. OBJECTIVE.— To update grading recommendations. DATA SOURCES.— Critical review of the literature along with pathology and clinician surveys. CONCLUSIONS.— Percent Gleason pattern 4 (%GP4) is as follows: (1) report %GP4 in needle biopsy with Grade Groups (GrGp) 2 and 3, and in needle biopsy on other parts (jars) of lower grade in cases with at least 1 part showing Gleason score (GS) 4 + 4 = 8; and (2) report %GP4: less than 5% or less than 10% and 10% increments thereafter. Tertiary grade patterns are as follows: (1) replace "tertiary grade pattern" in radical prostatectomy (RP) with "minor tertiary pattern 5 (TP5)," and only use in RP with GrGp 2 or 3 with less than 5% Gleason pattern 5; and (2) minor TP5 is noted along with the GS, with the GrGp based on the GS. Global score and magnetic resonance imaging (MRI)-targeted biopsies are as follows: (1) when multiple undesignated cores are taken from a single MRI-targeted lesion, an overall grade for that lesion is given as if all the involved cores were one long core; and (2) if providing a global score, when different scores are found in the standard and the MRI-targeted biopsy, give a single global score (factoring both the systematic standard and the MRI-targeted positive cores). Grade Groups are as follows: (1) Grade Groups (GrGp) is the terminology adopted by major world organizations; and (2) retain GS 3 + 5 = 8 in GrGp 4. Cribriform carcinoma is as follows: (1) report the presence or absence of cribriform glands in biopsy and RP with Gleason pattern 4 carcinoma. Intraductal carcinoma (IDC-P) is as follows: (1) report IDC-P in biopsy and RP; (2) use criteria based on dense cribriform glands (>50% of the gland is composed of epithelium relative to luminal spaces) and/or solid nests and/or marked pleomorphism/necrosis; (3) it is not necessary to perform basal cell immunostains on biopsy and RP to identify IDC-P if the results would not change the overall (highest) GS/GrGp part per case; (4) do not include IDC-P in determining the final GS/GrGp on biopsy and/or RP; and (5) "atypical intraductal proliferation (AIP)" is preferred for an intraductal proliferation of prostatic secretory cells which shows a greater degree of architectural complexity and/or cytological atypia than typical high-grade prostatic intraepithelial neoplasia, yet falling short of the strict diagnostic threshold for IDC-P. Molecular testing is as follows: (1) Ki67 is not ready for routine clinical use; (2) additional studies of active surveillance cohorts are needed to establish the utility of PTEN in this setting; and (3) dedicated studies of RNA-based assays in active surveillance populations are needed to substantiate the utility of these expensive tests in this setting. Artificial intelligence and novel grading schema are as follows: (1) incorporating reactive stromal grade, percent GP4, minor tertiary GP5, and cribriform/intraductal carcinoma are not ready for adoption in current practice.
Collapse
Affiliation(s)
- Jonathan I Epstein
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada.,Urology (Epstein), David Geffen School of Medicine at UCLA, Los Angeles, California (Huang).,and Oncology (Epstein), The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis (Amin)
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York (Fine)
| | - Ferran Algaba
- Department of Pathology, Fundacio Puigvert, Barcelona, Spain (Algaba)
| | - Manju Aron
- Department of Pathology, University of Southern California, Los Angeles (Aron)
| | - Dilek E Baydar
- Department of Pathology, Faculty of Medicine, Koç University, İstanbul, Turkey (Baydar)
| | - Antonio Lopez Beltran
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal (Beltran)
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montréal, Quebec, Canada (Brimo)
| | - John C Cheville
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Maurizio Colecchia
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy (Colecchia)
| | - Eva Comperat
- Department of Pathology, Hôpital Tenon, Sorbonne University, Paris, France (Comperat)
| | | | | | - Angelo M DeMarzo
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Jennifer B Gordetsky
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Giannico, Gordetsky)
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Donna E Hansel
- Department of Pathology, Oregon Health and Science University, Portland (Hansel)
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (Hirsch)
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California (Huang)
| | - Peter A Humphrey
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut (Humphrey)
| | - Rafael E Jimenez
- Department of Pathology, Mayo Clinic, Rochester, Minnesota (Cheville, Jimenez)
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Qingnuan Kong
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, Shandong, China (Kong).,Kong is currently located at Kaiser Permanente Sacramento Medical Center, Sacramento, California
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (Kryvenko)
| | - L Priya Kunju
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Priti Lal
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Lal)
| | - Mathieu Latour
- Department of Pathology, CHUM, Université de Montréal, Montréal, Quebec, Canada (Latour)
| | - Tamara Lotan
- From the Departments of Pathology (Epstein, DeMarzo, Lotan), McGill University Health Center, Montréal, Quebec, Canada
| | - Fiona Maclean
- Douglass Hanly Moir Pathology, Faculty of Medicine and Health Sciences Macquarie University, North Ryde, Australia (Maclean)
| | - Cristina Magi-Galluzzi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (Kunju, Mehra)
| | - Santosh Menon
- Department of Surgical Pathology, Tata Memorial Hospital, Parel, Mumbai, India (Menon)
| | - Hiroshi Miyamoto
- Departments of Pathology and Laboratory Medicine and Urology, University of Rochester Medical Center, Rochester, New York (Miyamoto)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, Ancona, Italy (Montironi)
| | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham (Magi-Galluzzi, Netto)
| | - Jane K Nguyen
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Nguyen)
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia (Osunkoya)
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine and Urology, Weill Cornell Medicine, New York, New York (Khani, Robinson)
