201
|
Vora A, Grandgenett DP. DNase protection analysis of retrovirus integrase at the viral DNA ends for full-site integration in vitro. J Virol 2001; 75:3556-67. [PMID: 11264345 PMCID: PMC114847 DOI: 10.1128/jvi.75.8.3556-3567.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrovirus intasomes purified from virus-infected cells contain the linear viral DNA genome and integrase (IN). Intasomes are capable of integrating the DNA termini in a concerted fashion into exogenous target DNA (full site), mimicking integration in vivo. Molecular insights into the organization of avian myeloblastosis virus IN at the viral DNA ends were gained by reconstituting nucleoprotein complexes possessing intasome characteristics. Assembly of IN-4.5-kbp donor complexes capable of efficient full-site integration appears cooperative and is dependent on time, temperature, and protein concentration. DNase I footprint analysis of assembled IN-donor complexes capable of full-site integration shows that wild-type U3 and other donors containing gain-of-function attachment site sequences are specifically protected by IN at low concentrations (<20 nM) with a defined outer boundary mapping ~20 nucleotides from the ends. A donor containing mutations in the attachment site simultaneously eliminated full-site integration and DNase I protection by IN. Coupling of wild-type U5 ends with wild-type U3 ends for full-site integration shows binding by IN at low concentrations probably occurs only at the very terminal nucleotides (<10 bp) on U5. The results suggest that assembly requires a defined number of avian IN subunits at each viral DNA end. Among several possibilities, IN may bind asymmetrically to the U3 and U5 ends for full-site integration in vitro.
Collapse
Affiliation(s)
- A Vora
- St. Louis University Health Sciences Center, Institute for Molecular Virology, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
202
|
Holmes-Son ML, Appa RS, Chow SA. Molecular genetics and target site specificity of retroviral integration. ADVANCES IN GENETICS 2001; 43:33-69. [PMID: 11037298 DOI: 10.1016/s0065-2660(01)43003-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Integration is an essential step in the life cycle of retroviruses, resulting in the stable joining of the viral cDNA to the host cell chromosomes. While this critical process makes retroviruses an attractive vector for gene delivery, it also presents a potential hazard. The sites where integration occurs are nonspecific. Therefore,it is possible that integration of retroviral DNA will affect host gene expression and disrupt normal cellular functions. The mechanism by which integration sites are chosen is not well understood, and is influenced by several factors, including DNA sequence and structure, DNA-binding proteins, DNA methylation, and transcription. Integrase, the viral enzyme responsible for catalyzing integration, also plays a key role in controlling the choice of target sites. The integrase domain responsible for target site selection has been mapped to the central core region. A better understanding of the interaction between the target-specifying motif of integrase and the target DNA may allow a means to manipulate integration into particular chromosomal sites. Another approach to directing integration is to fuse integrase with a sequence-specific DNA-binding protein, which results in a bias of integration in vitro into the recognition site of the fusion partner. Successful incorporation of the fusion protein into infectious virions and the identification of optimal proteins that can be fused to integrase will advance the development of site-specific vectors. Retroviruses are promising for the delivery of genes in experimental and therapeutic protocols. A better understanding of integration will aid in the design of safer and more effective gene transfer vectors.
Collapse
Affiliation(s)
- M L Holmes-Son
- Department of Molecular and Medical Pharmacology, UCLA AIDS Institute and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
203
|
Neamati N, Marchand C, Pommier Y. HIV-1 integrase inhibitors: past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:147-65. [PMID: 11013763 DOI: 10.1016/s1054-3589(00)49026-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- N Neamati
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
204
|
Dirac AM, Kjems J. Mapping DNA-binding sites of HIV-1 integrase by protein footprinting. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:743-51. [PMID: 11168414 DOI: 10.1046/j.1432-1327.2001.01932.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HIV-1 integrase protein catalyzes integration of the viral genome into host cell DNA. Whereas the structures of the three domains of integrase have been solved separately, both the structural organization of the full-length protein and its interaction with DNA remain unresolved. A protein footprinting approach was employed to investigate the accessibility of residues in the full-length soluble integrase mutant, INF(185K,C280S), to proteolytic attack in the absence and presence of DNA. The N-terminal and C-terminal domains were relatively more accessible to proteolytic attack than the core domain. The susceptibility to proteolytic attack was specifically affected by DNA at residues Lys34, in the N-terminal domain, Lys111, Lys136, Glu138, Lys156-Lys160, Lys185-Lys188, in the core domain, and Asp207, Lys 215, Glu246, Lys258 and Lys273 in the linker and C-terminal domain, suggesting that these regions are involved in, or shielded by, DNA binding. Lys34 is positioned in a putative dimerization domain, consistent with the notion that DNA stabilizes the dimeric state of integrase.
Collapse
Affiliation(s)
- A M Dirac
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | |
Collapse
|
205
|
Abstract
The pol gene of HIV-1 encodes for three essential enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN). More than 16 drugs, targeting two of these enzymes, PR and RT have been approved by the FDA. At present, there are no clinically useful agents that inhibit the third enzyme, IN. Combination chemotherapy consisting of PR and RT inhibitors has shown remarkable success in the clinic and has benefited many patients. It is thought that a combination of drugs targeting all three enzymes should further incapacitate the virus. Discovery of highly selective PR inhibitors owe their success to the recent development in structure-guided drug design. During the past several years a plethora of structures of HIV-1 PR in complex with an inhibitor have been solved by x-ray crystallography. This incredible wealth of information provided opportunities for the discovery of second and third generation inhibitors. Due to the inherent nature of IN and insufficient structural information, structure-based inhibitor design selective for IN has not kept pace. However, because of recent developments in the field such information could soon become available. In this review, emphasis is placed on inhibitors with identified or proposed drug binding sites on IN.
Collapse
Affiliation(s)
- N Neamati
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304BA, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
206
|
Yi J, Arthur JW, Dunbrack RL, Skalka AM. An inhibitory monoclonal antibody binds at the turn of the helix-turn-helix motif in the N-terminal domain of HIV-1 integrase. J Biol Chem 2000; 275:38739-48. [PMID: 10969077 DOI: 10.1074/jbc.m005499200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increase in our understanding of its structure and enzymatic mechanism, HIV-1 integrase (IN) has become a promising target for designing drugs to treat patients with AIDS. To investigate the structure and function of IN, a panel of monoclonal antibodies (mAbs) directed against HIV-1 IN was raised and characterized previously in this laboratory. Among them, mAbs17, -4, and -33 were found to inhibit IN activity in vitro. In this study, we investigated the interaction of N-terminal-specific mAb17 and its isolated Fab fragment with full-length HIV-1 IN(1-288) and its isolated N-terminal, Zn(2+)-binding domain IN(1-49). Our results show that binding of Zn(2+) to IN(1-49) stabilizes the mAb17-IN complex and that dimer dissociation is not required for binding of the Fab. To identify the epitope recognized by mAb17, we developed a protein footprinting technique based on controlled proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Binding was mapped to a region within amino acids Asp(25)-Glu(35). This peptide corresponds to the end of a helix-turn-helix motif in the IN(1-55) NMR structure and contributes to the dimerization of the N-terminal domain. Antibody binding also appears to destabilize the N-terminal helix in this domain. A molecular model of the [IN(1-49)](2).(Fab)(1) complex shows Fab binding across the dimer protein and suggests a potential target for drug design. These data also suggest that mAb17 inhibits integrase activity by blocking critical protein-protein interactions and/or by distorting the orientation of the N-terminal alpha-helix. The relevance of our results to an understanding of IN function is discussed.
