201
|
Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M, Kaessmann H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res 2016; 26:301-14. [PMID: 26728716 PMCID: PMC4772013 DOI: 10.1101/gr.198473.115] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2015] [Indexed: 02/03/2023]
Abstract
New genes contribute substantially to adaptive evolutionary innovation, but the functional evolution of new mammalian genes has been little explored at a broad scale. Previous work established mRNA-derived gene duplicates, known as retrocopies, as models for the study of new gene origination. Here we combine mammalian transcriptomic and epigenomic data to unveil the processes underlying the evolution of stripped-down retrocopies into complex new genes. We show that although some robustly expressed retrocopies are transcribed from preexisting promoters, most evolved new promoters from scratch or recruited proto-promoters in their genomic vicinity. In particular, many retrocopy promoters emerged from ancestral enhancers (or bivalent regulatory elements) or are located in CpG islands not associated with other genes. We detected 88–280 selectively preserved retrocopies per mammalian species, illustrating that these mechanisms facilitated the birth of many functional retrogenes during mammalian evolution. The regulatory evolution of originally monoexonic retrocopies was frequently accompanied by exon gain, which facilitated co-option of distant promoters and allowed expression of alternative isoforms. While young retrogenes are often initially expressed in the testis, increased regulatory and structural complexities allowed retrogenes to functionally diversify and evolve somatic organ functions, sometimes as complex as those of their parents. Thus, some retrogenes evolved the capacity to temporarily substitute for their parents during the process of male meiotic X inactivation, while others rendered parental functions superfluous, allowing for parental gene loss. Overall, our reconstruction of the “life history” of mammalian retrogenes highlights retroposition as a general model for understanding new gene birth and functional evolution.
Collapse
Affiliation(s)
- Francesco Nicola Carelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Company, Limited), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Japan Monkey Center, Inuyama, Aichi 484-0081, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 484-8585, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Maria Warnefors
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
202
|
Kopera HC, Flasch DA, Nakamura M, Miyoshi T, Doucet AJ, Moran JV. LEAP: L1 Element Amplification Protocol. Methods Mol Biol 2016; 1400:339-55. [PMID: 26895063 DOI: 10.1007/978-1-4939-3372-3_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that are required for retrotransposition. The L1 element amplification protocol (LEAP) assays the ability of L1 ORF2p to reverse transcribe L1 RNA in vitro. Ultracentrifugation or immunoprecipitation is used to isolate L1 ribonucleoprotein particle (RNP) complexes from cultured human cells transfected with an engineered L1 expression construct. The isolated RNPs are incubated with an oligonucleotide that contains a unique sequence at its 5' end and a thymidine-rich sequence at its 3' end. The addition of dNTPs to the reaction allows L1 ORF2p bound to L1 RNA to generate L1 cDNA. The resultant L1 cDNAs then are amplified using polymerase chain reaction (PCR) and the products are visualized by gel electrophoresis. Sequencing the resultant PCR products then allows product verification. The LEAP assay has been instrumental in determining how mutations in L1 ORF1p and ORF2p affect L1 reverse transcriptase (RT) activity. Furthermore, the LEAP assay has revealed that the L1 ORF2p RT can extend a DNA primer with mismatched 3' terminal bases when it is annealed to an L1 RNA template. As the LINE-1 biology field gravitates toward studying cellular proteins that regulate LINE-1, molecular genetic and biochemical approaches such as LEAP, in conjunction with the LINE-1-cultured cell retrotransposition assay, are essential to dissect the molecular mechanism of L1 retrotransposition.
Collapse
Affiliation(s)
- Huira C Kopera
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA.
| | - Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Mitsuhiro Nakamura
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Tomoichiro Miyoshi
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - Aurélien J Doucet
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, MI, 48109, USA. .,Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
203
|
Abstract
Mammalian genomes harbor autonomous retrotransposons coding for the proteins required for their own mobilization, and nonautonomous retrotransposons, such as the human SVA element, which are transcribed but do not have any coding capacity. Mobilization of nonautonomous retrotransposons depends on the recruitment of the protein machinery encoded by autonomous retrotransposons. Here, we summarize the experimental details of SVA trans-mobilization assays which address multiple questions regarding the biology of both nonautonomous SVA elements and autonomous LINE-1 (L1) retrotransposons. The assay evaluates if and to what extent a noncoding SVA element is mobilized in trans by the L1-encoded protein machinery, the structural organization of the resulting marked de novo insertions, if they mimic endogenous SVA insertions and what the roles of individual domains of the nonautonomous retrotransposon for SVA mobilization are. Furthermore, the highly sensitive trans-mobilization assay can be used to verify the presence of otherwise barely detectable endogenously expressed functional L1 proteins via their marked SVA trans-mobilizing activity.
Collapse
Affiliation(s)
- Anja Bock
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
204
|
Ewing AD. Transposable element detection from whole genome sequence data. Mob DNA 2015; 6:24. [PMID: 26719777 PMCID: PMC4696183 DOI: 10.1186/s13100-015-0055-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
The number of software tools available for detecting transposable element insertions from whole genome sequence data has been increasing steadily throughout the last ~5 years. Some of these methods have unique features suiting them for particular use cases, but in general they follow one or more of a common set of approaches. Here, detection and filtering approaches are reviewed in the light of transposable element biology and the current state of whole genome sequencing. We demonstrate that the current state-of-the-art methods still do not produce highly concordant results and provide resources to assist future development in transposable element detection methods.
Collapse
Affiliation(s)
- Adam D Ewing
- Mater Research Institute - University of Queensland, 37 Kent St Level 4, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
205
|
Kemp JR, Longworth MS. Crossing the LINE Toward Genomic Instability: LINE-1 Retrotransposition in Cancer. Front Chem 2015; 3:68. [PMID: 26734601 PMCID: PMC4679865 DOI: 10.3389/fchem.2015.00068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
Retrotransposons are repetitive DNA sequences that are positioned throughout the human genome. Retrotransposons are capable of copying themselves and mobilizing new copies to novel genomic locations in a process called retrotransposition. While most retrotransposon sequences in the human genome are incomplete and incapable of mobilization, the LINE-1 retrotransposon, which comprises~17% of the human genome, remains active. The disruption of cellular mechanisms that suppress retrotransposon activity is linked to the generation of aneuploidy, a potential driver of tumor development. When retrotransposons insert into a novel genomic region, they have the potential to disrupt the coding sequence of endogenous genes and alter gene expression, which can lead to deleterious consequences for the organism. Additionally, increased LINE-1 copy numbers provide more chances for recombination events to occur between retrotransposons, which can lead to chromosomal breaks and rearrangements. LINE-1 activity is increased in various cancer cell lines and in patient tissues resected from primary tumors. LINE-1 activity also correlates with increased cancer metastasis. This review aims to give a brief overview of the connections between LINE-1 retrotransposition and the loss of genome stability. We will also discuss the mechanisms that repress retrotransposition in human cells and their links to cancer.
