201
|
Minato KI, Oura K, Mizuno M. The inhibitory effect of oral administration of lentinan on DSS-induced inflammation is exerted by the migration of T cells activated in the ileum to the colon. Eur J Pharmacol 2023; 946:175631. [PMID: 36863554 DOI: 10.1016/j.ejphar.2023.175631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Oral administration of lentinan ameliorated dextran sulfate sodium (DSS)-induced colitis through Dectin-1 receptor on intestinal epithelial cells. However, it is unclear where lentinan affects in the intestine to prevent the inflammation. We found that the administration of lentinan has induced migration of CD4+ cells from the ileum to the colon by using Kikume Green-Red (KikGR) mice in this study. This result suggests that the oral lentinan treatment could accelerate the migration of Th cells in lymphocyte from ileum into the colon during lentinan intake. Then, C57BL/6 mice were administered 2% DSS to induce colitis. The mice were administered lentinan daily via oral or rectal route before DSS administration. Its rectal administration also suppressed DSS-induced colitis, but its suppressive effects were lower compared to when orally administered, indicating that the biological responses to lentinan in the small intestine contributed to the anti-inflammatory effects. In normal mice (without DSS treatment), the expression of Il12b was significantly increased in the ileum by the oral administration of lentinan, but not by rectal one. On the other hand, no change was observed in the colon by either administration method. In addition, Tbx21 was significantly increased in the ileum. These suggested that IL-12 was increased in the ileum and Th1 cells differentiated in dependence on it. Therefore, Th1 predominant condition in the ileum could influence immunity in the colon and improve the colitis.
Collapse
Affiliation(s)
- Ken-Ichiro Minato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, 1-501, Shiogamaguchi, Nagoya, 468-8502, Japan
| | - Keigo Oura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Masashi Mizuno
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
202
|
Solé P, Yamanouchi J, Garnica J, Uddin MM, Clarke R, Moro J, Garabatos N, Thiessen S, Ortega M, Singha S, Mondal D, Fandos C, Saez-Rodriguez J, Yang Y, Serra P, Santamaria P. A T follicular helper cell origin for T regulatory type 1 cells. Cell Mol Immunol 2023; 20:489-511. [PMID: 36973489 PMCID: PMC10202951 DOI: 10.1038/s41423-023-00989-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/12/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic antigenic stimulation can trigger the differentiation of antigen-experienced CD4+ T cells into T regulatory type 1 (TR1) cells, a subset of interleukin-10-producing Treg cells that do not express FOXP3. The identities of the progenitor(s) and transcriptional regulators of this T-cell subset remain unclear. Here, we show that the peptide-major histocompatibility complex class II (pMHCII) monospecific immunoregulatory T-cell pools that arise in vivo in different genetic backgrounds in response to pMHCII-coated nanoparticles (pMHCII-NPs) are invariably comprised of oligoclonal subpools of T follicular helper (TFH) and TR1 cells with a nearly identical clonotypic composition but different functional properties and transcription factor expression profiles. Pseudotime analyses of scRNAseq data and multidimensional mass cytometry revealed progressive downregulation and upregulation of TFH and TR1 markers, respectively. Furthermore, pMHCII-NPs trigger cognate TR1 cell formation in TFH cell-transfused immunodeficient hosts, and T-cell-specific deletion of Bcl6 or Irf4 blunts both the TFH expansion and TR1 formation induced by pMHCII-NPs. In contrast, deletion of Prdm1 selectively abrogates the TFH-to-TR1 conversion. Bcl6 and Prdm1 are also necessary for anti-CD3 mAb-induced TR1 formation. Thus, TFH cells can differentiate into TR1 cells in vivo, and BLIMP1 is a gatekeeper of this cellular reprogramming event.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Josep Garnica
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Muhammad Myn Uddin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert Clarke
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Nahir Garabatos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Shari Thiessen
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mireia Ortega
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Santiswarup Singha
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - César Fandos
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Julio Saez-Rodriguez
- Institute of Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
203
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Mazroua HA, Alomar HA, Al-Hamamah MA, Attia SM. S3I-201, a selective stat3 inhibitor, ameliorates clinical symptoms in a mouse model of experimental autoimmune encephalomyelitis through the regulation of multiple intracellular signalling in Th1, Th17, and treg cells. Mult Scler Relat Disord 2023; 73:104658. [PMID: 36989705 DOI: 10.1016/j.msard.2023.104658] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
CD4+ T cells, specifically Th cells (Th1 and Th17) and regulatory T cells (Tregs), play a pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease of the CNS. STAT3 inhibitors are potential therapeutic targets for several immune disorders. In this study, we investigated the role of a well-known STAT3 inhibitor, S3I-201, in experimental autoimmune encephalomyelitis (EAE), a model of MS. Following induction of EAE, mice were intraperitoneally administered S3I-201 (10 mg/kg) each day, beginning on day 14 and continuing till day 35 and were evaluated for clinical signs. Flow cytometry was used to investigate further the effect of S3I-201 on Th1 (IFN-γ, STAT1, pSTAT1, and T-bet), Th17 (IL-17A, STAT3, pSTAT3, and RORγt), and regulatory T cells (Treg, IL-10, TGF-β1, and FoxP3) expressed in splenic CD4+ T cells. Moreover, we analyzed the effects of S3I-201 on mRNA and protein expression of IFN-γ, T-bet, IL-17A, STAT1, STAT3, pSTAT1, pSTAT3, RORγ, IL-10, TGF-β1, and FoxP3 in the brains of EAE mice. The severity of clinical scores decreased in S3I-201-treated EAE mice compared to vehicle-treated EAE mice. S3I-201 treatment significantly decreased CD4+IFN-γ+, CD4+STAT1+, CD4+pSTAT1+, CD4+T-bet+, CD4+IL-17A+, CD4+STAT3+, CD4+pSTAT3+, and CD4+RORγt+ and increased CD4+IL-10+, CD4+TGF-β1+, and CD4+FoxP3+ in the spleens of EAE mice. Additionally, S3I-201 administration in EAE mice significantly decreased the mRNA and protein expression of Th1 and Th17 and increased those of Treg. These results suggest that S3I-201 may have novel therapeutic potential against MS.
Collapse
|
204
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
205
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
206
|
Buchanan CQ, Lawlor ML, Okafor C, Kurian SR, Philip AE, Finkle AE, McQuillan JJ, Haridas S, Koenig JM. Linked Th17 and Calgranulin Responses in Maternal-cord Blood Dyads of Preterm Gestations with Histologic Chorioamnionitis. NEWBORN (CLARKSVILLE, MD.) 2023; 2:133-141. [PMID: 37790838 PMCID: PMC10547109 DOI: 10.5005/jp-journals-11002-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Introduction Maternal-fetal immune crosstalk mechanisms are increasingly identified in the pathogenesis of gestational disorders, including histologic chorioamnionitis (HCA). Although an inflammatory Th17 immune phenotype has been described in preterm neonates with HCA, the associated maternal Th17 response is relatively unknown. To refine our understanding of Th17 biology in this context, we examined Th17 responses in maternal-cord blood dyads of preterm gestations. Materials and methods Paired maternal and cord blood (CB) samples were prospectively collected from preterm gestations (23-34 weeks) with HCA or controls. Th17-linked cell frequencies and plasma calgranulin (S100A8, S100A12) levels were determined by flow cytometry and enzyme-linked immunoassay, respectively. Results Analyses of 47 maternal-cord blood pairs showed striking parallel increases in Th17 cell frequencies as well as plasma calgranulin levels in the presence of fetal inflammation. Cord blood S100A12 levels were directly correlated with Th17 cell frequencies. In CB cultures, rh-S100A12 promoted in vitro propagation of Th17-type CD4+ cells. Conclusions Maternal and CB Th17-linked responses are dually amplified in gestations with HCA, supporting a biological role for maternal-fetal interactions in this disorder. In addition to advancing current knowledge of neonatal Th17 mechanisms, these data shed new light on their association with maternal inflammation.
