201
|
Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H, Zhao X, Chen Y, Song B, Mei Z, Zhao Q, Wang F. USP13: Multiple Functions and Target Inhibition. Front Cell Dev Biol 2022; 10:875124. [PMID: 35445009 PMCID: PMC9014248 DOI: 10.3389/fcell.2022.875124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
As a deubiquitination (DUB) enzyme, ubiquitin-specific protease 13 (USP13) is involved in a myriad of cellular processes, such as mitochondrial energy metabolism, autophagy, DNA damage response, and endoplasmic reticulum-associated degradation (ERAD), by regulating the deubiquitination of diverse key substrate proteins. Thus, dysregulation of USP13 can give rise to the occurrence and development of plenty of diseases, in particular malignant tumors. Given its implications in the stabilization of disease-related proteins and oncology targets, considerable efforts have been committed to the discovery of inhibitors targeting USP13. Here, we summarize an overview of the recent advances of the structure, function of USP13, and its relations to diseases, as well as discovery and development of inhibitors, aiming to provide the theoretical basis for investigation of the molecular mechanism of USP13 action and further development of more potent druggable inhibitors.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zifan Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huijing Shi
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinmeng Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yihang Chen
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Bowei Song
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Feng Wang,
| |
Collapse
|
202
|
Kushnareva Y, Moraes V, Suess J, Peters B, Newmeyer DD, Kuwana T. Disruption of mitochondrial quality control genes promotes caspase-resistant cell survival following apoptotic stimuli. J Biol Chem 2022; 298:101835. [PMID: 35304098 PMCID: PMC9018395 DOI: 10.1016/j.jbc.2022.101835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed "minority MOMP." In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vivian Moraes
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Julian Suess
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Bjoern Peters
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald D Newmeyer
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tomomi Kuwana
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
203
|
Proteolysis-targeting chimeras: A promising technique in cancer therapy for gaining insights into tumor development. Cancer Lett 2022; 539:215716. [DOI: 10.1016/j.canlet.2022.215716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
|
204
|
Molecular mechanisms of reactive oxygen species in regulated cell deaths: Impact of ferroptosis in cancer therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
205
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
206
|
|
207
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
208
|
Corona SP, Walker F, Weinstock J, Lessene G, Faux M, Burgess AW. Dual drug targeting to kill colon cancers. Cancer Med 2022; 11:2612-2626. [PMID: 35301819 PMCID: PMC9249985 DOI: 10.1002/cam4.4641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/06/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is driven by a small set of oncogenic and tumour suppressor mutations. However, different combinations of mutations often lead to poor tumour responses to individual anticancer drugs. We have investigated the antiproliferative and in vitro cytotoxic activity of pair‐wise combinations of inhibitors which target specific signalling pathways in colon cancer cells. Objectives To target specific signaling pathways pairwise with inhibitors in order to kill colon cancer cells. Methods The effects of different concentrations of two inhibitors on the proliferation and viability of colon cancer cell lines were measured using cell titre glow and cytotoxic assays in 2D and 3D cell micro‐cultures. One successful drug combination was used to treat a colon cancer cell line growing as a xenograft in nude mice. Results Colon cancer cells in non‐adherent cultures were killed more effectively by combinations of pyrvinium pamoate (a Wnt pathway inhibitor) and ABT263 (a pro‐apoptotic Bcl‐2 family inhibitor) or Ly29004 (a PI3kinase inhibitor). However, in a mouse xenograft model, the formulation and toxicity of the ABT737/PP combination prevent the use of these drugs for treatment of tumours. Fortunately, oral analogues of PP (pyrvinium phosphate, PPh) and ABT737(ABT263) have equivalent activity and can be used for treatment of mice carrying SW620 colorectal cancer xenografts. The PPh/ABT263 induced SW620 tumour cell apoptosis and reduced the rate of SW620 tumour growth. Conclusion By combining a Wnt signaling inhibitor (pyrvinium phosphate) and a pro‐survival inhibitor (ABT263) colon cancer cells can be killed. Combinations of Wnt signalling inhibitors with an inhibitor of the Bcl pro‐survival protein family should be considered for the treatment of patients with precancerous colon adenomas or advanced colorectal cancers with APC mutations.
Collapse
Affiliation(s)
- Silvia Paola Corona
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Francesca Walker
- Structural Biology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Janet Weinstock
- Structural Biology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| | - Guillaume Lessene
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Chemical Biology Division, WEHI, Parkville, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| | - Maree Faux
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Antony W Burgess
- Structural Biology Division, WEHI, Parkville, Australia.,Personalised Oncology Division, WEHI, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia.,Ludwig Institute for Cancer Research, Parkville, Australia
| |
Collapse
|
209
|
Yi X, Jain N, Iles LR, Ayres ML, Wierda WG, Gandhi V. Targeting Mcl-1 by AMG-176 During Ibrutinib and Venetoclax Therapy in Chronic Lymphocytic Leukemia. Front Oncol 2022; 12:833714. [PMID: 35273915 PMCID: PMC8901605 DOI: 10.3389/fonc.2022.833714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
B-cell receptor (BCR) signaling pathway and Bcl-2 family prosurvival proteins, specifically Bcl-2 and Mcl-1, are functional in the pathobiology of chronic lymphocytic leukemia (CLL). A pivotal and apical molecule in the BCR pathway is Bruton’s tyrosine kinase (BTK). Together, BTK, Bcl-2, and Mcl-1 participate in the maintenance, migration, proliferation, and survival of CLL cells. Several ongoing and published clinical trials in CLL reported high rates of remission, namely, undetectable measurable residual disease (u-MRD) status with combined BTK inhibitor ibrutinib and Bcl-2 antagonist, venetoclax. While the majority of patients achieve complete remission with undetectable-measurable residual disease, at least one third of patients do not achieve this milestone. We hypothesized that cells persistent during ibrutinib and venetoclax therapy may be sensitive to combined venetoclax and Mcl-1 inhibitor, AMG-176. To test this hypothesis, we took peripheral blood samples at baseline, after Cycle 1 and Cycle 3 of ibrutinib monotherapy, after one week and 1 cycle of ibrutinib plus venetoclax therapy. These serial samples were tested for pharmacodynamic changes and treated in vitro with AMG-176 or in combination with venetoclax. Compared to C1D1 cells, residual cells during ibrutinib and venetoclax treatment were inherently resistant to endogenous cell death. Single agent exposure induced some apoptosis but combination of 100 nM venetoclax and 100 or 300 nM of AMG-176 resulted in 40–100% cell death in baseline samples. Cells obtained after four cycles of ibrutinib and one cycle of venetoclax, when treated with such concentration of venetoclax and AMG-176, showed 10–80% cell death. BCR signaling pathway, measured as autophosphorylation of BTK was inhibited throughout therapy in all post-therapy samples. Among four anti-apoptotic proteins, Mcl-1 and Bfl-1 decreased during therapy in most samples. Proapoptotic proteins decreased during therapy. Collectively, these data provide a rationale to test Mcl-1 antagonists alone or in combination in CLL during treatment with ibrutinib and venetoclax.