Collapse
Affiliation(s)
- Jacqueline R Kemp
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Cellular and Molecular Medicine, Lerner Research Institute of Cleveland Clinic Cleveland, OH, USA
| |
Collapse
|
206
|
Abstract
The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.
Collapse
Affiliation(s)
- Havva Keskin
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| | - Chance Meers
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| | - Francesca Storici
- a School of Biology, Georgia Institute of Technology , Atlanta , Georgia , USA
| |
Collapse
|
207
|
Morris KM, Cheng Y, Warren W, Papenfuss AT, Belov K. Identification and analysis of divergent immune gene families within the Tasmanian devil genome. BMC Genomics 2015; 16:1017. [PMID: 26611146 PMCID: PMC4662006 DOI: 10.1186/s12864-015-2206-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 02/01/2023] Open
Abstract
Background The Tasmanian devil (Sarcophilus harrisii) is being threatened with extinction in the wild by a disease known as devil facial tumour disease (DFTD). In order to prevent the spread of this disease a thorough understanding of the Tasmanian devil immune system and its response to the disease is required. In 2011 and 2012 two genome sequencing projects of the Tasmania devil were released. This has provided us with the raw data required to begin to investigate the Tasmanian devil immunome in depth. In this study we characterise immune gene families of the Tasmanian devil. We focus on immunoglobulins, T cell receptors and cytokine families. Results We identify and describe 119 cytokines including 40 interleukins, 39 chemokines, 8 interferons, 18 tumour necrosis family cytokines and 14 additional cytokines. Constant regions for immunoglobulins and T cell receptors were also identified. The repertoire of genes in these families was similar to the opossum, however devil specific duplications were seen and orthologs to eutherian genes not previously identified in any marsupial were also identified. Conclusions By using multiple data sources as well as targeted search methods, highly divergent genes across the Tasmanian devil immune system were identified and characterised. This understanding will allow for the development of devil specific assays and reagents and allow for future studies into the immune response of the Tasmanian devil immune system to DFTD. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2206-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katrina M Morris
- Faculty of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.
| | - Yuanyuan Cheng
- Faculty of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.
| | - Wesley Warren
- Washington University School of Medicine, 4444 Forest Park Ave, St Louis, MO, 63108, USA.
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia. .,Bioinformatics and Cancer Genomics, Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
208
|
Maxwell PH. What might retrotransposons teach us about aging? Curr Genet 2015; 62:277-82. [PMID: 26581630 DOI: 10.1007/s00294-015-0538-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/17/2023]
Abstract
Retrotransposons are activated as organisms age, based on work from several model systems. Since these mobile DNA elements can promote genome instability, this has raised the possibility that they can contribute to loss of cellular function with age. Many questions remain to be addressed about the relationship between retrotransposons and aging, so it is unclear if changes in their activity will be found to contribute to aging or to be a consequence of aging. A few broad perspectives are presented regarding how continued work on these elements could provide important insights into the aging process, regardless of whether their mobility is ultimately found to significantly contribute to reduced lifespan and healthspan.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, CBIS Room 2123, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
209
|
A 3' Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol Cell 2015; 60:728-741. [PMID: 26585388 DOI: 10.1016/j.molcel.2015.10.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
L1 retrotransposons express proteins (ORF1p and ORF2p) that preferentially mobilize their encoding RNA in cis, but they also can mobilize Alu RNA and, more rarely, cellular mRNAs in trans. Although these RNAs differ in sequence, each ends in a 3' polyadenosine (poly(A)) tract. Here, we replace the L1 polyadenylation signal with sequences derived from a non-polyadenylated long non-coding RNA (MALAT1), which can form a stabilizing triple helix at the 3' end of an RNA. L1/MALAT RNAs accumulate in cells, lack poly(A) tails, and are translated; however, they cannot retrotranspose in cis. Remarkably, the addition of a 16 or 40 base poly(A) tract downstream of the L1/MALAT triple helix restores retrotransposition in cis. The presence of a poly(A) tract also allows ORF2p to bind and mobilize RNAs in trans. Thus, a 3' poly(A) tract is critical for the retrotransposition of sequences that comprise approximately one billion base pairs of human DNA.
Collapse
|
210
|
Du K, He S. Evolutionary fate and implications of retrocopies in the African coelacanth genome. BMC Genomics 2015; 16:915. [PMID: 26555943 PMCID: PMC4641402 DOI: 10.1186/s12864-015-2178-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coelacanth is known as a "living fossil" because of its morphological resemblance to its fossil ancestors. Thus, it serves as a useful model that provides insight into the fish that first walked on land. Retrocopies are a type of novel genetic element that are likely to contribute to genome or phenotype innovations. Thus, investigating retrocopies in the coelacanth genome can determine the role of retrocopies in coelacanth genome innovations and perhaps even water-to-land adaptations. RESULTS We determined the dS values, dN/dS ratios, expression patterns, and enrichment of functional categories for 472 retrocopies in the African coelacanth genome. Of the retrocopies, 85-355 were shown to be potentially functional (i.e., retrogenes). The distribution of retrocopies based on their dS values revealed a burst pattern of young retrocopies in the genome. The retrocopy birth pattern was shown to be more similar to that in tetrapods than ray-finned fish, which indicates a genomic transformation that accompanied vertebrate evolution from water to land. Among these retrocopies, retrogenes were more prevalent in old than young retrocopies, which indicates that most retrocopies may have been eliminated during evolution, even though some retrocopies survived, attained biological function as retrogenes, and became old. Transcriptome data revealed that many retrocopies showed a biased expression pattern in the testis, although the expression was not specifically associated with a particular retrocopy age range. We identified 225 Ensembl genes that overlapped with the coelacanth genome retrocopies. GO enrichment analysis revealed different overrepresented GO (gene ontology) terms between these "retrocopy-overlapped genes" and the retrocopy parent genes, which indicates potential genomic functional organization produced by retrotranspositions. Among the 225 retrocopy-overlapped genes, we also identified 46 that were coelacanth-specific, which could represent a potential molecular basis for coelacanth evolution. CONCLUSIONS Our study identified 472 retrocopies in the coelacanth genome. Sequence analysis of these retrocopies and their parent genes, transcriptome data, and GO annotation information revealed novel insight about the potential role of genomic retrocopies in coelacanth evolution and vertebrate adaptations during the evolutionary transition from water to land.
Collapse
Affiliation(s)
- Kang Du
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.
| |
Collapse
|
211
|
Geister KA, Brinkmeier ML, Cheung LY, Wendt J, Oatley MJ, Burgess DL, Kozloff KM, Cavalcoli JD, Oatley JM, Camper SA. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet 2015; 11:e1005569. [PMID: 26496357 PMCID: PMC4619696 DOI: 10.1371/journal.pgen.1005569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.
