201
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
202
|
Brind'Amour J, Kobayashi H, Richard Albert J, Shirane K, Sakashita A, Kamio A, Bogutz A, Koike T, Karimi MM, Lefebvre L, Kono T, Lorincz MC. LTR retrotransposons transcribed in oocytes drive species-specific and heritable changes in DNA methylation. Nat Commun 2018; 9:3331. [PMID: 30127397 PMCID: PMC6102241 DOI: 10.1038/s41467-018-05841-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
De novo DNA methylation (DNAme) during mouse oogenesis occurs within transcribed regions enriched for H3K36me3. As many oocyte transcripts originate in long terminal repeats (LTRs), which are heterogeneous even between closely related mammals, we examined whether species-specific LTR-initiated transcription units (LITs) shape the oocyte methylome. Here we identify thousands of syntenic regions in mouse, rat, and human that show divergent DNAme associated with private LITs, many of which initiate in lineage-specific LTR retrotransposons. Furthermore, CpG island (CGI) promoters methylated in mouse and/or rat, but not human oocytes, are embedded within rodent-specific LITs and vice versa. Notably, at a subset of such CGI promoters, DNAme persists on the maternal genome in fertilized and parthenogenetic mouse blastocysts or in human placenta, indicative of species-specific epigenetic inheritance. Polymorphic LITs are also responsible for disparate DNAme at promoter CGIs in distantly related mouse strains, revealing that LITs also promote intra-species divergence in CGI DNAme.
Collapse
Affiliation(s)
- Julie Brind'Amour
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kenjiro Shirane
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Akihiko Sakashita
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
- Division of Reproductive Sciences, Cincinnati's Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Asuka Kamio
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Aaron Bogutz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tasuku Koike
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
| | - Mohammad M Karimi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- MRC London Institute of Medical Sciences, Imperial College, London, W12 0NN, UK
| | - Louis Lefebvre
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Tomohiro Kono
- Department of BioScience, Tokyo University of Agriculture, Tokyo, 113-0033, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
203
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
204
|
De Vito A, Lazzaro M, Palmisano I, Cittaro D, Riba M, Lazarevic D, Bannai M, Gabellini D, Schiaffino MV. Amino acid deprivation triggers a novel GCN2-independent response leading to the transcriptional reactivation of non-native DNA sequences. PLoS One 2018; 13:e0200783. [PMID: 30020994 PMCID: PMC6051655 DOI: 10.1371/journal.pone.0200783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
In a variety of species, reduced food intake, and in particular protein or amino acid (AA) restriction, extends lifespan and healthspan. However, the underlying epigenetic and/or transcriptional mechanisms are largely unknown, and dissection of specific pathways in cultured cells may contribute to filling this gap. We have previously shown that, in mammalian cells, deprivation of essential AAs (methionine/cysteine or tyrosine) leads to the transcriptional reactivation of integrated silenced transgenes, including plasmid and retroviral vectors and latent HIV-1 provirus, by a process involving epigenetic chromatic remodeling and histone acetylation. Here we show that the deprivation of methionine/cysteine also leads to the transcriptional upregulation of endogenous retroviruses, suggesting that essential AA starvation affects the expression not only of exogenous non-native DNA sequences, but also of endogenous anciently-integrated and silenced parasitic elements of the genome. Moreover, we show that the transgene reactivation response is highly conserved in different mammalian cell types, and it is reproducible with deprivation of most essential AAs. The General Control Non-derepressible 2 (GCN2) kinase and the downstream integrated stress response represent the best candidates mediating this process; however, by pharmacological approaches, RNA interference and genomic editing, we demonstrate that they are not implicated. Instead, the response requires MEK/ERK and/or JNK activity and is reproduced by ribosomal inhibitors, suggesting that it is triggered by a novel nutrient-sensing and signaling pathway, initiated by translational block at the ribosome, and independent of mTOR and GCN2. Overall, these findings point to a general transcriptional response to essential AA deprivation, which affects the expression of non-native genomic sequences, with relevant implications for the epigenetic/transcriptional effects of AA restriction in health and disease.
Collapse
Affiliation(s)
- Annarosaria De Vito
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Lazzaro
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Palmisano
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Makoto Bannai
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Kawasaki, Tokyo, Japan
| | - Davide Gabellini
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Schiaffino
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
205
|
Policarpi C, Crepaldi L, Brookes E, Nitarska J, French SM, Coatti A, Riccio A. Enhancer SINEs Link Pol III to Pol II Transcription in Neurons. Cell Rep 2018; 21:2879-2894. [PMID: 29212033 PMCID: PMC5732322 DOI: 10.1016/j.celrep.2017.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal regulation of gene expression depends on the cooperation of multiple mechanisms, including the functional interaction of promoters with distally located enhancers. Here, we show that, in cortical neurons, a subset of short interspersed nuclear elements (SINEs) located in the proximity of activity-regulated genes bears features of enhancers. Enhancer SINEs (eSINEs) recruit the Pol III cofactor complex TFIIIC in a stimulus-dependent manner and are transcribed by Pol III in response to neuronal depolarization. Characterization of an eSINE located in proximity to the Fos gene (FosRSINE1) indicated that the FosRSINE1-encoded transcript interacts with Pol II at the Fos promoter and mediates Fos relocation to Pol II factories, providing an unprecedented molecular link between Pol III and Pol II transcription. Strikingly, knockdown of the FosRSINE1 transcript induces defects of both cortical radial migration in vivo and activity-dependent dendritogenesis in vitro, demonstrating that FosRSINE1 acts as a strong enhancer of Fos expression in diverse physiological contexts.
Collapse
Affiliation(s)
- Cristina Policarpi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Luca Crepaldi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Emily Brookes
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Justyna Nitarska
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sarah M French
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Alessandro Coatti
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
206
|
Enigma of Retrotransposon Biology in Mammalian Early Embryos and Embryonic Stem Cells. Stem Cells Int 2018; 2018:6239245. [PMID: 30123290 PMCID: PMC6079326 DOI: 10.1155/2018/6239245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Retrotransposons comprise a significant fraction of mammalian genome with unclear functions. Increasing evidence shows that they are not just remnants of ancient retroviruses but play important roles in multiple biological processes. Retrotransposons are epigenetically silenced in most somatic tissues and become reactivated in early embryos. Notably, abundant retrotransposon expression in mouse embryonic stem cells (ESCs) marks transient totipotency status, while retrotransposon enrichment in human ESCs indicates naive-like status. Some retrotransposon elements retained the capacity to retrotranspose, such as LINE1, producing genetic diversity or disease. Some other retrotransposons reside in the vicinity of endogenous genes and are capable of regulating nearby genes and cell fate, possibly through providing alternative promoters, regulatory modules, or orchestrating high-order chromatin assembly. In addition, retrotransposons may mediate epigenetic memory, regulate gene expression posttranscriptionally, defend virus infection, and so on. In this review, we summarize expression patterns and regulatory functions of different retrotransposons in early embryos and ESCs, as well as document molecular mechanisms controlling retrotransposon expression and their potential functions. Further investigations on the regulatory network of retrotransposons in early embryogenesis and ESCs will provide valuable insights and a deeper understanding of retrotransposon biology. Additionally, endeavors made to unveil the roles of these mysterious elements may facilitate stem cell status conversion and manipulation of pluripotency.
Collapse
|
207
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
208
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
209
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
210
|
Schorn AJ, Martienssen R. Tie-Break: Host and Retrotransposons Play tRNA. Trends Cell Biol 2018; 28:793-806. [PMID: 29934075 DOI: 10.1016/j.tcb.2018.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/23/2018] [Indexed: 11/28/2022]
Abstract
tRNA fragments (tRFs) are a class of small, regulatory RNAs with diverse functions. 3'-Derived tRFs perfectly match long terminal repeat (LTR)-retroelements which use the 3'-end of tRNAs to prime reverse transcription. Recent work has shown that tRFs target LTR-retroviruses and -transposons for the RNA interference (RNAi) pathway and also inhibit mobility by blocking reverse transcription. The highly conserved tRNA primer binding site (PBS) in LTR-retroelements is a unique target for 3'-tRFs to recognize and block abundant but diverse LTR-retrotransposons that become transcriptionally active during epigenetic reprogramming in development and disease. 3'-tRFs are processed from full-length tRNAs under so far unknown conditions and potentially protect many cell types. tRFs appear to be an ancient link between RNAi, transposons, and genome stability.