Collapse
Affiliation(s)
- Xue Yi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - LaKesla R Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
210
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
211
|
Castro MV, Barbero GA, Máscolo P, Ramos R, Quezada MJ, Lopez-Bergami P. ROR2 increases the chemoresistance of melanoma by regulating p53 and Bcl2-family proteins via ERK hyperactivation. Cell Mol Biol Lett 2022; 27:23. [PMID: 35260073 PMCID: PMC8903712 DOI: 10.1186/s11658-022-00327-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/28/2022] Open
Abstract
Background ROR2 is a tyrosine-kinase receptor whose expression is dysregulated in many human diseases. In cancer, ROR2 stimulates proliferation, survival, migration, and metastasis, and is associated with more aggressive tumor stages. The purpose of this work is to study the role of ROR2 in the chemoresistance of melanoma. Methods Gain- and loss-of-function experiments were used to study the biological function of ROR2 in melanoma. Cell death induced by chemotherapeutic drugs and BH-3 mimetics was evaluated using crystal violet cytotoxicity assays and annexin V/propidium iodide staining. Western blots were used to evaluate the expression of proteins implicated in cell death. The differences observed between cells with manipulation of ROR2 levels and control cells were evaluated using both Student’s t-test and ANOVA. Results We describe that ROR2 contributes to tumor progression by enhancing the resistance of melanoma cells to both chemotherapeutic drugs and BH-3 mimetics. We demonstrate that ROR2 reduced cell death upon treatment with cisplatin, dacarbazine, lomustine, camptothecin, paclitaxel, ABT-737, TW-37, and venetoclax. This effect was mediated by the inhibition of apoptosis. In addition, we investigated the molecular mechanisms implicated in this role of ROR2. We identified the MDM2/p53 pathway as a novel target of ROR2 since ROR2 positively regulates MDM2 levels, thus leading to p53 downregulation. We also showed that ROR2 also upregulates Mcl-1 and Bcl2-xL while it negatively regulates Bax and Bid expression. The effect of ROR2 on the expression of these proteins is mediated by the hyperactivation of ERK. Conclusions These results demonstrate that ROR2 contributes to melanoma progression by inhibiting apoptosis and increasing chemoresistance. These results not only position ROR2 as a marker of chemoresistance but also support its use as a novel therapeutic target in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00327-7.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Gastón Alexis Barbero
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Paula Máscolo
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - Rocío Ramos
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Biotecnológicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, 6th Floor, Lab 602, 1405, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 1425, Buenos Aires, Argentina.
| |
Collapse
|
212
|
Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, Nordstrøm LU, Narayanagari SR, Chi P, Vilar E, Tsirigos A, Gavathiotis E. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun 2022; 13:1199. [PMID: 35256598 PMCID: PMC8901805 DOI: 10.1038/s41467-022-28741-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/09/2022] [Indexed: 01/20/2023] Open
Abstract
Deregulation of the BCL-2 family interaction network ensures cancer resistance to apoptosis and is a major challenge to current treatments. Cancer cells commonly evade apoptosis through upregulation of the BCL-2 anti-apoptotic proteins; however, more resistant cancers also downregulate or inactivate pro-apoptotic proteins to suppress apoptosis. Here, we find that apoptosis resistance in a diverse panel of solid and hematological malignancies is mediated by both overexpression of BCL-XL and an unprimed apoptotic state, limiting direct and indirect activation mechanisms of pro-apoptotic BAX. Both survival mechanisms can be overcome by the combination of an orally bioavailable BAX activator, BTSA1.2 with Navitoclax. The combination demonstrates synergistic efficacy in apoptosis-resistant cancer cells, xenografts, and patient-derived tumors while sparing healthy tissues. Additionally, functional assays and genomic markers are identified to predict sensitive tumors to the combination treatment. These findings advance the understanding of apoptosis resistance mechanisms and demonstrate a novel therapeutic strategy for cancer treatment. Deregulation of the BCL-2 family interactions ensures cancer resistance to apoptosis and is a major challenge to current treatments. Here the authors describe a novel therapeutic strategy to overcome two anti-apoptotic mechanisms for cancer therapy.
Collapse
|
213
|
Mo Z, Li Q, Zhao K, Xu Q, Hu H, Chen X, Luo Y, Chi B, Liu L, Fang X, Liao G, Xu Z, Wang J, Yang S. A Nanoarchitectonic Approach Enables Triple Modal Synergistic Therapies To Enhance Antitumor Effects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10001-10014. [PMID: 35172581 DOI: 10.1021/acsami.1c20416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improvement of antitumor effects relies on the development of biocompatible nanomaterials and combination of various therapies to produce synergistic effects and avoid resistance. In this work, we developed GBD-Fe, a nanoformulation that effectively integrated chemotherapy (CT), chemodynamic therapy (CDT), and photothermal therapy (PTT). GBD-Fe used gold nanorods as photothermal agents and encapsulated doxorubicin to amplify Fe3+-guided CDT effects by producing H2O2 and reducing the intracellular glutathione levels. In vitro and in vivo experiments were conducted to demonstrate the enhanced accumulation and antitumor effects of this tripronged therapy under magnetic resonance imaging (MRI) guidance. This tripronged approach of CT/CDT/PTT effectively induced tumor cytotoxicity and inhibited tumor growth in tumor-bearing mice and therefore represents a promising strategy to effectively treat tumors.
Collapse
Affiliation(s)
- Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Qiuting Li
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Kan Zhao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Xu Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Yuxuan Luo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liping Liu
- Department of Hepatobiliary and Pancrease Surgery, Shenzhen People's Hospital (The Second Clinical Medical College Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Xiefan Fang
- Department of Toxicology, Charles River Laboratories, Inc., Reno, Nevada 89511, United States
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
214
|
Antika G, Cinar ZÖ, Seçen E, Özbil M, Tokay E, Köçkar F, Prandi C, Tumer TB. Strigolactone Analogs: Two New Potential Bioactiphores for Glioblastoma. ACS Chem Neurosci 2022; 13:572-580. [PMID: 35138812 PMCID: PMC8895406 DOI: 10.1021/acschemneuro.1c00702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Strigolactones (SLs), carotenoid-derived phytohormones, control the plant response and signaling pathways for stressful conditions. In addition, they impact numerous cellular processes in mammalians and present new scaffolds for various biomedical applications. Recent studies demonstrated that SLs possess potent antitumor activity against several cancer cells. Herein, we sought to elucidate the inhibitory effects of SL analogs on the growth and survival of human brain tumor cell lines. Among four tested SLs, we showed for the first time that two lead bioactiphores, indanone-derived SL and EGO10, can inhibit cancer cell proliferation, induce apoptosis, and induce G1 cell cycle arrest at low concentrations. SL analogs were marked by increased expression of Bax/Caspase-3 genes and downregulation of Bcl-2. In silico studies were conducted to identify drug-likeness, blood-brain barrier penetrating properties, and molecular docking with Bcl-2 protein. Taken together, this study indicates that SLs may be promising antiglioma agents, presenting novel pharmacophores for further preclinical and clinical assessment.
Collapse
Affiliation(s)
- Gizem Antika
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Zeynep Özlem Cinar
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Esma Seçen
- Graduate Program of Molecular Medicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany
| | - Mehmet Özbil
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze, Kocaeli, Turkey
| | - Esra Tokay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Feray Köçkar
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey
| |
Collapse
|
215
|
Elamin G, Aljoundi A, Soliman MES. Multi-catalytic Sites Inhibition of Bcl2 Induces Expanding of Hydrophobic Groove: A New Avenue Towards Waldenström Macroglobulinemia Therapy. Protein J 2022; 41:201-215. [PMID: 35237907 DOI: 10.1007/s10930-022-10046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
B-cell lymphoma 2 (Bcl2) is a key protein regulator of apoptosis. The hydrophobic groove in Bcl2 is a unique structural feature to this class of enzymes and found to have a profound impact on protein overall structure, function, and dynamics. Dynamics of the hydrophobic groove is an essential determinant of the catalytic activity of Bcl2, an implicated protein in Waldenström macroglobulinemia (WM). The mobility of α3-α4 helices around the catalytic site of the protein remains crucial to its activity. The preferential binding mechanisms of the multi-catalytic sites of the Bcl2 enzyme have been a subject of debate in the literature. In addition to our previous report on the same protein, herein, we further investigate the preferential binding modes and the conformational implications of Venetoclax-JQ1 dual drug binding at both catalytic active sites of Bcl2. Structural analysis revealed asymmetric α3-α4 helices movement with the expansion of the distance between the α3 and α4 helix in Venetoclax-JQ1 dual inhibition by 15.2% and 26.3%, respectively when compared to JQ1 and Venetoclax individual drug inhibition-resulting in remarkable widening of hydrophobic groove. Moreso, a reciprocal enhanced binding effect was observed: Venetoclax increased the binding affinity of JQ1 by 11.5%, while the JQ1 fostered the binding affinity of Venetoclax by 16.3% compared with individual inhibition of each drug. This divergence has also resulted in higher protein stability, and prominent correlated motions were observed with the least fluctuations and multiple van der Waals interactions. Findings offer vital conformational dynamics and structural mechanisms of enzyme-single ligand and enzyme-dual ligand interactions, which could potentially shift the current therapeutic protocol of Waldenström macroglobulinemia.