Collapse
Affiliation(s)
- Krista A. Geister
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Wendt
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Melissa J. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Daniel L. Burgess
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Kenneth M. Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jon M. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Sally A. Camper
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
212
|
Mahmudi O, Sennblad B, Arvestad L, Nowick K, Lagergren J. Gene-pseudogene evolution: a probabilistic approach. BMC Genomics 2015; 16 Suppl 10:S12. [PMID: 26449131 PMCID: PMC4602177 DOI: 10.1186/1471-2164-16-s10-s12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the last decade, methods have been developed for the reconstruction of gene trees that take into account the species tree. Many of these methods have been based on the probabilistic duplication-loss model, which describes how a gene-tree evolves over a species-tree with respect to duplication and losses, as well as extension of this model, e.g., the DLRS (Duplication, Loss, Rate and Sequence evolution) model that also includes sequence evolution under relaxed molecular clock. A disjoint, almost as recent, and very important line of research has been focused on non protein-coding, but yet, functional DNA. For instance, DNA sequences being pseudogenes in the sense that they are not translated, may still be transcribed and the thereby produced RNA may be functional. We extend the DLRS model by including pseudogenization events and devise an MCMC framework for analyzing extended gene families consisting of genes and pseudogenes with respect to this model, i.e., reconstructing gene-trees and identifying pseudogenization events in the reconstructed gene-trees. By applying the MCMC framework to biologically realistic synthetic data, we show that gene-trees as well as pseudogenization points can be inferred well. We also apply our MCMC framework to extended gene families belonging to the Olfactory Receptor and Zinc Finger superfamilies. The analysis indicate that both these super families contains very old pseudogenes, perhaps so old that it is reasonable to suspect that some are functional. In our analysis, the sub families of the Olfactory Receptors contains only lineage specific pseudogenes, while the sub families of the Zinc Fingers contains pseudogene lineages common to several species.
Collapse
|
213
|
Parrish NF, Fujino K, Shiromoto Y, Iwasaki YW, Ha H, Xing J, Makino A, Kuramochi-Miyagawa S, Nakano T, Siomi H, Honda T, Tomonaga K. piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. RNA (NEW YORK, N.Y.) 2015; 21:1691-1703. [PMID: 26283688 PMCID: PMC4574747 DOI: 10.1261/rna.052092.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.
Collapse
Affiliation(s)
- Nicholas F Parrish
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yusuke Shiromoto
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Yuka W Iwasaki
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hongseok Ha
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Akiko Makino
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Toru Nakano
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
214
|
Differentially-Expressed Pseudogenes in HIV-1 Infection. Viruses 2015; 7:5191-205. [PMID: 26426037 PMCID: PMC4632377 DOI: 10.3390/v7102869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022] Open
Abstract
Not all pseudogenes are transcriptionally silent as previously thought. Pseudogene transcripts, although not translated, contribute to the non-coding RNA pool of the cell that regulates the expression of other genes. Pseudogene transcripts can also directly compete with the parent gene transcripts for mRNA stability and other cell factors, modulating their expression levels. Tissue-specific and cancer-specific differential expression of these “functional” pseudogenes has been reported. To ascertain potential pseudogene:gene interactions in HIV-1 infection, we analyzed transcriptomes from infected and uninfected T-cells and found that 21 pseudogenes are differentially expressed in HIV-1 infection. This is interesting because parent genes of one-third of these differentially-expressed pseudogenes are implicated in HIV-1 life cycle, and parent genes of half of these pseudogenes are involved in different viral infections. Our bioinformatics analysis identifies candidate pseudogene:gene interactions that may be of significance in HIV-1 infection. Experimental validation of these interactions would establish that retroviruses exploit this newly-discovered layer of host gene expression regulation for their own benefit.
Collapse
|
215
|
Abstract
Viruses are notorious for rapidly exchanging genetic information between close relatives and with the host cells they infect. This exchange has profound effects on the nature and rapidity of virus and host evolution. Recombination between dsDNA viruses is common, as is genetic exchange between dsDNA viruses or retroviruses and host genomes. Recombination between RNA virus genomes is also well known. In contrast, genetic exchange across viral kingdoms, for instance between nonretroviral RNA viruses or ssDNA viruses and host genomes or between RNA and DNA viruses, was previously thought to be practically nonexistent. However, there is now growing evidence for both RNA and ssDNA viruses recombining with host dsDNA genomes and, more surprisingly, RNA virus genes recombining with ssDNA virus genomes. Mechanisms are still unclear, but this deep recombination greatly expands the breadth of virus evolution and confounds virus taxonomy.
Collapse
Affiliation(s)
- Kenneth M Stedman
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, Oregon 97207;
| |
Collapse
|
216
|
Millson A, Lewis T, Pesaran T, Salvador D, Gillespie K, Gau CL, Pont-Kingdon G, Lyon E, Bayrak-Toydemir P. Processed Pseudogene Confounding Deletion/Duplication Assays for SMAD4. J Mol Diagn 2015; 17:576-82. [DOI: 10.1016/j.jmoldx.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
|
217
|
Sofuku K, Parrish NF, Honda T, Tomonaga K. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Rep 2015; 12:1548-54. [PMID: 26321645 DOI: 10.1016/j.celrep.2015.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 01/22/2023] Open
Abstract
Endogenous bornavirus-like nucleoprotein elements (EBLNs) are DNA sequences in vertebrate genomes formed by the retrotransposon-mediated integration of ancient bornavirus sequence. Thus, EBLNs evidence a mechanism of retrotransposon-mediated RNA-to-DNA information flow from environment to animals. Although EBLNs are non-transposable, they share some features with retrotransposons. Here, to test whether hosts control the expression of EBLNs similarly to retrotransposons, we profiled the transcription of all Homo sapiens EBLNs (hsEBLN-1 to hsEBLN-7). We could detect transcription of all hsEBLNs in at least one tissue. Among them, hsEBLN-1 is transcribed almost exclusively in the testis. In most tissues, expression from the hsEBLN-1 locus is silenced epigenetically. Finally, we showed the possibility that hsEBLN-1 integration at this locus affects the expression of a neighboring gene. Our results suggest that hosts regulate the expression of endogenous non-retroviral virus elements similarly to how they regulate the expression of retrotransposons, possibly contributing to new transcripts and regulatory complexity to the human genome.
Collapse
Affiliation(s)
- Kozue Sofuku
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nicholas F Parrish
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
218
|
Zhou K, Zou M, Duan M, He S, Wang G. Identification and analysis of retrogenes in the East Asian nematode Caenorhabditis sp. 5 genome. Genome 2015; 58:349-55. [PMID: 26284988 DOI: 10.1139/gen-2014-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroposition, a molecular mechanism generating new genes, helps the formation of retrogenes and new functions, contributing to the evolution of genomes. The completed genome sequence of Caenorhabditis sp. 5 presents an excellent opportunity to identify retrogenes within C. sp. 5. We identified a total of 43 retrogenes and their corresponding chimeric genes. Among these, 29 were found to be intact retrogenes and 14 to be retropseudogenes. Unexpectedly, a high number of retrogenes appear to be functional and possibly involved in catalysis. Also, the proportion of the retrogenes forming chimeric structure is the highest among Caenorhabditis nematodes. In addition, the Ks distribution shows that C. sp. 5 has more retrogenes with high Ks, which may explain the high functionality of them among Caenorhabditis species. Our study will be helpful in the understanding of the functional and evolutionary impact of retroposition on C. sp. 5 genome.