Collapse
Affiliation(s)
- Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rob Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
211
|
Noto T, Mochizuki K. Small RNA-Mediated trans-Nuclear and trans-Element Communications in Tetrahymena DNA Elimination. Curr Biol 2018; 28:1938-1949.e5. [DOI: 10.1016/j.cub.2018.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
212
|
Whole Genome Sequence of an Edible and Potential Medicinal Fungus, Cordyceps guangdongensis. G3-GENES GENOMES GENETICS 2018; 8:1863-1870. [PMID: 29666196 PMCID: PMC5982816 DOI: 10.1534/g3.118.200287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cordyceps guangdongensis is an edible fungus which was approved as a novel food by the Chinese Ministry of Public Health in 2013. It also has a broad prospect of application in pharmaceutical industries, with many medicinal activities. In this study, the whole genome of C. guangdongensis GD15, a single spore isolate from a wild strain, was sequenced and assembled with Illumina and PacBio sequencing technology. The generated genome is 29.05 Mb in size, comprising nine scaffolds with an average GC content of 57.01%. It is predicted to contain a total of 9150 protein-coding genes. Sequence identification and comparative analysis indicated that the assembled scaffolds contained two complete chromosomes and four single-end chromosomes, showing a high level assembly. Gene annotation revealed a diversity of transposons that could contribute to the genome size and evolution. Besides, approximately 15.57% and 12.01% genes involved in metabolic processes were annotated by KEGG and COG respectively. Genes belonging to CAZymes accounted for 3.15% of the total genes. In addition, 435 transcription factors, involved in various biological processes, were identified. Among the identified transcription factors, the fungal transcription regulatory proteins (18.39%) and fungal-specific transcription factors (19.77%) represented the two largest classes of transcription factors. This genomic resource provided a new insight into better understanding the relevance of phenotypic characters and genetic mechanisms in C. guangdongensis.
Collapse
|
213
|
Krestel H, Meier JC. RNA Editing and Retrotransposons in Neurology. Front Mol Neurosci 2018; 11:163. [PMID: 29875629 PMCID: PMC5974252 DOI: 10.3389/fnmol.2018.00163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- Heinz Krestel
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.,Department for BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
214
|
Fay MM, Anderson PJ. The Role of RNA in Biological Phase Separations. J Mol Biol 2018; 430:4685-4701. [PMID: 29753780 DOI: 10.1016/j.jmb.2018.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
215
|
Hunter N. Oocyte Quality Control: Causes, Mechanisms, and Consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:235-247. [PMID: 29743337 DOI: 10.1101/sqb.2017.82.035394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oocyte quality and number are key determinants of reproductive life span and success. These variables are shaped in part by the elimination of oocytes that experience problems during the early stages of meiosis. Meiotic prophase-I marks an extended period of genome vulnerability in which epigenetic reprogramming unleashes retroelements and hundreds of DNA double-strand breaks (DSBs) are inflicted to initiate the programmed recombination required for accurate chromosome segregation at the first meiotic division. Expression of LINE-1 retroelements perturbs several aspects of meiotic prophase and is associated with oocyte death during the early stages of meiotic prophase I. Defects in chromosome synapsis and recombination also trigger oocyte loss, but typically at a later stage, as cells transition into quiescence and form primordial follicles. Interrelated pathways that signal defects in DSB repair and chromosome synapsis mediate this late oocyte attrition. Here, I review our current understanding of early and late oocyte attrition based on studies in mouse and describe how these processes appear to be both distinct and overlapping and how they help balance the quality and size of oocyte reserves to maximize fecundity.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California 95616.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616
| |
Collapse
|
216
|
Barbieri D, Elvira-Matelot E, Pelinski Y, Genève L, de Laval B, Yogarajah G, Pecquet C, Constantinescu SN, Porteu F. Thrombopoietin protects hematopoietic stem cells from retrotransposon-mediated damage by promoting an antiviral response. J Exp Med 2018; 215:1463-1480. [PMID: 29615469 PMCID: PMC5940259 DOI: 10.1084/jem.20170997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/28/2017] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. Retrotransposons, spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging, and DNA damage. However, their role in HSCs has not been addressed. Here, we show that mouse HSCs express various retroelements (REs), including long interspersed element-1 (L1) recent family members that further increase upon irradiation. Using mice expressing an engineered human L1 retrotransposition reporter cassette and reverse transcription inhibitors, we demonstrate that L1 retransposition occurs in vivo and is involved in irradiation-induced persistent γH2AX foci and HSC loss of function. Thus, RE represents an important intrinsic HSC threat. Furthermore, we show that RE activity is restrained by thrombopoietin, a critical HSC maintenance factor, through its ability to promote a potent interferon-like, antiviral gene response in HSCs. This uncovers a novel mechanism allowing HSCs to minimize irradiation-induced injury and reinforces the links between DNA damage, REs, and antiviral immunity.
Collapse
Affiliation(s)
- Daniela Barbieri
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Emilie Elvira-Matelot
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Yanis Pelinski
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Laetitia Genève
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Bérengère de Laval
- Centre d'Immunologie Marseille-Luminy, Université Aix-Marseille, Institut National de la Santé et de la Recherche Médicale, U1104, Centre National de la Recherche Scientifique, UMR 7280
| | - Gayathri Yogarajah
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium
- SIGN Pole, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Françoise Porteu
- INSERM UMR1170, Villejuif, France
- Université Paris-Saclay, Paris, France
- Gustave Roussy Cancer Campus, Paris, France
| |
Collapse
|
217
|
Ward MC, Zhao S, Luo K, Pavlovic BJ, Karimi MM, Stephens M, Gilad Y. Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. eLife 2018; 7:33084. [PMID: 29648536 PMCID: PMC5943035 DOI: 10.7554/elife.33084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise almost half of primate genomes and their aberrant regulation can result in deleterious effects. In pluripotent stem cells, rapidly evolving KRAB-ZNF genes target TEs for silencing by H3K9me3. To investigate the evolution of TE silencing, we performed H3K9me3 ChIP-seq experiments in induced pluripotent stem cells from 10 human and 7 chimpanzee individuals. We identified four million orthologous TEs and found the SVA and ERV families to be marked most frequently by H3K9me3. We found little evidence of inter-species differences in TE silencing, with as many as 82% of putatively silenced TEs marked at similar levels in humans and chimpanzees. TEs that are preferentially silenced in one species are a similar age to those silenced in both species and are not more likely to be associated with expression divergence of nearby orthologous genes. Our data suggest limited species-specificity of TE silencing across 6 million years of primate evolution.
Collapse
Affiliation(s)
- Michelle C Ward
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| | - Siming Zhao
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan J Pavlovic
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences, Imperial College, London, United Kingdom
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Statistics, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States.,Department of Medicine, University of Chicago, Chicago, United States
| |
Collapse
|
218
|
Li C, Lenhard B, Luscombe NM. Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome. Genome Res 2018; 28:676-688. [PMID: 29618487 PMCID: PMC5932608 DOI: 10.1101/gr.231449.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Understanding the molecular mechanisms and evolution of the gene regulatory system remains a major challenge in biology. Transcription start sites (TSSs) are especially interesting because they are central to initiating gene expression. Previous studies revealed widespread transcription initiation and fast turnover of TSSs in mammalian genomes. Yet, how new TSSs originate and how they evolve over time remain poorly understood. To address these questions, we analyzed ∼200,000 human TSSs by integrating evolutionary (inter- and intra-species) and functional genomic data, particularly focusing on evolutionarily young TSSs that emerged in the primate lineage. TSSs were grouped according to their evolutionary age using sequence alignment information as a proxy. Comparisons of young and old TSSs revealed that (1) new TSSs emerge through a combination of intrinsic factors, like the sequence properties of transposable elements and tandem repeats, and extrinsic factors such as their proximity to existing regulatory modules; (2) new TSSs undergo rapid evolution that reduces the inherent instability of repeat sequences associated with a high propensity of TSS emergence; and (3) once established, the transcriptional competence of surviving TSSs is gradually enhanced, with evolutionary changes subject to temporal (fewer regulatory changes in younger TSSs) and spatial constraints (fewer regulatory changes in more isolated TSSs). These findings advance our understanding of how regulatory innovations arise in the genome throughout evolution and highlight the genomic robustness and evolvability in these processes.