Collapse
Affiliation(s)
- J Yi
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
207
|
Klutch M, Woerner AM, Marcus-Sekura CJ, Levin JG. Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides. J Biomed Sci 2000; 5:192-202. [PMID: 9678490 DOI: 10.1007/bf02253469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have generated peptide antisera against selected regions in HIV-1 and HIV-2 reverse transcriptase (RT) and integrase (IN) to investigate the specificity of determinants governing the immune response. Peptides representing homologous regions (>50%) in the N- and C-termini and central portions of these proteins were synthesized and injected into rabbits. HIV-1 and HIV-2 IN peptide antisera inhibited IN-mediated cleavage of an HIV-1 DNA oligonucleotide substrate in a 3' processing assay, while anti-RT or normal sera had no effect. None of the RT sera inhibited RT activity. In Western blots, HIV-2 antisera directed against RT or IN peptides recognized HIV-2 RT and IN proteins, respectively, as expected, but also cross-reacted with the corresponding HIV-1 proteins. By contrast, corresponding HIV-1 antisera were type-specific. In some cases, HIV-1 cross-reactive antisera could be generated by immunization with HIV-1 chimeric peptides with as few as two residues in the HIV-1 sequence changed to the corresponding HIV-2 amino acids. The finding that a type-specific response can be converted to a cross-reactive response suggests alternate strategies for developing new diagnostic reagents which detect HIV-1 and HIV-2. In addition, our results provide a general model for generating HIV peptide vaccines with dual specificity against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- M Klutch
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | | | | | | |
Collapse
|
208
|
Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A 2000; 97:8233-8. [PMID: 10890912 PMCID: PMC26930 DOI: 10.1073/pnas.150220297] [Citation(s) in RCA: 330] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52-288). The structure resolved to 2.8 A is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 A apart. A 26-aa alpha-helix, alpha6, links the C-terminal domain to the catalytic core. A kink in one of the two alpha6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein-DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52-210), independently determined at 1.6-A resolution, is identical to the core domain within the two-domain 52-288 structure.
Collapse
Affiliation(s)
- J C Chen
- Departments of Biochemistry and Biophysics, Laboratory Medicine, and Internal Medicine, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
209
|
Jing N, Marchand C, Liu J, Mitra R, Hogan ME, Pommier Y. Mechanism of inhibition of HIV-1 integrase by G-tetrad-forming oligonucleotides in Vitro. J Biol Chem 2000; 275:21460-7. [PMID: 10801812 DOI: 10.1074/jbc.m001436200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G-tetrad-forming oligonucleotides and have been identified as potent inhibitors of human immunodeficiency virus type 1 integrase (HIV-1 IN) activity (Rando, R. F., Ojwang, J., Elbaggari, A., Reyes, G. R., Tinder, R., McGrath, M. S., and Hogan, M. E. (1995) J. Biol. Chem. 270, 1754-1760; Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13762-13771; Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). To understand the inhibition of HIV-1 IN activity by the G-quartet inhibitors, we have designed the oligonucleotides and, composed of three and four G-quartets with stem lengths of 19 and 24 A, respectively. The fact that increasing the G-quartet stem length from 15 to 24 A kept inhibition of HIV-1 IN activity unchanged suggests that the binding interaction occurs between a GTGT loop domain of the G-quartet inhibitors and a catalytic site of HIV-1 IN, referred to as a face-to-face interaction. Docking the NMR structure of (Jing and Hogan (1998)) into the x-ray structure of the core domain of HIV-1 IN, HIV-1 IN-(51-209) (Maignan, S., Guilloteau, J.-P. , Qing, Z.-L., Clement-Mella, C., and Mikol, V. (1998) J. Mol. Biol. 282, 359-368), was performed using the GRAMM program. The statistical distributions of hydrogen bonding between HIV-1 IN and were obtained from the analyses of 1000 random docking structures. The docking results show a high probability of interaction between the GTGT loop residues of the G-quartet inhibitors and the catalytic site of HIV-1 IN, in agreement with the experimental observation.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
210
|
Davies DR, Goryshin IY, Reznikoff WS, Rayment I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 2000; 289:77-85. [PMID: 10884228 DOI: 10.1126/science.289.5476.77] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus-1 (HIV-1) integrase. Understanding how these proteins interact with DNA is central to understanding the molecular basis of transposition. We report the three-dimensional structure of prokaryotic Tn5 transposase complexed with Tn5 transposon end DNA determined to 2.3 angstrom resolution. The molecular assembly is dimeric, where each double-stranded DNA molecule is bound by both protein subunits, orienting the transposon ends into the active sites. This structure provides a molecular framework for understanding many aspects of transposition, including the binding of transposon end DNA by one subunit and cleavage by a second, cleavage of two strands of DNA by a single active site via a hairpin intermediate, and strand transfer into target DNA.
Collapse
Affiliation(s)
- D R Davies
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
211
|
Mackereth CD, Arrowsmith CH, Edwards AM, McIntosh LP. Zinc-bundle structure of the essential RNA polymerase subunit RPB10 from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A 2000; 97:6316-21. [PMID: 10841539 PMCID: PMC18600 DOI: 10.1073/pnas.97.12.6316] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA polymerase subunit RPB10 displays a high level of conservation across archaea and eukarya and is required for cell viability in yeast. Structure determination of this RNA polymerase subunit from Methanobacterium thermoautotrophicum reveals a topology, which we term a zinc-bundle, consisting of three alpha-helices stabilized by a zinc ion. The metal ion is bound within an atypical CX(2)CX(n)CC sequence motif and serves to bridge an N-terminal loop with helix 3. This represents an example of two adjacent zinc-binding Cys residues within an alpha-helix conformation. Conserved surface features of RPB10 include discrete regions of neutral, acidic, and basic residues, the latter being located around the zinc-binding site. One or more of these regions may contribute to the role of this subunit as a scaffold protein within the polymerase holoenzyme.
Collapse
Affiliation(s)
- C D Mackereth
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
212
|
Tsurutani N, Kubo M, Maeda Y, Ohashi T, Yamamoto N, Kannagi M, Masuda T. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 2000; 74:4795-806. [PMID: 10775618 PMCID: PMC112002 DOI: 10.1128/jvi.74.10.4795-4806.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus type 1 integrase (HIV-1 IN) is thought to have several putative roles at steps prior to integration, such as reverse transcription and nuclear transport of the preintegration complex (PIC). Here, we investigated new functional aspects of HIV-1 IN in the context of the viral replication cycle through point mutagenesis of Ser, Thr, Tyr, Lys, and Arg residues conserved in IN, some of which are located at possible phosphorylation sites. Our results showed that mutations of these Ser or Thr residues had no effect on reverse transcription and nuclear transport of PIC but had a slight effect on integration. Of note, mutations in the conserved KRK motif (amino acids 186 to 189), proposed previously as a putative nuclear localization signal (NLS) of HIV-1 IN, did not affect the karyophilic property of HIV-1 IN as shown by using a green fluorescent protein fusion protein expression system. Instead, these KRK mutations resulted in an almost complete lack of viral gene expression due to the failure to complete reverse transcription. This defect was complemented by supplying wild-type IN in trans, suggesting a trans-acting function of the KRK motif of IN in reverse transcription. Mutation at the conserved Tyr 143 (Y143G) resulted in partial impairment of completion of reverse transcription in monocyte-derived macrophages (MDM) but not in rhabdomyosarcoma cells. Similar effects were obtained by introducing a stop codon in the vpr gene (DeltaVpr), and additive effects of both mutations (Y143G plus DeltaVpr) were observed. In addition, these mutants did not produce two-long terminal repeat DNA, a surrogate marker for nuclear entry, in MDM. Thus, the possible impairment of Y143G might occur during the nuclear transport of the PIC. Taken together, our results identified new functional aspects of the conserved residues in HIV-1 IN: i) the KRK motif might have a role in efficient reverse transcription in both dividing and nondividing cells but not in the NLS function; ii) Y143 might be an important residue for maintaining efficient proviral DNA formation in nondividing cells.