Collapse
Affiliation(s)
- Ghazi Elamin
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
216
|
Ahmadinejad F, Bos T, Hu B, Britt E, Koblinski J, Souers AJ, Leverson JD, Faber AC, Gewirtz DA, Harada H. Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Mol Pharmacol 2022; 101:168-180. [PMID: 34907000 PMCID: PMC8969145 DOI: 10.1124/molpharm.121.000354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.
Collapse
Affiliation(s)
- Fereshteh Ahmadinejad
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Tasia Bos
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Bin Hu
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Erin Britt
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Jennifer Koblinski
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Andrew J Souers
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Joel D Leverson
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Anthony C Faber
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - David A Gewirtz
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Hisashi Harada
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| |
Collapse
|
217
|
Zehnle PMA, Wu Y, Pommerening H, Erlacher M. Stayin‘ alive: BCL-2 proteins in the hematopoietic system. Exp Hematol 2022; 110:1-12. [PMID: 35315320 DOI: 10.1016/j.exphem.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
218
|
Wei X, Li M, Zheng Z, Ma J, Gao Y, Chen L, Peng Y, Yu S, Yang L. Senescence in chronic wounds and potential targeted therapies. BURNS & TRAUMA 2022; 10:tkab045. [PMID: 35187179 PMCID: PMC8853744 DOI: 10.1093/burnst/tkab045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
Chronic wounds (e.g. diabetic wounds, pressure wounds, vascular ulcers, etc.) do not usually heal in a timely and orderly manner but rather last for years and may lead to irreversible adverse events, resulting in a substantial financial burden for patients and society. Recently, a large amount of evidence has proven that cellular senescence has a crucial influence on chronic nonhealing wounds. As a defensive mechanism, cell senescence is a manner of cell-cycle arrest with increased secretory phenotype to resist death, preventing cells from stress-induced damage in cancer and noncancer diseases. A growing amount of research has advanced the perception of cell senescence in various chronic wounds and focuses on pathological and physiological processes and therapies targeting senescent cells. However, previous reviews have failed to sum up novel understandings of senescence in chronic wounds and emerging strategies targeting senescence. Herein, we discuss the characteristics and mechanisms of cellular senescence and the link between senescence and chronic wounds as well as some novel antisenescence strategies targeting other diseases that may be applied for chronic wounds.
Collapse
Affiliation(s)
- Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
219
|
Mureddu LG, Vuister GW. Fragment-Based Drug Discovery by NMR. Where Are the Successes and Where can It Be Improved? Front Mol Biosci 2022; 9:834453. [PMID: 35252355 PMCID: PMC8895297 DOI: 10.3389/fmolb.2022.834453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last century, the definitions of pharmaceutical drug and drug discovery have changed considerably. Evolving from an almost exclusively serendipitous approach, drug discovery nowadays involves several distinct, yet sometimes interconnected stages aimed at obtaining molecules able to interact with a defined biomolecular target, and triggering a suitable biological response. At each of the stages, a wide range of techniques are typically employed to obtain the results required to move the project into the next stage. High Throughput Screening (HTS) and Fragment Based Drug Design (FBDD) are the two main approaches used to identify drug-like candidates in the early stages of drug discovery. Nuclear Magnetic Resonance (NMR) spectroscopy has many applications in FBDD and is used extensively in industry as well as in academia. In this manuscript, we discuss the paths of both successful and unsuccessful molecules where NMR had a crucial part in their development. We specifically focus on the techniques used and describe strengths and weaknesses of each stage by examining several case studies. More precisely, we examine the development history from the primary screening to the final lead optimisation of AZD3839 interacting with BACE-1, ABT-199 interacting with BCL2/XL and S64315 interacting with MCL-1. Based on these studies, we derive observations and conclusions regarding the FBDD process by NMR and discuss its potential improvements.
Collapse
Affiliation(s)
| | - Geerten W. Vuister
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
220
|
Åkefeldt SO, Ismail MB, Belot A, Salvatore G, Bissay N, Gavhed D, Aricò M, Henter JI, Valentin H, Delprat C. Neutralizing Anti-IL-17A Antibody Demonstrates Preclinical Activity Enhanced by Vinblastine in Langerhans Cell Histiocytosis. Front Oncol 2022; 11:780191. [PMID: 35127485 PMCID: PMC8814633 DOI: 10.3389/fonc.2021.780191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterised by the accumulation into granulomas of apoptosis-resistant pathological dendritic cells (LCH-DCs). LCH outcome ranges from self-resolving to fatal. Having previously shown that, (i) monocyte-derived DCs (Mo-DCs) from LCH patients differentiate into abnormal and pro-inflammatory IL-17A-producing DCs, and (ii) recombinant IL-17A induces survival and chemoresistance of healthy Mo-DCs, we investigated the link between IL-17A and resistance to apoptosis of LCH-DCs. In LCH granulomas, we uncovered the strong expression of BCL2A1 (alias BFL1), an anti-apoptotic BCL2 family member. In vitro, intracellular IL-17A expression was correlated with BCL2A1 expression and survival of Mo-DCs from LCH patients. Based on the chemotherapeutic drugs routinely used as first or second line LCH therapy, we treated these cells with vinblastine, or cytarabine and cladribine. Our preclinical results indicate that high doses of these drugs decreased the expression of Mcl-1, the main anti-apoptotic BCL2 family member for myeloid cells, and killed Mo-DCs from LCH patients ex vivo, without affecting BCL2A1 expression. Conversely, neutralizing anti-IL-17A antibodies decreased BCL2A1 expression, the downregulation of which lowered the survival rate of Mo-DCs from LCH patients. Interestingly, the in vitro combination of low-dose vinblastine with neutralizing anti-IL-17A antibodies killed Mo-DCs from LCH patients. In conclusion, we show that BCL2A1 expression induced by IL-17A links the inflammatory environment to the unusual pro-survival gene activation in LCH-DCs. Finally, these preclinical data support that targeting both Mcl-1 and BCL2A1 with low-dose vinblastine and anti-IL-17A biotherapy may represent a synergistic combination for managing recurrent or severe forms of LCH.
Collapse
Affiliation(s)
- Selma Olsson Åkefeldt
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Mohamad Bachar Ismail
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Alexandre Belot
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France.,Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, Hospices Civils de Lyon, Bron, France
| | - Giulia Salvatore
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Radiotherapy Unit, Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Nathalie Bissay
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Unité de recherche "Lymphoma Immuno-Biology", Faculté de Médecine Lyon-Sud, Oullins, France
| | - Désirée Gavhed
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hélène Valentin
- Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| | - Christine Delprat
- UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Centre de Recherche en Cancérologie de Lyon (CRCL) - INSERM U1052 - CNRS UMR5286 - Centre Léon Bérard, Lyon, France
| |
Collapse
|
221
|
Boragine DM, Huang W, Su LH, Palzkill T. Deep Sequencing of a Systematic Peptide Library Reveals Conformationally-Constrained Protein Interface Peptides that Disrupt a Protein-Protein Interaction. Chembiochem 2022; 23:e202100504. [PMID: 34821011 PMCID: PMC8939392 DOI: 10.1002/cbic.202100504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Indexed: 02/06/2023]
Abstract
Disrupting protein-protein interactions is difficult due to the large and flat interaction surfaces of the binding partners. The BLIP and BLIP-II proteins are unrelated in sequence and structure and yet each potently inhibit β-lactamases. High-throughput oligonucleotide synthesis was used to construct a 12,470-member library containing overlapping linear and cyclic peptides ranging in size from 6 to 21 amino acids that scan through the sequences of BLIP and BLIP-II. Phage display affinity selections and deep sequencing revealed that, despite the differences in interaction surfaces with β-lactamases, rapid enrichment of consensus peptide regions originating from both BLIP and BLIP-II contact residues in the binding interface occurred. BLIP and BLIP-II peptides that were enriched by affinity selection were shown to bind β-lactamases and disrupt the BLIP/β-lactamase interaction. The results suggest that peptides that bind at and disrupt PPI interfaces can be identified through systematic peptide library construction, affinity selection, and deep sequencing.