Collapse
Affiliation(s)
- Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Boris Lenhard
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Sars International Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway
| | - Nicholas M Luscombe
- The Francis Crick Institute, London NW1 1AT, United Kingdom.,UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom.,Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan
| |
Collapse
|
219
|
Bartlett AA, Hunter RG. Transposons, stress and the functions of the deep genome. Front Neuroendocrinol 2018; 49:170-174. [PMID: 29551355 DOI: 10.1016/j.yfrne.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
The brain is responsible for both recognition and adaptation to stressful stimuli. Many molecular mechanisms have been implicated in this response including those governing neuronal plasticity, neurogenesis and, changes gene expression. Far less is known regarding effects of stress on the deep genome. In the hippocampus, stress appears to regulate expression of non-coding elements of the genome as well as the chromatin permissive for their transcription. Specifically, hippocampal retrotransposon (RT) elements are regulated by acute stress via the accumulation of the repressive H3K9me3 mark at RT loci. Further, corticosteroids appear to induce changes in heterochromatin status as well as RT expression in both adrenalectomized animal and rat cell culture models. Dysregulation of RT expression is predicted to result in functional deficits in affected brain areas. More broadly, however, transposons may have a variety of adaptive functions. As techniques improve to probe the deep genome, this approach to understanding stress neurobiology has the potential to yield insights into environment and genome interactions that may contribute to the physiology underlying a number of stress-related mental health disorders.
Collapse
Affiliation(s)
- Andrew A Bartlett
- University of Massachusetts Boston, Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Richard G Hunter
- University of Massachusetts Boston, Department of Psychology, University of Massachusetts, Boston, MA, USA; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
220
|
Distinguishing friends, foes, and freeloaders in giant genomes. Curr Opin Genet Dev 2018; 49:49-55. [DOI: 10.1016/j.gde.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
|
221
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
222
|
Lättekivi F, Kõks S, Keermann M, Reimann E, Prans E, Abram K, Silm H, Kõks G, Kingo K. Transcriptional landscape of human endogenous retroviruses (HERVs) and other repetitive elements in psoriatic skin. Sci Rep 2018. [PMID: 29531256 PMCID: PMC5847543 DOI: 10.1038/s41598-018-22734-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human endogenous retrovirus (HERV) sequences make up at least 8% of the human genome. Transcripts originating from these loci as well as proteins encoded by them have been detected in various tissues. HERVs are believed to be implicated in autoimmune diseases, however the extent to which, has remained unclear. Differential expression studies have so far been limited to certain HERV subfamilies with conserved sequences. No studies have been published describing the genome-wide expression pattern of HERVs and repetitive elements in the context of psoriasis. In the present study, we analysed total RNA sequencing data from skin samples of 12 psoriasis patients and 12 healthy controls, which enabled us to describe the entire transcriptional landscape of repetitive elements. We report high levels of repetitive element expression in the skin of psoriasis patients as well as healthy controls. The majority of differentially expressed elements were downregulated in lesional and non-lesional skin, suggesting active HERV suppression in the pro-inflammatory environment of psoriatic skin. However, we also report upregulation of a small subset of HERVs previously described in the context of autoimmune diseases, such as members of the HERV-K and W families, with the potential to affect the immunopathogenesis of psoriasis.
Collapse
Affiliation(s)
- Freddy Lättekivi
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Department of Pathophysiology, University of Tartu, Tartu, Estonia. .,Department of Reproductive Biology, Estonian University of Life Sciences, Tartu, Estonia.
| | - Maris Keermann
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
| | - Helgi Silm
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
| | - Gea Kõks
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Clinic of Dermatology, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
223
|
Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1. Sci Rep 2018; 8:3189. [PMID: 29453387 PMCID: PMC5816658 DOI: 10.1038/s41598-017-14908-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Pervasive transcription of mammalian genomes leads to a previously underestimated level of complexity in gene regulatory networks. Recently, we have identified a new functional class of natural and synthetic antisense long non-coding RNAs (lncRNA) that increases translation of partially overlapping sense mRNAs. These molecules were named SINEUPs, as they require an embedded inverted SINE B2 element for their UP-regulation of translation. Mouse AS Uchl1 is the representative member of natural SINEUPs. It was originally discovered for its role in increasing translation of Uchl1 mRNA, a gene associated with neurodegenerative diseases. Here we present the secondary structure of the SINE B2 Transposable Element (TE) embedded in AS Uchl1. We find that specific structural regions, containing a short hairpin, are required for the ability of AS Uchl1 RNA to increase translation of its target mRNA. We also provide a high-resolution structure of the relevant hairpin, based on NMR observables. Our results highlight the importance of structural determinants in embedded TEs for their activity as functional domains in lncRNAs.
Collapse
|
224
|
Kitano S, Kurasawa H, Aizawa Y. Transposable elements shape the human proteome landscape via formation of cis-acting upstream open reading frames. Genes Cells 2018; 23:274-284. [PMID: 29446201 DOI: 10.1111/gtc.12567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/13/2018] [Indexed: 12/19/2022]
Abstract
Transposons are major drivers of mammalian genome evolution. To obtain new insights into the contribution of transposons to the regulation of protein translation, we here examined how transposons affected the genesis and function of upstream open reading frames (uORFs), which serve as cis-acting elements to regulate translation from annotated ORFs (anORFs) located downstream of the uORFs in eukaryotic mRNAs. Among 39,786 human uORFs, 3,992 had ATG trinucleotides of a transposon origin, termed "transposon-derived upstream ATGs" or TuATGs. Luciferase reporter assays suggested that many TuATGs modulate translation from anORFs. Comparisons with transposon consensus sequences revealed that most TuATGs were generated by nucleotide substitutions in non-ATG trinucleotides of integrated transposons. Among these non-ATG trinucleotides, GTG and ACG were converted into TuATGs more frequently, indicating a CpG methylation-mediated process of TuATG formation. Interestingly, it is likely that this process accelerated human-specific upstream ATG formation within transposon sequences in 5' untranslated regions after divergence between human and nonhuman primates. Methylation-mediated TuATG formation seems to be ongoing in the modern human population and could alter the expression of disease-related proteins. This study shows that transposons have potentially been shaping the human proteome landscape via cis-acting uORF creation.
Collapse
Affiliation(s)
- Shohei Kitano
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Hikaru Kurasawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasunori Aizawa
- School of Life Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
225
|
Darby MM, Leek JT, Langmead B, Yolken RH, Sabunciyan S. Widespread splicing of repetitive element loci into coding regions of gene transcripts. Hum Mol Genet 2018; 25:4962-4982. [PMID: 28171598 DOI: 10.1093/hmg/ddw321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 11/14/2022] Open
Abstract
We performed a thorough characterization of expressed repetitive element loci (RE) in the human orbitofrontal cortex (OFC) using directional RNA sequencing data. Considering only sequencing reads that map uniquely onto the human genome, we discovered that the overwhelming majority of intronic and exonic RE are expressed in the same orientation as the gene in which they reside. Our mapping approach enabled the identification of novel differentially expressed RE transcripts between the OFC and peripheral blood lymphocytes. Further analysis revealed that RE are extensively spliced into coding regions of gene transcripts yielding thousands of novel mRNA variants with altered coding potential. Lower frequency splicing of RE into untranslated regions of gene transcripts was also observed. The same pattern of RE splicing in the brain was also detected for Drosophila, zebrafish, mouse, rat, dog and rabbit. RE splicing occurs largely at canonical GT-AG splice junctions with LINE and SINE elements forming the most RE splice junctions in the human OFC. This type of splicing usually gives rise to a minor splice variant of the endogenous gene and in silico analysis suggests that RE splicing has the potential to introduce novel open reading frames. Reanalysis of previously published sequencing data performed in the mouse cerebellum revealed that thousands of RE splice variants are associated with translating ribosomes. Our results demonstrate that RE expression is more complex than previously envisioned and raise the possibility that RE splicing might generate functional protein isoforms.