Collapse
Affiliation(s)
- Christopher Q Buchanan
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal–Fetal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan L Lawlor
- Department of Obstetrics, Gynecology and Women’s Health, Division of Maternal–Fetal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Chukwuebuka Okafor
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon R Kurian
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrea E Philip
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Abigael E Finkle
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Jay J McQuillan
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Seema Haridas
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Joyce M Koenig
- Department of Pediatrics, Division of Neonatal–Perinatal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
207
|
Ogishi M, Yang R, Rosain J, Bustamante J, Casanova JL, Boisson-Dupuis S. Inborn errors of human transcription factors governing IFN-γ antimycobacterial immunity. Curr Opin Immunol 2023; 81:102296. [PMID: 36867972 PMCID: PMC10023504 DOI: 10.1016/j.coi.2023.102296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Inborn errors of immunity (IEI) delineate redundant and essential defense mechanisms in humans. We review 15 autosomal-dominant (AD) or -recessive (AR) IEI involving 11 transcription factors (TFs) and impairing interferon-gamma (IFN-γ) immunity, conferring a predisposition to mycobacterial diseases. We consider three mechanism-based categories: 1) IEI mainly affecting myeloid compartment development (AD GATA2 and AR and AD IRF8 deficiencies), 2) IEI mainly affecting lymphoid compartment development (AR FOXN1, AR PAX1, AR RORγ/RORγT, AR T-bet, AR c-Rel, AD STAT3 gain-of-function (GOF), and loss-of-function (LOF) deficiencies), and 3) IEI mainly affecting myeloid and/or lymphoid function (AR and AD STAT1 LOF, AD STAT1 GOF, AR IRF1, and AD NFKB1 deficiencies). We discuss the contribution of the discovery and study of inborn errors of TFs essential for host defense against mycobacteria to molecular and cellular analyses of human IFN-γ immunity.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program, Rockefeller University, New York, NY, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
208
|
Read KA, Jones DM, Pokhrel S, Hales EDS, Varkey A, Tuazon JA, Eisele CD, Abdouni O, Saadey A, Leonard MR, Warren RT, Powell MD, Boss JM, Hemann EA, Yount JS, Xin G, Ghoneim HE, Lio CWJ, Freud AG, Collins PL, Oestreich KJ. Aiolos represses CD4 + T cell cytotoxic programming via reciprocal regulation of T FH transcription factors and IL-2 sensitivity. Nat Commun 2023; 14:1652. [PMID: 36964178 PMCID: PMC10039023 DOI: 10.1038/s41467-023-37420-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
During intracellular infection, T follicular helper (TFH) and T helper 1 (TH1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8+ T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of TFH and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key TFH transcription factors, and consequently reduced TFH differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and TFH programming and highlight its potential as a target for manipulating CD4+ T cell responses.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Emily D S Hales
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jasmine A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Medical Scientist Training Program, Columbus, OH, 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Omar Abdouni
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Abbey Saadey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Melissa R Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Combined Anatomic Pathology Residency/PhD Program, The Ohio State University College of Veterinary Medicine, Columbus, USA
| | - Robert T Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chan-Wang J Lio
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
209
|
Osum KC, Jenkins MK. Toward a general model of CD4 + T cell subset specification and memory cell formation. Immunity 2023; 56:475-484. [PMID: 36921574 PMCID: PMC10084496 DOI: 10.1016/j.immuni.2023.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023]
Abstract
In the past few decades, a number of transformative discoveries have been made regarding memory CD8+ T cell biology; meanwhile, the CD4+ T cell field has lagged behind this progress. This perspective focuses on CD4+ helper T (Th) cell subset specification and memory cell formation. Here, we argue that the sheer number of Th effector and memory cell subsets and a focus on their differences have been a barrier to a general model of CD4+ memory T cell formation that applies to all immune responses. We highlight a bifurcation model that relies on an IL-2 signal-dependent switch as an explanation for the balanced production of diverse Th memory cells that participate in cell-mediated or humoral immunity in most contexts.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
210
|
Chen J, He Y, Zhong H, Hu F, Li Y, Zhang Y, Zhang X, Lin W, Li Q, Xu F, Chen S, Zhang H, Cai W, Li L. Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity. Virol Sin 2023:S1995-820X(23)00022-6. [PMID: 36907331 DOI: 10.1016/j.virs.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50-1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group). Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1β factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.
Collapse
Affiliation(s)
- Jingliang Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yaozu He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huolin Zhong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yonghong Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yeyang Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Xia Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Weiyin Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Quanmin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Feilong Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shaozhen Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
211
|
Kitakaze M, Uemura M, Hara T, Chijimatsu R, Motooka D, Hirai T, Konno M, Okuzaki D, Sekido Y, Hata T, Ogino T, Takahashi H, Miyoshi N, Ofusa K, Mizushima T, Eguchi H, Doki Y, Ishii H. Cancer-specific tissue-resident memory T-cells express ZNF683 in colorectal cancer. Br J Cancer 2023; 128:1828-1837. [PMID: 36869093 PMCID: PMC10147592 DOI: 10.1038/s41416-023-02202-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Tissue-resident memory T (Trm) cells are associated with cytotoxicity not only in viral infection and autoimmune disease pathologies but also in many cancers. Tumour-infiltrating CD103+ Trm cells predominantly comprise CD8 T cells that express cytotoxic activation and immune checkpoint molecules called exhausted markers. This study aimed to investigate the role of Trm in colorectal cancer (CRC) and characterise the cancer-specific Trm. METHODS Immunochemical staining with anti-CD8 and anti-CD103 antibodies for resected CRC tissues was used to identify the tumour-infiltrating Trm cells. The Kaplan-Meier estimator was used to evaluate the prognostic significance. Cells immune to CRC were targeted for single-cell RNA-seq analysis to characterise cancer-specific Trm cells in CRC. RESULTS The number of CD103+/CD8+ tumour-infiltrating lymphocytes (TILs) was a favourable prognostic and predictive factor of the overall survival and recurrence-free survival in patients with CRC. Single-cell RNA-seq analysis of 17,257 CRC-infiltrating immune cells revealed a more increased zinc finger protein 683 (ZNF683) expression in cancer Trm cells than in noncancer Trm cells and in high-infiltrating Trm cells than low-infiltrating Trm in cancer, with an upregulated T-cell receptor (TCR)- and interferon-γ (IFN-γ) signalling-related gene expression in ZNF683+ Trm cells. CONCLUSIONS The number of CD103+/CD8+ TILs is a prognostic predictive factor in CRC. In addition, we identified the ZNF683 expression as one of the candidate markers of cancer-specific Trm cells. IFN-γ and TCR signalling and ZNF683 expression are involved in Trm cell activation in tumours and are promising targets for cancer immunity regulation.
Collapse
Affiliation(s)
- Masatoshi Kitakaze
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiro Hirai
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, 135-0064, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Prophoenix Division, Food and Life-Science Laboratory, Idea Consultants, Inc., Osaka-city, Osaka, 559-8519, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
212
|
CuMV VLPs Containing the RBM from SARS-CoV-2 Spike Protein Drive Dendritic Cell Activation and Th1 Polarization. Pharmaceutics 2023; 15:pharmaceutics15030825. [PMID: 36986686 PMCID: PMC10055701 DOI: 10.3390/pharmaceutics15030825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are the most specialized and proficient antigen-presenting cells. They bridge innate and adaptive immunity and display a powerful capacity to prime antigen-specific T cells. The interaction of DCs with the receptor-binding domain of the spike (S) protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pivotal step to induce effective immunity against the S protein-based vaccination protocols, as well as the SARS-CoV-2 virus. Herein, we describe the cellular and molecular events triggered by virus-like particles (VLPs) containing the receptor-binding motif from the SARS-CoV-2 spike protein in human monocyte-derived dendritic cells, or, as controls, in the presence of the Toll-like receptors (TLR)3 and TLR7/8 agonists, comprehending the events of dendritic cell maturation and their crosstalk with T cells. The results demonstrated that VLPs boosted the expression of major histocompatibility complex molecules and co-stimulatory receptors of DCs, indicating their maturation. Furthermore, DCs’ interaction with VLPs promoted the activation of the NF-kB pathway, a very important intracellular signalling pathway responsible for triggering the expression and secretion of proinflammatory cytokines. Additionally, co-culture of DCs with T cells triggered CD4+ (mainly CD4+Tbet+) and CD8+ T cell proliferation. Our results suggested that VLPs increase cellular immunity, involving DC maturation and T cell polarization towards a type 1 T cells profile. By providing deeper insight into the mechanisms of activation and regulation of the immune system by DCs, these findings will enable the design of effective vaccines against SARS-CoV-2.
Collapse
|
213
|
He Z, Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Full-length transcriptome sequencing of lymphocytes respond to IFN-γ reveals a Th1-skewed immune response in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108636. [PMID: 36828199 DOI: 10.1016/j.fsi.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Interferon gamma (IFN-γ), the member of type II interferons, is a major driver and effector cytokine for Th1 cells and plays broad roles in regulating the function of immune cells. Teleost fish represents the oldest living bony vertebrates containing T-lymphocyte subsets. However, whether or how the regulatory mechanisms of IFN-γ on Th1 cells occur in teleost fish remain unknown. In this study, full-length transcriptome sequencing was performed to analyze the differentially expressed genes (DEGs) and signaling pathways in the IFN-γ stimulated lymphocytes of flounder (Paralichthys olivaceus), the data showed 811 genes were upregulated and 1107 genes were downregulated, Th1 and Th2 cell differentiation pathway was remarkably enriched from DEGs, and the genes in the Th1 cell differentiation pathway were upregulated and verified. Accordingly, variations on Th1 cell differentiation marker genes and CD4+ cells were investigated after IFN-γ stimulation, the results confirmed that CD4+ T lymphocytes proliferated significantly after IFN-γ stimulation, accompanied by eight genes significant upregulation and increased T-bet expression in lymphocytes. In conclusion, the results revealed an induction of IFN-γ on Th1-type immune response, providing novel perspectives into the differentiation of CD4+ T lymphocytes in teleost.