Collapse
Affiliation(s)
- Kun Zhou
- a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Ming Zou
- c Huazhong Agriculture University, Wuhan 430070, China
| | - Mingyue Duan
- a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Shunping He
- b The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiu Wang
- a Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
219
|
LINE-1 expression and retrotransposition in Barrett's esophagus and esophageal carcinoma. Proc Natl Acad Sci U S A 2015; 112:E4894-900. [PMID: 26283398 DOI: 10.1073/pnas.1502474112] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrett's esophagus (BE) is a common disease in which the lining of the esophagus transitions from stratified squamous epithelium to metaplastic columnar epithelium that predisposes individuals to developing esophageal adenocarcinoma (EAC). We hypothesized that BE provides a unique environment for increased long-interspersed element 1 (LINE-1 or L1) retrotransposition. To this end, we evaluated 5 patients with benign BE, 5 patients with BE and concomitant EAC, and 10 additional patients with EAC to determine L1 activity in this progressive disease. After L1-seq, we confirmed 118 somatic insertions by PCR in 10 of 20 individuals. We observed clonal amplification of several insertions which appeared to originate in normal esophagus (NE) or BE and were later clonally expanded in BE or in EAC. Additionally, we observed evidence of clonality within the EAC cases; specifically, 22 of 25 EAC-only insertions were present identically in distinct regions available from the same tumor, suggesting that these insertions occurred in the founding tumor cell of these lesions. L1 proteins must be expressed for retrotransposition to occur; therefore, we evaluated the expression of open reading frame 1 protein (ORF1p), a protein encoded by L1, in eight of the EAC cases for which formalin-fixed paraffin embedded tissue was available. With immunohistochemistry, we detected ORF1p in all tumors evaluated. Interestingly, we also observed dim ORF1p immunoreactivity in histologically NE of all patients. In summary, our data show that somatic retrotransposition occurs early in many patients with BE and EAC and indicate that early events occurring even in histologically NE cells may be clonally expanded in esophageal adenocarcinogenesis.
Collapse
|
220
|
Grandi FC, Rosser JM, Newkirk SJ, Yin J, Jiang X, Xing Z, Whitmore L, Bashir S, Ivics Z, Izsvák Z, Ye P, Yu YE, An W. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res 2015; 25:1135-46. [PMID: 25995269 PMCID: PMC4509998 DOI: 10.1101/gr.185132.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
Abstract
Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as "sloping shores." Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - James M Rosser
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Simon J Newkirk
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA; Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| | - Jun Yin
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Leanne Whitmore
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Sanum Bashir
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| |
Collapse
|
221
|
Suh A. The Specific Requirements for CR1 Retrotransposition Explain the Scarcity of Retrogenes in Birds. J Mol Evol 2015. [DOI: 10.1007/s00239-015-9692-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
222
|
Abstract
Gene duplication is a key factor contributing to phenotype diversity across and within species. Although the availability of complete genomes has led to the extensive study of genomic duplications, the dynamics and variability of gene duplications mediated by retrotransposition are not well understood. Here, we predict mRNA retrotransposition and use comparative genomics to investigate their origin and variability across primates. Analyzing seven anthropoid primate genomes, we found a similar number of mRNA retrotranspositions (∼7,500 retrocopies) in Catarrhini (Old Word Monkeys, including humans), but a surprising large number of retrocopies (∼10,000) in Platyrrhini (New World Monkeys), which may be a by-product of higher long interspersed nuclear element 1 activity in these genomes. By inferring retrocopy orthology, we dated most of the primate retrocopy origins, and estimated a decrease in the fixation rate in recent primate history, implying a smaller number of species-specific retrocopies. Moreover, using RNA-Seq data, we identified approximately 3,600 expressed retrocopies. As expected, most of these retrocopies are located near or within known genes, present tissue-specific and even species-specific expression patterns, and no expression correlation to their parental genes. Taken together, our results provide further evidence that mRNA retrotransposition is an active mechanism in primate evolution and suggest that retrocopies may not only introduce great genetic variability between lineages but also create a large reservoir of potentially functional new genomic loci in primate genomes.
Collapse
Affiliation(s)
- Fábio C P Navarro
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil Dep. de Bioquímica, Universidade de São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
223
|
Double strand break repair by capture of retrotransposon sequences and reverse-transcribed spliced mRNA sequences in mouse zygotes. Sci Rep 2015. [PMID: 26216318 PMCID: PMC4516963 DOI: 10.1038/srep12281] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The CRISPR/Cas system efficiently introduces double strand breaks (DSBs) at a genomic locus specified by a single guide RNA (sgRNA). The DSBs are subsequently repaired through non-homologous end joining (NHEJ) or homologous recombination (HR). Here, we demonstrate that DSBs introduced into mouse zygotes by the CRISPR/Cas system are repaired by the capture of DNA sequences deriving from retrotransposons, genomic DNA, mRNA and sgRNA. Among 93 mice analysed, 57 carried mutant alleles and 22 of them had long de novo insertion(s) at DSB-introduced sites; two were spliced mRNAs of Pcnt and Inadl without introns, indicating the involvement of reverse transcription (RT). Fifteen alleles included retrotransposons, mRNAs, and other sequences without evidence of RT. Two others were sgRNAs with one containing T7 promoter-derived sequence suggestive of a PCR product as its origin. In conclusion, RT-product-mediated DSB repair (RMDR) and non-RMDR repair were identified in the mouse zygote. We also confirmed that both RMDR and non-RMDR take place in CRISPR/Cas transfected NIH-3T3 cells. Finally, as two de novo MuERV-L insertions in C57BL/6 mice were shown to have characteristic features of RMDR in natural conditions, we hypothesize that RMDR contributes to the emergence of novel DNA sequences in the course of evolution.
Collapse
|
224
|
Chandrashekar DS, Dey P, Acharya KK. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species. PLoS One 2015. [PMID: 26208093 PMCID: PMC4514817 DOI: 10.1371/journal.pone.0133647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting repeats in various contexts/regions. GREAM is freely available at http://resource.ibab.ac.in/GREAM/.