Collapse
Affiliation(s)
- Miranda M Darby
- Department of Pediatrics, Johns Hopkins University, Baltimore, USA
| | - Jeffrey T Leek
- Department of Biostatistics, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, USA
| | - Ben Langmead
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Center for Computational Biology and Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Robert H Yolken
- Department of Pediatrics, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
226
|
Brown T, Howe FS, Murray SC, Wouters M, Lorenz P, Seward E, Rata S, Angel A, Mellor J. Antisense transcription-dependent chromatin signature modulates sense transcript dynamics. Mol Syst Biol 2018; 14:e8007. [PMID: 29440389 PMCID: PMC5810148 DOI: 10.15252/msb.20178007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.
Collapse
Affiliation(s)
- Thomas Brown
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Struan C Murray
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Philipp Lorenz
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily Seward
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Scott Rata
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andrew Angel
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
227
|
Jung J, Lee S, Cho HS, Park K, Ryu JW, Jung M, Kim J, Kim H, Kim DS. Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics 2018; 111:159-166. [PMID: 29366860 DOI: 10.1016/j.ygeno.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sugi Lee
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Department of Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kunhyang Park
- Department of Core Facility Management Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jea-Woon Ryu
- Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Minah Jung
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeongkil Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - HyeRan Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Plant Systems Engineering Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea; Department of Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
228
|
Nikitin D, Penzar D, Garazha A, Sorokin M, Tkachev V, Borisov N, Poltorak A, Prassolov V, Buzdin AA. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins. Front Immunol 2018; 9:30. [PMID: 29441061 PMCID: PMC5797644 DOI: 10.3389/fimmu.2018.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Endogenous retroviruses and retrotransposons also termed retroelements (REs) are mobile genetic elements that were active until recently in human genome evolution. REs regulate gene expression by actively reshaping chromatin structure or by directly providing transcription factor binding sites (TFBSs). We aimed to identify molecular processes most deeply impacted by the REs in human cells at the level of TFBS regulation. By using ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation-competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked TFBS generally correlated with the distributions for all TFBS. However, several groups of molecular processes were highly enriched in the RE-linked TFBS regulation. They were strongly connected with the immunity and response to pathogens, with the negative regulation of gene transcription, ubiquitination, and protein degradation, extracellular matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, development and functioning of perception organs and reproductive system. By contrast, the processes most weakly affected by the REs were linked with the conservative aspects of embryo development. We also identified differences in the regulation features by the younger and older fractions of the REs. The regulation by the older fraction of the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, and integrin signaling, neuronal development, chondroitin sulfate and heparin metabolism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen signaling. The immunity-linked pathways were highly represented in both categories, but their functional roles were different and did not overlap. Our results point to the most quickly evolving molecular pathways in the recent and ancient evolution of human genome.
Collapse
Affiliation(s)
- Daniil Nikitin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Penzar
- The Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States
| | - Maxim Sorokin
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Nicolas Borisov
- OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| | - Alexander Poltorak
- Program in Immunology, Sackler Graduate School, Tufts University, Boston, MA, United States
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anton A Buzdin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,OmicsWay Corp., Walnut, CA, United States.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
229
|
Inamura K. Colorectal Cancers: An Update on Their Molecular Pathology. Cancers (Basel) 2018; 10:cancers10010026. [PMID: 29361689 PMCID: PMC5789376 DOI: 10.3390/cancers10010026] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancers (CRCs) are the third leading cause of cancer-related mortality worldwide. Rather than being a single, uniform disease type, accumulating evidence suggests that CRCs comprise a group of molecularly heterogeneous diseases that are characterized by a range of genomic and epigenomic alterations. This heterogeneity slows the development of molecular-targeted therapy as a form of precision medicine. Recent data regarding comprehensive molecular characterizations and molecular pathological examinations of CRCs have increased our understanding of the genomic and epigenomic landscapes of CRCs, which has enabled CRCs to be reclassified into biologically and clinically meaningful subtypes. The increased knowledge of the molecular pathological epidemiology of CRCs has permitted their evolution from a vaguely understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes, a development that will allow the implementation of personalized therapies and better management of patients with CRC. This review provides a perspective regarding recent developments in our knowledge of the molecular and epidemiological landscapes of CRCs, including results of comprehensive molecular characterizations obtained from high-throughput analyses and the latest developments regarding their molecular pathologies, immunological biomarkers, and associated gut microbiome. Advances in our understanding of potential personalized therapies for molecularly specific subtypes are also reviewed.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
230
|
Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc Natl Acad Sci U S A 2018; 115:968-973. [PMID: 29339519 DOI: 10.1073/pnas.1715531115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primate-specific Alu short interspersed elements (SINEs) as well as rodent-specific B and ID (B/ID) SINEs can promote Staufen-mediated decay (SMD) when present in mRNA 3'-untranslated regions (3'-UTRs). The transposable nature of SINEs, their presence in long noncoding RNAs, their interactions with Staufen, and their rapid divergence in different evolutionary lineages suggest they could have generated substantial modification of posttranscriptional gene-control networks during mammalian evolution. Some of the variation in SMD regulation produced by SINE insertion might have had a similar regulatory effect in separate mammalian lineages, leading to parallel evolution of the Staufen network by independent expansion of lineage-specific SINEs. To explore this possibility, we searched for orthologous gene pairs, each carrying a species-specific 3'-UTR SINE and each regulated by SMD, by measuring changes in mRNA abundance after individual depletion of two SMD factors, Staufen1 (STAU1) and UPF1, in both human and mouse myoblasts. We identified and confirmed orthologous gene pairs with 3'-UTR SINEs that independently function in SMD control of myoblast metabolism. Expanding to other species, we demonstrated that SINE-directed SMD likely emerged in both primate and rodent lineages >20-25 million years ago. Our work reveals a mechanism for the convergent evolution of posttranscriptional gene regulatory networks in mammals by species-specific SINE transposition and SMD.
Collapse
|
231
|
Chishima T, Iwakiri J, Hamada M. Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs. Genes (Basel) 2018; 9:E23. [PMID: 29315213 PMCID: PMC5793176 DOI: 10.3390/genes9010023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 12/05/2022] Open
Abstract
It has been recently suggested that transposable elements (TEs) are re-used as functional elements of long non-coding RNAs (lncRNAs). This is supported by some examples such as the human endogenous retrovirus subfamily H (HERVH) elements contained within lncRNAs and expressed specifically in human embryonic stem cells (hESCs), as required to maintain hESC identity. There are at least two unanswered questions about all lncRNAs. How many TEs are re-used within lncRNAs? Are there any other TEs that affect tissue specificity of lncRNA expression? To answer these questions, we comprehensively identify TEs that are significantly related to tissue-specific expression levels of lncRNAs. We downloaded lncRNA expression data corresponding to normal human tissue from the Expression Atlas and transformed the data into tissue specificity estimates. Then, Fisher's exact tests were performed to verify whether the presence or absence of TE-derived sequences influences the tissue specificity of lncRNA expression. Many TE-tissue pairs associated with tissue-specific expression of lncRNAs were detected, indicating that multiple TE families can be re-used as functional domains or regulatory sequences of lncRNAs. In particular, we found that the antisense promoter region of L1PA2, a LINE-1 subfamily, appears to act as a promoter for lncRNAs with placenta-specific expression.