Collapse
Affiliation(s)
- Ziyang He
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
214
|
Pritchard GH, Phan AT, Christian DA, Blain TJ, Fang Q, Johnson J, Roy NH, Shallberg L, Kedl RM, Hunter CA. Early T-bet promotes LFA1 upregulation required for CD8+ effector and memory T cell development. J Exp Med 2023; 220:e20191287. [PMID: 36445307 PMCID: PMC9712775 DOI: 10.1084/jem.20191287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
The T-box transcription factor T-bet is regarded as a "master regulator" of CD4+ Th1 differentiation and IFN-γ production. However, in multiple models of infection, T-bet appears less critical for CD8+ T cell expansion and effector function. Here, we show that following vaccination with a replication-deficient strain of Toxoplasma gondii, CD8+ T cell expression of T-bet is required for optimal expansion of parasite-specific effector CD8+ T cells. Analysis of the early events associated with T cell activation reveals that the α chain of LFA1, CD11a, is a target of T-bet, and T-bet is necessary for CD8+ T cell upregulation of this integrin, which influences the initial priming of CD8+ effector T cells. We propose that the early expression of T-bet represents a T cell-intrinsic factor that optimizes T-DC interactions necessary to generate effector responses.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anthony T. Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Trevor J. Blain
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Qun Fang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Johnson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia Research Institute and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA
| | - Lindsey Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross M. Kedl
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Denver, Aurora, CO
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
215
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
216
|
Dai M, Wang L, Yang J, Chen J, Dou X, Chen R, Ge Y, Lin Y. LDHA as a regulator of T cell fate and its mechanisms in disease. Biomed Pharmacother 2023; 158:114164. [PMID: 36916398 DOI: 10.1016/j.biopha.2022.114164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
T cells are the main force of anti-infection and antitumor and are also involved in autoimmune diseases. During the development of these diseases, T cells need to rapidly produce large amounts of energy to satisfy their activation, proliferation, and differentiation. In this review, we introduced lactate dehydrogenase A(LDHA), predominantly involved in glycolysis, which provides energy for T cells and plays a dual role in disease by mediating lactate production, non-classical enzyme activity, and oxidative stress. Mechanistically, the signaling molecule can interact with the LDHA promoter or regulate LDHA activity through post-translational modifications. These latest findings suggest that modulation of LDHA may have considerable therapeutic effects in diseases where T-cell activation is an important pathogenesis.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| |
Collapse
|
217
|
Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat Immunol 2023; 24:309-319. [PMID: 36658238 PMCID: PMC10063339 DOI: 10.1038/s41590-022-01395-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
T lymphocytes migrate to barrier sites after exposure to pathogens, providing localized immunity and long-term protection. Here, we obtained blood and tissues from human organ donors to examine T cells across major barrier sites (skin, lung, jejunum), associated lymph nodes, lymphoid organs (spleen, bone marrow), and in circulation. By integrating single-cell protein and transcriptome profiling, we demonstrate that human barrier sites contain tissue-resident memory T (TRM) cells that exhibit site-adapted profiles for residency, homing and function distinct from circulating memory T cells. Incorporating T cell receptor and transcriptome analysis, we show that circulating memory T cells are highly expanded, display extensive overlap between sites and exhibit effector and cytolytic functional profiles, while TRM clones exhibit site-specific expansions and distinct functional capacities. Together, our findings indicate that circulating T cells are more disseminated and differentiated, while TRM cells exhibit tissue-specific adaptation and clonal segregation, suggesting that strategies to promote barrier immunity require tissue targeting.
Collapse
|
218
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
219
|
Abeynaike SA, Huynh TR, Mehmood A, Kim T, Frank K, Gao K, Zalfa C, Gandarilla A, Shultz L, Paust S. Human Hematopoietic Stem Cell Engrafted IL-15 Transgenic NSG Mice Support Robust NK Cell Responses and Sustained HIV-1 Infection. Viruses 2023; 15:365. [PMID: 36851579 PMCID: PMC9960100 DOI: 10.3390/v15020365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mice reconstituted with human immune systems are instrumental in the investigation of HIV-1 pathogenesis and therapeutics. Natural killer (NK) cells have long been recognized as a key mediator of innate anti-HIV responses. However, established humanized mouse models do not support robust human NK cell development from engrafted human hematopoietic stem cells (HSCs). A major obstacle to human NK cell reconstitution is the lack of human interleukin-15 (IL-15) signaling, as murine IL-15 is a poor stimulator of the human IL-15 receptor. Here, we demonstrate that immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice expressing a transgene encoding human IL-15 (NSG-Tg(IL-15)) have physiological levels of human IL-15 and support long-term engraftment of human NK cells when transplanted with human umbilical-cord-blood-derived HSCs. These Hu-NSG-Tg(IL-15) mice demonstrate robust and long-term reconstitution with human immune cells, but do not develop graft-versus-host disease (GVHD), allowing for long-term studies of human NK cells. Finally, we show that these HSC engrafted mice can sustain HIV-1 infection, resulting in human NK cell responses in HIV-infected mice. We conclude that Hu-NSG-Tg(IL-15) mice are a robust novel model to study NK cell responses to HIV-1.
Collapse
Affiliation(s)
- Shawn A. Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tridu R. Huynh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
- Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Abeera Mehmood
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Teha Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kefei Gao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Angel Gandarilla
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
220
|
The Potential of Dendritic-Cell-Based Vaccines to Modulate Type 3 Innate Lymphoid Cell Populations. Int J Mol Sci 2023; 24:ijms24032403. [PMID: 36768726 PMCID: PMC9916743 DOI: 10.3390/ijms24032403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Dendritic cell (DC) vaccines are a type of immunotherapy that relies on the communication of DCs with other aspects of the immune system. DCs are potent antigen-presenting cells involved in the activation of innate immune responses and education of adaptive immunity, making them ideal targets for immunotherapies. Innate lymphoid cells (ILCs) are relatively newly identified in the field of immunology and have important roles in health and disease. The studies described here explored the communications between type 3 ILCs (ILC3s) and DCs using a murine model of DC-based vaccination. Local and systemic changes in ILC3 populations following the administration of a DC vaccine were observed, and upon challenge with B16F10 melanoma cells, changes in ILC3 populations in the lungs were observed. The interactions between DCs and ILC3s should be further explored to determine the potential that their communications could have in health, disease, and the development of immunotherapies.
Collapse
|
221
|
Akhter W, Nakhle J, Vaillant L, Garcin G, Le Saout C, Simon M, Crozet C, Djouad F, Jorgensen C, Vignais ML, Hernandez J. Transfer of mesenchymal stem cell mitochondria to CD4 + T cells contributes to repress Th1 differentiation by downregulating T-bet expression. Stem Cell Res Ther 2023; 14:12. [PMID: 36694226 PMCID: PMC9875419 DOI: 10.1186/s13287-022-03219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) are multipotent cells with strong tissue repair and immunomodulatory properties. Due to their ability to repress pathogenic immune responses, and in particular T cell responses, they show therapeutic potential for the treatment of autoimmune diseases, organ rejection and graft versus host disease. MSCs have the remarkable ability to export their own mitochondria to neighboring cells in response to injury and inflammation. However, whether mitochondrial transfer occurs and has any role in the repression of CD4+ Th1 responses is unknown. METHODS AND RESULTS In this report we have utilized CD4+ T cells from HNT TCR transgenic mice that develop Th1-like responses upon antigenic stimulation in vitro and in vivo. Allogeneic bone marrow-derived MSCs reduced the diabetogenic potential of HNT CD4+ T cells in vivo in a transgenic mouse model of disease. In co-culture experiments, we have shown that MSCs were able to reduce HNT CD4+ T cell expansion, expression of key effector markers and production of the effector cytokine IFNγ after activation. This was associated with the ability of CD4+ T cells to acquire mitochondria from MSCs as evidenced by FACS and confocal microscopy. Remarkably, transfer of isolated MSC mitochondria to CD4+ T cells resulted in decreased T cell proliferation and IFNγ production. These effects were additive with those of prostaglandin E2 secreted by MSCs. Finally, we demonstrated that both co-culture with MSCs and transfer of isolated MSC mitochondria prevent the upregulation of T-bet, the master Th1 transcription factor, on activated CD4+ T cells. CONCLUSION The present study demonstrates that transfer of MSC mitochondria to activated CD4+ T cells results in the suppression of Th1 responses in part by downregulating T-bet expression. Furthermore, our studies suggest that MSC mitochondrial transfer might represent a general mechanism of MSC-dependent immunosuppression.
Collapse
Affiliation(s)
- Waseem Akhter
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Jean Nakhle
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France ,grid.121334.60000 0001 2097 0141IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France ,grid.121334.60000 0001 2097 0141IGMM, CNRS, Université de Montpellier, Montpellier, France
| | - Loïc Vaillant
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Geneviève Garcin
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Cécile Le Saout
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Matthieu Simon
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Carole Crozet
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France ,grid.121334.60000 0001 2097 0141INM, INSERM, Université de Montpellier, Montpellier, France
| | - Farida Djouad
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France
| | - Christian Jorgensen
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France ,grid.157868.50000 0000 9961 060XCHU Montpellier, Montpellier, France
| | - Marie-Luce Vignais
- grid.121334.60000 0001 2097 0141Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295 Montpellier, France ,grid.121334.60000 0001 2097 0141IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Javier Hernandez
- Institute for Regenerative Medicine and Biotherapy (IRMB), INSERM U1183, Université de Montpellier, 34295, Montpellier, France.
| |
Collapse
|
222
|
Thelen B, Schipperges V, Knörlein P, Hummel JF, Arnold F, Kupferschmid L, Klose CSN, Arnold SJ, Boerries M, Tanriver Y. Eomes is sufficient to regulate IL-10 expression and cytotoxic effector molecules in murine CD4 + T cells. Front Immunol 2023; 14:1058267. [PMID: 36756120 PMCID: PMC9901365 DOI: 10.3389/fimmu.2023.1058267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The T-box transcription factors T-bet and Eomesodermin regulate type 1 immune responses in innate and adaptive lymphocytes. T-bet is widely expressed in the immune system but was initially identified as the lineage-specifying transcription factor of Th1 CD4+ T cells, where it governs expression of the signature cytokine IFN- γ and represses alternative cell fates like Th2 and Th17. T-bet's paralog Eomes is less abundantly expressed and Eomes+ CD4+ T cells are mostly found in the context of persistent antigen exposure, like bone marrow transplantation, chronic infection or inflammation as well as malignant disorders. However, it has remained unresolved whether Eomes executes similar transcriptional activities as T-bet in CD4+ T cells. Here we use a novel genetic approach to show that Eomes expression in CD4+ T cells drives a distinct transcriptional program that shows only partial overlap with T-bet. We found that Eomes is sufficient to induce the expression of the immunoregulatory cytokine IL-10 and, together with T-bet, promotes a cytotoxic effector profile, including Prf1, Gzmb, Gzmk, Nkg7 and Ccl5, while repressing alternative cell fates. Our results demonstrate that Eomes+ CD4+ T cells, which are often found in the context of chronic antigen stimulation, are likely to be a unique CD4+ T cell subset that limits inflammation and immunopathology as well as eliminates antigen-presenting and malignant cells.