Collapse
Affiliation(s)
- David M. Boragine
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wanzhi Huang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lynn H. Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
222
|
Joly F, Fabbro M, Follana P, Lequesne J, Medioni J, Lesoin A, Frenel JS, Abadie-Lacourtoisie S, Floquet A, Gladieff L, You B, Gavoille C, Kalbacher E, Briand M, Brachet PE, Giffard F, Weiswald LB, Just PA, Blanc-Fournier C, Leconte A, Clarisse B, Leary A, Poulain L. A phase II study of Navitoclax (ABT-263) as single agent in women heavily pretreated for recurrent epithelial ovarian cancer: The MONAVI – GINECO study. Gynecol Oncol 2022; 165:30-39. [DOI: 10.1016/j.ygyno.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022]
|
223
|
Bryant JD, Lei Y, VanPortfliet JJ, Winters AD, West AP. Assessing Mitochondrial DNA Release into the Cytosol and Subsequent Activation of Innate Immune-related Pathways in Mammalian Cells. Curr Protoc 2022; 2:e372. [PMID: 35175686 PMCID: PMC8986093 DOI: 10.1002/cpz1.372] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondria have emerged as key drivers of mammalian innate immune responses, functioning as signaling hubs to trigger inflammation and orchestrating metabolic switches required for phagocyte activation. Mitochondria also contain damage-associated molecular patterns (DAMPs), molecules that share similarity with pathogen-associated molecular patterns (PAMPs) and can engage innate immune sensors to drive inflammation. The aberrant release of mitochondrial DAMPs during cellular stress and injury is an increasingly recognized trigger of inflammatory responses in human diseases. Mitochondrial DNA (mtDNA) is a particularly potent DAMP that engages multiple innate immune sensors, although mounting evidence suggests that cytosolic mtDNA is primarily detected via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. cGAS and STING are widely expressed in mammalian cells and serve as key regulators of type I interferon and cytokine expression in both infectious and inflammatory diseases. Despite growing roles for the mtDNA-cGAS-STING axis in human disease, assays to quantify mtDNA release into the cytosol and approaches to link mtDNA to cGAS-STING signaling are not standardized, which increases the possibility for experimental artifacts and misinterpretation of data. Here, we present a series of protocols for assaying the release of mtDNA into the cytosol and subsequent activation of innate immune signaling in mammalian cells. We highlight genetic and pharmacological approaches to induce and inhibit mtDNA release from mitochondria. We also describe immunofluorescence microscopy and cellular fractionation assays to visualize morphological changes in mtDNA and quantify mtDNA accumulation in the cytosol. Finally, we include protocols to examine mtDNA-dependent cGAS-STING activation by RT-qPCR and western blotting. These methods can be performed with standard laboratory equipment and are highly adaptable to a wide range of mammalian cell types. They will permit researchers working across the spectrum of biological and biomedical sciences to accurately and reproducibly measure cytosolic mtDNA release and resulting innate immune responses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: siRNA-mediated knockdown of TFAM to induce mtDNA instability, cytosolic release, and activation of the cGAS-STING pathway Alternate Protocol: Pharmacological induction of mtDNA release and cGAS-STING activation using ABT-737 and Q-VD-OPH Basic Protocol 2: Isolation and quantitation of DNA from cytosolic, mitochondrial, and nuclear fractions Basic Protocol 3: Pharmacological inhibition of mtDNA replication and release.
Collapse
Affiliation(s)
- Joshua D. Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX
- These authors contributed equally
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX
- These authors contributed equally
| | - Jordyn J. VanPortfliet
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX
| | - Ashley D. Winters
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX
| |
Collapse
|
224
|
Li L, Li P, Song H, Ma X, Zeng S, Peng Y, Zhang G. Targeting entry into mitochondria for increased anticancer efficacy of BCL-X L-selective inhibitors in lung cancer. Pharmacol Res 2022; 177:106095. [PMID: 35074525 DOI: 10.1016/j.phrs.2022.106095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
The BCL-XL-selective inhibitors exhibit potential clinical application value when combined with chemotherapeutic drugs for the treatment of solid tumors. However, their efficacy in these settings is still low when treated with BCL-XL inhibitors alone in solid tumors. The mechanism responsible for the poor efficacy remains unclear. We show here that unable to interact with target of BCL-XL-selective inhibitors caused by invalid entry into mitochondria is essential for their inefficacy in solid tumors. We demonstrated in non-small-cell lung cancer (NSCLC) cells that the instability of A-1155463 in cells as well as invalid entry into mitochondria of A-1331852, two BCL-XL-selective inhibitors, accounted for their off-target problems. Furthermore, we found that a mitochondria-targeted, non-toxic small molecule NA-2a improved the on-target effect of A-1331852 to enhance its apoptotic regulatory activity, thereby increasing its anticancer activity in NSCLC. Our results indicated that NA-2a was selectively enriched in mitochondria transported by organic-anion-transporting polypeptide (OATP) transporters, which altered the permeability of the mitochondrial membrane, thereby promoting the entrance of A-1331852 to mitochondria and enhancing its disruption of the BIM-BCL-XL complex, which finally led to the increased anticancer activity in vitro and in vivo. Collectively, our data provided overwhelming evidence that the combination of NA-2a and A-1331852 could be used as a promising synergistic therapeutic agent in NSCLC therapy.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huanhuan Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
225
|
Westhoff MA, Schuler-Ortoli M, Zerrinius D, Hadzalic A, Schuster A, Strobel H, Scheuerle A, Wong T, Wirtz CR, Debatin KM, Peraud A. Bcl-XL but Not Bcl-2 Is a Potential Target in Medulloblastoma Therapy. Pharmaceuticals (Basel) 2022; 15:ph15010091. [PMID: 35056150 PMCID: PMC8779796 DOI: 10.3390/ph15010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023] Open
Abstract
Medulloblastoma (MB) is the most common solid tumour in children and, despite current treatment with a rather aggressive combination therapy, accounts for 10% of all deaths associated with paediatric cancer. Breaking the tumour cells’ intrinsic resistance to therapy-induced cell death should lead to less aggressive and more effective treatment options. In other tumour entities, this has been achieved by modulating the balance between the various pro- and anti-apoptotic members of the Bcl-2 family with small molecule inhibitors. To evaluate the therapeutic benefits of ABT-199 (Venetoclax), a Bcl-2 inhibitor, and ABT-263 (Navitoclax), a dual Bcl-XL/Bcl-2 inhibitor, increasingly more relevant model systems were investigated. Starting from established MB cell lines, progressing to primary patient-derived material and finally an experimental tumour system imbedded in an organic environment were chosen. Assessment of the metabolic activity (a surrogate readout for population viability), the induction of DNA fragmentation (apoptosis) and changes in cell number (the combined effect of alterations in proliferation and cell death induction) revealed that ABT-263, but not ABT-199, is a promising candidate for combination therapy, synergizing with cell death-inducing stimuli. Interestingly, in the experimental tumour setting, the sensitizing effect of ABT-263 seems to be predominantly mediated via an anti-proliferative and not a pro-apoptotic effect, opening a future line of investigation. Our data show that modulation of specific members of the Bcl-2 family might be a promising therapeutic addition for the treatment of MB.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
- Correspondence: (M.-A.W.); (A.P.); Tel.: +49-731-500-57495 (M.-A.W.); +49-731-500-55001 (A.P.)
| | - Marie Schuler-Ortoli
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Daniela Zerrinius
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Amina Hadzalic
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | - Andrea Schuster
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | | | - Tiana Wong
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, 89075 Ulm, Germany; (A.S.); (H.S.); (T.W.); (K.-M.D.)
| | - Aurelia Peraud
- Section Pediatric Neurosurgery, Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany; (M.S.-O.); (D.Z.); (A.H.)