Collapse
Affiliation(s)
- Takafumi Chishima
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 63-520, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Junichi Iwakiri
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8562 Chiba, Japan.
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 63-520, 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan.
- Institute for Medical-oriented Structural Biology, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
232
|
Yoshimura H, Ozawa T. Real-Time Fluorescence Imaging of Single-Molecule Endogenous Noncoding RNA in Living Cells. Methods Mol Biol 2018; 1649:337-347. [PMID: 29130208 DOI: 10.1007/978-1-4939-7213-5_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Visualizing RNA in living cells is increasingly important to facilitate accumulation of knowledge about the relation between specific RNA dynamics and physiological events. Single-molecule fluorescence imaging of target RNAs is an excellent approach to analyzing intracellular RNA motion, but it requires special techniques for probe design and microscope setup. Herein, we present a principle and protocol of an RNA visualization probe based on an RNA binding protein of the Pumilio homology domain (PUM-HD). We also describe the setup and operation of a microscope, and introduce an application to visualize telomeric repeats-containing RNA with telomeres and a telomere-related protein: hnRNPA1. This imaging technique is applicable to visualization of different RNAs, especially including repetitive sequences, in living cells.
Collapse
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
233
|
Abstract
Transposable elements (TE) are mobile genetic elements that can readily change their genomic position. When not properly silenced, TEs can contribute a substantial portion to the cell's transcriptome, but are typically ignored in most RNA-seq data analyses. One reason for leaving TE-derived reads out of RNA-seq analyses is the complexities involved in properly aligning short sequencing reads to these highly repetitive regions. Here we describe a method for including TE-derived reads in RNA-seq differential expression analysis using an open source software package called TEtranscripts. TEtranscripts is designed to assign both uniquely and ambiguously mapped reads to all possible gene and TE-derived transcripts in order to statistically infer the correct gene/TE abundances. Here, we provide a detailed tutorial of TEtranscripts using a published qPCR validated dataset.Barbara McClintock laid the foundation for TE research with her discoveries in maize of mobile genetic elements capable of inserting into novel locations in the genome, altering the expression of nearby genes [1]. Since then, our appreciation of the contribution of repetitive TE-derived sequences to eukaryotic genomes has vastly increased. With the publication of the first human genome draft by the Human Genome Project, it was determined that nearly half of the human genome is derived from TE sequences [2, 3], with varying levels of repetitive DNA present in most plant and animal species. More recent studies looking at distantly related TE-like sequences have estimated that up to two thirds of the human genome might be repeat-derived [4], with the vast majority of these sequences attributed to retrotransposons that require transcription as part of the mobilization process, as discussed below.
Collapse
|
234
|
Karakülah G. RTFAdb: A database of computationally predicted associations between retrotransposons and transcription factors in the human and mouse genomes. Genomics 2017; 110:257-262. [PMID: 29155231 DOI: 10.1016/j.ygeno.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
In recent years, retrotransposons have gained increasing attention as a source of binding motifs for transcription factors (TFs). Despite the substantial roles of these mobile genetic elements in the regulation of gene expression, a comprehensive resource enabling the investigation of retrotransposon species that are bound by TFs is still lacking. Herein, I introduce for the first time a novel database called RTFAdb, which allows exploring computationally predicted associations between retrotransposons and TFs in diverse cell lines and tissues of human and mouse. My database, using over 3.000 TF ChIP-seq binding profiles collected from human and mouse samples, makes possible searching more than 1.500 retrotransposon species in the binding sites of a total of 596 TFs. RTFAdb is freely available at http://tools.ibg.deu.edu.tr/rtfa/ and has the potential to offer novel insights into mammalian transcriptional networks by providing an additional layer of information regarding the regulatory roles of retrotransposons.
Collapse
Affiliation(s)
- Gökhan Karakülah
- İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
235
|
Simonti CN, Pavličev M, Capra JA. Transposable Element Exaptation into Regulatory Regions Is Rare, Influenced by Evolutionary Age, and Subject to Pleiotropic Constraints. Mol Biol Evol 2017; 34:2856-2869. [PMID: 28961735 PMCID: PMC5850124 DOI: 10.1093/molbev/msx219] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transposable element (TE)-derived sequences make up approximately half of most mammalian genomes, and many TEs have been co-opted into gene regulatory elements. However, we lack a comprehensive tissue- and genome-wide understanding of how and when TEs gain regulatory activity in their hosts. We evaluated the prevalence of TE-derived DNA in enhancers and promoters across hundreds of human and mouse cell lines and primary tissues. Promoters are significantly depleted of TEs in all tissues compared with their overall prevalence in the genome (P < 0.001); enhancers are also depleted of TEs, though not as strongly as promoters. The degree of enhancer depletion also varies across contexts (1.5-3×), with reproductive and immune cells showing the highest levels of TE regulatory activity in humans. Overall, in spite of the regulatory potential of many TE sequences, they are significantly less active in gene regulation than expected from their prevalence. TE age is predictive of the likelihood of enhancer activity; TEs originating before the divergence of amniotes are 9.2 times more likely to have enhancer activity than TEs that integrated in great apes. Context-specific enhancers are more likely to be TE-derived than enhancers active in multiple tissues, and young TEs are more likely to overlap context-specific enhancers than old TEs (86% vs. 47%). Once TEs obtain enhancer activity in the host, they have similar functional dynamics to one another and non-TE-derived enhancers, likely driven by pleiotropic constraints. However, a few TE families, most notably endogenous retroviruses, have greater regulatory potential. Our observations suggest a model of regulatory co-option in which TE-derived sequences are initially repressed, after which a small fraction obtains context-specific enhancer activity, with further gains subject to pleiotropic constraints.
Collapse
Affiliation(s)
| | - Mihaela Pavličev
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - John A. Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
236
|
Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity. Oncotarget 2017; 8:102783-102800. [PMID: 29262524 PMCID: PMC5732690 DOI: 10.18632/oncotarget.22245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress.
Collapse
|
237
|
Francescatto M, Lizio M, Philippens I, Pardo LM, Bontrop R, Sakai M, Watanabe S, Itoh M, Hasegawa A, Lassmann T, Severin J, Harshbarger J, Abugessaisa I, Kasukawa T, Carninci P, Hayashizaki Y, Forrest ARR, Kawaji H, Rizzu P, Heutink P. Transcription start site profiling of 15 anatomical regions of the Macaca mulatta central nervous system. Sci Data 2017; 4:170163. [PMID: 29087374 PMCID: PMC5663209 DOI: 10.1038/sdata.2017.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Rhesus macaque was the second non-human primate whose genome has been fully
sequenced and is one of the most used model organisms to study human biology and
disease, thanks to the close evolutionary relationship between the two species.
But compared to human, where several previously unknown RNAs have been
uncovered, the macaque transcriptome is less studied. Publicly available RNA
expression resources for macaque are limited, even for brain, which is highly
relevant to study human cognitive abilities. In an effort to complement those
resources, FANTOM5 profiled 15 distinct anatomical regions of the aged macaque
central nervous system using Cap Analysis of Gene Expression, a high-resolution,
annotation-independent technology that allows monitoring of transcription
initiation events with high accuracy. We identified 25,869 CAGE peaks,
representing bona fide promoters. For each peak we provide detailed annotation,
expanding the landscape of ‘known’ macaque genes, and we show
concrete examples on how to use the resulting data. We believe this data
represents a useful resource to understand the central nervous system in
macaque.