Collapse
Affiliation(s)
- Darshan Shimoga Chandrashekar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Kshitish K. Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Shodhaka Life Sciences Pvt. Ltd., IBAB, Biotech Park, Bengaluru (Bangalore), 560100, Karnataka state, India
- * E-mail:
| |
Collapse
|
225
|
Paterson AL, Weaver JMJ, Eldridge MD, Tavaré S, Fitzgerald RC, Edwards PAW. Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis. BMC Genomics 2015; 16:473. [PMID: 26159513 PMCID: PMC4498532 DOI: 10.1186/s12864-015-1685-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/05/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mobile elements are active in the human genome, both in the germline and cancers, where they can mutate driver genes. RESULTS While analysing whole genome paired-end sequencing of oesophageal adenocarcinomas to find genomic rearrangements, we identified three ways in which new mobile element insertions appear in the data, resembling translocation or insertion junctions: inserts where unique sequence has been transduced by an L1 (Long interspersed element 1) mobile element; novel inserts that are confidently, but often incorrectly, mapped by alignment software to L1s or polyA tracts in the reference sequence; and a combination of these two ways, where different sequences within one insert are mapped to different loci. We identified nine unique sequences that were transduced by neighbouring L1s, both L1s in the reference genome and L1s not present in the reference. Many of the resulting inserts were small fragments that include little or no recognisable mobile element sequence. We found 6 loci in the reference genome to which sequence reads from inserts were frequently mapped, probably erroneously, by alignment software: these were either L1 sequence or particularly long polyA runs. Inserts identified from such apparent rearrangement junctions averaged 16 inserts/tumour, range 0-153 insertions in 43 tumours. However, many inserts would not be detected by mapping the sequences to the reference genome, because they do not include sufficient mappable sequence. To estimate total somatic inserts we searched for polyA sequences that were not present in the matched normal or other normals from the same tumour batch, and were not associated with known polymorphisms. Samples of these candidate inserts were verified by sequencing across them or manual inspection of surrounding reads: at least 85 % were somatic and resembled L1-mediated events, most including L1Hs sequence. Approximately 100 such inserts were detected per tumour on average (range zero to approximately 700). CONCLUSIONS Somatic mobile elements insertions are abundant in these tumours, with over 75 % of cases having a number of novel inserts detected. The inserts create a variety of problems for the interpretation of paired-end sequencing data.
Collapse
Affiliation(s)
- Anna L Paterson
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
- Department of Pathology, Addenbrookes Hospital, Cambridge, UK.
| | - Jamie M J Weaver
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK.
| | - Paul A W Edwards
- Department of Pathology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
| |
Collapse
|
226
|
Hu S, Li J, Xu F, Mei S, Le Duff Y, Yin L, Pang X, Cen S, Jin Q, Liang C, Guo F. SAMHD1 Inhibits LINE-1 Retrotransposition by Promoting Stress Granule Formation. PLoS Genet 2015; 11:e1005367. [PMID: 26134849 PMCID: PMC4489885 DOI: 10.1371/journal.pgen.1005367] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 06/17/2015] [Indexed: 01/17/2023] Open
Abstract
The SAM domain and HD domain containing protein 1 (SAMHD1) inhibits retroviruses, DNA viruses and long interspersed element 1 (LINE-1). Given that in dividing cells, SAMHD1 loses its antiviral function yet still potently restricts LINE-1, we propose that, instead of blocking viral DNA synthesis by virtue of its dNTP triphosphohydrolase activity, SAMHD1 may exploit a different mechanism to control LINE-1. Here, we report a new activity of SAMHD1 in promoting cellular stress granule assembly, which correlates with increased phosphorylation of eIF2α and diminished eIF4A/eIF4G interaction. This function of SAMHD1 enhances sequestration of LINE-1 RNP in stress granules and consequent blockade to LINE-1 retrotransposition. In support of this new mechanism of action, depletion of stress granule marker proteins G3BP1 or TIA1 abrogates stress granule formation and overcomes SAMHD1 inhibition of LINE-1. Together, these data reveal a new mechanism for SAMHD1 to control LINE-1 by activating cellular stress granule pathway.
Collapse
Affiliation(s)
- Siqi Hu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jian Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Fengwen Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Mei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yann Le Duff
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Lijuan Yin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiaojing Pang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
227
|
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 2015; 11:e1005121. [PMID: 25951186 PMCID: PMC4423928 DOI: 10.1371/journal.pgen.1005121] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. L1s comprise ~17% of human DNA and it is estimated that an average human genome has ~80–100 active L1s. L1 moves throughout the genome via a “copy-and-paste” mechanism known as retrotransposition. L1 retrotransposition is known to cause mutations; thus, it stands to reason that the host cell has evolved mechanisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemical and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP initially may have evolved to combat endogenous retrotransposons and subsequently was co-opted as a viral restriction factor.
Collapse
Affiliation(s)
- John B. Moldovan
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| | - John V. Moran
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| |
Collapse
|
228
|
Nucleosome Organization around Pseudogenes in the Human Genome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821596. [PMID: 26064955 PMCID: PMC4434184 DOI: 10.1155/2015/821596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/17/2014] [Indexed: 12/02/2022]
Abstract
Pseudogene, disabled copy of functional gene, plays a subtle role in gene
expression and genome evolution. The first step in deciphering RNA-level regulation
of pseudogenes is to understand their transcriptional activity. So far, there has been no
report on possible roles of nucleosome organization in pseudogene transcription. In
this paper, we investigated the effect of nucleosome positioning on pseudogene
transcription. For transcribed pseudogenes, the experimental nucleosome occupancy
shows a prominent depletion at the regions both upstream of pseudogene start
positions and downstream of pseudogene end positions. Intriguingly, the same
depletion is also observed for nontranscribed pseudogenes, which is unexpected
since nucleosome depletion in those regions is thought to be unnecessary in light of the
nontranscriptional property of those pseudogenes. The sequence-dependent
prediction of nucleosome occupancy shows a consistent pattern with the experimental
data-based analysis. Our results indicate that nucleosome positioning may play
important roles in both the transcription initiation and termination of pseudogenes.