Collapse
Affiliation(s)
- N Tsurutani
- Department of Immunotherapeutics, Medical Research Division, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. We report here a fully hydrated 2 ns molecular dynamics simulation performed using parallel NWChem3.2.1 with the AMBER95 force field. The HIV-1 integrase catalytic domain previously determined by crystallography (1B9D) and modeling including two Mg(2+) ions placed into the active site based on an alignment against an ASV integrase structure containing two divalent metals (1VSH), was used as the starting structure. The simulation reveals a high degree of flexibility in the region of residues 140-149 even in the presence of a second divalent metal ion and a dramatic conformational change of the side chain of E152 when the second metal ion is present. This study shows similarities in the behavior of the catalytic residues in the HIV-1 and ASV integrases upon metal binding. The present simulation also provides support to the hypothesis that the second metal ion is likely to be carried into the HIV-1 integrase active site by the substrate, a strand of DNA.
Collapse
Affiliation(s)
- R D Lins
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
214
|
Kim DJ, Lee SK, Oh YT, Shin CG. Minimal core domain of HIV-1 integrase for biological activity. Mol Cells 2000; 10:96-101. [PMID: 10774754 DOI: 10.1007/s10059-000-0096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) integrase (IN) mediates insertion of viral DNA into human DNA, which is an essential step in the viral life cycle. In order to study minimal core domain in HIV-1 IN protein, we constructed nine deletion mutants by using PCR amplification. The constructs were expressed in Escherichia coli, and the proteins were subsequently purified and analyzed in terms of biological activity such as enzymatic and DNA-binding activities. The mutant INs with an N-terminal or C-terminal deletion showed strong disintegration activity though they failed to show endonucleolytic and strand transfer activities, indicating that the disintegration reaction does not require the fine structure of the HIV-1 IN protein. In the DNA-binding analysis using gel mobility shift assay and UV cross-linking method, it was found that both the central and C-terminal domains are essential for proper DNA-IN protein interaction although the central or C-terminal domain alone was able to be in close contact with DNA substrate. Therefore, our results suggest that the C-terminal domain act as a DNA-holding motive, which leads to proper interaction for enzymatic reaction between the IN protein and DNA.
Collapse
Affiliation(s)
- D J Kim
- Department of Biotechnology, Chung-Ang University, Kyunggido, Korea
| | | | | | | |
Collapse
|
215
|
Yang ZN, Mueser TC, Bushman FD, Hyde CC. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. J Mol Biol 2000; 296:535-48. [PMID: 10669607 DOI: 10.1006/jmbi.1999.3463] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integration of retroviral cDNA is a necessary step in viral replication. The virally encoded integrase protein and DNA sequences at the ends of the linear viral cDNA are required for this reaction. Previous studies revealed that truncated forms of Rous sarcoma virus integrase containing two of the three protein domains can carry out integration reactions in vitro. Here, we describe the crystal structure at 2.5 A resolution of a fragment of the integrase of Rous sarcoma virus (residues 49-286) containing both the conserved catalytic domain and a modulatory DNA-binding domain (C domain). The catalytic domains form a symmetric dimer, but the C domains associate asymmetrically with each other and together adopt a canted conformation relative to the catalytic domains. A binding path for the viral cDNA is evident spanning both domain surfaces, allowing modeling of the larger integration complexes that are known to be active in vivo. The modeling suggests that formation of an integrase tetramer (a dimer of dimers) is necessary and sufficient for joining both viral cDNA ends at neighboring sites in the target DNA. The observed asymmetric arrangement of C domains suggests that they could form a rotationally symmetric tetramer that may be important for bridging integrase complexes at each cDNA end.
Collapse
Affiliation(s)
- Z N Yang
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
216
|
Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform. J Mol Biol 2000; 296:521-33. [PMID: 10669606 DOI: 10.1006/jmbi.1999.3451] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The crystal structure of simian immunodeficiency virus (SIV) integrase that contains in a single polypeptide the core and the C-terminal deoxyoligonucleotide binding domain has been determined at 3 A resolution with an R-value of 0.203 in the space group P2(1)2(1)2(1). Four integrase core domains and one C-terminal domain are found to be well defined in the asymmetric unit. The segment extending from residues 114 to 121 assumes the same position as seen in the integrase core domain of avian sarcoma virus as well as human immunodeficiency virus type-1 (HIV-1) crystallized in the absence of sodium cacodylate. The flexible loop in the active site, composed of residues 141-151, remains incompletely defined, but the location of the essential Glu152 residue is unambiguous. The residues from 210-218 that link the core and C-terminal domains can be traced as an extension from the core with a short gap at residues 214-215. The C(alpha) folding of the C-terminal domain is similar to the solution structure of this domain from HIV-1 integrase. However, the dimeric form seen in the NMR structure cannot exist as related by the non-crystallographic symmetry in the SIV integrase crystal. The two flexible loops of the C-terminal domain, residues 228-236 and residues 244-249, are much better fixed in the crystal structure than in the NMR structure with the former in the immediate vicinity of the flexible loop of the core domain. The interface between the two domains encompasses a solvent-exclusion area of 1500 A(2). Residues from both domains purportedly involved in DNA binding are narrowly distributed on the same face of the molecule. They include Asp64, Asp116, Glu152 and Lys159 from the core and Arg231, Leu234, Arg262, Arg263 and Lys264 from the C-terminal domain. A model for DNA binding is proposed to bridge the two domains by tethering the 228-236 loop of the C-terminal domain and the flexible loop of the core.