- Correspondence: (M.-A.W.); (A.P.); Tel.: +49-731-500-57495 (M.-A.W.); +49-731-500-55001 (A.P.)
| |
Collapse
|
226
|
Särchen V, Shanmugalingam S, Kehr S, Reindl LM, Greze V, Wiedemann S, Boedicker C, Jacob M, Bankov K, Becker N, Wehner S, Theilen TM, Gretser S, Gradhand E, Kummerow C, Ullrich E, Vogler M. Pediatric multicellular tumor spheroid models illustrate a therapeutic potential by combining BH3 mimetics with Natural Killer (NK) cell-based immunotherapy. Cell Death Dis 2022; 8:11. [PMID: 35013156 PMCID: PMC8748928 DOI: 10.1038/s41420-021-00812-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
The induction of apoptosis is a direct way to eliminate tumor cells and improve cancer therapy. Apoptosis is tightly controlled by the balance of pro- and antiapoptotic Bcl-2 proteins. BH3 mimetics neutralize the antiapoptotic function of Bcl-2 proteins and are highly promising compounds inducing apoptosis in several cancer entities including pediatric malignancies. However, the clinical application of BH3 mimetics in solid tumors is impeded by the frequent resistance to single BH3 mimetics and the anticipated toxicity of high concentrations or combination treatments. One potential avenue to increase the potency of BH3 mimetics is the development of immune cell-based therapies to counteract the intrinsic apoptosis resistance of tumor cells and sensitize them to immune attack. Here, we describe spheroid cultures of pediatric cancer cells that can serve as models for drug testing. In these 3D models, we were able to demonstrate that activated allogeneic Natural Killer (NK) cells migrated into tumor spheroids and displayed cytotoxicity against a wide range of pediatric cancer spheroids, highlighting their potential as anti-tumor effector cells. Next, we investigated whether treatment of tumor spheroids with subtoxic concentrations of BH3 mimetics can increase the cytotoxicity of NK cells. Notably, the cytotoxic effects of NK cells were enhanced by the addition of BH3 mimetics. Treatment with either the Bcl-XL inhibitor A1331852 or the Mcl-1 inhibitor S63845 increased the cytotoxicity of NK cells and reduced spheroid size, while the Bcl-2 inhibitor ABT-199 had no effect on NK cell-mediated killing. Taken together, this is the first study to describe the combination of BH3 mimetics targeting Bcl-XL or Mcl-1 with NK cell-based immunotherapy, highlighting the potential of BH3 mimetics in immunotherapy.
Collapse
Affiliation(s)
- Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Senthan Shanmugalingam
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sarah Kehr
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children's Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Experimental Immunology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Victoria Greze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Experimental Immunology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sara Wiedemann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Maureen Jacob
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nina Becker
- Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sibylle Wehner
- Children's Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Till M Theilen
- Department of Pediatric Surgery and Pediatric Urology, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Steffen Gretser
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Elise Gradhand
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Carsten Kummerow
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Saarland, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Experimental Immunology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany. .,German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt am Main, Germany.
| |
Collapse
|
227
|
Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 2022; 22:45-64. [PMID: 34663943 DOI: 10.1038/s41568-021-00407-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Apoptosis is a form of programmed cell death that is regulated by the balance between prosurvival and proapoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark of cancer that arises when this balance is tipped in favour of survival. One form of anticancer therapeutic, termed 'BH3-mimetic drugs', has been developed to directly activate the apoptosis machinery in malignant cells. These drugs bind to and inhibit specific prosurvival BCL-2 family proteins, thereby mimicking their interaction with the BH3 domains of proapoptotic BCL-2 family proteins. The BCL-2-specific inhibitor venetoclax is approved by the US Food and Drug Administration and many regulatory authorities worldwide for the treatment of chronic lymphocytic leukaemia and acute myeloid leukaemia. BH3-mimetic drugs targeting other BCL-2 prosurvival proteins have been tested in preclinical models of cancer, and drugs targeting MCL-1 or BCL-XL have advanced into phase I clinical trials for certain cancers. As with all therapeutics, efficacy and tolerability need to be carefully balanced to achieve a therapeutic window whereby there is significant anticancer activity with an acceptable safety profile. In this Review, we outline the current state of BH3-mimetic drugs targeting various prosurvival BCL-2 family proteins and discuss emerging data regarding primary and acquired resistance to these agents and approaches that may overcome this. We highlight issues that need to be addressed to further advance the clinical application of BH3-mimetic drugs, both alone and in combination with additional anticancer agents (for example, standard chemotherapeutic drugs or inhibitors of oncogenic kinases), for improved responses in patients with cancer.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Mary Ann Anderson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
228
|
Lee JM, Kim HS, Kim A, Chang YS, Lee JG, Cho J, Kim EY. ABT-737, a BH3 Mimetic, Enhances the Therapeutic Effects of Ionizing Radiation in K-ras Mutant Non-Small Cell Lung Cancer Preclinical Model. Yonsei Med J 2022; 63:16-25. [PMID: 34913280 PMCID: PMC8688371 DOI: 10.3349/ymj.2022.63.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Tumor radioresistance and dose-limiting toxicity restrict the curative potential of radiotherapy, requiring novel approaches to overcome the limitations and augment the efficacy. Here, we investigated the effects of signal transducer and activator of transcription 3 (STAT3) activation and autophagy induction by irradiation on antiapoptotic proteins and the effectiveness of the BH3 mimetic ABT-737 as a radiosensitizer using K-ras mutant non-small cell lung cancer (NSCLC) cells and a KrasG12D:p53fl/fl mouse (KP mouse) model. MATERIALS AND METHODS A549 and H460 cells were irradiated, and the expression of Bcl-2 family proteins, JAK/STAT transcriptional pathway, and autophagic pathway were evaluated by immunoblotting. The radiosensitizing effects of ABT-737 were evaluated using A549 and H460 cell lines with clonogenic assays and also by a KP mouse model with microcomputed tomography and immunohistochemistry. RESULTS In A549 and H460 cells and mouse lung tissue, irradiation-induced overexpression of the antiapoptotic molecules Bcl-xL, Bcl-2, Bcl-w, and Mcl-1 through JAK/STAT transcriptional signaling induced dysfunction of the autophagic pathway. After treatment with ABT-737 and exposure to irradiation, the number of surviving clones in the cotreatment group was significantly lower than that in the group treated with radiation or ABT-737 alone. In the KP mouse lung cancer model, cotreatment with ABT-737 and radiation-induced significant tumor regression; however, body weight changes in the combination group were not significantly different, suggesting that combination treatment did not cause systemic toxicity. CONCLUSION These findings supported the radiosensitizing activity of ABT-737 in preclinical models, and suggested that clinical trials using this strategy may be beneficial in K-ras mutant NSCLC.
Collapse
Affiliation(s)
- Jung Mo Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hey Soo Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Arum Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
229
|
Dai H, Meng XW, Ye K, Jia J, Kaufmann SH. Therapeutics targeting BCL2 family proteins. MECHANISMS OF CELL DEATH AND OPPORTUNITIES FOR THERAPEUTIC DEVELOPMENT 2022:197-260. [DOI: 10.1016/b978-0-12-814208-0.00007-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
230
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
231
|
Selective BH3 mimetics synergize with BET inhibition to induce mitochondrial apoptosis in rhabdomyosarcoma cells. Neoplasia 2021; 24:109-119. [PMID: 34959030 PMCID: PMC8718565 DOI: 10.1016/j.neo.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Co-inhibition of BET proteins and anti-apoptotic BCL-2 proteins induces apoptosis in RMS. JQ1 and BH3-mimetics synergistically induce cell death in RMS. Cell death is caspase-dependent and displays hallmarks of intrinsic apoptosis. JQ1/A-1331852-mediated apoptosis is dependent on BIM and NOXA. JQ1/S638450-mediated apoptosis is dependent on BIM but not NOXA.
BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.
Collapse
|
232
|
Kifle ZD, Tadele M, Alemu E, Gedamu T, Ayele AG. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med 2021; 9:20503121211067083. [PMID: 34992782 PMCID: PMC8725032 DOI: 10.1177/20503121211067083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in cancer diagnosis, prevention, detection, as well as management, the disease is expected to be the top cause of death globally. The chemotherapy approach for cancer has become more advanced in its design, yet no medication can cure enough against all types of cancer and its stage. Thus, this review aimed to summarize a recent development of new therapeutic agents and novel drug targets for the treatment of cancer. Several obstacles stand in the way of effective cancer treatment and drug development, including inaccessibility of tumor site by appropriate drug concentration, debilitating untoward effects caused by non-selective tissue distribution of chemotherapeutic agents, and occurrence of drug resistance, which leads to cross-resistance to a variety of drugs. Resistance to treatment with anticancer drugs results from multiple factors and the most common reason for acquiring drug resistance is marking and expelling drugs that prevent cancer cells to be targeted by chemotherapeutic agents. Moreover, insensitivity to drug-induced apoptosis, alteration, and mutation of drug target and interference/change of DNA replication are other main causes of treatment failure.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Meklit Tadele
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Eyerusalem Alemu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tadele Gedamu
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
233
|
Bui ATN, Son H, Park S, Oh S, Kim JS, Cho JH, Hwang HJ, Kim JH, Yi GS, Chi SW. Artificial intelligence-based identification of octenidine as a Bcl-xL inhibitor. Biochem Biophys Res Commun 2021; 588:97-103. [PMID: 34953212 DOI: 10.1016/j.bbrc.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022]
Abstract
Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.
