201
|
Esposito F, Pierantoni GM, Battista S, Melillo RM, Scala S, Chieffi P, Fedele M, Fusco A. Interaction between HMGA1 and retinoblastoma protein is required for adipocyte differentiation. J Biol Chem 2009; 284:25993-6004. [PMID: 19633359 DOI: 10.1074/jbc.m109.034280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that the regulation of adipogenesis prevents obesity. However, the mechanisms controlling adipogenesis have not been completely defined. We have previously demonstrated that HMGA1 proteins play a critical role in adipogenesis. In fact, suppression of HMGA1 protein synthesis by antisense technology dramatically increased growth rate and impaired adipocyte differentiation in 3T3-L1 cells. Furthermore, we showed that HMGA1 strongly potentiates the capacity of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcriptional factor to transactivate the leptin promoter, an adipocytic-specific promoter. In this study we demonstrate that HMGA1 physically interacts with retinoblastoma protein (RB), which is also required in adipocyte differentiation. Moreover, we show that RB, C/EBPbeta, and HMGA1 proteins all cooperate in controlling both Id1 and leptin gene transcriptions, which are down- and up-regulated during adipocyte differentiation, respectively. We also demonstrate that HMGA1/RB interaction regulates CDC25A and CDC6 promoter activities, which are induced by E2F-1 protein during early adipocyte differentiation, by displacing HDAC1 from the RB-E2F1 complex. Furthermore, by using Hmga1(-/-) embryonic stem cells, which failed to undergo adipocyte differentiation, we show the crucial role of HMGA1 proteins in adipocyte differentiation due to its pivotal involvement in the formation of the RB-C/EBPbeta complex. Altogether these data demonstrate a key role of the interaction between HMGA1 and RB in adipocyte differentiation.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol 2009; 7:e1000123. [PMID: 19513100 PMCID: PMC2684697 DOI: 10.1371/journal.pbio.1000123] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/24/2009] [Indexed: 11/19/2022] Open
Abstract
Cell differentiation is often coupled with cell cycle arrest. Here, we show that direct binding of the erythroid transcription factor GATA-1 to the retinoblastoma protein and the pRb/E2F transcription factor complex is critical for red blood cell formation. How cell proliferation subsides as cells terminally differentiate remains largely enigmatic, although this phenomenon is central to the existence of multicellular organisms. Here, we show that GATA-1, the master transcription factor of erythropoiesis, forms a tricomplex with the retinoblastoma protein (pRb) and E2F-2. This interaction requires a LXCXE motif that is evolutionary conserved among GATA-1 orthologs yet absent from the other GATA family members. GATA-1/pRb/E2F-2 complex formation stalls cell proliferation and steers erythroid precursors towards terminal differentiation. This process can be disrupted in vitro by FOG-1, which displaces pRb/E2F-2 from GATA-1. A GATA-1 mutant unable to bind pRb fails to inhibit cell proliferation and results in mouse embryonic lethality by anemia. These findings clarify the previously suspected cell-autonomous role of pRb during erythropoiesis and may provide a unifying molecular mechanism for several mouse phenotypes and human diseases associated with GATA-1 mutations. Red blood cell production, or erythropoiesis, proceeds by a tight coupling of proliferation and differentiation. The earliest erythroid progenitor identifiable possesses remnant stem cell characteristics as it both self-renews and differentiates. Each progenitor gives rise to more than 10,000 cells, including secondary progenitors. Yet, during the next stage of differentiation, much of this renewal capability is lost, and terminal erythroid differentiation progresses in a stepwise manner through several stages separated by a single mitosis. The transcription factor GATA-1 is essential for erythroid differentiation because it induces the expression of all the known erythroid-specific genes. Here, we show that GATA-1 directly interacts with proteins that are central to the process of cell division: the retinoblastoma protein pRb and the transcription factor E2F. Specifically, E2F becomes inactivate after engaging in a GATA-1/pRb/E2F tricomplex. Another erythroid transcription factor, termed FOG-1, is able to displace pRb/E2F from this complex in vitro upon binding to GATA-1. We hypothesize that the liberated pRb/E2F can then be the target of subsequent regulation to ultimately release free E2F, which triggers cell division. The physiological role of this new pathway is evidenced by transgenic mouse experiments with GATA-1 mutants unable to bind pRb/E2F, which result in embryonic lethality by anemia.
Collapse
|
203
|
A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. Mol Cell Biol 2009; 29:4455-66. [PMID: 19506017 DOI: 10.1128/mcb.00473-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.
Collapse
|
204
|
Tallack MR, Keys JR, Humbert PO, Perkins AC. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem 2009; 284:20966-74. [PMID: 19457859 DOI: 10.1074/jbc.m109.006346] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Differentiation of erythroid cells requires precise control over the cell cycle to regulate the balance between cell proliferation and differentiation. The zinc finger transcription factor, erythroid Krüppel-like factor (EKLF/KLF1), is essential for proper erythroid cell differentiation and regulates many erythroid genes. Here we show that loss of EKLF leads to aberrant entry into S-phase of the cell cycle during both primitive and definitive erythropoiesis. This cell cycle defect was associated with a significant reduction in the expression levels of E2f2 and E2f4, key factors necessary for the induction of S-phase gene expression and erythropoiesis. We found and validated novel intronic enhancers in both the E2f2 and E2f4 genes, which contain conserved CACC, GATA, and E-BOX elements. The E2f2 enhancer was occupied by EKLF in vivo. Furthermore, we were able to partially restore cell cycle dynamics in EKLF(-/-) fetal liver upon additional genetic depletion of Rb, establishing a genetic causal link between reduced E2f2 and the EKLF cell cycle defect. Finally, we propose direct regulation of the E2f2 enhancer is a generic mechanism by which many KLFs regulate proliferation and differentiation.
Collapse
Affiliation(s)
- Michael R Tallack
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia
| | | | | | | |
Collapse
|
205
|
Cell Cycle Activation and CNS Injury. Neurotox Res 2009; 16:221-37. [PMID: 19526282 DOI: 10.1007/s12640-009-9050-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 12/28/2022]
|
206
|
Transcriptional control of brown adipocyte development and physiological function--of mice and men. Genes Dev 2009; 23:788-97. [PMID: 19339685 DOI: 10.1101/gad.1779209] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last several years have seen an explosion of information relating to the transcriptional control of brown fat cell development. At the same time, new data have emerged that clearly demonstrate that adult humans do indeed have substantial amounts of functioning brown adipose tissue (BAT). Together, these advances are stimulating a reassessment of the role of brown adipose tissue in human physiology and pathophysiology. These data have also opened up exciting new opportunities for the development of entirely novel classes of therapeutics for metabolic diseases like obesity and type 2 diabetes.
Collapse
|
207
|
Tanaka-Matakatsu M, Xu J, Cheng L, Du W. Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 2009; 326:347-56. [PMID: 19100727 PMCID: PMC2634822 DOI: 10.1016/j.ydbio.2008.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
Inactivation of the retinoblastoma gene Rb leads to defects in cell proliferation, differentiation, or apoptosis, depending on specific cell or tissue types. To gain insights into the genes that can modulate the consequences of Rb inactivation, we carried out a genetic screen in Drosophila to identify mutations that affected apoptosis induced by inactivation of the Retinoblastoma-family protein (rbf) and identified a mutation that blocked apoptosis induced by rbf. We found this mutation to be a new allele of head involution defective (hid) and showed that hid expression is deregulated in rbf mutant cells in larval imaginal discs. We identified an enhancer that regulates hid expression in response to developmental cues as well as to radiation and demonstrated that this hid enhancer is directly repressed by RBF through an E2F binding site. These observations indicate that apoptosis of rbf mutant cells is mediated by an upregulation of hid. Finally, we showed that bantam, a miRNA that regulates hid translation, is expressed in the interommatidial cells in the larval eye discs and modulates the survival of rbf mutant cells.