Collapse
Affiliation(s)
- Benedikt Thelen
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vincent Schipperges
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Paulina Knörlein
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F. Hummel
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frederic Arnold
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Department of Internal Medicine IV, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laurence Kupferschmid
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph S. N. Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian J. Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Partner Site Freiburg, and German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Department of Internal Medicine IV, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany,*Correspondence: Yakup Tanriver,
| |
Collapse
|
223
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
224
|
Nandan A, Sharma V, Banerjee P, Sadasivam K, Venkatesan S, Prasher B. Deciphering the mechanism of Tinospora cordifolia extract on Th17 cells through in-depth transcriptomic profiling and in silico analysis. Front Pharmacol 2023; 13:1056677. [PMID: 36699055 PMCID: PMC9868420 DOI: 10.3389/fphar.2022.1056677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Naive CD4+ T cells differentiate into effector (Th1, Th2, Th17) cells and immunosuppressive (Treg) cells upon antigenic stimulation in the presence of a specific cytokine milieu. The T cell in vitro culture system provides a very efficient model to study compounds' therapeutic activity and mechanism of action. Tinospora cordifolia (Willd.) Hook.f. & Thomson (Family. Menispermaceae) is one of the widely used drugs in Ayurveda (ancient Indian system of medicine) for various ailments such as inflammatory conditions, autoimmune disorders, and cancer as well as for promoting general health. In vitro and in vivo studies on immune cells comprising dendritic cells, macrophages, and B cells suggest its immune-modulating abilities. However, to date, the effect of T. cordifolia on individual purified and polarized T cell subsets has not been studied. Studying drug effects on T cell subsets is needed to understand their immunomodulatory mechanism and to develop treatments for diseases linked with T cell abnormalities. In this study, we examined the immunomodulatory activity of T. cordifolia on primary CD4+ T cells, i.e., Th1, Th17, and iTreg cells. An aqueous extract of T. cordifolia was non-cytotoxic at concentrations below 1500 µg/ml and moderately inhibited the proliferation of naive CD4+ T cells stimulated with anti-CD3ε and anti-CD28 for 96 h. T. cordifolia treatment of naive CD4+ T cells differentiated under Th17-polarizing conditions exhibited reduced frequency of IL-17 producing cells with inhibition of differentiation and proliferation. For the first time, in-depth genome-wide expression profiling of T. cordifolia treated naive CD4+ T cells, polarized to Th17 cells, suggests the broad-spectrum activity of T. cordifolia. It shows inhibition of the cytokine-receptor signaling pathway, majorly via the JAK-STAT signaling pathway, subsequently causing inhibition of Th17 cell differentiation, proliferation, and effector function. Additionally, the molecular docking studies of the 69 metabolites of T. cordifolia further substantiate the inhibitory activity of T. cordifolia via the cytokine-receptor signaling pathway. Furthermore, in vitro polarized Th1 and iTreg cells treated with T. cordifolia extract also showed reduced IFN-γ production and FoxP3 expression, respectively. This study provides insight into the plausible mechanism/s of anti-inflammatory activity of T. cordifolia involving T cells, mainly effective in Th17-associated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Amrita Nandan
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,CSIR’s Ayurgenomics Unit, Translational Research and Innovative Science Through Ayurgenomics (TRISUTRA), CSIR-IGIB, Delhi, India,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India,*Correspondence: Amrita Nandan, ; Bhavana Prasher,
| | | | - Prodyot Banerjee
- Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India
| | - Kannan Sadasivam
- Centre for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| | - Subramanian Venkatesan
- Centre for High Computing, CSIR-Central Leather Research Institute (CLRI), Chennai, India,Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Bhavana Prasher
- Genomics and Molecular Medicine, Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India,CSIR’s Ayurgenomics Unit, Translational Research and Innovative Science Through Ayurgenomics (TRISUTRA), CSIR-IGIB, Delhi, India,Centre of Excellence for Applied Development of Ayurveda, Prakriti and Genomics, CSIR- IGIB, Delhi, India,*Correspondence: Amrita Nandan, ; Bhavana Prasher,
| |
Collapse
|
225
|
Blake MK, O’Connell P, Aldhamen YA. Fundamentals to therapeutics: Epigenetic modulation of CD8 + T Cell exhaustion in the tumor microenvironment. Front Cell Dev Biol 2023; 10:1082195. [PMID: 36684449 PMCID: PMC9846628 DOI: 10.3389/fcell.2022.1082195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
In the setting of chronic antigen exposure in the tumor microenvironment (TME), cytotoxic CD8+ T cells (CTLs) lose their immune surveillance capabilities and ability to clear tumor cells as a result of their differentiation into terminally exhausted CD8+ T cells. Immune checkpoint blockade (ICB) therapies reinvigorate exhausted CD8+ T cells by targeting specific inhibitory receptors, thus promoting their cytolytic activity towards tumor cells. Despite exciting results with ICB therapies, many patients with solid tumors still fail to respond to such therapies and patients who initially respond can develop resistance. Recently, through new sequencing technologies such as the assay for transposase-accessible chromatin with sequencing (ATAC-seq), epigenetics has been appreciated as a contributing factor that enforces T cell differentiation toward exhaustion in the TME. Importantly, specific epigenetic alterations and epigenetic factors have been found to control CD8+ T cell exhaustion phenotypes. In this review, we will explain the background of T cell differentiation and various exhaustion states and discuss how epigenetics play an important role in these processes. Then we will outline specific epigenetic changes and certain epigenetic and transcription factors that are known to contribute to CD8+ T cell exhaustion. We will also discuss the most recent methodologies that are used to study and discover such epigenetic modulations. Finally, we will explain how epigenetic reprogramming is a promising approach that might facilitate the development of novel exhausted T cell-targeting immunotherapies.
Collapse
Affiliation(s)
| | | | - Yasser A. Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
226
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
227
|
Oliveira CR, Carvalho J, Olímpio F, Vieira R, Aimbire F, Polonini H. Transfer factors peptides (Imuno TF ®) modulate the lung inflammation and airway remodeling in allergic asthma. Front Immunol 2023; 13:1030252. [PMID: 36685604 PMCID: PMC9846599 DOI: 10.3389/fimmu.2022.1030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Allergic asthma is a chronic lung disease in which the lung inflammation and airway remodeling are orchestrated by both the inflammatory and the immune cells that creates a lung millieu that favors the perpetuation of clinical symptoms. The cell signaling in asthma involves the mast cells activation during initial contact with the allergen and, principally, the participation of eosinophils as well as Th2 cells which determine increased levels of IgE, exaggerated secretion of mucus and collagen, and bronchial hyperreactivity. Moreover, allergic asthma presents lower level of cytokines associated to the both Th1 and Treg cells response, and it implies in deficiency of anti-inflammatory response to counterregulate the exaggerated inflammation against allergen. Therefore, the equilibrium between cytokines as well as transcription factors associated to Th2, Th1, and Treg cells is compromised in allergic asthma. Imuno TF® is a food supplement with ability to interfere in immune system pathways. It has been previously demonstrated that Imuno TF® upregulated Th1 cell response whilst downregulated Th2 cell response in human lymphocytes. OBJECTIVE For this reason, we hypothesized that the Imuno TF effect could be restore the balance between Th1/Th2 CD4 T cells response in murine allergic asthma. METHODS Initially, animals were sensitized with OVA via i.p. and challenged with OVA i.n. on days 14, 15 and 16. Treatment with Imuno TF once a day was performed via orogastric from day 17 to day 20. Mice were euthanized on day 21. RESULTS The Imuno TF reduced eosinophilia, mucus production, and airway remodeling (collagen deposition) in asthma mice. Imuno TF influenced cellular signaling associated to allergic asthma once downregulated STAT6 expression as well as decreased IL-4, IL-5, and IL-13 in lung and serum. In addition, Imuno TF restored T-bet and Foxp3 expression as well as increased IL-12, IFN-ɣ, and IL-10. CONCLUSION Ultimately, Imuno TF mitigated the allergic asthma due to the restoration of balance between the responses of Th1/Th2 as well as Treg cells, and their respective transcription factors the T-bet/STAT6 and Foxp3.