Collapse
Affiliation(s)
- Z Chen
- Department of Antiviral Research, Merck Research Laboratories, West Point, PA, 19486-0004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Jing N, De Clercq E, Rando RF, Pallansch L, Lackman-Smith C, Lee S, Hogan ME. Stability-activity relationships of a family of G-tetrad forming oligonucleotides as potent HIV inhibitors. A basis for anti-HIV drug design. J Biol Chem 2000; 275:3421-30. [PMID: 10652335 DOI: 10.1074/jbc.275.5.3421] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we have demonstrated that T30695, a G-tetrad-forming oligonucleotide, is a potent inhibitor of human immunodeficiency virus, type I (HIV-1) integrase and the K(+)-induced loop folding of T30695 plays a key role in the inhibition of HIV-1 integrase (Jing, N., and Hogan, M. E. (1998) J. Biol. Chem. 273, 34992-34999). Here we have modified T30695 by introducing a hydrophobic bulky group, propynyl dU, or a positively charged group, 5-amino dU, into the bases of T residues of the loops, and by substitution of the T-G loops by T-T loops. Physical measurements have demonstrated that the substitution of propynyl dU or 5-amino dU for T in the T residues of the loops did not alter the structure of T30695, and these derivatives also formed an intramolecular G-quartet structure, which is an essential requirement for anti-HIV activity. Measured IC(50) and EC(50) values show that these substitutions did not induce an apparent decrease in the ability to inhibit HIV-1 integrase activity and in the inhibition of HIV-1 replication in cell culture. However, the substitution of T-T loops for T-G loops induced a substantial decrease in both thermal stability and anti-HIV activity. The data analysis of T30695 and the 21 derivatives shows a significant, functional correlation between thermal stability of the G-tetrad structure and the capacity to inhibit HIV-1 integrase activity and between thermal stability of the G-tetrad structure and the capacity to inhibit HIV-1 replication, as assessed with the virus strains HIV-1 RF, IIIB, and MN in cell culture. This relationship between thermostability and activity provides a basis for improving the efficacy of these compounds to inhibit HIV-1 integrase activity and HIV-1 replication in cell culture.
Collapse
Affiliation(s)
- N Jing
- Department of Molecular Physiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
218
|
Cerdan R, Cahuzac B, Félenbok B, Guittet E. NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein. J Mol Biol 2000; 295:729-36. [PMID: 10656785 DOI: 10.1006/jmbi.1999.3417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of the DNA-binding domain (residues 1-60) of the ethanol regulon transcription factor AlcR from Aspergillus nidulans has been solved by NMR. This domain belongs to the zinc binuclear cluster class. Although the core of the protein is similar to previously characterized structures, consisting of two helices organized around a Zn(2)Cys(6 )motif, the present structure presents important variations, among them the presence of two supplementary helices. This structure gives new insight into the understanding of the AlcR specificities in DNA binding such as longer consensus half-sites, in vitro monomeric binding but in vivo multiple repeat transcriptional activation, either in direct or inverse orientations. The presence of additional contacts of the protein with its DNA target can be predicted from a model proposed for the interaction with the consensus DNA target. The clustering of accessible negative charges on helix 2 delineates a possible interaction site for other determinants of the transcriptional machinery, responsible for the fine tuning of the selection of the AlcR cognate sites.
Collapse
Affiliation(s)
- R Cerdan
- Laboratoire de RMN, ICSN-CNRS, 1 av. de la Terrasse, Gif-sur-Yvette, F-91190, France
| | | | | | | |
Collapse
|
219
|
Abstract
DNA integration is a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by the virus-encoded integrase (IN). The mechanism involves a series of nucleophilic attacks, the first of which removes the terminal 2 bases from the 3' ends of the long terminal repeats and of the second which inserts the viral DNA into the host genome. IN specifically recognizes the DNA sequences at the termini of the viral DNA, juxtaposing both ends in an enzyme complex that inserts the viral DNA into a single site in a concerted manner. Small duplications of the host DNA, characteristic of the viral IN, are found at the sites of insertion. At least two host proteins, HMG-I(Y) and BAF, have been shown to increase the efficiency of the integration reaction.
Collapse
Affiliation(s)
- P Hindmarsh
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
220
|
Abstract
Transposable elements appear quite disparate in their organization and in the types of genetic rearrangements they promote. In spite of this diversity, retroviruses and many transposons of both prokaryotes and eukaryotes show clear similarities in the chemical reactions involved in their transposition. This is reflected in the enzymes, integrases and transposases, that catalyze these reactions and that are essential for the mobility of the elements. In this chapter, we examine the structure-function relationships between these enzymes and the different ways in which the individual steps are assembled to produce a complete transposition cycle.
Collapse
Affiliation(s)
- L Haren
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS (UPR 9007), Toulouse, France
| | | | | |
Collapse
|
221
|
Pelton JG, Kustu S, Wemmer DE. Solution structure of the DNA-binding domain of NtrC with three alanine substitutions. J Mol Biol 1999; 292:1095-110. [PMID: 10512705 DOI: 10.1006/jmbi.1999.3140] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the 20 kDa C-terminal DNA-binding domain of NtrC from Salmonella typhimurium (residues Asp380-Glu469) with alanine replacing Arg456, Asn457, and Arg461, was determined by NMR spectroscopy. NtrC is a homodimeric enhancer-binding protein that activates the transcription of genes whose products are required for nitrogen metabolism. The 91-residue C-terminal domain contains the determinants necessary for dimerization and DNA-binding of the full length protein. The mutant protein does not bind to DNA but retains many characteristics of the wild-type protein, and the mutant domain expresses at high yield (20 mg/l) in minimal medium. Three-dimensional (1)H/(13)C/(15)N triple-resonance, (1)H-(13)C-(13)C-(1)H correlation and (15)N-separated nuclear Overhauser effect (NOE) spectroscopy experiments were used to make backbone and side-chain (1)H,(15)N, and (13)C assignments. The structures were calculated using a total of 1580 intra and inter-monomer distance and hydrogen bond restraints (88 hydrogen bonds; 44 hydrogen bond restraints), and 88 phi dihedral restraints for residues Asp400 through Glu469 in both monomers. A total of 54 ambiguous restraints (intra or inter-monomer) involving residues close to the 2-fold symmetry axis were also included. Each monomer consists of four helical segments. Helices A (Trp402-Leu414) and B (Leu421-His440) join with those of another monomer to form an antiparallel four-helix bundle. Helices C (Gln446-Leu451) and D (Ala456-Met468) of each monomer adopt a classic helix-turn-helix DNA-binding fold at either end of the protein. The backbone rms deviation for the 28 best of 40 starting structures is 0.6 (+/-0.2) A. Structural differences between the C-terminal domain of NtrC and the homologous Factor for Inversion Stimulation are discussed.
Collapse
Affiliation(s)
- J G Pelton
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94710, USA
| | | | | |
Collapse
|
222
|
Eijkelenboom AP, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RH, Boelens R, Kaptein R. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins 1999; 36:556-64. [PMID: 10450096 DOI: 10.1002/(sici)1097-0134(19990901)36:4<556::aid-prot18>3.0.co;2-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase has been refined using nuclear magnetic resonance spectroscopy. The protein is a dimer in solution and shows a well-defined dimer interface. The folding topology of the monomer consists of a five-stranded beta-barrel that resembles that of Src homology 3 domains. Compared with our previously reported structure, the structure is now defined far better. The final 42 structures display a back-bone root mean square deviation versus the average of 0.46 A. Correlation of the structure with recent mutagenesis studies suggests two possible models for DNA binding. Proteins 1999;36:556-564.
Collapse
Affiliation(s)
- A P Eijkelenboom
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
Transgenic technology is currently applied to several animal species of agricultural or medical importance, such as fish, cattle, mosquitos and parasitic worms. However, the repertoire of genetic tools used for molecular analyses of mice and Drosophila is not always applicable to other species. For example, while retroviral enhancer-trap experiments in mice can be based on embryonic stem (ES) cell technology, this is not currently an option with other animals. Similarly, the germline transformation of Drosophila depends on the use of the P-element transposon, which does not jump in other genera. This article analyses the main characteristics of Tc1/mariner transposable elements, examines some of the factors that have contributed to their evolutionary success, and describes their potential, as well as their limitations, for transgenesis and insertional mutagenesis in diverse animals.