Collapse
Affiliation(s)
- Margherita Francescatto
- Italian Institute of Technology, Department of Neuroscience and Brain Technologies, Via Morego 30, Genova 16163, Italy
| | - Marina Lizio
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ingrid Philippens
- Biomedical Primate Research Centre, Postbox 3306, Rijswijk 2280 GH, The Netherlands
| | | | - Ronald Bontrop
- Biomedical Primate Research Centre, Postbox 3306, Rijswijk 2280 GH, The Netherlands
| | - Mizuho Sakai
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Shoko Watanabe
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Timo Lassmann
- RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Jessica Severin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair R R Forrest
- RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Harry Perkins Institute of Medical Research, 6 Verdun St, Nedlands, Western Australia 6009, Australia
| | - Hideya Kawaji
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Yokohama Institute, Omics Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Advanced Center for Computing and Communication, Preventive Medicine and Applied Genomics Unit, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases, Otfried-Müller Straße 23, Tübingen 72076, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Otfried-Müller Straße 23, Tübingen 72076, Germany
| |
Collapse
|
238
|
Abstract
Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| |
Collapse
|
239
|
Karakülah G, Suner A. PlanTEnrichment: A tool for enrichment analysis of transposable elements in plants. Genomics 2017; 109:336-340. [DOI: 10.1016/j.ygeno.2017.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 02/01/2023]
|
240
|
Moelling K, Broecker F, Russo G, Sunagawa S. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 2017; 8:1745. [PMID: 28959243 PMCID: PMC5603734 DOI: 10.3389/fmicb.2017.01745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of ZurichZurich, Switzerland
- Max Planck Institute for Molecular GeneticsBerlin, Germany
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New YorkNY, United States
| | - Giancarlo Russo
- Functional Genomics Center Zurich, ETH Zurich/University of ZurichZurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH ZurichZurich, Switzerland
| |
Collapse
|
241
|
Cuellar TL, Herzner AM, Zhang X, Goyal Y, Watanabe C, Friedman BA, Janakiraman V, Durinck S, Stinson J, Arnott D, Cheung TK, Chaudhuri S, Modrusan Z, Doerr JM, Classon M, Haley B. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J Cell Biol 2017; 216:3535-3549. [PMID: 28887438 PMCID: PMC5674883 DOI: 10.1083/jcb.201612160] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/15/2017] [Accepted: 08/03/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer cells can rewire genetic and epigenetic regulatory networks to promote cell proliferation and evade the immune system. Using a focused CRISPR/Cas9 genetic screen, Cuellar et al. identify a novel role for the SETDB1 histone methyltransferase in regulating the antiviral response in AML cells via the suppression of transposable elements. A propensity for rewiring genetic and epigenetic regulatory networks, thus enabling sustained cell proliferation, suppression of apoptosis, and the ability to evade the immune system, is vital to cancer cell propagation. An increased understanding of how this is achieved is critical for identifying or improving therapeutic interventions. In this study, using acute myeloid leukemia (AML) human cell lines and a custom CRISPR/Cas9 screening platform, we identify the H3K9 methyltransferase SETDB1 as a novel, negative regulator of innate immunity. SETDB1 is overexpressed in many cancers, and loss of this gene in AML cells triggers desilencing of retrotransposable elements that leads to the production of double-stranded RNAs (dsRNAs). This is coincident with induction of a type I interferon response and apoptosis through the dsRNA-sensing pathway. Collectively, our findings establish a unique gene regulatory axis that cancer cells can exploit to circumvent the immune system.
Collapse
Affiliation(s)
- Trinna L Cuellar
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | | | - Xiaotian Zhang
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Yogesh Goyal
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA
| | - Brad A Friedman
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA
| | | | - Steffen Durinck
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA.,Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA
| | - Jeremy Stinson
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - David Arnott
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA
| | - Tommy K Cheung
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, CA
| | - Subhra Chaudhuri
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Jonas Martin Doerr
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| | - Marie Classon
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA
| |
Collapse
|
242
|
The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Sci Data 2017; 4:170113. [PMID: 28850107 PMCID: PMC5574373 DOI: 10.1038/sdata.2017.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/14/2017] [Indexed: 11/11/2022] Open
Abstract
The latest project from the FANTOM consortium, an international collaborative effort initiated by RIKEN, generated atlases of transcriptomes, in particular promoters, transcribed enhancers, and long-noncoding RNAs, across a diverse set of mammalian cell types. Here, we introduce the FANTOM5 collection, bringing together data descriptors, articles and analyses of FANTOM5 data published across the Nature Research journals. Associated data are openly available for reuse by all.
Collapse
|
243
|
Dong Y, Huang Z, Kuang Q, Wen Z, Liu Z, Li Y, Yang Y, Li M. Expression dynamics and relations with nearby genes of rat transposable elements across 11 organs, 4 developmental stages and both sexes. BMC Genomics 2017; 18:666. [PMID: 28851270 PMCID: PMC5576108 DOI: 10.1186/s12864-017-4078-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TEs pervade mammalian genomes. However, compared with mice, fewer studies have focused on the TE expression patterns in rat, particularly the comparisons across different organs, developmental stages and sexes. In addition, TEs can influence the expression of nearby genes. The temporal and spatial influences of TEs remain unclear yet. RESULTS To evaluate the TEs transcription patterns, we profiled their transcript levels in 11 organs for both sexes across four developmental stages of rat. The results show that most short interspersed elements (SINEs) are commonly expressed in all conditions, which are also the major TE types with commonly expression patterns. In contrast, long terminal repeats (LTRs) are more likely to exhibit specific expression patterns. The expression tendency of TEs and genes are similar in most cases. For example, few specific genes and TEs are in the liver, muscle and heart. However, TEs perform superior over genes on classing organ, which imply their higher organ specificity than genes. By associating the TEs with the closest genes in genome, we find their expression levels are correlated, independent of their distance in some cases. CONCLUSIONS TEs sex-dependently associate with nearest genes. A gene would be associated with more than one TE. Our works can help to functionally annotate the genome and further understand the role of TEs in gene regulation.
Collapse
Affiliation(s)
- Yongcheng Dong
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Ziyan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qifan Kuang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhibin Liu
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yizhou Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yi Yang
- College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
244
|
Noguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A, Kanamori-Katayama M, Kawashima T, Kojima M, Kubosaki A, Manabe RI, Murata M, Nagao-Sato S, Nakazato K, Ninomiya N, Nishiyori-Sueki H, Noma S, Saijyo E, Saka A, Sakai M, Simon C, Suzuki N, Tagami M, Watanabe S, Yoshida S, Arner P, Axton RA, Babina M, Baillie JK, Barnett TC, Beckhouse AG, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Carlisle AJ, Clevers HC, Davis CA, Detmar M, Dohi T, Edge AS, Edinger M, Ehrlund A, Ekwall K, Endoh M, Enomoto H, Eslami A, Fagiolini M, Fairbairn L, Farach-Carson MC, Faulkner GJ, Ferrai C, Fisher ME, Forrester LM, Fujita R, Furusawa JI, Geijtenbeek TB, Gingeras T, Goldowitz D, Guhl S, Guler R, Gustincich S, Ha TJ, Hamaguchi M, Hara M, Hasegawa Y, Herlyn M, Heutink P, Hitchens KJ, Hume DA, Ikawa T, Ishizu Y, Kai C, Kawamoto H, Kawamura YI, Kempfle JS, Kenna TJ, Kere J, Khachigian LM, Kitamura T, Klein S, Klinken SP, Knox AJ, Kojima S, Koseki H, Koyasu S, Lee W, Lennartsson A, Mackay-sim A, Mejhert N, Mizuno Y, Morikawa H, Morimoto M, Moro K, Morris KJ, Motohashi H, et alNoguchi S, Arakawa T, Fukuda S, Furuno M, Hasegawa A, Hori F, Ishikawa-Kato S, Kaida K, Kaiho A, Kanamori-Katayama M, Kawashima T, Kojima M, Kubosaki A, Manabe RI, Murata M, Nagao-Sato S, Nakazato K, Ninomiya N, Nishiyori-Sueki H, Noma S, Saijyo E, Saka A, Sakai M, Simon C, Suzuki N, Tagami M, Watanabe S, Yoshida S, Arner P, Axton RA, Babina M, Baillie JK, Barnett TC, Beckhouse AG, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Carlisle AJ, Clevers HC, Davis CA, Detmar M, Dohi T, Edge AS, Edinger M, Ehrlund A, Ekwall K, Endoh M, Enomoto H, Eslami A, Fagiolini M, Fairbairn L, Farach-Carson MC, Faulkner GJ, Ferrai C, Fisher ME, Forrester LM, Fujita R, Furusawa JI, Geijtenbeek TB, Gingeras T, Goldowitz D, Guhl S, Guler R, Gustincich S, Ha TJ, Hamaguchi M, Hara M, Hasegawa Y, Herlyn M, Heutink P, Hitchens KJ, Hume DA, Ikawa T, Ishizu Y, Kai C, Kawamoto H, Kawamura YI, Kempfle JS, Kenna TJ, Kere J, Khachigian LM, Kitamura T, Klein S, Klinken SP, Knox AJ, Kojima S, Koseki H, Koyasu S, Lee W, Lennartsson A, Mackay-sim A, Mejhert N, Mizuno Y, Morikawa H, Morimoto M, Moro K, Morris KJ, Motohashi H, Mummery CL, Nakachi Y, Nakahara F, Nakamura T, Nakamura Y, Nozaki T, Ogishima S, Ohkura N, Ohno H, Ohshima M, Okada-Hatakeyama M, Okazaki Y, Orlando V, Ovchinnikov DA, Passier R, Patrikakis M, Pombo A, Pradhan-Bhatt S, Qin XY, Rehli M, Rizzu P, Roy S, Sajantila A, Sakaguchi S, Sato H, Satoh H, Savvi S, Saxena A, Schmidl C, Schneider C, Schulze-Tanzil GG, Schwegmann A, Sheng G, Shin JW, Sugiyama D, Sugiyama T, Summers KM, Takahashi N, Takai J, Tanaka H, Tatsukawa H, Tomoiu A, Toyoda H, van de Wetering M, van den Berg LM, Verardo R, Vijayan D, Wells CA, Winteringham LN, Wolvetang E, Yamaguchi Y, Yamamoto M, Yanagi-Mizuochi C, Yoneda M, Yonekura Y, Zhang PG, Zucchelli S, Abugessaisa I, Arner E, Harshbarger J, Kondo A, Lassmann T, Lizio M, Sahin S, Sengstag T, Severin J, Shimoji H, Suzuki M, Suzuki H, Kawai J, Kondo N, Itoh M, Daub CO, Kasukawa T, Kawaji H, Carninci P, Forrest AR, Hayashizaki Y. FANTOM5 CAGE profiles of human and mouse samples. Sci Data 2017; 4:170112. [PMID: 28850106 PMCID: PMC5574368 DOI: 10.1038/sdata.2017.112] [Show More Authors] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
Collapse
Affiliation(s)
- Shuhei Noguchi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Takahiro Arakawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shiro Fukuda
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masaaki Furuno
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Fumi Hori
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Sachi Ishikawa-Kato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kaida
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Ai Kaiho
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Tsugumi Kawashima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Ri-ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Sayaka Nagao-Sato
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Noriko Ninomiya