Collapse
Affiliation(s)
- Carlos Rocha Oliveira
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos, São Paulo, Brazil
- Postgraduate Program in Biomedical Engineering, Anhembi Morumbi University, Sao Jose dos Campos, São Paulo, Brazil
| | - Jessica Carvalho
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Fabiana Olímpio
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | - Rodolfo Vieira
- Post-Graduate Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo, Sao Jose dos Campos, Brazil
- Post-Graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goias (Unievangelica), Anapolis, Brazil
| | - Flavio Aimbire
- Department of Science and Technology, Federal University of Sao Paulo, Sao Jose dos Campos, São Paulo, Brazil
| | | |
Collapse
|
228
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
229
|
Moseki RM, Barber DL, Du Bruyn E, Shey M, Van der Plas H, Wilkinson RJ, Meintjes G, Riou C. Phenotypic Profile of Mycobacterium tuberculosis-Specific CD4 T-Cell Responses in People With Advanced Human Immunodeficiency Virus Who Develop Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Open Forum Infect Dis 2023; 10:ofac546. [PMID: 36726536 PMCID: PMC9879713 DOI: 10.1093/ofid/ofac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 01/28/2023] Open
Abstract
Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a frequent complication of cotreatment for TB and human immunodeficiency virus (HIV)-1. We characterized Mycobacterium tuberculosis (Mtb)-specific CD4 T-cell phenotype and transcription factor profile associated with the development of TB-IRIS. Methods We examined the role of CD4 T-cell transcription factors in a murine model of mycobacterial IRIS. In humans, we used a longitudinal study design to compare the magnitude of antiretroviral therapy, activation, transcription factor profile, and cytotoxic potential of Mtb-specific CD4 T cells between TB-IRIS (n = 25) and appropriate non-IRIS control patients (n = 18) using flow cytometry. Results In the murine model, CD4 T-cell expression of Eomesodermin (Eomes), but not Tbet, was associated with experimentally induced IRIS. In patients, TB-IRIS onset was associated with the expansion of Mtb-specific IFNγ+CD4 T cells (P = .039). Patients with TB-IRIS had higher HLA-DR expression (P = .016), but no differences in the expression of T-bet or Eomes were observed. At TB-IRIS onset, Eomes+Tbet+Mtb-specific IFNγ+CD4+ T cells showed higher expression of granzyme B in patients with TB-IRIS (P = .026). Conclusions Although the murine model of Mycobacterium avium complex-IRIS suggests that Eomes+CD4 T cells underly IRIS, TB-IRIS was not associated with Eomes expression in patients. Mycobacterium tuberculosis-specific IFNγ+CD4 T-cell responses in TB-IRIS patients are differentiated, highly activated, and potentially cytotoxic.
Collapse
Affiliation(s)
- Raymond M Moseki
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Elsa Du Bruyn
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen Van der Plas
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Diseases, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Graeme Meintjes
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Wellcome Center for Infectious Diseases Research in Africa (CIDRI-Africa), University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Pathology, Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
230
|
Iraji D, Oftedal BE, Wolff ASB. Th17 Cells: Orchestrators of Mucosal Inflammation and Potential Therapeutic Targets. Crit Rev Immunol 2023; 43:25-52. [PMID: 37831521 DOI: 10.1615/critrevimmunol.2023050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
T helper 17 (Th17) cells represent a specialized subgroup of effector CD4+ T cells known for their role in provoking neutrophil-driven tissue inflammation, particularly within mucosal tissues. Although they are pivotal for defending the host against extracellular bacteria and fungi, they have also been associated with development of various T cell-mediated inflammatory conditions, autoimmune diseases, and even cancer. Notably, Th17 cells exhibit a dual nature, with different Th17 cell subtypes showcasing distinct effector functions and varying capacities to incite autoimmune tissue inflammation. Furthermore, Th17 cells exhibit significant plasticity, which carries important functional implications, both in terms of their expression of cytokines typically associated with other effector T cell subsets and in their interactions with regulatory CD4+ T cells. The intricate balance of Th17 cytokines can also be a double-edged sword in inflammation, autoimmunity, and cancer. Within this article, we delve into the mechanisms that govern the differentiation, function, and adaptability of Th17 cells. We culminate with an exploration of therapeutic potentials in harnessing the power of Th17 cells and their cytokines. Targeted interventions to modulate Th17 responses are emerging as promising strategies for autoimmunity, inflammation, and cancer treatment. By precisely fine-tuning Th17-related pathways, we may unlock new avenues for personalized therapeutic approaches, aiming to restore immune balance, alleviate the challenges of these disorders, and ultimately enhance the quality of life for individuals affected by them.
Collapse
Affiliation(s)
- Dorsa Iraji
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
231
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
232
|
Dutta A, Hung CY, Chen TC, Chang CS, Hsiao SH, Lin YC, Lin CY, Huang CT. The origin of regulatory from the effector cells in LAG-3-marked Th1 immunity against severe influenza virus infection. Immunol Suppl 2022; 169:167-184. [PMID: 36522294 DOI: 10.1111/imm.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3Med IFN-γ-secreting Th1 effectors and then evolve into LAG-3High IFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3Med IFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| |
Collapse
|
233
|
Lv Y, Ricard L, Gaugler B, Huang H, Ye Y. Biology and clinical relevance of follicular cytotoxic T cells. Front Immunol 2022; 13:1036616. [PMID: 36591286 PMCID: PMC9794565 DOI: 10.3389/fimmu.2022.1036616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Follicular cytotoxic T (Tfc) cells are a newly identified subset of CD8+ T cells enriched in B cell follicles and their surroundings, which integrate multiple functions such as killing, memory, supporting and regulation. Tfc cells share similarities with follicular helper T (Tfh) cells, conventional cytotoxic CD8+ T (Tc cells)cells and follicular regulatory T (Tfr) cells, while they express distinct transcription factors, phenotype, and perform different functions. With the participation of cytokines and cell-cell interactions, Tfc cells modulate Tfh cells and B cells and play an essential role in regulating the humoral immunity. Furthermore, Tfc cells have been found to change in their frequencies and functions during the occurrence and progression of chronic infections, immune-mediated diseases and cancers. Strategies targeting Tfc cells are under investigations, bringing novel insights into control of these diseases. We summarize the characteristics of Tfc cells, and introduce the roles and potential targeting modalities of Tfc cells in different diseases.
Collapse
Affiliation(s)
- Yuqi Lv
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China
| | - Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France,AP-HP, Hôpital Saint-Antoine, Service d’Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Liangzhu Laboratory of Zhejiang University Medical Center, Hangzhou, Zhejiang, China,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Province Stem Cell and Cellular Immunotherapy Engineering Laboratory, Hangzhou, Zhejiang, China,*Correspondence: Yishan Ye, ; He Huang,
| |
Collapse
|
234
|
Huang X, Liu W, Liu C, Hu J, Wang B, Ren A, Huang X, Yuan Y, Liu J, Li M. CMTM6 as a candidate risk gene for cervical cancer: Comprehensive bioinformatics study. Front Mol Biosci 2022; 9:983410. [PMID: 36589225 PMCID: PMC9798917 DOI: 10.3389/fmolb.2022.983410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background: CKLF like MARVEL transmembrane domain containing 6 (CMTM6) is an important programmed cell death 1 ligand 1 regulator (PD-L1). CMTM6 was reported as an important regulator of PD-L1 by promoting PD-L1 expression in tumor cells against T cells. However, the function of CMTM6 in cervical cancer is not well characterized. In addition, the role of CMTM6 in the induction of epithelial-mesenchymal transition (EMT) in the context of cervical cancer is unknown. Methods: In this study, we evaluated the role of CMTM6, including gene expression analysis, miRNA target regulation, and methylation characteristic, using multiple bioinformatics tools based on The Cancer Genome Atlas (TCGA) database. The expression of CMTM6 in cervical cancer tissues and non-cancerous adjacent tissues was assessed using immunohistochemistry. In vitro and in vivo function experiments were performed to explore the effects of CMTM6 on growth and metastasis of cervical cancer. Results: Human cervical cancer tissues showed higher expression of CMTM6 than the adjacent non-cancerous tissues. In vitro assays showed that CMTM6 promoted cervical cancer cell invasion, migration, proliferation, and epithelial-mesenchymal transition via activation of mitogen-activated protein kinase (MAPK) c-jun N-terminal kinase (JNK)/p38 signaling pathway. We identified transcription factors (TFs), miRNAs, and immune cells that may interact with CMTM6. Conclusion: These results indicate that CMTM6 is a potential therapeutic target in the context of cervical cancer.
Collapse
Affiliation(s)
- Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Chunshan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaona Huang
- TCM Hospital of Liwan District, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Mingyi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
235
|
Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022; 14:v14122729. [PMID: 36560733 PMCID: PMC9786233 DOI: 10.3390/v14122729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infection during pregnancy disrupts maternal and fetal health through biological mechanisms, which are to date poorly characterised. During pregnancy, the viral clearance mechanisms from the lung are sub-optimal and involve hyperactive innate and adaptive immune responses that generate wide-spread inflammation. Pregnancy-related adaptations of the immune and the cardiovascular systems appear to result in delayed recovery post-viral infection, which in turn promotes a prolonged inflammatory phenotype, increasing disease severity, and causing maternal and fetal health problems. This has immediate and long-term consequences for the mother and fetus, with complications including acute cardiopulmonary distress syndrome in the mother that lead to perinatal complications such as intrauterine growth restriction (IUGR), and birth defects; cleft lip, cleft palate, neural tube defects and congenital heart defects. In addition, an increased risk of long-term neurological disorders including schizophrenia in the offspring is reported. In this review we discuss the pathophysiology of IAV infection during pregnancy and its striking similarity to other well-established complications of pregnancy such as preeclampsia. We discuss general features of vascular disease with a focus on vascular inflammation and define the "Vascular Storm" that is triggered by influenza infection during pregnancy, as a pivotal disease mechanism for short and long term cardiovascular complications.