Collapse
|
229
|
Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. PLoS Genet 2015; 11:e1005252. [PMID: 26001115 PMCID: PMC4441479 DOI: 10.1371/journal.pgen.1005252] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Intrinsic immunity describes the set of recently discovered but poorly understood cellular mechanisms that specifically target viral pathogens. Their discovery derives in large part from intensive studies of HIV and SIV that revealed restriction factors acting at various stages of the retroviral life cycle. Recent studies indicate that some factors restrict both retroviruses and retrotransposons but surprisingly in ways that may differ. We screened known interferon-stimulated antiviral proteins previously untested for their effects on cell culture retrotransposition. Several factors, including BST2, ISG20, MAVS, MX2, and ZAP, showed strong L1 inhibition. We focused on ZAP (PARP13/ZC3HAV1), a zinc-finger protein that targets viruses of several families, including Retroviridae, Tiloviridae, and Togaviridae, and show that ZAP expression also strongly restricts retrotransposition in cell culture through loss of L1 RNA and ribonucleoprotein particle integrity. Association of ZAP with the L1 ribonucleoprotein particle is supported by co-immunoprecipitation and co-localization with ORF1p in cytoplasmic stress granules. We also used mass spectrometry to determine the protein components of the ZAP interactome, and identified many proteins that directly interact and colocalize with ZAP, including MOV10, an RNA helicase previously shown to suppress retrotransposons. The detection of a chaperonin complex, RNA degradation proteins, helicases, post-translational modifiers, and components of chromatin modifying complexes suggest mechanisms of ZAP anti-retroelement activity that function in the cytoplasm and perhaps also in the nucleus. The association of the ZAP ribonucleoprotein particle with many interferon-stimulated gene products indicates it may be a key player in the interferon response.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ling E. Cheung
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebecca J. Rose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
230
|
Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells. Oncotarget 2015; 5:4103-17. [PMID: 24980824 PMCID: PMC4147309 DOI: 10.18632/oncotarget.1822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Noncoding RNAs are key players in the maintenance of genomic integrity, particularly in silencing the expression of repetitive elements, some of which are retrotransposable and capable of causing genomic instability. Recent computational studies suggest an association between L1 expression and the generation of small RNAs. However, whether L1 expression has a role in the activation of small RNA expression has yet to be determined experimentally.; Here we report a global analysis of small RNAs in deep sequencing from L1-active and L1-silenced breast cancer cells. We found that cells in which L1 expression was silenced exhibited greatly increased expression of a number of miRNAs and in particular, members of the let-7 family. In addition, we found differential expression of a few piRNAs that might potentially regulate gene expression. We also report the identification of several repeat RNAs against LTRs, LINEs and SINE elements. Although most of the repeat RNAs mapped to L1 elements, in general we found no significant differences in the expression levels of repeat RNAs in the presence or absence of L1 expression except for a few RNAs targeting subclasses of L1 elements. These differentially expressed small RNAs may function in human genome defence responses.
Collapse
|
231
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
232
|
Doucet AJ, Droc G, Siol O, Audoux J, Gilbert N. U6 snRNA Pseudogenes: Markers of Retrotransposition Dynamics in Mammals. Mol Biol Evol 2015; 32:1815-32. [PMID: 25761766 PMCID: PMC4476161 DOI: 10.1093/molbev/msv062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transposable elements comprise more than 45% of the human genome and long interspersed nuclear element 1 (LINE-1 or L1) is the only autonomous mobile element remaining active. Since its identification, it has been proposed that L1 contributes to the mobilization and amplification of other cellular RNAs and more recently, experimental demonstrations of this function has been described for many transcripts such as Alu, a nonautonomous mobile element, cellular mRNAs, or small noncoding RNAs. Detailed examination of the mobilization of various cellular RNAs revealed distinct pathways by which they could be recruited during retrotransposition; template choice or template switching. Here, by analyzing genomic structures and retrotransposition signatures associated with small nuclear RNA (snRNA) sequences, we identified distinct recruiting steps during the L1 retrotransposition cycle for the formation of snRNA-processed pseudogenes. Interestingly, some of the identified recruiting steps take place in the nucleus. Moreover, after comparison to other vertebrate genomes, we established that snRNA amplification by template switching is common to many LINE families from several LINE clades. Finally, we suggest that U6 snRNA copies can serve as markers of L1 retrotransposition dynamics in mammalian genomes.
Collapse
Affiliation(s)
- Aurélien J Doucet
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM, U1081, CNRS UMR 7284, Nice, France
| | - Gaëtan Droc
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), UMR AGAP, Montpellier, France
| | - Oliver Siol
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France
| | - Jérôme Audoux
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, Montpellier, France
| | - Nicolas Gilbert
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, Montpellier, France
| |
Collapse
|
233
|
Kagawa T, Oka A, Kobayashi Y, Hiasa Y, Kitamura T, Sakugawa H, Adachi Y, Anzai K, Tsuruya K, Arase Y, Hirose S, Shiraishi K, Shiina T, Sato T, Wang T, Tanaka M, Hayashi H, Kawabe N, Robinson PN, Zemojtel T, Mine T. Recessive inheritance of population-specific intronic LINE-1 insertion causes a rotor syndrome phenotype. Hum Mutat 2015; 36:327-332. [PMID: 25546334 DOI: 10.1002/humu.22745] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/15/2014] [Indexed: 11/06/2022]
Abstract
Sequences of long-interspersed elements (LINE-1, L1) make up ∼17% of the human genome. De novo insertions of retrotransposition-active L1s can result in genetic diseases. It has been recently shown that the homozygous inactivation of two adjacent genes SLCO1B1 and SLCO1B3 encoding organic anion transporting polypeptides OATP1B1 and OATP1B3 causes a benign recessive disease presenting with conjugated hyperbilirubinemia, Rotor syndrome. Here, we examined SLCO1B1 and SLCO1B3 genes in six Japanese diagnosed with Rotor syndrome on the basis of laboratory data and laparoscopy. All six Japanese patients were homozygous for the c.1738C>T nonsense mutation in SLCO1B1 and homozygous for the insertion of a ∼6.1-kbp L1 retrotransposon in intron 5 of SLCO1B3, which altogether make up a Japanese-specific haplotype. RNA analysis revealed that the L1 insertion induced deleterious splicing resulting in SLCO1B3 transcripts lacking exon 5 or exons 5-7 and containing premature stop codons. The expression of OATP1B1 and OATP1B3 proteins was not detected in liver tissues. This is the first documented case of a population-specific polymorphic intronic L1 transposon insertion contributing to molecular etiology of recessive genetic disease. Since L1 activity in human genomes is currently seen as a major source of individual genetic variation, further investigations are warranted to determine whether this phenomenon results in other autosomal-recessive diseases.
Collapse
Affiliation(s)
- Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Noll A, Raabe CA, Churakov G, Brosius J, Schmitz J. Ancient traces of tailless retropseudogenes in therian genomes. Genome Biol Evol 2015; 7:889-900. [PMID: 25724209 PMCID: PMC5322556 DOI: 10.1093/gbe/evv040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transposable elements, once described by Barbara McClintock as controlling genetic units, not only occupy the largest part of our genome but are also a prominent moving force of genomic plasticity and innovation. They usually replicate and reintegrate into genomes silently, sometimes causing malfunctions or misregulations, but occasionally millions of years later, a few may evolve into new functional units. Retrotransposons make their way into the genome following reverse transcription of RNA molecules and chromosomal insertion. In therian mammals, long interspersed elements 1 (LINE1s) self-propagate but also coretropose many RNAs, including mRNAs and small RNAs that usually exhibit an oligo(A) tail. The revitalization of specific LINE1 elements in the mammalian lineage about 150 Ma parallels the rise of many other nonautonomous mobilized genomic elements. We previously identified and described hundreds of tRNA-derived retropseudogenes missing characteristic oligo(A) tails consequently termed tailless retropseudogenes. Additional analyses now revealed hundreds of thousands of tailless retropseudogenes derived from nearly all types of RNAs. We extracted 2,402 perfect tailless sequences (with discernible flanking target site duplications) originating from tRNAs, spliceosomal RNAs, 5S rRNAs, 7SK RNAs, mRNAs, and others. Interestingly, all are truncated at one or more defined positions that coincide with internal single-stranded regions. 5S ribosomal and U2 spliceosomal RNAs were analyzed in the context of mammalian phylogeny to discern the origin of the therian LINE1 retropositional system that evolved in our 150-Myr-old ancestor.