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromi Nishiyori-Sueki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shohei Noma
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Eri Saijyo
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Saka
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Mizuho Sakai
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Naoko Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Michihira Tagami
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Shoko Watanabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Peter Arner
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Richard A. Axton
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Magda Babina
- Department of Dermatology and Allergy, Charite University Medicine Berlin, Charitéplatz 1, 10117 Berlin, German
| | - J. Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Timothy C. Barnett
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102 Australia
| | - Beatrice Bodega
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Alessandro Bonetti
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - James Briggs
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Frank Brombacher
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Ailsa J. Carlisle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Hans C. Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- University Medical Centre Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands
| | - Carrie A. Davis
- Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11797, USA
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H 303, 8093 Zurich, Switzerland
| | - Taeko Dohi
- Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Albert S.B. Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
- RCI Regensburg Centre for Interventional Immunology, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anna Ehrlund
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | - Mitsuhiro Endoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Afsaneh Eslami
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Michela Fagiolini
- F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Mary C. Farach-Carson
- The University of Texas Health Science Center at Houston, Houston, TX 77251-1892, USA
| | - Geoffrey J. Faulkner
- Cancer Biology Program, Mater Medical Research Institute, South Brisbane, Queensland 4101, Australia
| | - Carmelo Ferrai
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | - Malcolm E. Fisher
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Lesley M. Forrester
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rie Fujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jun-ichi Furusawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Teunis B. Geijtenbeek
- Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Thomas Gingeras
- Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11797, USA
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sven Guhl
- Department of Dermatology and Allergy, Charite University Medicine Berlin, Charitéplatz 1, 10117 Berlin, German
| | - Reto Guler
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Stefano Gustincich
- Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy
- Department of Neuroscience and Brian Technologies, Italian Istitute of Technology, Via Morego 30, Genova, Italy
| | - Thomas J. Ha
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Masahide Hamaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hara
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Yuki Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Meenhard Herlyn
- Melanoma Research Center, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Otfried Müller Straße 23, 72076 Tübingen, Germany
| | - Kelly J. Hitchens
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Tomokatsu Ikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Ishizu
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Kawamoto
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki I. Kawamura
- Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516, Japan
| | - Judith S. Kempfle
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Tony J. Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
- Department of Genetics and Molecular Medicine, King's College London, Guy’s St Thomas Street, London, UK
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
- Vascular Biology and Translational Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Sarah Klein
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, HCI H 303, 8093 Zurich, Switzerland
| | - S. Peter Klinken
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Alan J. Knox
- Respiratory Medicine, University of Nottingham, Hucknall Road, Nottingham NG5 1PB, UK
| | - Soichi Kojima
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeo Koyasu
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Weonju Lee
- Dermatology, School of Medicine Kyungpook National University, Jung-gu, Daegu 41944, Korea
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | | | - Niklas Mejhert
- Department of Medicine, Karolinska Institutet, 141 86, Stockholm, Sweden
- Karolinska University Hospital, Center for Metabolism and Endocrinology, 141 86, Stockholm, Sweden
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Hiromasa Morikawa
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Morimoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Kazuyo Moro
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kelly J. Morris
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | - Hozumi Motohashi
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Christine L. Mummery
- Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Fumio Nakahara
- Division of Cellular Therapy and Division of Stem Cell Signaling, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Toshiyuki Nakamura
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Tadasuke Nozaki
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Soichi Ogishima
- Department of Bioclinical Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8573, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima 963-8611 Japan
| | - Mariko Okada-Hatakeyama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Insitute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Valerio Orlando
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Environmental Epigenetics Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dmitry A. Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Robert Passier
- Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Margaret Patrikakis
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ana Pombo
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center, Robert Roessle Str.10, 13125 Berlin, Germany
| | | | - Xian-Yang Qin
- RIKEN Center for Life Science Technologies, Wako, Saitama 351-0198, Japan
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
- RCI Regensburg Centre for Interventional Immunology, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Otfried Müller Straße 23, 72076 Tübingen, Germany
| | - Sugata Roy
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Antti Sajantila
- Hjelt Institute, Department of Forensic Medicine, University of Helsinki, Kytosuontie 11, 003000 Helsinki, Finland
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hironori Satoh
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Suzana Savvi
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Alka Saxena
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Christian Schmidl
- Department of Internal Medicine III, University Hospital Regensburg, F.-J.-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Gundula G. Schulze-Tanzil
- Department of Orthopedic, Trauma and Reconstructive Surgery, Charite Universitatsmedizin Berlin, Charitéplatz 1, 10117 Berlin, German
| | - Anita Schwegmann
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- Immunology of Infectious Diseases, Faculty of Health Sciences, South African Medical Research Council (SAMRC), University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Jay W. Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Daisuke Sugiyama
- Department of Clinical Study, Center for Advanced Medical Innovation, Kyushu University, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Takaaki Sugiyama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Naoko Takahashi
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Takai
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiroshi Tanaka
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Andru Tomoiu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK
| | - Hiroo Toyoda
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Marc van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Linda M. van den Berg
- Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Roberto Verardo
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie (LNCIB), Padriciano 99, 34149 Trieste, Italy
| | - Dipti Vijayan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christine A. Wells
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, MDHS, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Chiyo Yanagi-Mizuochi
- Center for Clinical and Translational Reseach, Kyushu University Hospital, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yohei Yonekura
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Chuou-ku, Kobe 650-0047, Japan
| | - Peter G. Zhang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Imad Abugessaisa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Erik Arner
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kondo
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Telethon Kids Institute, the University of Western Australia, Perth, WA, Australia
| | - Marina Lizio
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Serkan Sahin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Jessica Severin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Hisashi Shimoji
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Kanagawa 230-0045, Japan
| | - Masanori Suzuki
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kawai
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Naoto Kondo
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Carsten O. Daub
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7-9, SE-141 83 Huddinge, Sweden
| | - Takeya Kasukawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair R.R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
245
|
LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 2017; 49:1502-1510. [PMID: 28846101 DOI: 10.1038/ng.3945] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
After fertilization, to initiate development, gametes are reprogramed to become totipotent. Approximately half of the mammalian genome consists of repetitive elements, including retrotransposons, some of which are transcribed after fertilization. Retrotransposon activation is generally assumed to be a side effect of the extensive chromatin remodeling underlying the epigenetic reprogramming of gametes. Here, we used a targeted epigenomic approach to address whether specific retrotransposon families play a direct role in chromatin organization and developmental progression. We demonstrate that premature silencing of LINE-1 elements decreases chromatin accessibility, whereas prolonged activation prevents the gradual chromatin compaction that occurs naturally in developmental progression. Preventing LINE-1 activation and interfering with its silencing decreases developmental rates independently of the coding nature of the LINE-1 transcript, thus suggesting that LINE-1 functions primarily at the chromatin level. Our data suggest that activation of LINE-1 regulates global chromatin accessibility at the beginning of development and indicate that retrotransposon activation is integral to the developmental program.