Collapse
Affiliation(s)
- Miho Tanaka-Matakatsu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Jinhua Xu
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Leping Cheng
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, CHINA
| | - Wei Du
- Ben May Department for Cancer Research, the University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
208
|
Lee HG, Casadesus G, Zhu X, Castellani RJ, McShea A, Perry G, Petersen RB, Bajic V, Smith MA. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochem Int 2009; 54:84-8. [PMID: 19114068 PMCID: PMC2792898 DOI: 10.1016/j.neuint.2008.10.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/16/2008] [Accepted: 10/20/2008] [Indexed: 11/23/2022]
Abstract
As one of the earliest pathologic changes, the aberrant re-expression of many cell cycle-related proteins and inappropriate cell cycle control in specific vulnerable neuronal populations in Alzheimer's disease (AD) is emerging as an important component in the pathogenesis leading to AD and other neurodegenerative diseases. These events are clearly representative of a true cell cycle, rather than epiphenomena of other processes since, in AD and other neurodegenerative diseases, there is a true mitotic alteration that leads to DNA replication. While the exact role of cell cycle re-entry is unclear, recent studies using cell culture and animal models strongly support the notion that the dysregulation of cell cycle in neurons leads to the development of AD-related pathology such as hyperphosphorylation of tau and amyloid-beta deposition and ultimately causes neuronal cell death. Importantly, cell cycle re-entry is also evident in mutant amyloid-beta precursor protein and tau transgenic mice and, as in human disease, occurs prior to the development of the pathological hallmarks, neurofibrillary tangles and amyloid-beta plaques. Therefore, the study of aberrant cell cycle regulation in model systems, both cellular and animal, may provide extremely important insights into the pathogenesis of AD and also serve as a means to test novel therapeutic approaches.
Collapse
Affiliation(s)
- Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Dasgupta B, Milbrandt J. AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 2009; 16:256-70. [PMID: 19217427 PMCID: PMC2662481 DOI: 10.1016/j.devcel.2009.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 10/29/2008] [Accepted: 01/20/2009] [Indexed: 12/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved metabolic sensor that responds to alterations in cellular energy levels to maintain energy balance. While its role in metabolic homeostasis is well documented, its role in mammalian development is less clear. Here we demonstrate that mutant mice lacking the regulatory AMPK beta1 subunit have profound brain abnormalities. The beta1(-/-) mice show atrophy of the dentate gyrus and cerebellum, and severe loss of neurons, oligodendrocytes, and myelination throughout the central nervous system. These abnormalities stem from reduced AMPK activity, with ensuing cell cycle defects in neural stem and progenitor cells (NPCs). The beta1(-/-) NPC deficits result from hypophosphorylation of the retinoblastoma protein (Rb), which is directly phosphorylated by AMPK at Ser(804). The AMPK-Rb axis is utilized by both growth factors and energy restriction to increase NPC growth. Our results reveal that AMPK integrates growth factor signaling with cell cycle control to regulate brain development.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
210
|
Rb/Cdk2/Cdk4 triple mutant mice elicit an alternative mechanism for regulation of the G1/S transition. Proc Natl Acad Sci U S A 2009; 106:486-91. [PMID: 19129496 DOI: 10.1073/pnas.0804177106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The G(1)/S-phase transition is a well-toned switch in the mammalian cell cycle. Cdk2, Cdk4, and the rate-limiting tumor suppressor retinoblastoma protein (Rb) have been studied in separate animal models, but interactions between the kinases and Rb in vivo have yet to be investigated. To further dissect the regulation of the G(1) to S-phase progression, we generated Cdk2(-/-)Cdk4(-/-)Rb(-/-) (TKO) mutant mice. TKO mice died at midgestation with major defects in the circulatory systems and displayed combined phenotypes of Rb(-/-) and Cdk2(-/-)Cdk4(-/-) mutants. However, TKO mouse embryonic fibroblasts were not only resistant to senescence and became immortal but displayed enhanced S-phase entry and proliferation rates similar to wild type. These effects were more remarkable in hypoxic compared with normoxic conditions. Interestingly, depletion of the pocket proteins by HPV-E7 or p107/p130 shRNA in the absence of Cdk2/Cdk4 elicited a mechanism for the G(1)/S regulation with increased levels of p27(Kip1) binding to Cdk1/cyclin E complexes. Our work indicates that the G(1)/S transition can be controlled in different ways depending on the situation, resembling a regulatory network.
Collapse
|
211
|
Hulleman E, Quarto M, Vernell R, Masserdotti G, Colli E, Kros JM, Levi D, Gaetani P, Tunici P, Finocchiaro G, Baena RRY, Capra M, Helin K. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med 2009; 13:136-46. [PMID: 18363832 PMCID: PMC3823042 DOI: 10.1111/j.1582-4934.2008.00307.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 03/05/2008] [Indexed: 01/07/2023] Open
Abstract
Abstract Glioblastoma multiforme (GBM), the highest-grade glioma, is the most frequent tumour of the brain with a very poor prognosis and limited therapeutic options. Although little is known about the molecular mechanisms that underlie glioblastoma formation, a number of signal transduction routes, such as the Notch and Ras signalling pathways, seem to play an important role in the formation of GBM. In the present study, we show by in situ hybridization on primary tumour material that the transcription factor HEY1, a target of the Notch signalling pathway, is specifically up-regulated in glioma and that expression of HEY1 in GBM correlates with tumour-grade and survival. In addition, we show by chromatin immunoprecipitations, luciferase assays and Northern blot experiments that HEY1 is a bona fide target of the E2F family of transcription factors, connecting the Ras and Notch signalling pathways. Finally, we show that ectopic expression of HEY1 induces cell proliferation in neural stem cells, while depletion of HEY1 by RNA interference reduces proliferation of glioblastoma cells in tissue culture. Together, these data imply a role for HEY1 in the progression of GBM, and therefore we propose that HEY1 may be a therapeutic target for glioblastoma patients. Moreover, HEY1 may represent a molecular marker to distinguish GBM patients with a longer survival prognosis from those at high risk.
Collapse
Affiliation(s)
| | - Micaela Quarto
- The FIRC Institute for Molecular Oncology, Via Adamello, Milan, Italy
| | | | | | - Elena Colli
- European Institute of Oncology, Via Ripamonti, Milan, Italy
| | - Johan M Kros
- Department of Pathology, ErasmusMC, Dr Molenwaterplein, Rotterdam, The Netherlands
| | - Daniel Levi
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Paolo Gaetani
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Patrizia Tunici
- Istituto Nazionale Neurologico C. Besta, Department of Experimental Neuro-oncology and diagnostics, Via Celoria, Milan, Italy
| | - Gaetano Finocchiaro
- Istituto Nazionale Neurologico C. Besta, Department of Experimental Neuro-oncology and diagnostics, Via Celoria, Milan, Italy
| | | | - Maria Capra
- Department of Neurosurgery, Istituto Clinico Humanitas, via Manzoni, Rozzano (MI), Italy
| | - Kristian Helin
- European Institute of Oncology, Via Ripamonti, Milan, Italy
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej, Copenhagen, Denmark
| |
Collapse
|
212
|
|
213
|
Mosaliganti K, Pan T, Ridgway R, Sharp R, Cooper L, Gulacy A, Sharma A, Irfanoglu O, Machiraju R, Kurc T, de Bruin A, Wenzel P, Leone G, Saltz J, Huang K. An imaging workflow for characterizing phenotypical change in large histological mouse model datasets. J Biomed Inform 2008; 41:863-73. [PMID: 18502696 PMCID: PMC2657595 DOI: 10.1016/j.jbi.2008.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/10/2008] [Accepted: 03/16/2008] [Indexed: 11/18/2022]
Abstract
MOTIVATION This paper presents a workflow designed to quantitatively characterize the 3D structural attributes of macroscopic tissue specimens acquired at a micron level resolution using light microscopy. The specific application is a study of the morphological change in a mouse placenta induced by knocking out the retinoblastoma gene. RESULT This workflow includes four major components: (i) serial section image acquisition, (ii) image preprocessing, (iii) image analysis involving 2D pair-wise registration, 2D segmentation and 3D reconstruction, and (iv) visualization and quantification of phenotyping parameters. Several new algorithms have been developed within each workflow component. The results confirm the hypotheses that (i) the volume of labyrinth tissue decreases in mutant mice with the retinoblastoma (Rb) gene knockout and (ii) there is more interdigitation at the surface between the labyrinth and spongiotrophoblast tissues in mutant placenta. Additional confidence stem from agreement in the 3D visualization and the quantitative results generated. AVAILABILITY The source code is available upon request.