Collapse
Affiliation(s)
- Anh Thi Ngoc Bui
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hyojin Son
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Sohee Oh
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hye-Jin Hwang
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Republic of Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
234
|
Lee A, Jin HO, Masudul Haque M, Kim HY, Jung H, Park JH, Kim I, Song JY, Yoon HK, Kim HK, Han J, Park IC, Kim KS, Park SG. Synergism of a novel MCL‑1 downregulator, acriflavine, with navitoclax (ABT‑263) in triple‑negative breast cancer, lung adenocarcinoma and glioblastoma multiforme. Int J Oncol 2021; 60:2. [PMID: 34913076 PMCID: PMC8698747 DOI: 10.3892/ijo.2021.5292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Myeloid cell leukemia sequence 1 (MCL‑1), an anti‑apoptotic B‑cell lymphoma 2 (BCL‑2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL‑1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL‑1 blockers, the present study presented acriflavine (ACF) as a novel MCL‑1 inhibitor in triple‑negative breast cancer (TNBC). Further evaluation of its treatment potential on lung adenocarcinoma and glioblastoma multiforme (GBM) was also investigated. The anticancer effect of ACF on TNBC cells was demonstrated when MDA‑MB‑231 and HS578T cells were treated with ACF. ACF significantly induced typical intrinsic apoptosis in TNBCs in a dose‑ and time‑dependent manner via MCL‑1 downregulation. MCL‑1 downregulation by ACF treatment was revealed at each phase of protein expression. Initially, transcriptional regulation via reverse transcription‑quantitative PCR was validated. Then, post‑translational regulation was explained by utilizing an inhibitor against protein biosynthesis and proteasome. Lastly, immunoprecipitation of ubiquitinated MCL‑1 confirmed the post‑translational downregulation of MCL‑1. In addition, the synergistic treatment efficacy of ACF with the well‑known MCL‑1 inhibitor ABT‑263 against the TNBC cells was explored [combination index (CI)<1]. Conjointly, the anticancer effect of ACF was assessed in GBM (U87, U251 and U343), and lung cancer (A549 and NCI‑H69) cell lines as well, using immunoblotting, cytotoxicity assay and FACS. The effect of the combination treatment using ACF and ABT‑263 was estimated in GBM (U87, U343 and U251), and non‑small cell lung cancer (A549) cells likewise. The present study suggested a novel MCL‑1 inhibitory function of ACF and the synergistic antitumor effect with ABT‑263.
Collapse
Affiliation(s)
- Anbok Lee
- Department of Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Md Masudul Haque
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hee Yeon Kim
- Department of Surgery, Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Hana Jung
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jin Hee Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Ilwhan Kim
- Department of Internal Medicine, Division of Oncology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Republic of Korea
| | - Joo Yeon Song
- Department of Pathology, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Hye Kyoung Yoon
- Department of Pathology, Inje University, Busan 47392, Republic of Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47397, Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, College of Medicine, Inje University, Busan 47397, Republic of Korea
| | - In-Chul Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sae Gwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
235
|
Ferrari F, Bissaro M, Fabbian S, De Almeida Roger J, Mammi S, Moro S, Bellanda M, Sturlese M. HT-SuMD: making molecular dynamics simulations suitable for fragment-based screening. A comparative study with NMR. J Enzyme Inhib Med Chem 2021; 36:1-14. [PMID: 33115279 PMCID: PMC7598995 DOI: 10.1080/14756366.2020.1838499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is one of the most efficient methods to develop new drugs. We present here a new computational protocol called High-Throughput Supervised Molecular Dynamics (HT-SuMD), which makes it possible to automatically screen up to thousands of fragments, representing therefore a new valuable resource to prioritise fragments in FBLD campaigns. The protocol was applied to Bcl-XL, an oncological protein target involved in the regulation of apoptosis through protein-protein interactions. Initially, HT-SuMD performances were validated against a robust NMR-based screening, using the same set of 100 fragments. These independent results showed a remarkable agreement between the two methods. Then, a virtual screening on a larger library of additional 300 fragments was carried out and the best hits were validated by NMR. Remarkably, all the in silico selected fragments were confirmed as Bcl-XL binders. This represents, to date, the largest computational fragments screening entirely based on MD.
Collapse
Affiliation(s)
- Francesca Ferrari
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Simone Fabbian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Jessica De Almeida Roger
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
236
|
Kassab AE, Gedawy EM, Hamed MIA, Doghish AS, Hassan RA. Design, synthesis, anticancer evaluation, and molecular modelling studies of novel tolmetin derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:922-939. [PMID: 33896327 PMCID: PMC8079033 DOI: 10.1080/14756366.2021.1901089] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Novel tolmetin derivatives 5a-f to 8a-c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Mohammed I. A. Hamed
- Faculty of Pharmacy, Department of Organic and Medicinal Chemistry, Fayoum University, Fayoum, Egypt
| | - Ahmed S. Doghish
- Faculty of Pharmacy (Boys), Department of Biochemistry, Al-Azhar University, Nasr City, Cairo, Egypt
- Faculty of Pharmacy, Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Rasha A. Hassan
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
237
|
Lee S, Wang EY, Steinberg AB, Walton CC, Chinta SJ, Andersen JK. A guide to senolytic intervention in neurodegenerative disease. Mech Ageing Dev 2021; 200:111585. [PMID: 34627838 PMCID: PMC8627445 DOI: 10.1016/j.mad.2021.111585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Cellular senescence is a potential tumor-suppressive mechanism that generally results in an irreversible cell cycle arrest. Senescent cells accumulate with age and actively secrete soluble factors, collectively termed the 'senescence-associated secretory phenotype' (SASP), which has both beneficial and detrimental effects. Although the contribution of senescent cells to age-related pathologies has been well-established outside the brain, emerging evidence indicates that brain cells also undergo cellular senescence and contribute to neuronal loss in the context of age-related neurodegenerative diseases. Contribution of senescent cells in the pathogenesis of neurological disorders has led to the possibility of eliminating senescence cells via pharmacological compounds called senolytics. Recently several senolytics have been demonstrated to elicit improved cognitive performance and healthspan in mouse models of neurodegeneration. However, their translation for use in the clinic still holds several potential challenges. This review summarizes available senolytics, their purported mode of action, and possible off-target effects. We also discuss possible alternative strategies that may help minimize potential side-effects associated with the senolytics approach.
Collapse
Affiliation(s)
- Suckwon Lee
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Ellen Y Wang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Alexandra B Steinberg
- University of Wisconsin Department of Biochemistry, 433 Babcock Drive., Madison, WI, 53706, USA
| | - Chaska C Walton
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA, 94592, USA.
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
238
|
Zhen W, An S, Wang S, Hu W, Li Y, Jiang X, Li J. Precise Subcellular Organelle Targeting for Boosting Endogenous-Stimuli-Mediated Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101572. [PMID: 34611949 DOI: 10.1002/adma.202101572] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Though numerous external-stimuli-triggered tumor therapies, including phototherapy, radiotherapy, and sonodynamic therapy have made great progress in cancer therapy, the low penetration depth of the laser, safety concerns of radiation, the therapeutic resistance, and the spatio-temporal constraints of the specific equipment restrict their convenient clinical applications. What is more, the inherent physiological barriers of the tumor microenvironment (TME), including hypoxia, heterogeneity, and high expression of antioxidant molecules also restrict the efficiency of tumor therapy. As a result, the development of nanoplatforms responsive to endogenous stimuli (such as glucose, acidic pH, cellular redox events, and etc.) has attracted great attention for starvation therapy, ion therapy, prodrug-mediated chemotherapy, or enzyme-catalyzed therapy. In addition, nanomedicines can be modified by some targeted units for precisely locating in subcellular organelles and boosting the destroying of tumor tissue, decreasing the dosage of nanoagents, reducing side effects, and enhancing the therapeutic efficiency. Herein, the properties of the TME, the advantages of endogenous stimuli, and the principles of subcellular-organelle-targeted strategies will be emphasized. Some necessary considerations for the exploitation of precision medicine and clinical translation of multifunctional nanomedicines in the future are also pointed out.