Collapse
|
246
|
Abstract
Viruses must establish an intimate relationship with their hosts and vectors in order to infect, replicate, and disseminate; hence, viruses can be considered as symbionts with their hosts. Symbiotic relationships encompass different lifestyles, including antagonistic (or pathogenic, the most well-studied lifestyle for viruses), commensal (probably the most common lifestyle), and mutualistic (important beneficial partners). Symbiotic relationships can shape the evolution of the partners in a holobiont, and placing viruses in this context provides an important framework for understanding virus-host relationships and virus ecology. Although antagonistic relationships are thought to lead to coevolution, this is not always clear in virus-host interactions, and impacts on evolution may be complex. Commensalism implies a hitchhiking role for viruses-selfish elements just along for the ride. Mutualistic relationships have been described in detail in the past decade, and they reveal how important viruses are in considering host ecology. Ultimately, symbiosis can lead to symbiogenesis, or speciation through fusion, and the presence of large amounts of viral sequence in the genomes of everything from bacteria to humans, including some important functional genes, illustrates the significance of viral symbiogenesis in the evolution of all life on Earth.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edelio R Bazán
- Center for Infectious Disease Dynamics, Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
247
|
L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends Genet 2017; 33:802-816. [PMID: 28797643 DOI: 10.1016/j.tig.2017.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
The retrotransposon LINE-1 (long interspersed element 1, L1) is a transposable element that has extensively colonized the mammalian germline. L1 retrotransposition can also occur in somatic cells, causing genomic mosaicism, as well as in cancer. However, the extent of L1-driven mosaicism arising during ontogenesis is unclear. We discuss here recent experimental data which, at a minimum, fully substantiate L1 mosaicism in early embryonic development and neural cells, including post-mitotic neurons. We also consider the possible biological impact of somatic L1 insertions in neurons, the existence of donor L1s that are highly active ('hot') in specific spatiotemporal niches, and the evolutionary selection of donor L1s driving neuronal mosaicism.
Collapse
|
248
|
Oberlin S, Sarazin A, Chevalier C, Voinnet O, Marí-Ordóñez A. A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements. Genome Res 2017; 27:1549-1562. [PMID: 28784835 PMCID: PMC5580714 DOI: 10.1101/gr.220723.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 01/17/2023]
Abstract
Retroelements, the prevalent class of plant transposons, have major impacts on host genome integrity and evolution. They produce multiple proteins from highly compact genomes and, similar to viruses, must have evolved original strategies to optimize gene expression, although this aspect has been seldom investigated thus far. Here, we have established a high-resolution transcriptome/translatome map for the near-entirety of Arabidopsis thaliana transposons, using two distinct DNA methylation mutants in which transposon expression is broadly de-repressed. The value of this map to study potentially intact and transcriptionally active transposons in A. thaliana is illustrated by our comprehensive analysis of the cotranscriptional and translational features of Ty1/Copia elements, a family of young and active retroelements in plant genomes, and how such features impact their biology. Genome-wide transcript profiling revealed a unique and widely conserved alternative splicing event coupled to premature termination that allows for the synthesis of a short subgenomic RNA solely dedicated to production of the GAG structural protein and that preferentially associates with polysomes for efficient translation. Mutations engineered in a transgenic version of the Arabidopsis EVD Ty1/Copia element further show how alternative splicing is crucial for the appropriate coordination of full-length and subgenomic RNA transcription. We propose that this hitherto undescribed genome expression strategy, conserved among plant Ty1/Copia elements, enables an excess of structural versus catalytic components, mandatory for mobilization.
Collapse
Affiliation(s)
- Stefan Oberlin
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexis Sarazin
- Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
249
|
LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell 2017; 170:61-71.e11. [PMID: 28666125 DOI: 10.1016/j.cell.2017.06.013] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Transposon reactivation is an inherent danger in cells that lose epigenetic silencing during developmental reprogramming. In the mouse, long terminal repeat (LTR)-retrotransposons, or endogenous retroviruses (ERV), account for most novel insertions and are expressed in the absence of histone H3 lysine 9 trimethylation in preimplantation stem cells. We found abundant 18 nt tRNA-derived small RNA (tRF) in these cells and ubiquitously expressed 22 nt tRFs that include the 3' terminal CCA of mature tRNAs and target the tRNA primer binding site (PBS) essential for ERV reverse transcription. We show that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays. 22 nt tRFs post-transcriptionally silence coding-competent ERVs, while 18 nt tRFs specifically interfere with reverse transcription and retrotransposon mobility. The PBS offers a unique target to specifically inhibit LTR-retrotransposons, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.
Collapse
|
250
|
Lock FE, Babaian A, Zhang Y, Gagnier L, Kuah S, Weberling A, Karimi MM, Mager DL. A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS One 2017; 12:e0180659. [PMID: 28715472 PMCID: PMC5513427 DOI: 10.1371/journal.pone.0180659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences contain multiple regulatory motifs and hence are capable of influencing expression of host genes. TEs are known to be released from epigenetic repression and can become transcriptionally active in cancer. Such activation could also lead to lineage-inappropriate activation of oncogenes, as previously described in lymphomas. However, there are few reports of this mechanism occurring in non-blood cancers. Here, we re-analyzed whole transcriptome data from a large cohort of patients with colon cancer, compared to matched normal colon control samples, to detect genes or transcripts ectopically expressed through activation of TE promoters. Among many such transcripts, we identified six where the affected gene has described role in cancer and where the TE-driven gene mRNA is expressed in primary colon cancer, but not normal matched tissue, and confirmed expression in colon cancer-derived cell lines. We further characterized a TE-gene chimeric transcript involving the Interleukin 33 (IL-33) gene (termed LTR-IL-33), that is ectopically expressed in a subset of colon cancer samples through the use of an endogenous retroviral long terminal repeat (LTR) promoter of the MSTD family. The LTR-IL-33 chimeric transcript encodes a novel shorter isoform of the protein, which is missing the initial N-terminus (including many conserved residues) of Native IL-33. In vitro studies showed that LTR-IL-33 expression is required for optimal CRC cell line growth as 3D colonospheres. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in colon cancer.
Collapse
Affiliation(s)
- Frances E. Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sabrina Kuah
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Antonia Weberling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Mohammad M. Karimi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, France
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|