Collapse
Affiliation(s)
- Kishore Mosaliganti
- Department of Biomedical Informatics, The Ohio State University
- Department of Computer Science and Engineering, The Ohio State University
| | - Tony Pan
- Department of Biomedical Informatics, The Ohio State University
| | - Randall Ridgway
- Department of Computer Science and Engineering, The Ohio State University
| | - Richard Sharp
- Department of Computer Science and Engineering, The Ohio State University
| | - Lee Cooper
- Department of Biomedical Informatics, The Ohio State University
| | - Alex Gulacy
- Department of Biomedical Informatics, The Ohio State University
| | - Ashish Sharma
- Department of Biomedical Informatics, The Ohio State University
| | - Okan Irfanoglu
- Department of Computer Science and Engineering, The Ohio State University
| | - Raghu Machiraju
- Department of Biomedical Informatics, The Ohio State University
- Department of Computer Science and Engineering, The Ohio State University
| | - Tahsin Kurc
- Department of Biomedical Informatics, The Ohio State University
| | - Alain de Bruin
- Department of Human Cancer Genetics, The Ohio State University
| | - Pamela Wenzel
- Department of Human Cancer Genetics, The Ohio State University
| | - Gustavo Leone
- Department of Human Cancer Genetics, The Ohio State University
| | - Joel Saltz
- Department of Biomedical Informatics, The Ohio State University
- Department of Computer Science and Engineering, The Ohio State University
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University
- Department of Computer Science and Engineering, The Ohio State University
- The Biomedical Informatics Shared Resources, The Ohio State University
| |
Collapse
|
214
|
E2f3a and E2f3b contribute to the control of cell proliferation and mouse development. Mol Cell Biol 2008; 29:414-24. [PMID: 19015245 DOI: 10.1128/mcb.01161-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The E2f3 locus encodes two Rb-binding gene products, E2F3a and E2F3b, which are differentially regulated during the cell cycle and are thought to be critical for cell cycle progression. We targeted the individual inactivation of E2f3a or E2f3b in mice and examined their contributions to cell proliferation and development. Chromatin immunoprecipitation and gene expression experiments using mouse embryo fibroblasts deficient in each isoform showed that E2F3a and E2F3b contribute to G(1)/S-specific gene expression and cell proliferation. Expression of E2f3a or E2f3b was sufficient to support E2F target gene expression and cell proliferation in the absence of other E2F activators, E2f1 and E2f2, suggesting that these isoforms have redundant functions. Consistent with this notion, E2f3a(-/-) and E2f3b(-/-) embryos developed normally, whereas embryos lacking both isoforms (E2f3(-/-)) died in utero. We also find that E2f3a and E2f3b have redundant and nonredundant roles in the context of Rb mutation. Analysis of double-knockout embryos suggests that the ectopic proliferation and apoptosis in Rb(-/-) embryos is mainly mediated by E2f3a in the placenta and nervous system and by both E2f3a and E2f3b in lens fiber cells. Together, we conclude that the contributions of E2F3a and E2F3b in cell proliferation and development are context dependent.
Collapse
|
215
|
Khan MZ, Brandimarti R, Shimizu S, Nicolai J, Crowe E, Meucci O. The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ 2008; 15:1663-72. [PMID: 18583990 PMCID: PMC2676689 DOI: 10.1038/cdd.2008.95] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Postmitotic neurons need to keep their cell cycle under control to survive and maintain a differentiated state. This study aims to test the hypothesis that the chemokine CXCL12 regulates neuronal survival and differentiation by promoting Rb function, as suggested by previous studies showing that CXCL12 protects neurons from apoptosis induced by Rb loss. To this end, the effect of CXCL12 on Rb expression and transcriptional activity and the role of Rb in CXCL12-induced neuronal survival were studied. CXCL12 increases Rb protein and RNA levels in rat cortical neurons. The chemokine also stimulates an exogenous Rb promoter expressed in these neurons and counteracts the inhibition of the Rb promoter induced by E2F1 overexpression. Furthermore CXCL12 stimulates Rb activity as a transcription repressor. The effects of CXCL12 are mediated by its specific receptor CXCR4, and do not require the presence of glia. Finally, shRNA studies show that Rb expression is crucial to the neuroprotective activity of CXCL12 as indicated by NMDA-neurotoxicity assays. These findings suggest that proper CXCR4 stimulation in the mature CNS can prevent impairment of the Rb-E2F pathway and support neuronal survival. This is important to maintain CNS integrity in physiological conditions and prevent neuronal injury and loss typical of many neurodegenerative and neuroinflammatory conditions.
Collapse
Affiliation(s)
- MZ Khan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - R Brandimarti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Department of Experimental Pathology, University of Bologna, Italy
| | - S Shimizu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - J Nicolai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - E Crowe
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
216
|
Ahn KW, Joo Y, Choi Y, Kim M, Lee SH, Cha SH, Suh YH, Kim HS. Swedish amyloid precursor protein mutation increases cell cycle-related proteins in vitro and in vivo. J Neurosci Res 2008; 86:2476-87. [PMID: 18438935 DOI: 10.1002/jnr.21690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Reactivation of the cell cycle, including DNA replication, might play a major role in Alzheimer's disease. In this study, we report that the expressions of Swedish double mutation of amyloid precursor protein (Swe-APP) or of the APP intracellular domain (AICD) into nerve growth factor (NGF)-differentiated PC12 cells or rat primary cortical neurons increased mRNA and protein levels of cyclin D1 and cyclin B1. Treatment with lithium chloride (a glycogen synthase kinase-3beta inhibitor) down-regulated cyclin B1 induced by Swe-APP expression but up-regulated cyclin D1 expression induced by Swe-APP, suggesting that glycogen synthase kinase-3beta activity is involved in these expression changes of cyclins D1 and B1. Swe-APP, which is a prevailing cause of familial Alzheimer's disease, is well known to increase amyloid beta peptide production both in vitro and in vivo, but the underlying molecular means whereby it leads to the pathogenesis of AD remains unknown. The finding that cyclin D1 and B1 expressions were up-regulated by Swe-APP in in vitro cultured cells was substantiated in the brain tissues of Tg2576 mice, which harbor the Swe-APP mutation. These results suggest that some disturbances in cell cycle regulation may be involved in Swe-APP or AICD-induced neurodegeneration and that these contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Kwang-Woo Ahn
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Walkley CR, Sankaran VG, Orkin SH. Rb and hematopoiesis: stem cells to anemia. Cell Div 2008; 3:13. [PMID: 18775080 PMCID: PMC2562376 DOI: 10.1186/1747-1028-3-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/31/2022] Open
Abstract
The retinoblastoma protein, Rb, was one of the first tumor suppressor genes identified as a result of the familial syndrome retinoblastoma. In the period since its identification and cloning a large number of studies have described its role in various cellular processes. The application of conditional somatic mutation with lineage and temporally controlled gene deletion strategies, thus circumventing the lethality associated with germ-line deletion of Rb, have allowed for a reanalysis of the in vivo role of Rb. In the hematopoietic system, such approaches have led to new insights into stem cell biology and the role of the microenvironment in regulating hematopoietic stem cell fate. They have also clarified the role that Rb plays during erythropoiesis and defined a novel mechanism linking mitochondrial function to terminal cell cycle withdrawal. These studies have shed light on the in vivo role of Rb in the regulation of hematopoiesis and also prompt further analysis of the role that Rb plays in both the regulation of hematopoietic stem cells and the terminal differentiation of their progeny.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,St. Vincent's Institute, Department of Medicine at St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology and Stem Cell Program, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| |
Collapse
|
218
|
Abstract
Erythroblastic islands, the specialized niches in which erythroid precursors proliferate, differentiate, and enucleate, were first described 50 years ago by analysis of transmission electron micrographs of bone marrow. These hematopoietic subcompartments are composed of erythroblasts surrounding a central macrophage. A hiatus of several decades followed, during which the importance of erythroblastic islands remained unrecognized as erythroid progenitors were shown to possess an autonomous differentiation program with a capacity to complete terminal differentiation in vitro in the presence of erythropoietin but without macrophages. However, as the extent of proliferation, differentiation, and enucleation efficiency documented in vivo could not be recapitulated in vitro, a resurgence of interest in erythroid niches has emerged. We now have an increased molecular understanding of processes operating within erythroid niches, including cell-cell and cell-extracellular matrix adhesion, positive and negative regulatory feedback, and central macrophage function. These features of erythroblast islands represent important contributors to normal erythroid development, as well as altered erythropoiesis found in such diverse diseases as anemia of inflammation and chronic disease, myelodysplasia, thalassemia, and malarial anemia. Coupling of historical, current, and future insights will be essential to understand the tightly regulated production of red cells both in steady state and stress erythropoiesis.