Collapse
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute and Center for Biomedical Genetics, Division of Molecular Biology, Plesmanlaan 121, Amsterdam 1066CX, The Netherlands.
| | | | | |
Collapse
|
224
|
Kalpana GV, Reicin A, Cheng GS, Sorin M, Paik S, Goff SP. Isolation and characterization of an oligomerization-negative mutant of HIV-1 integrase. Virology 1999; 259:274-85. [PMID: 10388652 DOI: 10.1006/viro.1999.9767] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast two-hybrid method was used to screen mutagenized DNAs to isolate a variant of the human immunodeficiency virus type 1 integrase (IN) that does not interact with the wild-type IN. The responsible mutation, leading to a single amino acid change (V260E) in the C-terminal domain of IN, blocks IN-IN multimerization but has only small effect on binding to a host interacting protein, INI1 (hSNF5). Binding studies in vitro confirmed the defect in multimerization of the mutant IN. Biochemical analyses of the mutant IN enzyme expressed in bacteria detected only subtle changes in its properties, suggesting that the yeast system is a sensitive reporter of correct IN conformation. Mutant virus carrying the V260E substitution was blocked in replication at the time of DNA integration, consistent with IN multimerization being important for its activity in vivo.
Collapse
Affiliation(s)
- G V Kalpana
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | | | | | | | | | |
Collapse
|
225
|
Asante-Appiah E, Skalka AM. HIV-1 integrase: structural organization, conformational changes, and catalysis. Adv Virus Res 1999; 52:351-69. [PMID: 10384242 DOI: 10.1016/s0065-3527(08)60306-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Integrase comprises three domains capable of folding independently and whose three-dimensional structures are known. However, the manner in which the N-terminal, catalytic core, and C-terminal domains interact in the holoenzyme remains obscure. Catalytically active recombinant IN can exist in a dynamic equilibrium of monomers, dimers, tetramers, and higher order species. Numerous studies indicate that the enzyme functions as a multimer, minimally a dimer. The IN proteins from HIV-1 and ASV have been studied most carefully with respect to the structural basis of catalysis. Although the active site of ASV IN does not undergo significant conformational changes on binding the required metal cofactor, that of HIV-1 IN does. The reversible, metal-induced conformational change in HIV-1 IN impairs the binding of some anti-HIV-1 IN monoclonal antibodies to the enzyme and results in differential susceptibility of the protein to proteolysis. This active site-mediated conformational change reorganizes the catalytic core and C-terminal domains and appears to promote an interaction that is favorable for catalysis. Other metal-dependent structural changes in HIV-1 IN include the promotion of interactions between the N terminal and the catalytic core domains and the induction of tetramers by zinc ions. The end result of these metal-induced changes is apparently the induction of an activated holoenzyme that can form a stable ternary integrase-metal-DNA complex. These structural changes, which appear to be crucial for optimum catalysis in HIV-1 IN, do not occur in ASV IN. The structural changes observed in HIV-1 IN may serve to recruit the catalytic machinery in this enzyme to a conformation that is native for ASV IN.
Collapse
Affiliation(s)
- E Asante-Appiah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
226
|
Wlodawer A. Crystal structures of catalytic core domains of retroviral integrases and role of divalent cations in enzymatic activity. Adv Virus Res 1999; 52:335-50. [PMID: 10384241 DOI: 10.1016/s0065-3527(08)60305-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Crystal structures of the enzymatically competent catalytic domains of HIV-1 and ASV IN have been solved in the last few years. The structure of HIV-1 IN has been described only for apoenzyme and for a complex with Mg2+, whereas the structure of ASV IN has been presented as the apoenzyme, in the presence of divalent cations (Mn2+, Mg2+, Ca2+, Zn2+, and Cd2+), and with an inhibitor. A single ion of Mn2+, Mg2+, or Ca2+ interacts with the two aspartate side chains of the D,D(35)E catalytic center in octahedral coordination with four water molecules. However, two ions of Zn2+ or Cd2+ bind to the active site of IN with tetrahedral and octahedral coordination, respectively. Only small adjustments take place in the active site of ASV IN on binding of the metal cofactor(s), which are absolutely required for the activity of this enzyme. The placement of the side chains and metal ions in the active site is very similar to that observed even in distant members of this superfamily of polynucleotidyltransferases. Here the role of divalent cations in the enzymatic activity of IN and the search for inhibitors of this enzyme are discussed.
Collapse
Affiliation(s)
- A Wlodawer
- Macromolecular Structure Laboratory, NCI-Frederick Cancer Research and Development Center, Maryland 21702, USA
| |
Collapse
|
227
|
Abstract
HIV integrase consists of three domains, the structures of which have been individually determined by X-ray crystallography or NMR spectroscopy. The core domain, spanning residues 50-212, is responsible for the catalytic activity of the enzyme. The crystal structure of a dimer of this domain shows similarity to other proteins that carry out polynucleotidyl transfer, including MuA transposase and RNase H. The small N-terminal domain folds into a dimeric helix-turn-helix structure, which is stabilized by the coordination of zinc with conserved His and Cys residues. The function of this domain is unclear; however, it is required for integration activity and enhances tetramerization in the context of the full-length integrase. The C-terminal domain, which has an SH3-like fold, is involved in DNA binding. The structure of this domain reveals a large saddle-shaped cleft that is formed by dimerization. This cleft contains a number of positively charged residues, and its dimensions are appropriate for accommodating a double-stranded DNA helix. Although the C-terminal domain was originally believed to be involved in target DNA binding, more recent evidence suggests that it may bind to both the ends of the viral DNA and to the target DNA. Although the individual domain structures provide some insights into the function of the protein, a more detailed understanding of the complete mechanism by which integrase binds, cleaves, and transfers DNA requires a greater knowledge of how these domains are arranged in the active multimer.
Collapse
Affiliation(s)
- D Esposito
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
228
|
Petit C, Schwartz O, Mammano F. Oligomerization within virions and subcellular localization of human immunodeficiency virus type 1 integrase. J Virol 1999; 73:5079-88. [PMID: 10233971 PMCID: PMC112553 DOI: 10.1128/jvi.73.6.5079-5088.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous biochemical and genetic evidence indicated that the functional form of retroviral integrase protein (IN) is a multimer. A direct demonstration of IN oligomerization during the infectious cycle was, however, missing, due to the absence of a sensitive detection method. We describe here the generation of infectious human immunodeficiency virus type 1 (HIV-1) viral clones carrying IN protein tagged with highly antigenic epitopes. In this setting, we could readily visualize IN both in producer cells and in viral particles. More interestingly, we detected IN oligomers, the formation of which was dependent on disulfide bridges and took place inside virions. Additionally, expression of a tagged HIV-1 IN in the absence of other viral components resulted in almost exclusive nuclear accumulation of the protein. Mutation of a conserved cysteine in the proposed dimer interface determined the loss of viral infectivity, associated with a reduction of IN oligomer formation and the redistribution of the mutated protein in the nucleus and cytoplasm. Epitope tagging of HIV-1 IN expressed alone or in the context of a replication-competent viral clone provides powerful tools to validate debated issues on the implication of this enzyme in different steps of the viral cycle.