Collapse
Affiliation(s)
- Angela Noll
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany Institute of Evolution and Biodiversity, University of Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany Institute of Evolutionary and Medical Genomics, Brandenburg Medical School, Neuruppin, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| |
Collapse
|
235
|
Castro-Diaz N, Friedli M, Trono D. Drawing a fine line on endogenous retroelement activity. Mob Genet Elements 2015; 5:1-6. [PMID: 26442176 DOI: 10.1080/2159256x.2015.1006109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 01/05/2023] Open
Abstract
Endogenous retroelements (EREs) are essential motors of evolution yet require careful control to prevent genomic catastrophes, notably during the vulnerable phases of epigenetic reprogramming that occur immediately after fertilization and in germ cells. Accordingly, a variety of mechanisms restrict these mobile genetic units. Previous studies have revealed the importance of KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor, KAP1, in the early embryonic silencing of endogenous retroviruses and so-called SVAs, but the implication of this transcriptional repression system in the control of LINE-1, the only known active autonomous retrotransposon in the human genome, was thought to be marginal. Two recent studies straighten the record by revealing that the KRAB/KAP system is key to the control of L1 in embryonic stem (ES) cells, and go further in demonstrating that DNA methylation and KRAB/KAP1-induced repression contribute to this process in an evolutionally dynamic fashion. These results shed light on the delicate equilibrium between higher vertebrates and endogenous retroelements, which are not just genetic invaders calling for strict control but rather a constantly renewed and nicely exploitable source of evolutionary potential.
Collapse
Affiliation(s)
- Nathaly Castro-Diaz
- School of Life Sciences; École Polytechnique Fédérale de Lausanne (EPFL) ; Lausanne, Switzerland
| | - Marc Friedli
- School of Life Sciences; École Polytechnique Fédérale de Lausanne (EPFL) ; Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences; École Polytechnique Fédérale de Lausanne (EPFL) ; Lausanne, Switzerland
| |
Collapse
|
236
|
Grandér D, Johnsson P. Pseudogene-Expressed RNAs: Emerging Roles in Gene Regulation and Disease. Curr Top Microbiol Immunol 2015; 394:111-26. [DOI: 10.1007/82_2015_442] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
237
|
Sokolowski M, DeFreece CB, Servant G, Kines KJ, deHaro DL, Belancio VP. Development of a monoclonal antibody specific to the endonuclease domain of the human LINE-1 ORF2 protein. Mob DNA 2014; 5:29. [PMID: 25606060 PMCID: PMC4279459 DOI: 10.1186/s13100-014-0029-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Background LINE-1 (L1) retrotransposons are common occupants of mammalian genomes representing about a fifth of the genetic content. Ongoing L1 retrotransposition in the germ line and somatic tissues has contributed to structural genomic variations and disease-causing mutations in the human genome. L1 mobilization relies on the function of two, self-encoded proteins, ORF1 and ORF2. The ORF2 protein contains two characterized domains: endonuclease and reverse transcriptase. Results Using a bacterially purified endonuclease domain of the human L1 ORF2 protein, we have generated a monoclonal antibody specific to the human ORF2 protein. We determined that the epitope recognized by this monoclonal antibody includes amino acid 205, which is required for the function of the L1 ORF2 protein endonuclease. Using an in vitro L1 cleavage assay, we demonstrate that the monoclonal anti-ORF2 protein antibody partially inhibits L1 endonuclease activity without having any effect on the in vitro activity of the human AP endonuclease. Conclusions Overall, our data demonstrate that this anti-ORF2 protein monoclonal antibody is a useful tool for human L1-related studies and that it provides a rationale for the development of antibody-based inhibitors of L1-induced damage. Electronic supplementary material The online version of this article (doi:10.1186/s13100-014-0029-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Cecily B DeFreece
- Department of Biology, Xavier University, 1 Drexel Drive, Box 85, New Orleans, LA 70125-7918 USA
| | - Geraldine Servant
- Department of Epidemiology, Tulane School of Public Health, Tulane Cancer Center, New Orleans, LA 70112 USA
| | - Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
238
|
|
239
|
Drezen JM, Chevignon G, Louis F, Huguet E. Origin and evolution of symbiotic viruses associated with parasitoid wasps. CURRENT OPINION IN INSECT SCIENCE 2014; 6:35-43. [PMID: 32846671 DOI: 10.1016/j.cois.2014.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/18/2014] [Indexed: 06/11/2023]
Abstract
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus (IV) genera, originated from the integration of viruses in the genomes of two parasitoid wasp lineages. In a remarkable example of convergent evolution BVs evolved from the domestication of a nudivirus, while IVs originate from a different ancestral virus belonging to a new virus entity. In both cases the ancestor genomes have been maintained in wasp genomes as endogenous viral elements involved in production of particles containing DNA encoding virulence genes that are injected into lepidopteran hosts. However many PDV virulence genes appear to be of eukaryotic origin, and expansion and diversification of these genes have led to the production of novel PDVs in different wasp species that promote survival of offspring in particular hosts.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université F. Rabelais, 37200 Tours, France.
| | - Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université F. Rabelais, 37200 Tours, France
| | - Faustine Louis
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université F. Rabelais, 37200 Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université F. Rabelais, 37200 Tours, France.
| |
Collapse
|
240
|
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Santiago Morell
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Geoffrey J. Faulkner
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
241
|
Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nat Genet 2014; 46:1303-10. [DOI: 10.1038/ng.3137] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/09/2014] [Indexed: 11/08/2022]
|
242
|
|
243
|
Chen L, Dahlstrom JE, Lee SH, Rangasamy D. Naturally occurring endo-siRNA silences LINE-1 retrotransposons in human cells through DNA methylation. Epigenetics 2014; 7:758-71. [DOI: 10.4161/epi.20706] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
244
|
Upton KR, Baillie JK, Faulkner GJ. Is somatic retrotransposition a parasitic or symbiotic phenomenon? Mob Genet Elements 2014; 1:279-282. [PMID: 22545239 PMCID: PMC3337137 DOI: 10.4161/mge.18422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The extraordinary evolutionary success of transposable elements (TEs) invites us to question the nature of the co-evolutionary dynamics between TE and host. Although sometimes assumed to be wholly parasitic, TEs have penetrated and spread throughout eukaryotic genomes at a rate unparalleled by other parasites. This near-ubiquity, occurring despite the potentially deleterious effects of insertional mutagenesis, raises the possibility that a counterbalancing benefit exists for the host. Such a benefit may act at the population level to generate genomic diversity within a species and hence greater adaptability under new selective pressures, or at the level of primary gain for the individual. Recent studies have highlighted the occurrence of retrotransposition events in the germline and discovered a surprisingly high rate of mobilization in somatic cells. Here we examine the available evidence for somatic retrotransposition and discuss how this phenomenon may confer a selective advantage upon an individual or species.