Collapse
|
219
|
Berman SD, Yuan TL, Miller ES, Lee E, Caron A, Lees JA. The retinoblastoma protein tumor suppressor is important for appropriate osteoblast differentiation and bone development. Mol Cancer Res 2008; 6:1440-51. [PMID: 18819932 PMCID: PMC2697052 DOI: 10.1158/1541-7786.mcr-08-0176] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth. Analysis of these embryos shows that Rb inactivation causes the abnormal development and impaired ossification of several bones, correlating with an impairment in osteoblast differentiation. We further show that Rb inactivation acts to promote osteoblast differentiation in vitro and, through conditional analysis, establish that this occurs in a cell-intrinsic manner. Although these in vivo and in vitro differentiation phenotypes seem paradoxical, we find that Rb-deficient osteoblasts have an impaired ability to exit the cell cycle both in vivo and in vitro that can explain the observed differentiation defects. Consistent with this observation, we show that the cell cycle and the bone defects in Rb-deficient embryos can be suppressed by deletion of E2f1, a known proliferation inducer that acts downstream of Rb. Thus, we conclude that pRb plays a key role in regulating osteoblast differentiation by mediating the inhibition of E2F and consequently promoting cell cycle exit.
Collapse
Affiliation(s)
- Seth D. Berman
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tina L. Yuan
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emily S. Miller
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eunice Lee
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alicia Caron
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jacqueline A. Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
220
|
Cyclin towards infarction! J Mol Cell Cardiol 2008; 45:608-9. [PMID: 18718476 DOI: 10.1016/j.yjmcc.2008.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/22/2022]
|
221
|
Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, Rodda SJ, Snay E, Dunning P, Fahey FH, Alt FW, McMahon AP, Orkin SH. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22:1662-76. [PMID: 18559481 DOI: 10.1101/gad.1656808] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone. Analysis of familial cancer syndromes and sporadic cases has strongly implicated both p53 and pRb in its pathogenesis; however, the relative contribution of these mutations to the initiation of osteosarcoma is unclear. We describe here the generation and characterization of a genetically engineered mouse model in which all animals develop short latency malignant osteosarcoma. The genetically engineered mouse model is based on osteoblast-restricted deletion of p53 and pRb. Osteosarcoma development is dependent on loss of p53 and potentiated by loss of pRb, revealing a dominance of p53 mutation in the development of osteosarcoma. The model reproduces many of the defining features of human osteosarcoma including cytogenetic complexity and comparable gene expression signatures, histology, and metastatic behavior. Using a novel in silico methodology termed cytogenetic region enrichment analysis, we demonstrate high conservation of gene expression changes between murine osteosarcoma and known cytogentically rearranged loci from human osteosarcoma. Due to the strong similarity between murine osteosarcoma and human osteosarcoma in this model, this should provide a valuable platform for addressing the molecular genetics of osteosarcoma and for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Carl R Walkley
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Behesti H, Marino S. Cerebellar granule cells: insights into proliferation, differentiation, and role in medulloblastoma pathogenesis. Int J Biochem Cell Biol 2008; 41:435-45. [PMID: 18755286 DOI: 10.1016/j.biocel.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/30/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022]
Abstract
Cerebellar granule cells originate from precursors located in the dorsal region of rhombomere one within the hindbrain of developing embryos. They undergo proliferation for an extensive period well into postnatal stages of development to form the major cell type of the cerebellum, the most populous structure within the mammalian brain. Granule cell development is highly dependent upon the cerebellar environment and contact with neighbouring cells. In recent years, the molecular basis of these interactions has started to be unravelled. Granule cell precursors and the molecular mechanisms involved in controlling their proliferation have been shown to be involved in the pathogenesis of medulloblastoma, the most common malignant pediatric brain tumour. Here, we review the control of granule cell generation with emphasis on the molecular regulators of cell proliferation and differentiation during normal and malignant development.
Collapse
Affiliation(s)
- Hourinaz Behesti
- Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, E1 2AT London, United Kingdom.
| | | |
Collapse
|
223
|
Comparative genomic hybridization analysis of newly established retinoblastoma cell lines of adherent growth compared with Y79 of nonadherent growth. J Pediatr Hematol Oncol 2008; 30:571-4. [PMID: 18799932 DOI: 10.1097/mph.0b013e31816e232d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retinoblastoma (RB) shows cytogenetic aberrations involving genes other than RB gene located on 13q14. We analyzed genomic aberration in newly established RB cell lines SNUOT-RB1 and SNUOT-RB4 of adherent growth and Y79 cell line of nonadherent growth by microarray comparative genomic hybridization. SNUOT-RB1 showed 44 significant copy number changes (gain in 11 and loss in 33, P<0.0005). SNUOT-RB4 showed 42 significant copy number changes (gain in 8 and loss in 34, P<0.0005). Y79 cell line had the greatest gain of 19.65-fold in the locus of MYCN gene 2p24.1, whereas SNUOT-RB1 and SNUOT-RB4 showed no significant gain. SNUOT-RB1 and SNUOT-RB4 gained chromosomal copy numbers commonly in chromosome 11, especially in locus 11q13, which is responsible for cancer-related genes such as CCND1, MEN1, and FGF3. Losses of copy numbers occurred in chromosomes 3, 9, 10, 11, 16, and 17. In summary, SNUOT-RB1 and SNUOT-RB4 represented similar pattern in gain and loss of chromosomal copy number changes, while different from Y79. The loss of CYLD gene of tumor suppressor gene, 16q12-q13, was only on locus of common involvement in 3 cell lines.
Collapse
|
224
|
Abstract
It is well known that G1 to S phase transition is tightly regulated by the expression and phosphorylation of a number of well-characterized cyclins, cyclin-dependent kinases and members of the retinoblastoma gene family. In this review we discuss the role of these components in regulation of G1 to S phase transition in somatic cells and human embryonic stem cells. Most importantly, we discuss some new tenable links between maintenance of pluripotency and cell cycle regulation in embryonic stem cells by describing the role that master transcription factors play in this process. Finally, the differences in cell cycle regulation between murine and human embryonic stem cells are highlighted, raising interesting questions regarding their biology and stages of embryonic development from which they have been derived.