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland (Rubin)
| | - Rajal B Shah
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas (Shah)
| | - Jeffrey S So
- Institute of Pathology, St Luke's Medical Center, Quezon City and Global City, Philippines (So)
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan (Takahashi)
| | - Fabio Tavora
- Argos Laboratory, Federal University of Ceara, Fortaleza, Brazil (Tavora)
| | - Maria S Tretiakova
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Lawrence True
- Department of Pathology, University of Washington School of Medicine, Seattle (Tretiakova, True)
| | - Sara E Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill (Wobker)
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois (Yang)
| | - Ming Zhou
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts (Zhou)
| | - Debra L Zynger
- Department of Pathology, Ohio State University, Columbus (Parwani, Zynger)
| | - Kiril Trpkov
- and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada (Trpkov)
| |
Collapse
|
197
|
Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol 2021; 163:103370. [PMID: 34051300 DOI: 10.1016/j.critrevonc.2021.103370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and the second leading cause of cancer-related death in men in the Western society. Unfortunately, although the vast majority of patients are initially responsive to androgen-deprivation therapy (ADT), most cases eventually develop from hormone-sensitive prostate cancer (HSPC) to castration-resistant prostate cancer (CRPC). The main reason is PC heterogeneity and evolution during therapy. PC evolution is a continuously progressive process with combination of genomic alterations including canonical AR, TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, BRCA2. Meanwhile, signaling pathways including PI3K, WNT/β-catenin, SRC, IL-6/STAT3 are activated, to promote epithelial mesenchymal transition (EMT), cancer stem cell (CSC)-like features/stemness and neuroendocrine differentiation (NED) of PC. These improve our understanding of the genotype-phenotype relationships. The identification of canonical genetic alterations and signaling pathway activation in PC has shed more insight into genetic background, molecular subtype and disease landscape of PC evolution, resulting in a more flexible role of individual therapies targeting diverse genotype and phenotype presentation.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, PR China.
| |
Collapse
|
198
|
BRCA Germline Mutations in Prostate Cancer: The Future Is Tailored. Diagnostics (Basel) 2021; 11:diagnostics11050908. [PMID: 34069669 PMCID: PMC8161324 DOI: 10.3390/diagnostics11050908] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second most common neoplasm in men and the fifth leading cause of death worldwide [...].
Collapse
|
199
|
Dong B, Fan L, Yang B, Chen W, Li Y, Wu K, Zhang F, Dong H, Cheng H, Pan J, Zhu Y, Chi C, Dong L, Sha J, Li L, Yao X, Xue W. Use of Circulating Tumor DNA for the Clinical Management of Metastatic Castration-Resistant Prostate Cancer: A Multicenter, Real-World Study. J Natl Compr Canc Netw 2021; 19:905-914. [PMID: 33990090 DOI: 10.6004/jnccn.2020.7663] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND This study aimed to describe the aberrations of DNA damage repair genes and other important driving genes in Chinese patients with metastatic castration-resistant prostate cancer (mCRPC) using circulating tumor (ctDNA) sequencing and to evaluate the associations between the clinical outcomes of multiple therapies and key genomic alterations in mCRPC, especially DNA damage repair genes. PATIENTS AND METHODS A total of 292 Chinese patients with mCRPC enrolled from 8 centers. Multigene targeted sequencing was performed on 306 ctDNA samples and 23 matched tumor biopsies. The frequency of genomic alterations were compared with the Stand Up to Cancer-Prostate Cancer Foundation (SU2C-PCF) cohort. The Kaplan-Meier method was used to evaluate progression-free survival (PFS) following standard systemic treatments for mCRPC. Cox regression analyses were performed to determine prognostic factors associated with PFS resulting from treatments for mCRPC. RESULTS In total, 33 of 36 (91.7%) mutations were found consistently between ctDNA and paired biopsy samples. The most common recurrent genomic alterations were found in AR (34.6%), TP53 (19.5%), CDK12 (15.4%), BRCA2 (13%), and RB1 (5.8%). The frequency of CDK12 alterations (15.4%) in our cohort was significantly higher than that in Western populations (5%-7%). AR amplification and TP53 and/or RB1 alterations were associated with resistance to abiraterone or docetaxel. Patients with a CDK12 defect showed rapid disease progression after abiraterone treatment. However, the clinical outcome after docetaxel treatment was similar between patients with and without CDK12 defects. In multivariate Cox regression analysis, a CDK12 defect was significantly associated with inferior PFS after abiraterone treatment. Patients with a BRCA2 defect showed marked response to both PARP inhibitors and platinum-based chemotherapy. CONCLUSIONS Our study explored the genomic landscape of Chinese patients with mCRPC at different treatment stages using minimally invasive methods and evaluated the clinical implications of the driver genomic alterations on patients' response to the most widely used therapies for mCRPC. We observed a significantly higher alteration frequency of CDK12 in our cohort compared with the SU2C-PCF cohort.
Collapse
Affiliation(s)
- Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Yonghong Li
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an
| | - Fengbo Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing
| | - Haiying Dong
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou
| | - Huihua Cheng
- 900th Hospital of Joint Logistic Support Force, Fuzhou
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Chenfei Chi
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Jianjun Sha
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai
| |
Collapse
|
200
|
Cheng HH. Molecular Subtyping in the Neoadjuvant Setting in Prostate Cancer: Envisioning the Possibilities. Eur Urol 2021; 80:304-305. [PMID: 33972096 DOI: 10.1016/j.eururo.2021.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Heather H Cheng
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|