Collapse
|
236
|
Punicalagin attenuated allergic airway inflammation via regulating IL4/IL-4Rα/STAT6 and Notch- GATA3 pathways. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:561-573. [PMID: 36651367 DOI: 10.2478/acph-2022-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Allergic asthma is an inflammatory disease of the airways which has a complex etiology. Punicalagin, a major polyphenol present in pomegranates, is reported to possess various biological properties including antioxidant and antiproliferative effects. The current research aimed to evaluate the antiasthmatic effects of punicalagin in an ovalbumin (OVA)-induced experimental model of asthma in female BALB/c mice. Treatment group animals received punicalagin (12.5, 25 or 50 mg kg-1 body mass) per day for 21 days from day 1 of OVA injection. Dexamethasone (DEX) was administered to a separate group of mice, as the standard drug control. Inflammatory cell infiltration into the broncho-alveolar lavage fluid (BALF) was substantially decreased in punicalagin-treated mice. Punicalagin reduced Th2-derived cytokines and OVA-specific IgE levels. The IL-4/STAT6 and Notch/GATA3 signalling pathways were regulated on punicalagin administration. The data obtained illustrate the potency of punicalagin as an anti-asthmatic drug. Conclusively, the study's observations suggest the potential therapeutic efficiency of punicalagin in allergic asthma.
Collapse
|
237
|
Differential Activity of Human Leukocyte Extract on Systemic Immune Response and Cyst Growth in Mice with Echinococcus Multilocularis Infection After Oral, Subcutaneous and Intraperitoneal Routes of Administration. Helminthologia 2022; 59:341-356. [PMID: 36875680 PMCID: PMC9979067 DOI: 10.2478/helm-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/04/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar echinococcosis (AE) caused by the larval stage of Echinococcus multilocularis is serious parasitic diseases associated with the host´s immunosuppression. The effects of human non-immune dialyzable leukocyte extract (DLE) on immune cells in blood and spleen and parasitic cysts weight in Balb/c mice after oral (PO), subcutaneous (SC) and intraperitoneal administration (IP) were compared. The reduction in cysts weight (p < 0.01) was recorded after PO route, whereas moderate reduction was found after SC and IP routes. The elevation of lymphoid populations in blood and spleen was found after PO administration (p < 0.01) in parallel with reduced myeloid population. Infection-elicited decline in B220+B cells was partially abolished by PO route, but DLE routes did not influence the CD3+ T cells. The proportions of CD3+CD4+Th lymphocytes were moderately upregulated, whereas CD3+CD8+Tc populations were reduced after all DLE routes (p < 0.01). PO administration increased CD11b+MHCIIhigh blood monocytes, CD11b-SigleF+ cell, but not CD11b+Si-glecF+ eosinophils in the blood, stimulated after SC and IP routes. DLE induced downregulation of NO production by LPS-stimulated adherent splenocytes ex vivo. Con A-triggered T lymphocyte proliferation was associated with the elevated IFN-γ production and transcription factor Tbet mRNA expression. The alleviation of Th2 (IL-4) and Treg (TGF-β) cytokine production by lymphocytes ex vivo paralleled with downregulation of gene transcription for cytokines, GATA and FoxP3. Reduction of myeloid cells with suppressive activity was found. The SC and IP routes affected partially the cysts weights, diminished significantly gene transcription, NO levels and Th2 and Treg cytokines production. Results showed that PO route of DLE administration was the most effective in ameliorating immunosuppression via stimulation of Th1 type, reducing Th2 and Treg type of immunity and CD3+CD8+Tc lymphocytes in the blood and spleens during E. multilocularis infection in mice.
Collapse
|
238
|
Wang J, Zhou J, Zhou Q, Qi Y, Zhang P, Yan C, Ren X. Dysregulated Th1 cells in lung squamous cell carcinoma. J Leukoc Biol 2022; 112:1567-1576. [PMID: 35686499 DOI: 10.1002/jlb.1ma0422-208r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common subtype of lung cancer. Th1 cells contribute to antitumor immune responses. However, there are few studies on Th1 cells in LUSC. CD8+ T cells are the main driver of the antitumor immunity, targeting tumor cells killing. Th1 cells play an important auxiliary role in this process. Here, we used single-cell RNA-seq (scRNA-seq) to analyze qualified CD4+ T cells and Th1 cells (defined CD4+ T cells with 1 or more of STAT1+ , STAT4+ , T-bet+ , and IFN-γ+ as Th1 cells) from tissues of 8 LUSC patients. Then, we validated Th1 cells and CD8+ T cells of 32 LUSC patients by multiplex immunofluorescence staining and immunohistochemistry. Finally, we used flow cytometry to detect IFN-γ of CD4+ T cells in human PBMCs coincubated with LUSC-derived supernatant to simulate a tumor inhibitory microenvironment. ScRNA-seq showed IFN-γ+ Th1 cells account for 25.28% of all Th1 cells. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses of differentially expressed genes between IFN-γ+ Th1 cells and IFN-γ- Th1 cells confirmed the decreased IFN-γ is associated with endoplasmic reticulum stress (ER stress). Multiplex immunofluorescence staining and immunohistochemistry proved there was a positive correlation between IFN-γ+ STAT1+ T-bet+ Th1 cells and CD8+ T cells. Flow cytometry showed IFN-γ secreted by Th1 cells is decreased. These findings support the claim that Th1 cells' function is suppressed in LUSC. Through scRNA-seq, we found that the decreased Th1 cells' function is associated with ER stress, which requires further study. Overall, these findings may produce a new method for the treatment of LUSC.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Zhou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qiuru Zhou
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Peng Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Hexi District, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Hexi District, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
239
|
Sjaastad FV, Huggins MA, Lucas ED, Skon-Hegg C, Swanson W, Martin MD, Salgado OC, Xu J, Pierson M, Dileepan T, Kucaba TA, Hamilton SE, Griffith TS. Reduced T Cell Priming in Microbially Experienced "Dirty" Mice Results from Limited IL-27 Production by XCR1+ Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2149-2159. [PMID: 36426978 PMCID: PMC10065988 DOI: 10.4049/jimmunol.2200324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023]
Abstract
Successful vaccination strategies offer the potential for lifelong immunity against infectious diseases and cancer. There has been increased attention regarding the limited translation of some preclinical findings generated using specific pathogen-free (SPF) laboratory mice to humans. One potential reason for the difference between preclinical and clinical findings lies in maturation status of the immune system at the time of challenge. In this study, we used a "dirty" mouse model, where SPF laboratory mice were cohoused (CoH) with pet store mice to permit microbe transfer and immune system maturation, to investigate the priming of a naive T cell response after vaccination with a peptide subunit mixed with polyinosinic-polycytidylic acid and agonistic anti-CD40 mAb. Although this vaccination platform induced robust antitumor immunity in SPF mice, it failed to do so in microbially experienced CoH mice. Subsequent investigation revealed that despite similar numbers of Ag-specific naive CD4 and CD8 T cell precursors, the expansion, differentiation, and recall responses of these CD4 and CD8 T cell populations in CoH mice were significantly reduced compared with SPF mice after vaccination. Evaluation of the dendritic cell compartment revealed reduced IL-27p28 expression by XCR1+ dendritic cells from CoH mice after vaccination, correlating with reduced T cell expansion. Importantly, administration of recombinant IL-27:EBI3 complex to CoH mice shortly after vaccination significantly boosted Ag-specific CD8 and CD4 T cell expansion, further implicating the defect to be T cell extrinsic. Collectively, our data show the potential limitation of exclusive use of SPF mice when testing vaccine efficacy.
Collapse
Affiliation(s)
- Frances V Sjaastad
- Department of Urology, University of Minnesota, Minneapolis, MN
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN
| | - Matthew A Huggins
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Erin D Lucas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Cara Skon-Hegg
- Department of Urology, University of Minnesota, Minneapolis, MN
| | - Whitney Swanson
- Department of Urology, University of Minnesota, Minneapolis, MN
| | | | - Oscar C Salgado
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN
| | - Mark Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Thamotharampillai Dileepan
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN
| | - Sara E Hamilton
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
- Minneapolis VA Health Care System, Minneapolis, MN
| |
Collapse
|
240
|
Wong-Benito V, Barraza F, Trujillo-Imarai A, Ruiz-Higgs D, Montero R, Sandino AM, Wang T, Maisey K, Secombes CJ, Imarai M. Infectious pancreatic necrosis virus (IPNV) recombinant viral protein 1 (VP1) and VP2-Flagellin fusion protein elicit distinct expression profiles of cytokines involved in type 1, type 2, and regulatory T cell response in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 131:785-795. [PMID: 36323384 DOI: 10.1016/j.fsi.2022.10.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
In this study, we examined the cytokine immune response against two proteins of infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss), the virion-associated RNA polymerase VP1 and VP2-Flagellin (VP2-Flg) fusion protein. Since VP1 is not a structural protein, we hypothesize it can induce cellular immunity, an essential mechanism of the antiviral response. At the same time, the fusion construction VP2-Flg could be highly immunogenic due to the presence of the flagellin used as an adjuvant. Fish were immunized with the corresponding antigen in Montanide™, and the gene expression of a set of marker genes of Th1, Th2, and the immune regulatory response was quantified in the head kidney of immunized and control fish. Results indicate that VP1 induced upregulation of ifn-γ, il-12p40c, il-4/13a, il-4/13b2, il-10a, and tgf-β1 in immunized fish. Expression of il-2a did not change in treated fish at the times tested. The antigen-dependent response was analysed by in vitro restimulation of head kidney leukocytes. In this assay, the group of cytokines upregulated after VP1-restimulation was consistent with those upregulated in the head kidney in vivo. Interestingly, VP1 induced il-2a expression after in vitro restimulation. The analysis of sorted lymphocytes showed that the increase of cytokines occurred in CD4-1+ T cells suggesting that Th differentiation happens in response to VP1. This is also consistent with the expression of t-bet and gata3, the master regulators for Th1/Th2 differentiation in the kidneys of immunized animals. A different cytokine expression profile was found after VP2-Flg administration, i.e., upregulation occurs for ifn-γ, il-4/13a, il-10a, and tgf-β1, while down-regulation was observed in il-4/13b2 and il-2a. The cytokine response was due to flagellin; only the il-2a effect was dependent upon VP2 in the fusion protein. To the best of our knowledge this study reports for the first-time characteristics of the adaptive immune response induced in response to IPNV VP1 and the fusion protein VP2-Flg in fish. VP1 induces cytokines able to trigger the humoral and cell-mediated immune response in rainbow trout. The analysis of the fish response against VP2-Flg revealed the immunogenic properties of Aeromonas salmonicida flagellin, which can be further tested for adjuvanticity. The novel immunogenic effects of VP1 in rainbow trout open new opportunities for further IPNV vaccine development using this viral protein.