Collapse
Affiliation(s)
- Irina Neganova
- North East Institute for Stem Cell Research, University of Newcastle upon Tyne, International Centre for LifeNewcastle NE1 3BZ, UK
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for LifeNewcastle NE1 3BZ, UK
| | - Majlinda Lako
- North East Institute for Stem Cell Research, University of Newcastle upon Tyne, International Centre for LifeNewcastle NE1 3BZ, UK
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for LifeNewcastle NE1 3BZ, UK
| |
Collapse
|
225
|
Mason-Richie NA, Mistry MJ, Gettler CA, Elayyadi A, Wikenheiser-Brokamp KA. Retinoblastoma function is essential for establishing lung epithelial quiescence after injury. Cancer Res 2008; 68:4068-76. [PMID: 18519665 PMCID: PMC2518963 DOI: 10.1158/0008-5472.can-07-5667] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene product (RB) regulates cell cycle, quiescence, and survival in a cell type-dependent and environment-dependent manner. RB function is critical in the pulmonary epithelium, as evidenced by nearly universal RB inactivation in lung cancer and increased lung cancer risk in persons with germline RB gene mutations. Lung carcinomas occur in the context of epithelial remodeling induced by cytotoxic damage. Whereas the role of RB in development and normal organ homeostasis has been extensively studied, RB function in the context of cellular injury and repair has remained largely unexplored. In the current studies, the RB gene was selectively deleted in the respiratory epithelium of the mouse. Although RB was not required for establishing or maintaining quiescence during lung homeostasis, RB was essential for establishing quiescence during epithelial repair after injury. Notably, aberrant cell cycle progression was sustained for 9 months after injury in RB-deficient lungs. Prenatal and postnatal RB ablation had similar effects, providing evidence that timing of RB loss was not critical to the outcome and that the injury-induced phenotype was not secondary to compensatory alterations occurring during development. These data show that RB is essential for repair of the respiratory epithelium after cytotoxic damage and support a critical unique role for RB in the context of epithelial remodeling after injury. Because human cancers are associated with chronic cellular damage, these findings have important new implications for RB-mediated tumor suppression.
Collapse
Affiliation(s)
- Nicole A. Mason-Richie
- Pathology & Laboratory Medicine and Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Meenakshi J. Mistry
- Pathology & Laboratory Medicine and Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caitlin A. Gettler
- Pathology & Laboratory Medicine and Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Asmaa Elayyadi
- Pathology & Laboratory Medicine and Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Pathology & Laboratory Medicine and Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
226
|
Abstract
Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review.
Collapse
|
227
|
Gan B, Guan JL. FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal 2008; 20:787-94. [PMID: 18036779 PMCID: PMC2278039 DOI: 10.1016/j.cellsig.2007.10.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/23/2007] [Indexed: 01/18/2023]
Abstract
A central question in cell biology is how various cellular processes are coordinately regulated in normal cell and how dysregulation of the normal signaling pathways leads to diseases such as cancer. Recent studies have identified FIP200 as a crucial signaling component to coordinately regulate different cellular events by its interaction with multiple signaling pathways. This review will focus on the cellular functions of FIP200 and its interacting proteins, as well as the emerging roles of FIP200 in embryogenesis and cancer development. Further understanding of FIP200 function might provide novel therapeutic targets for human diseases such as cancer.
Collapse
Affiliation(s)
- Boyi Gan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jun-Lin Guan
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
228
|
The role of cell differentiation in controlling cell multiplication and cancer. J Cancer Res Clin Oncol 2008; 134:725-41. [DOI: 10.1007/s00432-008-0381-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
229
|
Lara MF, García-Escudero R, Ruiz S, Santos M, Moral M, Martínez-Cruz AB, Segrelles C, Lorz C, Paramio JM. Gene profiling approaches help to define the specific functions of retinoblastoma family in epidermis. Mol Carcinog 2008; 47:209-21. [PMID: 17932948 DOI: 10.1002/mc.20376] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The epidermal-specific ablation of Rb gene leads to increased proliferation, aberrant differentiation, and the disengagement of these processes in vivo and in vitro. These differences in phenotype are more severe with the loss of p107, demonstrating the functional compensation between pRb and p107. As p107 and p130 also exert overlapping functions in epidermis, we have generated Rb(F19/F19)K14cre;Rbl2-/- (pRb-;p130-) mice to analyze possible functional redundancies between pRb and p130. The epidermal phenotype was very similar between pRb- and pRb-;p130- mice, suggesting that pRb and p130 activities are not redundant in epidermis. Importantly, we can correlate the proliferation differences with specific changes in gene expression between pRb-, pRb-;p107- and pRb-;p130- primary keratinocytes using microarray analysis, and explain the phenotypes in the context of altered E2F expression and functionality. Our findings support a model in which the distinct retinoblastoma family members, in conjunction with E2F members, play a central role in regulating epidermal homeostasis through specific or overlapping activities.
Collapse
Affiliation(s)
- M Fernanda Lara
- Molecular Oncology Unit, Biomedicine Division, CIEMAT, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Progression through the cell cycle is regulated by inductive signals from outside the cell and intracellular signal pathways, while the cycle itself is regulated by cyclin-dependent kinases (CDKs). An understanding of the functions of these molecules is necessary to understand the processes of mitosis, differentiation, senescence, apoptosis, and tumorigenesis. This overview reviews the current state of knowledge for the biology of the cell-cycle, the CDKs, the role of proteolysis, targets of the cell cycle machinery, and a paradigm of cell cycle analysis.
Collapse
Affiliation(s)
- M S Park
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
231
|
Lobjois V, Bel-Vialar S, Trousse F, Pituello F. Forcing neural progenitor cells to cycle is insufficient to alter cell-fate decision and timing of neuronal differentiation in the spinal cord. Neural Dev 2008; 3:4. [PMID: 18271960 PMCID: PMC2265710 DOI: 10.1186/1749-8104-3-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 02/13/2008] [Indexed: 01/29/2023] Open
Abstract
Background During the development of the nervous system, neural progenitor cells can either stay in the pool of proliferating undifferentiated cells or exit the cell cycle and differentiate. Two main factors will determine the fate of a neural progenitor cell: its position within the neuroepithelium and the time at which the cell initiates differentiation. In this paper we investigated the importance of the timing of cell cycle exit on cell-fate decision by forcing neural progenitors to cycle and studying the consequences on specification and differentiation programs. Results As a model, we chose the spinal progenitors of motor neurons (pMNs), which switch cell-fate from motor neurons to oligodendrocytes with time. To keep pMNs in the cell cycle, we forced the expression of G1-phase regulators, the D-type cyclins. We observed that keeping neural progenitor cells cycling is not sufficient to retain them in the progenitor domain (ventricular zone); transgenic cells instead migrate to the differentiating field (mantle zone) regardless of cell cycle exit. Cycling cells located in the mantle zone do not retain markers of neural progenitor cells such as Sox2 or Olig2 but upregulate transcription factors involved in motor neuron specification, including MNR2 and Islet1/2. These cycling cells also progress through neuronal differentiation to axonal extension. We also observed mitotic cells displaying all the features of differentiating motor neurons, including axonal projection via the ventral root. However, the rapid decrease observed in the proliferation rate of the transgenic motor neuron population suggests that they undergo only a limited number of divisions. Finally, quantification of the incidence of the phenotype in young and more mature neuroepithelium has allowed us to propose that once the transcriptional program assigning neural progenitor cells to a subtype of neurons is set up, transgenic cells progress in their program of differentiation regardless of cell cycle exit. Conclusion Our findings indicate that maintaining neural progenitor cells in proliferation is insufficient to prevent differentiation or alter cell-fate choice. Furthermore, our results indicate that the programs of neuronal specification and differentiation are controlled independently of cell cycle exit.
Collapse
Affiliation(s)
- Valérie Lobjois
- Centre de Biologie du Développement, UMR5547, Institut d'Exploration Fonctionnelle des Génomes IFR109, Université Toulouse III et Centre National de Recherche Scientifique, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
232
|
Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev 2008; 22:463-75. [PMID: 18258751 DOI: 10.1101/gad.1627208] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulation of the cell cycle is intimately linked to erythroid differentiation, yet how these processes are coupled is not well understood. To gain insight into this coordinate regulation, we examined the role that the retinoblastoma protein (Rb), a central regulator of the cell cycle, plays in erythropoiesis. We found that Rb serves a cell-intrinsic role and its absence causes ineffective erythropoiesis, with a differentiation block at the transition from early to late erythroblasts. Unexpectedly, in addition to a failure to properly exit the cell cycle, mitochondrial biogenesis fails to be up-regulated concomitantly, contributing to this differentiation block. The link between erythropoiesis and mitochondrial function was validated by inhibition of mitochondrial biogenesis. Erythropoiesis in the absence of Rb resembles the human myelodysplastic syndromes, where defects in cell cycle regulation and mitochondrial function frequently occur. Our work demonstrates how these seemingly disparate pathways play a role in coordinately regulating cellular differentiation.