Collapse
Affiliation(s)
- Kyle R Upton
- Division of Genetics and Genomics; The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh; Easter Bush, UK
| | | | | |
Collapse
|
245
|
Ohms S, Lee SH, Rangasamy D. LINE-1 retrotransposons and let-7 miRNA: partners in the pathogenesis of cancer? Front Genet 2014; 5:338. [PMID: 25339972 PMCID: PMC4188135 DOI: 10.3389/fgene.2014.00338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) retrotransposons are insertional mutagens capable of altering the genomic landscape in many ways. Activation of the normally silent LINE-1 retrotransposon is associated with a high level of cancer-associated DNA damage and genomic instability. Studies of LINE-1 have so far focused mainly on changes in gene expression, and our knowledge of its impact on functional non-coding RNAs is in its infancy. However, current evidence suggests that a significant number of human miRNAs originate from retrotransposon sequences. Furthermore, LINE-1 is generally not expressed in normal tissues while its expression is widespread in epithelial cancers. Based on our recent studies, we demonstrate a functional link between aberrant LINE-1 expression and deregulation of let-7 miRNA expression. Since the expression of let-7 is modulated by LINE-1 activity, we discuss possible mechanisms for this effect and how the silencing of LINE-1 activation could provide new therapeutic options for cancer treatment. Based on the deep sequencing of small RNAs in parallel with gene expression profiling in breast cancer cells, we have identified potential pathways linking L1 activity to let-7 processing and maturation and ultimately to the control of stemness in human cancer cells.
Collapse
Affiliation(s)
- Stephen Ohms
- Department of Molecular Bioscience, John Curtin School of Medical Research, The Australian National University Canberra, ACT, Australia
| | - Sung-Hun Lee
- Department of Molecular Bioscience, John Curtin School of Medical Research, The Australian National University Canberra, ACT, Australia ; Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Danny Rangasamy
- Department of Molecular Bioscience, John Curtin School of Medical Research, The Australian National University Canberra, ACT, Australia
| |
Collapse
|
246
|
Regulation of LINE-1 in mammals. Biomol Concepts 2014; 5:409-28. [DOI: 10.1515/bmc-2014-0018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/19/2014] [Indexed: 11/15/2022] Open
Abstract
AbstractTransposable elements (TEs) are mobile DNA elements that represent almost half of the human genome. Transposition of TEs has been implicated as a source of genome evolution and acquisition of new traits but also as an origin of diseases. The activity of these elements is therefore tightly regulated during the life cycle of each individual, and many recent discoveries involved the genetic and epigenetic mechanisms in their control. In this review, we present recent findings in this field of research, focusing on the case of one specific family of TEs: the long-interspersed nuclear elements-1 (LINE-1 or L1). LINE-1 elements are the most representative class of retrotransposons in mammalian genomes. We illustrate how these elements are conserved between mice and humans, and how they are regulated during the life cycle. Additionally, recent advances in genome-wide sequencing approaches allow us not only to better understand the regulation of LINE-1 but also highlight new issues specifically at the bioinformatics level. Therefore, we discuss the state of the art in analyzing such bioinformatics datasets to identify epigenetic regulators of repeated elements in the human genomes.
Collapse
|
247
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
248
|
Hayashi Y, Kajikawa M, Matsumoto T, Okada N. Mechanism by which a LINE protein recognizes its 3' tail RNA. Nucleic Acids Res 2014; 42:10605-17. [PMID: 25143533 PMCID: PMC4176376 DOI: 10.1093/nar/gku753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
LINEs mobilize their own copies via retrotransposition. LINEs can be divided into two types. One is a stringent type, which constitutes a majority of LINEs. The other is a relaxed type. To elucidate the molecular mechanism of retrotransposition, we used here two different zebrafish LINEs belonging to the stringent type. By using retrotransposition assays, we demonstrated that proteins (ORF2) encoded by an individual LINE recognize the cognate 3′ tail sequence of the LINE RNA strictly. By conducting in vitro binding assays with a variety of ORF2 proteins, we demonstrated that the region between the endonuclease and reverse transcriptase domains in ORF2 is the site at which the proteins bind the stem-loop structure of the 3′ tail RNA, showing that the strict recognition of the stem-loop structure by the cognate ORF2 protein is an important step in retrotransposition. This recognition can be bipartite, involving the general recognition of the stem by cTBR (conserved tail-binding region) of ORF2 and the specific recognition of the loop by vTBR (variable tail-binding region). This is the first report that clearly characterized the RNA-binding region in ORF2, providing the generality for the recognition mechanism of the RNA tail by the ORF2 protein encoded by LINEs.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takuma Matsumoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan Foundation for Advancement of International Science, Tsukuba 305-0821, Japan
| |
Collapse
|
249
|
Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr) 2014; 38:17-28. [PMID: 25113790 DOI: 10.1007/s13402-014-0180-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o IFC-CNR, via Moruzzi 1, 56124, Pisa, Italy
| | | | | |
Collapse
|
250
|
Extension of Saccharomyces paradoxus chronological lifespan by retrotransposons in certain media conditions is associated with changes in reactive oxygen species. Genetics 2014; 198:531-45. [PMID: 25106655 DOI: 10.1534/genetics.114.168799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retrotransposons are mobile DNA elements present throughout eukaryotic genomes that can cause mutations and genome rearrangements when they replicate through reverse transcription. Increased expression and/or mobility of retrotransposons has been correlated with aging in yeast, Caenorhabditis elegans, Drosophila melanogaster, and mammals. The many copies of retrotransposons in humans and various model organisms complicate further pursuit of this relationship. The Saccharomyces cerevisiae Ty1 retrotransposon was introduced into a strain of S. paradoxus that completely lacks retrotransposons to compare chronological lifespans (CLSs) of yeast strains with zero, low, or high Ty1 copy number. Yeast chronological lifespan reflects the progressive loss of cell viability in a nondividing state. Chronological lifespans for the strains were not different in rich medium, but were extended in high Ty1 copy-number strains in synthetic medium and in rich medium containing a low dose of hydroxyurea (HU), an agent that depletes deoxynucleoside triphosphates. Lifespan extension was not strongly correlated with Ty1 mobility or mutation rates for a representative gene. Buffering deoxynucleoside triphosphate levels with threonine supplementation did not substantially affect this lifespan extension, and no substantial differences in cell cycle arrest in the nondividing cells were observed. Lifespan extension was correlated with reduced reactive oxygen species during early stationary phase in high Ty1 copy strains, and antioxidant treatment allowed the zero Ty1 copy strain to live as long as high Ty1 copy-number strains in rich medium with hydroxyurea. This exceptional yeast system has identified an unexpected longevity-promoting role for retrotransposons that may yield novel insights into mechanisms regulating lifespan.
Collapse
|