Collapse
Affiliation(s)
- Valentina Wong-Benito
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Felipe Barraza
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Agustín Trujillo-Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Daniela Ruiz-Higgs
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ruth Montero
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Ana María Sandino
- Laboratorio de Virología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Kevin Maisey
- Laboratorio de Inmunología Comparativa. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Mónica Imarai
- Laboratorio de Inmunología. Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
241
|
Wei H, Li Y, Guo Z, Ma X, Li Y, Wei X, Han D, Zhang T, Chen X, Yan C, Zhou J, Pang Q, Wang P, Zhang W. Comparison of dynamic changes in the peripheral CD8 + T cells function and differentiation in ESCC patients treated with radiotherapy combined with anti-PD-1 antibody or concurrent chemoradiotherapy. Front Immunol 2022; 13:1060695. [PMID: 36479110 PMCID: PMC9720318 DOI: 10.3389/fimmu.2022.1060695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Objective The systematic immune status of cancer patients undergoing immunotherapy is little known. We prospectively identified the function and differentiation traits of peripheral CD8+ T cells based on our phase 1b clinical trial (NCT03222440) of radiotherapy combined with camrelizumab in patients with locally advanced esophageal squamous cell carcinoma (ESCC) and compared it with concurrent chemoradiotherapy (CCRT). Methods 19 and 18 patients were included in the cohort of radiotherapy plus camrelizumab and cohort of CCRT treatment. By using flow cytometry, we evaluated the expression levels of PD-1, Eomes, T-bet and IFN-γ (function), CD38 and HLA-DR (activation), and differentiation subsets classified according to the expression levels of CD45RA and CD62L in peripheral CD8+ T cells before and during treatment. Results Effective binding of anti-PD-1 antibody camrelizumab with PD-1 on CD8+ T cells was detected during treatment. Both two treatments elevated the expression levels of activation molecules CD38 and HLA-DR on CD8+ T cells. PD-1+CD8+ T cells had more activation features than PD-1-CD8+ T cells in two groups and the treatments did not alter these differences. The two treatments activated both PD-1+ and PD-1- CD8+ T cells. PD-1+CD8+ T cells had less Naïve and TEMRA but more Tcm and Tem than PD-1-CD8+ T cells in two groups and both two treatments changed the ratio of memory T cells in PD-1+ and PD-1- cells. RT plus camrelizumab treatment reduced Naïve T cells and TEMRA subsets both in PD-1+ and PD-1- CD8+ T cells while elevated Tcm subset in PD-1+CD8+ T cells and Tem subset in PD-1-CD8+ T cells. CCRT elevated Tcm subset and reduced TEMRA subset in PD-1-CD8+ T cells while did not change any subset in PD-1+CD8+ T cells. Furthermore, patients undergoing radiotherapy plus immunotherapy were found to obtain better prognosis than those receiving CCRT. Conclusions This study identified the dynamic changes of systematic immune status of patients undergoing treatment. The two treatments had similar activation effects on peripheral CD8+ T cells with different PD-1 properties but had different effects on their differentiation status. These results provided potential clues to the reasons underlying the difference in prognosis of the two treatments.
Collapse
Affiliation(s)
- Hui Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanqi Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhoubo Guo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoxue Ma
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yang Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoying Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Dong Han
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jiahuan Zhou
- Department of Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd, Shanghai, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Qingsong Pang, ; Ping Wang, ; Wencheng Zhang,
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Qingsong Pang, ; Ping Wang, ; Wencheng Zhang,
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,*Correspondence: Qingsong Pang, ; Ping Wang, ; Wencheng Zhang,
| |
Collapse
|
242
|
Seyran M, Melanie S, Philip S, Amiq G, Fabian B. Allies or enemies? The effect of regulatory T cells and related T lymphocytes on the profibrotic environment in bleomycin-injured lung mouse models. Clin Exp Med 2022:10.1007/s10238-022-00945-7. [PMID: 36403186 PMCID: PMC10390389 DOI: 10.1007/s10238-022-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
AbstractIdiopathic pulmonary fibrosis (IPF) is characterized by permanent scarring of lung tissue and declining lung function, and is an incurable disease with increase in prevalence over the past decade. The current consensus is that aberrant wound healing following repeated injuries to the pulmonary epithelium is the most probable cause of IPF, with various immune inflammatory pathways having been reported to impact disease pathogenesis. While the role of immune cells, specifically T lymphocytes and regulatory T cells (Treg), in IPF pathogenesis has been reported and discussed recently, the pathogenic or beneficial roles of these cells in inducing or preventing lung fibrosis is still debated. This lack of understanding could be due in part to the difficulty in obtaining diseased human lung tissue for research purposes. For this reason, many animal models have been developed over the years to attempt to mimic the main clinical hallmarks of IPF: among these, inducing lung injury in rodents with the anti-cancer agent bleomycin has now become the most commonly studied animal model of IPF. Pulmonary fibrosis is the major side effect when bleomycin is administered for cancer treatment in human patients, and a similar effect can be observed after intra-tracheal administration of bleomycin to rodents. Despite many pathophysiological pathways of lung fibrosis having been investigated in bleomycin-injured animal models, one central facet still remains controversial, namely the involvement of specific T lymphocyte subsets, and in particular Treg, in disease pathogenesis. This review aims to summarize the major findings and conclusions regarding the involvement of immune cells and their receptors in the pathogenesis of IPF, and to elaborate on important parallels between animal models and the human disease. A more detailed understanding of the role of Treg and other immune cell subsets in lung injury and fibrosis derived from animal models is a critical basis for translating this knowledge to the development of new immune-based therapies for the treatment of human IPF.
Collapse
|
243
|
Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, Giordano A, Barboni B. "In medio stat virtus": Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol 2022; 10:1038841. [PMID: 36467417 PMCID: PMC9715750 DOI: 10.3389/fcell.2022.1038841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Adrián Cerveró-Varona
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Morrione
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Sbarro Health Research Organization (SHRO), Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
244
|
Liu X, Liu D, Zhou S, Jiang W, Zhang J, Hu J, Liao G, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Zhao M, Liu Y. CARARIME: Interactive web server for comprehensive analysis of renal allograft rejection in immune microenvironment. Front Immunol 2022; 13:1026280. [DOI: 10.3389/fimmu.2022.1026280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
BackgroundRenal transplantation is a very effective treatment for renal failure patients following kidney transplant. However, the clinical benefit is restricted by the high incidence of organ rejection. Therefore, there exists a wealth of literature regarding the mechanism of renal transplant rejection, including a large library of expression data. In recent years, research has shown the immune microenvironment to play an important role in renal transplant rejection. Nephrology web analysis tools currently exist to address chronic nephropathy, renal tumors and children’s kidneys, but no such tool exists that analyses the impact of immune microenvironment in renal transplantation rejection.MethodsTo fill this gap, we have developed a web page analysis tool called Comprehensive Analysis of Renal Allograft Rerejction in Immune Microenvironment (CARARIME).ResultsCARARIME analyzes the gene expression and immune microenvironment of published renal transplant rejection cohorts, including differential analysis (gene expression and immune cells), prognosis analysis (logistics regression, Univariable Cox Regression and Kaplan Meier), correlation analysis, enrichment analysis (GSEA and ssGSEA), and ROC analysis.ConclusionsUsing this tool, researchers can easily analyze the immune microenvironment in the context of renal transplant rejection by clicking on the available options, helping to further the development of approaches to renal transplant rejection in the immune microenvironment field. CARARIME can be found in http://www.cararime.com.