Collapse
Affiliation(s)
- Vijay G Sankaran
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
233
|
|
234
|
Abstract
Erythroblastic islands are specialized microenvironmental compartments within which definitive mammalian erythroblasts proliferate and differentiate. These islands consist of a central macrophage that extends cytoplasmic protrusions to a ring of surrounding erythroblasts. The interaction of cells within the erythroblastic island is essential for both early and late stages of erythroid maturation. It has been proposed that early in erythroid maturation the macrophages provide nutrients, proliferative and survival signals to the erythroblasts, and phagocytose extruded erythroblast nuclei at the conclusion of erythroid maturation. There is also accumulating evidence for the role of macrophages in promoting enucleation itself. The central macrophages are identified by their unique immunophenotypic signature. Their pronounced adhesive properties, ability for avid endocytosis, lack of respiratory bursts, and consequent release of toxic oxidative species, make them perfectly adapted to function as nurse cells. Both macrophages and erythroblasts display adhesive interactions that maintain island integrity, and elucidating these details is an area of intense interest and investigation. Such interactions enable regulatory feedback within islands via cross talk between cells and also trigger intracellular signaling pathways that regulate gene expression. An additional control mechanism for cellular growth within the erythroblastic islands is through the modulation of apoptosis via feedback loops between mature and immature erythroblasts and between macrophages and immature erythroblasts. The focus of this chapter is to outline the mechanisms by which erythroblastic islands aid erythropoiesis, review the historical data surrounding their discovery, and highlight important unanswered questions.
Collapse
Affiliation(s)
- Deepa Manwani
- Schneider Children's Hospital, New York, NY 11040, USA
| | | |
Collapse
|
235
|
Abstract
Neurons are highly differentiated cells that normally never enter a cell cycle; if they do, the result is usually death, not division. For example, cerebellar granule neurons in staggerer and lurcher mutant mice initiate a cell cycle-like process just before they die. E2F1 is a transcription factor that promotes cell cycle progression. Because E2F1 is also involved in apoptosis, we bred double mutants (E2f1-/-; staggerer and E2f1-/-; lurcher) to assess its role in the cell cycle-related death of cerebellar granule cells in vivo. We found neither granule cell cycle initiation nor cell death was significantly altered in either double mutant. However, after postnatal day 10, neurons throughout the CNS of E2f1-/- and E2f1+/- animals were found to express cell cycle proteins and replicate their DNA. Whereas Map2 and synapsin1 staining are little altered, there is a reduction of calbindin in Purkinje cell dendrites at 1 year of age, suggesting that the mutant cells also undergo a slow, subtle atrophy. These events are cell autonomous, because cultured E2f1-/- cortical neurons "cycle" in vitro, whereas wild-type neurons do not. Our results suggest that, in mature CNS neurons, E2F1 functions as a cell cycle suppressor.
Collapse
|
236
|
The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood 2007; 111:1894-902. [PMID: 18048646 DOI: 10.1182/blood-2007-02-071746] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell division cycle. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. The consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are incompletely understood. Here, we report that mice genetically deficient in Rb in all hematopoietic cells (Vav-Cre Rb knockout [KO] animals) showed altered contribution of distinct hematopoietic cell lineages to peripheral blood, bone marrow, and spleen; significantly increased extramedullary hematopoiesis in the spleen; and a 2-fold increase in the frequency of hematopoietic progenitor cells in peripheral blood. Upon competitive transplantation, HSPCs from Vav-Cre Rb KO mice contributed with an at least 4- to 6-fold less efficiency to hematopoiesis compared with control cells. HSPCs deficient in Rb presented with impaired cell-cycle exit upon stress-induced proliferation, which correlated with impaired function. In summary, Rb is critical for hematopoietic stem and progenitor cell function, localization, and differentiation.
Collapse
|
237
|
Lee S, Horn V, Julien E, Liu Y, Wysocka J, Bowerman B, Hengartner MO, Herr W. Epigenetic regulation of histone H3 serine 10 phosphorylation status by HCF-1 proteins in C. elegans and mammalian cells. PLoS One 2007; 2:e1213. [PMID: 18043729 PMCID: PMC2082077 DOI: 10.1371/journal.pone.0001213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 10/30/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.
Collapse
Affiliation(s)
- Soyoung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Virginie Horn
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Eric Julien
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Yi Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Joanna Wysocka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Michael O. Hengartner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
238
|
Guidi CJ, Mudhasani R, Hoover K, Koff A, Leav I, Imbalzano AN, Jones SN. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res 2007; 66:8076-82. [PMID: 16912184 DOI: 10.1158/0008-5472.can-06-1451] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ini1 subunit of the SWI/SNF chromatin remodeling complex suppresses formation of malignant rhabdoid tumors in humans and mice. Transduction of Ini1 into Ini1-deficient tumor-derived cell lines has indicated that Ini1 arrests cell growth, controls chromosomal ploidy, and suppresses tumorigenesis by regulating components of the retinoblastoma (Rb) signaling pathway. Furthermore, conditional inactivation of Ini1 in mouse fibroblasts alters the expression of various Rb-E2F-regulated genes, indicating that endogenous Ini1 levels may control Rb signaling in cells. We have reported previously that loss of one allele of Ini1 in mouse fibroblasts results only in a 15% to 20% reduction in total Ini1 mRNA levels due to transcriptional compensation by the remaining Ini1 allele. Here, we examine the effects of Ini1 haploinsufficiency on cell growth and immortalization in mouse embryonic fibroblasts. In addition, we examine pituitary tumorigenesis in Rb-Ini1 compound heterozygous mice. Our results reveal that heterozygosity for Ini1 up-regulates cell growth and immortalization and that exogenous Ini1 down-regulates the growth of primary cells in a Rb-dependent manner. Furthermore, loss of Ini1 is redundant with loss of Rb function in the formation of pituitary tumors in Rb heterozygous mice and leads to the formation of large, atypical Rb(+/-) tumor cells lacking adrenocorticotropic hormone expression. These results confirm in vivo the relationship between Rb and Ini1 in tumor suppression and indicate that Ini1 plays a role in maintaining the morphologic and functional differentiation of corticotrophic cells.
Collapse
Affiliation(s)
- Cynthia J Guidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
This protocol details organotypic cultures of developing mouse, monkey and human retinas, which can be maintained for up to 2 weeks. Intact retinas are placed on polycarbonate filters floating on explant culture medium and fed every day with previously prepared retinal conditioned medium. Developing mouse retinas from E12.5 to P12 have been successfully cultured using this protocol as well as retinas from the equivalent stages of human and monkey development. Although this protocol does not require any special equipment, it provides a relatively high throughput. Retinal explant cultures lend themselves to complex pharmacological and genetic manipulations that are currently not feasible in vivo. A detailed procedure for square wave electroporation of retinal explants is also included to provide a high-throughput means to alter gene expression in the developing retina. This protocol for the preparation of retinal conditioned explant medium requires 4 d. Other steps of this protocol can be completed in 2 h.