Collapse
Affiliation(s)
- C Petit
- Unité d'Oncologie Virale, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
229
|
Lins RD, Briggs JM, Straatsma TP, Carlson HA, Greenwald J, Choe S, McCammon JA. Molecular dynamics studies on the HIV-1 integrase catalytic domain. Biophys J 1999; 76:2999-3011. [PMID: 10354426 PMCID: PMC1300270 DOI: 10.1016/s0006-3495(99)77453-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome, thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. Two 1-ns molecular dynamics simulations have been carried out on completely hydrated models of the HIV-1 integrase catalytic domain, one with no metal ions and another with one magnesium ion in the catalytic site. The simulations predict that the region of the active site that is missing in the published crystal structures has (at the time of this work) more secondary structure than previously thought. The flexibility of this region has been discussed with respect to the mechanistic function of the enzyme. The results of these simulations will be used as part of inhibitor design projects directed against the catalytic domain of the enzyme.
Collapse
Affiliation(s)
- R D Lins
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0365, USA
| | | | | | | | | | | | | |
Collapse
|
230
|
van den Ent FM, Vos A, Plasterk RH. Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans-complementation analysis. J Virol 1999; 73:3176-83. [PMID: 10074170 PMCID: PMC104080 DOI: 10.1128/jvi.73.4.3176-3183.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) integrase protein (IN) catalyzes two reactions required to integrate HIV DNA into the human genome: 3' processing of the viral DNA ends and integration. IN has three domains, the N-terminal zinc-binding domain, the catalytic core, and the C-terminal SH3 domain. Previously, it was shown that IN proteins mutated in different domains could complement each other. We now report that this does not require any overlap between the two complementing proteins; an N-terminal domain, provided in trans, can restore IN activity of a mutant lacking this domain. Only the zinc-coordinating form of the N-terminal domain can efficiently restore IN activity of an N-terminal deletion mutant. This suggests that interaction between different domains of IN is needed for functional multimerization. We find that the N-terminal domain of feline immunodeficiency virus IN can support IN activity of an N-terminal deletion mutant of HIV type 2 IN. These cross-complementation experiments indicate that the N-terminal domain contributes to the recognition of specific viral DNA ends.
Collapse
Affiliation(s)
- F M van den Ent
- Division of Molecular Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
231
|
Yang F, Leon O, Greenfield NJ, Roth MJ. Functional interactions of the HHCC domain of moloney murine leukemia virus integrase revealed by nonoverlapping complementation and zinc-dependent dimerization. J Virol 1999; 73:1809-17. [PMID: 9971758 PMCID: PMC104420 DOI: 10.1128/jvi.73.3.1809-1817.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Accepted: 12/09/1998] [Indexed: 11/20/2022] Open
Abstract
The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3' processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown.
Collapse
Affiliation(s)
- F Yang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
232
|
Maroun RG, Krebs D, Roshani M, Porumb H, Auclair C, Troalen F, Fermandjian S. Conformational aspects of HIV-1 integrase inhibition by a peptide derived from the enzyme central domain and by antibodies raised against this peptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:145-55. [PMID: 10091594 DOI: 10.1046/j.1432-1327.1999.00130.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monospecific antibodies were raised against a synthetic peptide K159 (SQGVVESMNKELKKIIGQVRDQAEHLKTA) reproducing the segment 147-175 of HIV-1 integrase (IN). Synthesis of substituted and truncated analogs of K159 led us to identify the functional epitope reacting with antibodies within the C-terminal portion 163-175 of K159. Conformational studies combining secondary structure predictions, CD and NMR spectroscopy together with ELISA assays, showed that the greater is the propensity of the epitope for helix formation the higher is the recognition by anti-K159. Both the antibodies and the antigenic peptide K159 exhibited inhibitory activities against IN. In contrast, neither P159, a Pro-containing analog of K159 that presents a kink around proline but with intact epitope conformation, nor the truncated analogs encompassing the epitope, were inhibitors of IN. While the activity of antibodies is restricted to recognition of the sole epitope portion, that of the antigenic K159 likely requires interactions of the peptide with the whole 147-175 segment in the protein [Sourgen F., Maroun, R.G., Frère, V., Bouziane, A., Auclair, C., Troalen, F. & Fermandjian, S. (1996) Eur. J. Biochem. 240, 765-773]. Actually, of all tested peptides only K159 was found to fulfill condition of minimal number of helical heptads to achieve the formation of a stable coiled-coil structure with the IN 147-175 segment. The binding of antibodies and of the antigenic peptide to this segment of IN hampers the binding of IN to its DNA substrates in filter-binding assays. This appears to be the main effect leading to inhibition of integration. Quantitative analysis of filter-binding assay curves indicates that two antibody molecules react with IN implying that the enzyme is dimeric within these experimental conditions. Together, present data provide an insight into the structure-function relationship for the 147-175 peptide domain of the enzyme. They also strongly suggest that the functional enzyme is dimeric. Results could help to assess models for binding of peptide fragments to IN and to develop stronger inhibitors. Moreover, K159 antibodies when expressed in vivo might exhibit useful inhibitory properties.
Collapse
Affiliation(s)
- R G Maroun
- Département de Biologie et Pharmacologie Structurales, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
The human immunodeficiency virus (HIV) genome encodes a total of three structural proteins, two envelope proteins, three enzymes, and six accessory proteins. Studies over the past ten years have provided high-resolution three-dimensional structural information for all of the viral enzymes, structural proteins and envelope proteins, as well as for three of the accessory proteins. In some cases it has been possible to solve the structures of the intact, native proteins, but in most cases structural data were obtained for isolated protein domains, peptidic fragments, or mutants. Peptide complexes with two regulatory RNA fragments and a protein complex with an RNA recognition/encapsidation element have also been structurally characterized. This article summarizes the high-resolution structural information that is currently available for HIV proteins and reviews current structure-function and structure-biological relationships.
Collapse
Affiliation(s)
- B G Turner
- Howard Hughes Medical Institute, Department of Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
234
|
Asante-Appiah E, Seeholzer SH, Skalka AM. Structural determinants of metal-induced conformational changes in HIV-1 integrase. J Biol Chem 1998; 273:35078-87. [PMID: 9857042 DOI: 10.1074/jbc.273.52.35078] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) undergoes a reversible metal-induced conformational change that activates the enzyme (Asante-Appiah, E., and Skalka, A. M. (1997) J. Biol. Chem. 272, 16196-16205). In this report, key structural features that mediate this conformational change have been identified by site-directed mutagenesis, limited proteolysis, and mass spectrometry studies. The results reveal two separable metal-induced effects. One depends on residues in the N-terminal domain (amino acids 1-50) and a C-terminal tail (amino acids 274-288) and is detected by increased resistance of the full-length protein to proteolytic digestion. This effect appears to depend on metal binding at an undefined location distinct from the known sites in the N-terminal and catalytic core domains. The second conformational change depends on metal binding at the active site in the catalytic core domain. Substitution of acidic residues Asp64 or Glu152 in the catalytic core D,D(35)E motif or truncation of the Src homology 3 (SH3)-like domain in the C-terminal region of the enzyme abolishes this metal-induced change. Comparison of tryptic digests of an HIV-1 IN derivative competent for metal-induced conformational change and a conformation-defective D64N derivative identified specific regions in HIV-1 IN that are affected by this second change. A region in the N terminus that spans Lys14, an extended loop and the adjacent region in the core domain (including lysines 136, 156, and 160 and Arg173), and residues at the C terminus beyond the SH3-like domain all become less accessible to proteolysis in the conformation-competent protein. In contrast, a region that encompasses Lys258 in the putative DNA binding groove of the SH3-like domain becomes more sensitive to proteolysis in the presence of Mn2+. The results are consistent with a model in which the binding of the metal ion by residues of the D,D(35)E motif elicits specific changes in all three domains of HIV-1 IN, inducing the restructuring of the enzyme for catalytic competence.