Collapse
Affiliation(s)
- Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuqi Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxue Hu
- Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Yujie Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
239
|
Chen H, Wan Y, Cui X, Li S, Lee C. Recent Advances in Hypoxia-Overcoming Strategy of Aggregation-Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Adv Healthc Mater 2021; 10:e2101607. [PMID: 34674386 DOI: 10.1002/adhm.202101607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/06/2021] [Indexed: 12/17/2022]
Abstract
Hypoxia is an inherent physiologic barrier in the microenvironment of solid tumor and has badly restricted the therapeutic effect of photodynamic therapy (PDT). Meanwhile, the photosensitizer (PS) agents used for PDT applications regularly encounter the tiresome aggregation-caused quenching effect that seriously decreases the production efficiency of cytotoxic reactive oxygen species. The aggregation-induced emission (AIE) PSs with antiquenching characteristics in the aggregate state are considered as a promising tool for achieving highly efficient PDT applications, and plenty of studies have widely demonstrated their advantages in various diseases. Herein, the recent progress of AIE PSs in the battle of antitumor hypoxia issue is summarized and the practical molecular principles of hypoxia-overcoming AIE PSs are highlighted. According to the hypoxia-overcoming mechanism, these representative cases are divided into low O2 -dependent (type I PDT) and O2 -dependent tactics (mainly including O2 -enrichment type II PDT and combination therapy). Furthermore, the underlying challenges and prospects of AIE PSs in hypoxia-overcoming PDT are proposed and thus expect to promote the next development of AIE PSs.
Collapse
Affiliation(s)
- Huan Chen
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
240
|
Wang Z, Guo K, Gao P, Pu Q, Li C, Hur J, Wu M. Repurposable drugs for SARS-CoV-2 and influenza sepsis with scRNA-seq data targeting post-transcription modifications. PRECISION CLINICAL MEDICINE 2021; 4:215-230. [PMID: 34993416 PMCID: PMC8694063 DOI: 10.1093/pcmedi/pbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. The lack of time for new drug discovery and the urgent need for rapid disease control to reduce mortality have led to a search for quick and effective alternatives to novel therapeutics, for example drug repurposing. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from patients with mild and severe COVID-19 (GEO: GSE145926, public data available and accessed on 22 April 2020). We identified 281 FDA-approved drugs that have the potential to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested and demonstrated the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a, two chemical inhibitors of glycosylation (a post-translational modification) on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus as well as on the transcription and translation of host cell cytokines and their regulators (IFNs and ISGs). In conclusion, we have identified and experimentally validated repurposable anti-SARS-CoV-2 and IAV drugs using a systems biology approach, which may have the potential for treating these viral infections and their complications (sepsis).
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
241
|
Synthesis of methoxy poly(ethylene glycol)-poly(ε-caprolactone) diblock copolymers hybridized with DDAB cationic lipid as the efficient nanocarriers for in vitro delivery of lycopene into MCF-7 breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
242
|
Makowka P, Stolp V, Stoschek K, Serve H. Molecular determinants of therapy response of venetoclax-based combinations in acute myeloid leukemia. Biol Chem 2021; 402:1547-1564. [PMID: 34700366 DOI: 10.1515/hsz-2021-0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, highly malignant disease of the bone marrow. After decades of slow progress, recent years saw a surge of novel agents for its treatment. The most recent advancement is the registration of the Bcl-2 inhibitor ventoclax in combination with a hypomethylating agent (HMA) in the US and Europe for AML patients not eligible for intensive chemotherapy. Treatment of newly diagnosed AML patients with this combination results in remission rates that so far could only be achieved with intensive treatment. However, not all AML patients respond equally well, and some patients relapse early, while other patients experience longer periods of complete remission. A hallmark of AML is its remarkable genetic, molecular and clinical heterogeneity. Here, we review the current knowledge about molecular features of AML that help estimate the probability of response to venetoclax-containing therapies. In contrast to other newly developed AML therapies that target specific recurrent molecular alterations, it seems so far that responses are not specific for a certain subgroup. One exception is spliceosome mutations, where good response has been observed in clinical trials with venetoclax/azacitidine. These mutations are rather associated with a more unfavorable outcome with chemotherapy. In summary, venetoclax in combination with hypomethylating agents represents a significant novel option for AML patients with various molecular aberrations. Mechanisms of primary and secondary resistance seem to overlap with those towards chemotherapy.
Collapse
Affiliation(s)
- Philipp Makowka
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Verena Stolp
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
| | - Karoline Stoschek
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine 2, Hematology, Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- University Hospital Frankfurt, Frankfurt am Main, German Cancer Consortium (DKTK), partner site Frankfurt and DKFZ, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), D-60590 Frankfurt am Main, Germany
| |
Collapse
|
243
|
Siddiqui M, Konopleva M. Keeping up with venetoclax for leukemic malignancies: key findings, optimal regimens and clinical considerations. Expert Rev Clin Pharmacol 2021; 14:1497-1512. [PMID: 34791957 DOI: 10.1080/17512433.2021.2008239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Venetoclax has transformed the treatment landscape in hematologic malignancies, especially in elderly population. With high rates of remission, deep and durable responses, and safe toxicity profile, venetoclax in combination therapy has been extremely effective, garnering accelerated approval and becoming standard of care in lymphoid and myeloid malignancies. AREAS COVERED The role of venetoclax in the intrinsic apoptotic pathway is covered. This includes preclinical and clinical experience of venetoclax monotherapy and combination therapy in relapsed/refractory and frontline CLL, AML, ALL and high-risk MDS, with an emphasis on key clinical trials and efficacy of combination regimens in distinct mutational landscapes. Strategies to mitigate myelosuppression, manage dose adjustments and infectious complications are addressed. EXPERT OPINION Targeting BCL-2 offers a safe and highly effective adjunct to available therapies in hematologic malignancies. Despite success and frequent utilization of venetoclax, several resistance mechanisms have been elucidated, prompting development of novel combinatorial strategies. Further, on-target myelosuppression of venetoclax is a key obstacle in clinical practice, requiring diligent monitoring and practice-based knowledge of dose modifications. Despite these limitations, venetoclax has gained tremendous popularity in hematologic-oncology, becoming an integral component of numerous combination regimes, with ongoing plethora of clinical trials encompassing standard chemotherapy, targeted agents and immune-based approaches.