Collapse
Affiliation(s)
- Stacy L Donovan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
240
|
Keramaris E, Ruzhynsky VA, Callaghan SM, Wong E, Davis RJ, Flavell R, Slack RS, Park DS. Required roles of Bax and JNKs in central and peripheral nervous system death of retinoblastoma-deficient mice. J Biol Chem 2007; 283:405-415. [PMID: 17984095 DOI: 10.1074/jbc.m701552200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinoblastoma-deficient mice show massive neuronal damage and deficits in both CNS and PNS tissue. Previous work in the field has shown that death is regulated through distinct processes where CNS tissue undergoes death regulated by the tumor suppressor p53 and the apoptosome component, APAF1. Death in the PNS, however, is independent of p53 and reliant on the death protease, caspase 3. In the present study, we more carefully delineated the common and distinct mechanisms of death regulation by examining the stress-activated kinases, JNK2 and 3, the conserved Bcl-2 member Bax, and the relationship among these elements including p53. By use of genetic modeling, we show that death in various regions of the CNS and DRGs of the PNS is reliant on Bax. In the CNS, Bax acts downstream of p53. The relevance of the JNKs is more complex, however. Surprisingly, JNK3 deficiency by itself does not inhibit c-Jun phosphorylation and instead, aggravates death in both CNS and PNS tissue. However, JNK2/3 double deficiency blocks death due to Rb loss in both the PNS and CNS. Importantly, the relationships between JNKs, p53, and Bax exhibit regional differences. In the medulla region of the hindbrain in the CNS, JNK2/3 deficiency blocks p53 activation. Moreover, Bax deficiency does not affect c-Jun phosphorylation. This indicates that a JNK-p53-Bax pathway is central in the hindbrain. However, in the diencephalon regions of the forebrain (thalamus), Bax deficiency blocks c-Jun activation, indicating that a Bax-JNK pathway of death is more relevant. In the DRGs of the PNS, a third pathway is present. In this case, a JNK-Bax pathway, independent of p53, regulates damage. Accordingly, our results show that a death regulator Bax is common to death in both PNS and CNS tissue. However, it is regulated by or itself regulates different effectors including the JNKs and p53 depending upon the specific region of the nervous system.
Collapse
Affiliation(s)
- Elizabeth Keramaris
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the
| | - Vladamir A Ruzhynsky
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the
| | - Steve M Callaghan
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the
| | - Estelle Wong
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the
| | - Roger J Davis
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Richard Flavell
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Ruth S Slack
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the
| | - David S Park
- Department of Cellular Molecular Medicine, Neuroscience East, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada, the.
| |
Collapse
|
241
|
Abstract
Animal models of cancer provide an alternative means to determine the causes of and treatments for malignancy, thus representing a resource of immense potential for cancer medicine. The sophistication of modelling cancer in mice has increased to the extent that investigators can both observe and manipulate a complex disease process in a manner impossible to perform in patients. However, owing to limitations in model design and technology development, and the surprising underuse of existing models, only now are we realising the full potential of mouse models of cancer and what new approaches are needed to derive the maximum value for cancer patients from this investment.
Collapse
|
242
|
Kannengiesser C, Dalle S, Leccia MT, Avril MF, Bonadona V, Chompret A, Lasset C, Leroux D, Thomas L, Lesueur F, Lenoir G, Sarasin A, Bressac-de Paillerets B. New founder germline mutations of CDKN2A in melanoma-prone families and multiple primary melanoma development in a patient receiving levodopa treatment. Genes Chromosomes Cancer 2007; 46:751-60. [PMID: 17492760 DOI: 10.1002/gcc.20461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Germline mutations in the CDKN2A gene have been shown to predispose individuals to cutaneous malignant melanoma. Here, we describe three melanoma-prone families and one isolated patient affected by multiple melanoma who carried a tandem germline mutation of CDKN2A at the nucleotide level, [c.339G>C;c.340C>T], [p.Leu113Leu;p.Pro114Ser]. We also describe three other melanoma-prone families that carried a missense germline CDKN2A mutation, c.167G>T, p.Ser56Ile. All these families and patients resided in southeast France. We analyzed six 9p21 markers where the CDKN2A gene is located and found that carrier haplotypes for both mutations were consistent with two respective common founder ancestors. In one family, we identified two fourth-degree relatives homozygous for the Ser56Ile mutation, indicating a possible consanguinity. Furthermore, we observed that a carrier of the founder CDKN2A [p.Leu113Leu;p.Pro114Ser] mutation as well as two MC1R moderate-risk variants, [p.Arg151Cys(+)p.Arg163Gln] developed 22 primary melanomas in the three years that followed initiation of levodopa therapy for Parkinson's disease. This observation suggests that there is a need for reconsideration of the hypothesis that levodopa may play a role in melanoma development, at least when in the context of a high-risk genetic background.
Collapse
|
243
|
Chen D, Opavsky R, Pacal M, Tanimoto N, Wenzel P, Seeliger MW, Leone G, Bremner R. Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a. PLoS Biol 2007; 5:e179. [PMID: 17608565 PMCID: PMC1914394 DOI: 10.1371/journal.pbio.0050179] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 05/08/2007] [Indexed: 01/19/2023] Open
Abstract
It has long been known that loss of the retinoblastoma protein (Rb) perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light-evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f) 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle–independent differentiation defects specifically in starburst amacrine cells (SACs), cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue-specific factors. Remarkably, however, Rb promotes SAC differentiation by inhibiting E2f3 activity. Two E2f3 isoforms exist, and we find both in the developing retina, although intriguingly they show distinct subcellular distribution. E2f3b is thought to mediate Rb function in quiescent cells. However, in what is to our knowledge the first work to dissect E2f isoform function in vivo we show that Rb promotes SAC differentiation through E2f3a. These data reveal a mechanism through which Rb regulates neural differentiation directly, and, unexpectedly, it involves inhibition of E2f3a, not potentiation of tissue-specific factors. The retinoblastoma protein (Rb), an important tumor suppressor, blocks division and death by inhibiting the E2f transcription factor family. In contrast, Rb is thought to promote differentiation by potentiating tissue-specific transcription factors, although differentiation defects in Rb null cells could be an indirect consequence of E2f-driven division and death. Here, we resolve different mechanisms by which Rb controls division, death, and differentiation in the retina. Removing E2f1 rescues aberrant division of differentiating Rb-deficient retinal neurons, as well as death in cells prone to apoptosis, and restores both normal differentiation and function of major cell types, such as photoreceptors. However, Rb-deficient starburst amacrine neurons differentiate abnormally even when E2f1 is removed, providing an unequivocal example of a direct role for Rb in neuronal differentiation. Rather than potentiating a cell-specific factor, Rb promotes starburst cell differentiation by inhibiting another E2f, E2f3a. This cell-cycle–independent activity broadens the importance of the Rb–E2f pathway, and suggests we should reassess its role in the differentiation of other cell types. The retinoblastoma protein (Rb), a tumor suppressor, promotes the differentiation of starburst amacrine cells in the retina by inhibiting the transcription factor E2f3a, whereas it suppresses retinal cell division and death by inhibiting E2f1.
Collapse
Affiliation(s)
- Danian Chen
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, University of Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Science, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Rene Opavsky
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Marek Pacal
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, University of Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Science, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Naoyuki Tanimoto
- Ocular Neurodegeneration Research Group, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - Pamela Wenzel
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Mathias W Seeliger
- Ocular Neurodegeneration Research Group, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - Gustavo Leone
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Rod Bremner
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, University of Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Science, University of Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
244
|
Padmanabhan J, Brown K, Shelanski ML. Cell cycle inhibition and retinoblastoma protein overexpression prevent Purkinje cell death in organotypic slice cultures. Dev Neurobiol 2007; 67:818-26. [PMID: 17443827 DOI: 10.1002/dneu.20394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.
Collapse
Affiliation(s)
- Jaya Padmanabhan
- Department of Pathology, Taub Center for the Study of Alzheimer's Disease and Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA. 10032
| | | | | |
Collapse
|
245
|
Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 2007; 8:368-78. [PMID: 17453017 DOI: 10.1038/nrn2124] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adult CNS neurons are typically described as permanently postmitotic but there is probably nothing permanent about the neuronal cell cycle arrest. Rather, it appears that these highly differentiated cells must constantly keep their cell cycle in check. Relaxation of this vigilance leads to the initiation of a cell cycle and entrance into an altered and vulnerable state, often leading to death. There is evidence that neurons which are at risk of neurodegeneration are also at risk of re-initiating a cell cycle process that involves the expression of cell cycle proteins and DNA replication. Failure of cell cycle regulation might be a root cause of several neurodegenerative disorders and a final common pathway for others.