Collapse
Affiliation(s)
- E Asante-Appiah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
235
|
Cai M, Huang Y, Caffrey M, Zheng R, Craigie R, Clore GM, Gronenborn AM. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium. Protein Sci 1998; 7:2669-74. [PMID: 9865962 PMCID: PMC2143878 DOI: 10.1002/pro.5560071221] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex.
Collapse
Affiliation(s)
- M Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Abstract
The yeast two-hybrid system and in vitro binding assays were used to characterize 54 potential interactions between the proteins of Tf1, an LTR-retrotransposon found in Schizosaccharomyces pombe. The Tf1 integrase (IN) protein was found to interact strongly with itself and not with other control proteins. In addition, the IN core domain interacted strongly with itself and full-length IN. Interestingly, the two-hybrid analysis detected an interaction between the RNase H domain of reverse transcriptase and IN. The biological implications of these interactions are discussed.
Collapse
Affiliation(s)
- S J Steele
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
237
|
McCord M, Stahl SJ, Mueser TC, Hyde CC, Vora AC, Grandgenett DP. Purification of recombinant Rous sarcoma virus integrase possessing physical and catalytic properties similar to virion-derived integrase. Protein Expr Purif 1998; 14:167-77. [PMID: 9790878 DOI: 10.1006/prep.1998.0954] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant Rous sarcoma virus integrase cloned from the Prague A (PrA) virus strain was expressed in Escherichia coli. Here we report the detailed purification procedure resulting in an apparently homogeneous integrase. Recombinant PrA integrase was compared at both the protein structural and the catalytic levels to avian myeloblastosis virus integrase purified from virions. Both proteins exist minimally in a dimeric state at low nanomolar concentrations as analyzed by glycerol gradient sedimentation and protein crosslinking studies. Likewise, both proteins have similar specific activities for full-site (concerted integration reaction) and half-site strand transfer activities using linear 480-bp retrovirus-like donor substrates that contain wild-type or mutant termini. They respond similarly to high NaCl concentrations ( approximately 350 mM) as well as aprotic solvents for efficient full-site strand transfer. The data suggest that recombinant integrase proteins with physical and catalytic properties similar to the virion counterpart can be purified using these techniques and will faithfully and efficiently promote the full-site integration reaction in vitro.
Collapse
Affiliation(s)
- M McCord
- Institute for Molecular Virology, St. Louis University Health Sciences Center, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | |
Collapse
|
238
|
Haren L, Polard P, Ton-Hoang B, Chandler M. Multiple oligomerisation domains in the IS911 transposase: a leucine zipper motif is essential for activity. J Mol Biol 1998; 283:29-41. [PMID: 9761671 DOI: 10.1006/jmbi.1998.2053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structure-function relationships involved in oligomerisation of the transposase OrfAB of the bacterial insertion sequence IS911 have been investigated. Site-directed mutagenesis and sequential deletion coupled with immunoprecipitation have led to the definition of three regions of the protein capable of promoting multimerisation. These include a region predicted to assume a coiled-coil conformation, which is shown to be essential for activity, promoting correct multimerisation of the N-terminal domain of OrfAB and sequence-specific binding to the IS911 terminal inverted repeats mediated by this domain. This region presents the structural and functional characteristics of the leucine zipper motif described in eukaryotic proteins. The two other regions are located further towards the C-terminal end of the protein, adjacent to the leucine zipper and in the region that carries the conserved catalytic DD(35)E motif.
Collapse
Affiliation(s)
- L Haren
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Université Paul Sabatier, 118 Route de Narbonne, Toulouse, 31062, France
| | | | | | | |
Collapse
|
239
|
Abstract
Human immunodeficiency virus type 1 is a complex retrovirus encoding 15 distinct proteins. Substantial progress has been made toward understanding the function of each protein, and three-dimensional structures of many components, including portions of the RNA genome, have been determined. This review describes the function of each component in the context of the viral life cycle: the Gag and Env structural proteins MA (matrix), CA (capsid), NC (nucleocapsid), p6, SU (surface), and TM (transmembrane); the Pol enzymes PR (protease), RT (reverse transcriptase), and IN (integrase); the gene regulatory proteins Tat and Rev; and the accessory proteins Nef, Vif, Vpr, and Vpu. The review highlights recent biochemical and structural studies that help clarify the mechanisms of viral assembly, infection, and replication.
Collapse
Affiliation(s)
- A D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA.
| | | |
Collapse
|
240
|
Masuda T, Kuroda MJ, Harada S. Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J Virol 1998; 72:8396-402. [PMID: 9733892 PMCID: PMC110226 DOI: 10.1128/jvi.72.10.8396-8402.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The retroviral attachment (att) sites at viral DNA ends are cis-acting regions essential for proviral integration. To investigate the sequence features of att important for human immunodeficiency virus type 1 (HIV-1) integration in vivo, we generated a series of 25 att mutants of HIV-1 by mutagenesis of the U3, U5, or both boundaries of att. Our results indicated that the terminal 11 or 12 bp of viral DNA are sufficient for specific recognition by HIV-1 integrase (IN) and suggested that IN might recognize each att site independently in vivo.
Collapse
Affiliation(s)
- T Masuda
- Department of Biodefense and Medical Virology, Kumamoto University School of Medicine, Kumamoto, Japan.
| | | | | |
Collapse
|
241
|
Esposito D, Craigie R. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J 1998; 17:5832-43. [PMID: 9755183 PMCID: PMC1170911 DOI: 10.1093/emboj/17.19.5832] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 integrase specifically recognizes and cleaves viral end DNA during the initial step of retroviral integration. The protein and DNA determinants of the specificity of viral end DNA binding have not been clearly identified. We have used mutational analysis of the viral end LTR sequence, in vitro selection of optimal viral end sequences, and specific photocrosslinking to identify regions of integrase that interact with specific bases in the LTR termini. The results highlight the involvement of the disordered loop of the integrase core domain, specifically residues Q148 and Y143, in binding to the terminal portion of the viral DNA ends. Additionally, we have identified positions upstream in the LTR termini which interact with the C-terminal domain of integrase, providing evidence for the role of that domain in stabilization of viral DNA binding. Finally, we have located a region centered 12 bases from the viral DNA terminus which appears essential for viral end DNA binding in the presence of magnesium, but not in the presence of manganese, suggesting a differential effect of divalent cations on sequence-specific binding. These results help to define important regions of contact between integrase and viral DNA, and assist in the formulation of a molecular model of this vital interaction.