Collapse
Affiliation(s)
- Maria Siddiqui
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX, 77030, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 428, Houston, TX, 77030, USA
| |
Collapse
|
244
|
Müller D, Mazzeo P, Koch R, Bösherz MS, Welter S, von Hammerstein-Equord A, Hinterthaner M, Cordes L, Belharazem D, Marx A, Ströbel P, Küffer S. Functional apoptosis profiling identifies MCL-1 and BCL-xL as prognostic markers and therapeutic targets in advanced thymomas and thymic carcinomas. BMC Med 2021; 19:300. [PMID: 34781947 PMCID: PMC8594228 DOI: 10.1186/s12916-021-02158-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Multi-omics studies have shown a high and lack of common driver mutations in most thymomas (TH) and thymic carcinomas (TC) that hamper the development of novel treatment approaches. However, deregulation of apoptosis has been proposed as a common hallmark of TH and TC. BH3 profiling can be utilized to study the readiness of living cancer cells to undergo apoptosis and their dependency on pro-survival BCL-2 family proteins. METHODS We screened a cohort of 62 TH and TC patient samples for expression of BCL-2 family proteins and used the TC cell line 1889c and native TH for dynamic BH3 profiling and treatment with BH3 mimetics. RESULTS Immunohistochemical overexpression of MCL-1 and BCL-xL was a strong prognostic marker of TH and TC, and BH3 profiling indicated a strong dependency on MCL-1 and BCL-xL in TH. Single inhibition of MCL-1 resulted in increased binding of BIM to BCL-xL as an escape mechanism that the combined inhibition of both factors could overcome. Indeed, the inhibition of MCL-1 and BCL-xL in combination induced apoptosis in a caspase-dependent manner in untreated and MCL-1-resistant 1889c cells. CONCLUSION TH and TC are exquisitely dependent on the pro-survival factors MCL-1 and BCL-xL, making them ideal candidates for co-inhibition by BH3 mimetics. Since TH show a heterogeneous dependency on BCL-2 family proteins, upfront BH3 profiling could select patients and tailor the optimal therapy with the least possible toxicity.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Paolo Mazzeo
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Raphael Koch
- Department of Haematology and Medical Oncology, University Medical Centre Göttingen, Göttingen, Germany
| | - Mark-Sebastian Bösherz
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stefan Welter
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | | | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Lucia Cordes
- Thoracic Surgery Department, Lung Clinic Hemer, Hemer, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
245
|
Bock FJ, Sedov E, Koren E, Koessinger AL, Cloix C, Zerbst D, Athineos D, Anand J, Campbell KJ, Blyth K, Fuchs Y, Tait SWG. Apoptotic stress-induced FGF signalling promotes non-cell autonomous resistance to cell death. Nat Commun 2021; 12:6572. [PMID: 34772930 PMCID: PMC8590049 DOI: 10.1038/s41467-021-26613-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Damaged or superfluous cells are typically eliminated by apoptosis. Although apoptosis is a cell-autonomous process, apoptotic cells communicate with their environment in different ways. Here we describe a mechanism whereby cells under apoptotic stress can promote survival of neighbouring cells. We find that upon apoptotic stress, cells release the growth factor FGF2, leading to MEK-ERK-dependent transcriptional upregulation of pro-survival BCL-2 proteins in a non-cell autonomous manner. This transient upregulation of pro-survival BCL-2 proteins protects neighbouring cells from apoptosis. Accordingly, we find in certain cancer types a correlation between FGF-signalling, BCL-2 expression and worse prognosis. In vivo, upregulation of MCL-1 occurs in an FGF-dependent manner during skin repair, which regulates healing dynamics. Importantly, either co-treatment with FGF-receptor inhibitors or removal of apoptotic stress restores apoptotic sensitivity to cytotoxic therapy and delays wound healing. These data reveal a pathway by which cells under apoptotic stress can increase resistance to cell death in surrounding cells. Beyond mediating cytotoxic drug resistance, this process also provides a potential link between tissue damage and repair.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 ER, Maastricht, The Netherlands.
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna L Koessinger
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Catherine Cloix
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Désirée Zerbst
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jayanthi Anand
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
246
|
Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021; 10:1801. [PMID: 34829672 PMCID: PMC8615091 DOI: 10.3390/antiox10111801] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Multi-drug resistance (MDR) is a leading cause of cancer-related death, and it continues to be a major barrier to cancer treatment. The tumour microenvironment (TME) has proven to play an essential role in not only cancer progression and metastasis, but also the development of resistance to chemotherapy. Despite the significant advances in the efficacy of anti-cancer therapies, the development of drug resistance remains a major impediment to therapeutic success. This review highlights the interplay between various factors within the TME that collectively initiate or propagate MDR. The key TME-mediated mechanisms of MDR regulation that will be discussed herein include (1) altered metabolic processing and the reactive oxygen species (ROS)-hypoxia inducible factor (HIF) axis; (2) changes in stromal cells; (3) increased cancer cell survival via autophagy and failure of apoptosis; (4) altered drug delivery, uptake, or efflux and (5) the induction of a cancer stem cell (CSC) phenotype. The review also discusses thought-provoking ideas that may assist in overcoming the TME-induced MDR. We conclude that stressors from the TME and exposure to chemotherapeutic agents are strongly linked to the development of MDR in cancer cells. Therefore, there remains a vast area for potential research to further elicit the interplay between factors existing both within and outside the TME. Elucidating the mechanisms within this network is essential for developing new therapeutic strategies that are less prone to failure due to the development of resistance in cancer cells.
Collapse
Affiliation(s)
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Alexandra E. Stacy
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Patric J. Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
247
|
Kartika ID, Kotani H, Iida Y, Koyanagi A, Tanino R, Harada M. Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitor-induced senescence in breast cancer cells. Cancer Med 2021; 10:8988-8999. [PMID: 34761877 PMCID: PMC8683524 DOI: 10.1002/cam4.4410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of CDK4/6 slows the cell cycle and induces senescence in breast cancer cells. However, senescent cancer cells promote invasion and metastasis. Several drugs reportedly target senescent cells, including ABT‐263 (navitoclax). We examined the effects of the CDK4/6 inhibitor abemaciclib and ABT‐263 on two human breast cancer cell lines. The abemaciclib and ABT‐263 combination additively decreased the viability of MDA‐MB‐231 cells, but not MCF‐7 cells. Also, the combination therapy‐induced caspase‐dependent apoptosis in MDA‐MB‐231 cells. Combination therapy with abemaciclib and ABT‐737, an ABT‐263 analog, significantly suppressed the in vivo growth of MDA‐MB‐231 with transient body‐weight loss. Given that p16Ink4a and p21Cip1/Waf1 are key factors in senescence and that both cell lines were negative for p16, the role of p21 in apoptosis of treated breast cancer cells was investigated. Although abemaciclib increased the cytoplasmic p21 level in both cell lines as a hallmark of senescence, the abemaciclib and ABT‐263 combination decreased it only in MDA‐MB‐231 cells. This decrease of p21 expression was relieved by caspase inhibition, and p21 was colocalized with caspase‐3 in the cytoplasm of MDA‐MB‐231 cells. Alternatively, small interfering RNA‐mediated knockdown of p21 rendered caspase‐3‐negative MCF‐7 cells susceptible to abemaciclib and ABT‐263, as well as TNF‐related apoptosis‐inducing ligand. Furthermore, a clinical database analysis showed that p21high breast cancer patients had a poorer prognosis compared to p21low patients. These results suggest that cytoplasmic p21 plays a protective role in apoptosis of CDK4/6 inhibitor‐induced senescent breast cancer cells.
Collapse
Affiliation(s)
- Irna D Kartika
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan.,Department of Clinical Pathology, Faculty of Medicine, University of Muslim Indonesia, Sulawesi, Indonesia
| | - Hitoshi Kotani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akira Koyanagi
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
248
|
Leiser D, Samanta S, Eley J, Strauss J, Creed M, Kingsbury T, Staats PN, Bhandary B, Chen M, Dukic T, Roy S, Mahmood J, Vujaskovic Z, Shukla HD. Role of caveolin-1 as a biomarker for radiation resistance and tumor aggression in lung cancer. PLoS One 2021; 16:e0258951. [PMID: 34762666 PMCID: PMC8584669 DOI: 10.1371/journal.pone.0258951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/14/2023] Open
Abstract
Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.
Collapse
Affiliation(s)
- Dominic Leiser
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Santanu Samanta
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Josh Strauss
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Michael Creed
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tami Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul N. Staats
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sanjit Roy
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hem D. Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
249
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
250
|
Venetoclax in Acute Myeloid Leukemia: Molecular Basis, Evidences for Preclinical and Clinical Efficacy and Strategies to Target Resistance. Cancers (Basel) 2021; 13:cancers13225608. [PMID: 34830763 PMCID: PMC8615921 DOI: 10.3390/cancers13225608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Venetoclax is a BH3-mimetics agent specifically interacting with the antiapoptotic protein BCL-2, facilitating cytochrome c release from mitochondria, subsequent caspases activation, and cell death. Utilization of venetoclax has profoundly changed the landscape of treatment for the poor-prognosis category of AML patients unfit for intensive chemotherapy. In the phase III VIALE-A study, Venetoclax, in combination with the hypomethylating agent azacitidine, showed a 65% overall response rate and 14.7-month overall survival, in comparison with 22% and 8 months in the control arm. These results led to the widespread use of venetoclax in this indication. Other combination regimens, consisting of low-intensity, intensive, or targeted therapies are currently under evaluation. Despite promising results, preventing relapses or resistance to venetoclax is still an unmet clinical need. Numerous studies have been conducted to identify and overcome venetoclax resistance in preclinical models or in clinical trials, including the inhibition of other antiapoptotic proteins, the induction of proapoptotic BH3-only proteins, and/or the targeting of the mitochondrial metabolism and machinery.
Collapse
|