Collapse
Affiliation(s)
- Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
246
|
Rathi AV, Sáenz Robles MT, Pipas JM. Enterocyte proliferation and intestinal hyperplasia induced by simian virus 40 T antigen require a functional J domain. J Virol 2007; 81:9481-9. [PMID: 17581980 PMCID: PMC1951414 DOI: 10.1128/jvi.00922-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transgenic mice expressing the simian virus 40 large T antigen (TAg) in enterocytes develop intestinal hyperplasia that progresses to dysplasia with age. This induction requires TAg action on the retinoblastoma (Rb) family of tumor suppressors and is independent of the p53 pathway. In cell culture systems, the inactivation of Rb proteins requires both a J domain in TAg that interacts with hsc70 and an LXCXE motif that directs association with Rb proteins. Together these elements are sufficient to release E2Fs from their association with Rb family members. We have generated transgenic mice that express a J domain mutant (D44N) in villus enterocytes. In contrast to wild-type TAg, the D44N mutant is unable to induce enterocyte proliferation. Histological and morphological examination revealed that mice expressing the J domain mutant have normal intestines without loss of growth control. Unlike mice expressing wild-type TAg, mice expressing D44N do not reduce the protein levels of p130 and are also unable to dissociate p130-E2F DNA binding complexes. Furthermore, mice expressing D44N in a null p130 background are still unable to develop hyperplasia. These studies demonstrate that the ectopic proliferation of enterocytes by TAg requires a functional J domain and suggest that the J domain is necessary to inactivate all three pRb family members.
Collapse
Affiliation(s)
- Abhilasha V Rathi
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
247
|
Pellegata NS, Quintanilla-Martinez L, Keller G, Liyanarachchi S, Höfler H, Atkinson MJ, Fend F. Human pheochromocytomas show reduced p27Kip1 expression that is not associated with somatic gene mutations and rarely with deletions. Virchows Arch 2007; 451:37-46. [PMID: 17554557 DOI: 10.1007/s00428-007-0431-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 01/24/2023]
Abstract
Pheochromocytomas are neuroendocrine tumors arising in the neural crest-derived chromaffin cells of the adrenal gland or in extra-adrenal sympathetic ganglia (paragangliomas). In a rat model of multiple endocrine neoplasia (MEN), absence of functional p27Kip1 protein predisposes to pheochromocytoma and paraganglioma development. As no data is available regarding the involvement of p27Kip1 in human pheochromocytoma and/or paraganglioma, we set out to determine the expression pattern of p27Kip1 in those tumor types. A panel of 25 pheochromocytomas and 23 paragangliomas was collected. Two pheochromocytomas were from MEN2 patients. The paragangliomas included 15 tumors that developed at the carotid bifurcation, three in the jugulo-tympanic area, and five at other sites. Except for the MEN2 cases, all others were apparently sporadic. Immunohistochemistry for p27Kip1 and the proliferation marker Ki67 was performed. We found that p27Kip1 expression is reduced/lost in 56% of pheochromocytomas, but only in 18.1% of paragangliomas. Downregulation of p27Kip1 was not associated with increased proliferation. Cases showing reduced/lost p27Kip1 expression were screened for the presence of somatic mutations in CDKN1B (p27Kip1) and for allelic imbalance at the p27Kip1 locus. Three cases had allelic imbalance but none had mutations. In conclusion, pheochromocytomas display extreme reduction/loss of p27Kip1 expression at high frequency.
Collapse
Affiliation(s)
- Natalia S Pellegata
- Institute of Pathology, GSF-National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
248
|
Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S, Koehl C, Champy MF, Chambon P, Fajas L, Metzger D, Schoonjans K, Auwerx J. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proc Natl Acad Sci U S A 2007; 104:10703-8. [PMID: 17556545 PMCID: PMC1965576 DOI: 10.1073/pnas.0611568104] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of the tumor suppressor retinoblastoma protein (pRb) has been firmly established in the control of cell cycle, apoptosis, and differentiation. Recently, it was demonstrated that lack of pRb promotes a switch from white to brown adipocyte differentiation in vitro. We used the Cre-Lox system to specifically inactivate pRb in adult adipose tissue. Under a high-fat diet, pRb-deficient (pRb(ad-/-)) mice failed to gain weight because of increased energy expenditure. This protection against weight gain was caused by the activation of mitochondrial activity in white and brown fat as evidenced by histologic, electron microscopic, and gene expression studies. Moreover, pRb(-/-) mouse embryonic fibroblasts displayed higher proliferation and apoptosis rates than pRb(+/+) mouse embryonic fibroblasts, which could contribute to the altered white adipose tissue morphology. Taken together, our data support a direct role of pRb in adipocyte cell fate determination in vivo and suggest that pRb could serve as a potential therapeutic target to trigger mitochondrial activation in white adipose tissue and brown adipose tissue, favoring an increase in energy expenditure and subsequent weight loss.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Laboratoire de Biochimie Générale et Spécialisée, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67098 Strasbourg Cedex, France
| | - Chikage Mataki
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Agnès Coste
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Nadia Messaddeq
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Sylvain Giroud
- Département d'Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178 and Université Louis Pasteur, 23 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Stéphane Blanc
- Département d'Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178 and Université Louis Pasteur, 23 Rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Christian Koehl
- Laboratoire de Biochimie Générale et Spécialisée, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67098 Strasbourg Cedex, France
| | - Marie-France Champy
- Institut Clinique de la Souris, Genopole Strasbourg, 67404 Illkirch, France; and
| | - Pierre Chambon
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Lluis Fajas
- Metabolism and Cancer Laboratory, Le Centre Régional de Lutte Contre le Cancer Val d'Aurelle, Parc Euromédecine U540, 208 Rue des Apothicaires, F-34298 Montpellier Cedex 05, France
| | - Daniel Metzger
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Kristina Schoonjans
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Johan Auwerx
- *Institut de Génétique et de Biologie Moléculaire et Cellulaire de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université Louis Pasteur, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
- Laboratoire de Biochimie Générale et Spécialisée, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67098 Strasbourg Cedex, France
- Institut Clinique de la Souris, Genopole Strasbourg, 67404 Illkirch, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
249
|
Drosopoulos K, Pintzas A. Multifaceted targeting in cancer: the recent cell death players meet the usual oncogene suspects. Expert Opin Ther Targets 2007; 11:641-59. [PMID: 17465723 DOI: 10.1517/14728222.11.5.641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent complicated advances towards the blueprinting of the altered molecular networks that lie behind cancer development have paved the way for targeted therapy in cancer. This directed a significant part of the research community to the development of specialized targeted agents, many of which are already available or in clinical trials. The prospect of patient-tailored therapeutic strategies, although very close to becoming a reality also raises the level of complexity of the therapeutic approach. This review summarizes the functions, in vivo expression patterns and aberrations of factors presently targeted or representing potential targets by therapeutic agents, focusing on those implicated in death receptor-induced apoptosis. The authors overview the regulation of these factors and death receptor-induced apoptosis by classical oncogenes (e.g., RAS, MYC, HER2) and their effectors/regulators, most of which are also being targeted. In addition, the importance of orthologic systemic approaches in future patient-tailored therapies are discussed.
Collapse
Affiliation(s)
- Konstantinos Drosopoulos
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | |
Collapse
|
250
|
Nampoothiri LP, Neelima PS, Rao AJ. Proteomic profiling of forskolin-induced differentiated BeWo cells: an in-vitro model of cytotrophoblast differentiation. Reprod Biomed Online 2007; 14:477-87. [PMID: 17425831 DOI: 10.1016/s1472-6483(10)60896-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Placental trophoblastic differentiation is characterized by the fusion of monolayer cytotrophoblasts into syncytiotrophoblasts. During this process of differentiation, several morphological and biochemical changes are known to occur, and this model has been employed to investigate the changes that occur at the gene and protein level during differentiation. Using the sensitive technique of proteomics [two-dimensional gel electrophoresis (2DGE)], changes in protein profile were evaluated in the control and forskolin-induced differentiated cells of trophoblastic choriocarcinoma BeWo cell line. Several proteins were differentially expressed in control and differentiated cells. Four major proteins were up-regulated as assessed by silver staining, and were further characterized as c-h-ras p 21 (phosphorylated), retinoblastoma susceptibility protein 1 and integrase interactor protein 1. These proteins are known to play an important role in growth arrest of cells, and thus may play a role in initiating the process of differentiation.
Collapse
|