Collapse
|
245
|
Guzelj S, Weiss M, Slütter B, Frkanec R, Jakopin Ž. Covalently Conjugated NOD2/TLR7 Agonists Are Potent and Versatile Immune Potentiators. J Med Chem 2022; 65:15085-15101. [DOI: 10.1021/acs.jmedchem.2c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samo Guzelj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Ruža Frkanec
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
246
|
Das A, Wang X, Wei J, Hoji A, Coon TA, Popescu I, Brown M, Frizzell S, Iasella CJ, Noda K, Sembrat J, Devonshire K, Hannan SJ, Snyder ME, Pilewski J, Sanchez PG, Chandra D, Mallampalli RK, Alder JK, Chen BB, McDyer JF. Cross-Regulation of F-Box Protein FBXL2 with T-bet and TNF-α during Acute and Chronic Lung Allograft Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1788-1795. [PMID: 36113884 PMCID: PMC9588753 DOI: 10.4049/jimmunol.2200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023]
Abstract
Chronic lung allograft dysfunction is the major barrier to long-term survival in lung transplant recipients. Evidence supports type 1 alloimmunity as the predominant response in acute/chronic lung rejection, but the immunoregulatory mechanisms remain incompletely understood. We studied the combinatorial F-box E3 ligase system: F-box protein 3 (FBXO3; proinflammatory) and F-box and leucine-rich repeat protein 2 (FBXL2; anti-inflammatory and regulates TNFR-associated factor [TRAF] protein). Using the mouse orthotopic lung transplant model, we evaluated allografts from BALB/c → C57BL/6 (acute rejection; day 10) and found significant induction of FBXO3 and diminished FBXL2 protein along with elevated T-bet, IFN-γ, and TRAF proteins 1-5 compared with isografts. In the acute model, treatment with costimulation blockade (MR1/CTLA4-Ig) resulted in attenuated FBXO3, preserved FBXL2, and substantially reduced T-bet, IFN-γ, and TRAFs 1-5, consistent with a key role for type 1 alloimmunity. Immunohistochemistry revealed significant changes in the FBXO3/FBXL2 balance in airway epithelia and infiltrating mononuclear cells during rejection compared with isografts or costimulation blockade-treated allografts. In the chronic lung rejection model, DBA/2J/C57BL/6F1 > DBA/2J (day 28), we observed persistently elevated FBXO3/FBXL2 balance and T-bet/IFN-γ protein and similar findings from lung transplant recipient lungs with chronic lung allograft dysfunction versus controls. We hypothesized that FBXL2 regulated T-bet and found FBXL2 was sufficient to polyubiquitinate T-bet and coimmunoprecipitated with T-bet on pulldown experiments and vice versa in Jurkat cells. Transfection with FBXL2 diminished T-bet protein in a dose-dependent manner in mouse lung epithelial cells. In testing type 1 cytokines, TNF-α was found to negatively regulate FBXL2 protein and mRNA levels. Together, our findings show the combinatorial E3 ligase FBXO3/FBXL2 system plays a role in the regulation of T-bet through FBXL2, with negative cross-regulation of TNF-α on FBXL2 during lung allograft rejection.
Collapse
Affiliation(s)
- Antu Das
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Jianxin Wei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Aki Hoji
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Tiffany A. Coon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Mark Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Sheila Frizzell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy; Pittsburgh, Pennsylvania, 15213, USA
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Kaitlyn Devonshire
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Stefanie J. Hannan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Joseph Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Divay Chandra
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Rama K. Mallampalli
- Department of Medicine, Ohio State University School of Medicine; Columbus, Ohio, 43210, USA
| | - Jonathan K. Alder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - Bill B. Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA,Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
247
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|
248
|
Interferon-γ Stimulates Interleukin-27 Derived from Dendritic Cells to Regulate Th9 Differentiation through STAT1/3 Pathway. DISEASE MARKERS 2022; 2022:1542112. [PMID: 36304255 PMCID: PMC9596272 DOI: 10.1155/2022/1542112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
The initiation and progression of allergic asthma (AA) are associated with complex interactions between inflammation and immune response. Herein, we report the specific mechanisms underlying the molecular action of interferon (IFN)-γ in AA regulation. We speculated that IFN-γ inhibits Th9 differentiation by regulating the secretion of interleukin (IL)-27 from dendritic cells (DCs), thereby suppressing airway inflammation in asthma. We constructed a mouse model of ovalbumin-induced AA and overexpressed IFN-γ to evaluate the effect on the IL-27/Th9 axis via the in vitro effect of IFN-γ on IL-27 secretion by DCs and their influence on Th9 differentiation and asthmatic inflammation. IFN-γ overexpression reduced the proportion of Th9 cells and DCs and altered lung morphology and cytokine production in AA-induced mice, thus suppressing the AA phenotype. In addition, exogenous IFN-γ stimulation promoted the secretion of IL-27 and suppressed Th9 differentiation of CD4+ T cells via signal transducer and activator of transcription 1/3 (STAT1/3) signaling in a time-dependent manner. This study aimed to clarify the regulatory effect and mechanism of the IFN-γ/DCs/IL-27/Th9 axis on AA and provide novel insights for effective targeted treatment of asthma.
Collapse
|
249
|
Zander R, Khatun A, Kasmani MY, Chen Y, Cui W. Delineating the transcriptional landscape and clonal diversity of virus-specific CD4 + T cells during chronic viral infection. eLife 2022; 11:e80079. [PMID: 36255051 PMCID: PMC9629829 DOI: 10.7554/elife.80079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Although recent evidence indicates that CD4+ T cells responding to chronic viral infection are functionally heterogenous, our understanding of the developmental relationships between these subsets, and a determination of how their transcriptional landscape compares to their acute infection counterparts remains unclear. Additionally, whether cell-intrinsic factors such as TCR usage influence CD4+ T cell fate commitment during persistent infection has not previously been studied. Herein, we perform single-cell RNA sequencing (scRNA-seq) combined with single-cell T cell receptor sequencing (scTCR-seq) on virus-specific CD4+ T cells isolated from mice infected with chronic lymphocytic choriomeningitis virus (LCMV) infection. We identify several transcriptionally distinct states among the Th1, Tfh, and memory-like T cell subsets that form at the peak of infection, including the presence of a previously unrecognized Slamf7+ subset with cytolytic features. We further show that the relative distribution of these populations differs substantially between acute and persistent LCMV infection. Moreover, while the progeny of most T cell clones displays membership within each of these transcriptionally unique populations, overall supporting a one cell-multiple fate model, a small fraction of clones display a biased cell fate decision, suggesting that TCR usage may impact CD4+ T cell development during chronic infection. Importantly, comparative analyses further reveal both subset-specific and core gene expression programs that are differentially regulated between CD4+ T cells responding to acute and chronic LCMV infection. Together, these data may serve as a useful framework and allow for a detailed interrogation into the clonal distribution and transcriptional circuits underlying CD4+ T cell differentiation during chronic viral infection.
Collapse
Affiliation(s)
- Ryan Zander
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
| | - Achia Khatun
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Yao Chen
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| | - Weiguo Cui
- Blood Research Institute, Versiti WisconsinMilwaukeeUnited States
- Department of Microbiology and Immunology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
250
|
Iacob S, Iacob R, Manea I, Uta M, Chiosa A, Dumbrava M, Becheanu G, Stoica L, Popa C, Brasoveanu V, Hrehoret D, Gheorghe C, Gheorghe L, Dima S, Popescu I. Host and immunosuppression-related factors influencing fibrosis occurrence post liver transplantation. Front Pharmacol 2022; 13:1042664. [PMID: 36330082 PMCID: PMC9622773 DOI: 10.3389/fphar.2022.1042664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Post liver transplantation (LT) fibrosis has a negative impact on graft function. Cytokine production in the host immune response after LT may contribute to the variable CYP3A-dependent immunosuppressive drug disposition, with subsequent impact on liver fibrogenesis, together with host-related factors. We aimed to investigate whether the cytochrome P4503A5*3 (CYP3A5*3) or TBX21 genotypes impact post-LT liver fibrogenesis. Furthermore, the impact of immunosuppressants on cellular apoptosis has been evaluated using human hepatocytes harvested from cirrhotic explanted livers. We have enrolled 98 LT recipients that were followed for occurrence of liver fibrosis for at least 12 months. There was a statistically significant higher trough level of TAC in patients with homozygous CC-TBX21 genotype (7.83 ± 2.84 ng/ml) vs. 5.66 ± 2.16 ng/ml in patients without this genotype (p = 0.009). The following variables were identified as risk factors for fibrosis ≥2: donor age (p = 0.02), neutrophil to lymphocyte ratio (p = 0.04) and TBX21 genotype CC (p = 0.009). In the cell culture model cytometry analysis has indicated the lowest apoptotic cells percentage in human cirrhotic hepatocytes cultures treated with mycophenolate mofetil (MMF) (5%) and TAC + MMF (2%) whereas the highest apoptosis percentage was registered for the TAC alone (11%). The gene expression results are concordant to cytometry study results, indicating the lowest apoptotic effect for MMF and MMF + TAC immunosuppressive regimens. The allele 1993C of the SNP rs4794067 may predispose to the development of late significant fibrosis of the liver graft. MMF-based regimens have a favourable anti-apoptotic profile in vitro, supporting its use in case of LT recipients at high risk for liver graft fibrosis.
Collapse
Affiliation(s)
- Speranta Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Manea
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
| | - Mihaela Uta
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Andrei Chiosa
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Mona Dumbrava
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Becheanu
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Luminita Stoica
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Codruta Popa
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Vlad Brasoveanu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Doina Hrehoret
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Cristian Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Liana Gheorghe
- Gastroenterology Department, University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
- *Correspondence: Simona Dima,
| | - Irinel Popescu
- Center for Excellence in Translational Medicine, Bucharest, Romania
- Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|