Collapse
Affiliation(s)
- D Esposito
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 5 Center Drive MSC0560, Bethesda, MD 20892, USA
| | | |
Collapse
|
242
|
Hansen MS, Carteau S, Hoffmann C, Li L, Bushman F. Retroviral cDNA integration: mechanism, applications and inhibition. GENETIC ENGINEERING 1998; 20:41-61. [PMID: 9666555 DOI: 10.1007/978-1-4899-1739-3_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M S Hansen
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
243
|
Lutzke RA, Plasterk RH. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. J Virol 1998; 72:4841-8. [PMID: 9573250 PMCID: PMC110031 DOI: 10.1128/jvi.72.6.4841-4848.1998] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220-270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220-270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220-270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3' processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN.
Collapse
Affiliation(s)
- R A Lutzke
- Division of Molecular Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
244
|
Gaur M, Leavitt AD. Mutations in the human immunodeficiency virus type 1 integrase D,D(35)E motif do not eliminate provirus formation. J Virol 1998; 72:4678-85. [PMID: 9573231 PMCID: PMC109991 DOI: 10.1128/jvi.72.6.4678-4685.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The core domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) contains a D,D(35)E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified HIV-1 IN protein. Using a replication-defective viral genome with a hygromycin selectable marker, we recently reported that a mutation at any of the three residues of the D,D(35)E motif produces a 10(3)- to 10(4)-fold reduction in infectious titer compared with virus encoding wild-type IN (A. D. Leavitt et al., J. Virol. 70:721-728. 1996). The infectious titer, as measured by the number of hygromycin-resistant colonies formed following infection of cells in culture, was less than a few hundred colonies per microg of p24. To understand the mechanism by which the mutant virions conferred hygromycin resistance, we characterized the integrated viral DNA in cells infected with virus encoding mutations at each of the three residues of the D,D(35)E motif. We found the integrated viral DNA to be colinear with the incoming viral genome. DNA sequencing of the junctions between integrated viral DNA and host DNA showed that (i) the characteristic 5-bp direct repeat of host DNA flanking the HIV-1 provirus was not maintained, (ii) integration often produced a deletion of host DNA, (iii) integration sometimes occurred without the viral DNA first undergoing 3'-processing, (iv) integration sites showed a strong bias for a G residue immediately adjacent to the conserved viral CA dinucleotide, and (v) mutations at each of the residues of the D,D(35)E motif produced essentially identical phenotypes. We conclude that mutations at any of the three acidic residues of the conserved D,D(35)E motif so severely impair IN activity that most, if not all, integration events by virus encoding such mutations are not IN mediated. IN-independent provirus formation may have implications for anti-IN therapeutic agents that target the IN active site.
Collapse
Affiliation(s)
- M Gaur
- Departments of Laboratory Medicine, University of California, San Francisco, California 94143-0100, USA
| | | |
Collapse
|
245
|
van den Ent FM, Vos A, Plasterk RH. Mutational scan of the human immunodeficiency virus type 2 integrase protein. J Virol 1998; 72:3916-24. [PMID: 9557677 PMCID: PMC109617 DOI: 10.1128/jvi.72.5.3916-3924.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Retroviral integrase (IN) cleaves linear viral DNA specifically near the ends of the DNA (cleavage reaction) and subsequently couples the processed ends to phosphates in the target DNA (integration reaction). In vitro, IN catalyzes the disintegration reaction, which is the reverse of the integration reaction. Ideally, we would like to test the role of each amino acid in the IN protein. We mutagenized human immunodeficiency virus type 2 IN in a random way using PCR mutagenesis and generated a set of mutants in which 35% of all residues were substituted. Mutant proteins were tested for in vitro activity, e.g., site-specific cleavage of viral DNA, integration, and disintegration. Changes in 61 of the 90 proteins investigated showed no phenotypic effect. Substitutions that changed the choice of nucleophile in the cleavage reaction were found. These clustered around the active-site residues Asp-116 and Glu-152. We also found alterations of amino acids that affected cleavage and integration differentially. In addition, we analyzed the disintegration activity of the proteins and found substitutions of amino acids close to the dimer interface that enhanced intermolecular disintegration activity, whereas other catalytic activities were present at wild-type levels. This study shows the feasibility of investigating the role of virtually any amino acid in a protein the size of IN.
Collapse
Affiliation(s)
- F M van den Ent
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | |
Collapse
|
246
|
Lubkowski J, Yang F, Alexandratos J, Wlodawer A, Zhao H, Burke TR, Neamati N, Pommier Y, Merkel G, Skalka AM. Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor. Proc Natl Acad Sci U S A 1998; 95:4831-6. [PMID: 9560188 PMCID: PMC20173 DOI: 10.1073/pnas.95.9.4831] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The x-ray structures of an inhibitor complex of the catalytic core domain of avian sarcoma virus integrase (ASV IN) were solved at 1.9- to 2.0-A resolution at two pH values, with and without Mn2+ cations. This inhibitor (Y-3), originally identified in a screen for inhibitors of the catalytic activity of HIV type 1 integrase (HIV-1 IN), was found in the present study to be active against ASV IN as well as HIV-1 IN. The Y-3 molecule is located in close proximity to the enzyme active site, interacts with the flexible loop, alters loop conformation, and affects the conformations of active site residues. As crystallized, a Y-3 molecule stacks against its symmetry-related mate. Preincubation of IN with metal cations does not prevent inhibition, and Y-3 binding does not prevent binding of divalent cations to IN. Three compounds chemically related to Y-3 also were investigated, but no binding was observed in the crystals. Our results identify the structural elements of the inhibitor that likely determine its binding properties.
Collapse
Affiliation(s)
- J Lubkowski
- Macromolecular Structure Laboratory, Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Donzella GA, Leon O, Roth MJ. Implication of a central cysteine residue and the HHCC domain of Moloney murine leukemia virus integrase protein in functional multimerization. J Virol 1998; 72:1691-8. [PMID: 9445080 PMCID: PMC124658 DOI: 10.1128/jvi.72.2.1691-1698.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Moloney murine leukemia virus (M-MuLV) IN-IN protein interactions important for catalysis of strand transfer and unimolecular and bimolecular disintegration reactions were investigated by using a panel of chemically modified M-MuLV IN proteins. Functional complementation of an HHCC-deleted protein (Ndelta105) by an independent HHCC domain (Cdelta232) was severely compromised by NEM modification of either subunit. Productive Ndelta105 IN-DNA interactions with a disintegration substrate lacking a long terminal repeat 5'-single-stranded tail also required complementation by a functional HHCC domain. Virus encoding the C209A M-MuLV IN mutation exhibited delayed virion production and replication kinetics.
Collapse
Affiliation(s)
- G A Donzella
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
248
|
Asante-Appiah E, Merkel G, Skalka AM. Purification of untagged retroviral integrases by immobilized metal ion affinity chromatography. Protein Expr Purif 1998; 12:105-10. [PMID: 9473464 DOI: 10.1006/prep.1997.0818] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have developed a simple protocol for the purification of untagged retroviral integrases expressed in bacterial cells. The method takes advantage of the inherent ability of the proteins to bind metal ions. The protocol involves an initial enrichment of the protein in the pellet fraction following centrifugation of the lysate after cell lysis. Integrase is then solubilized from the pellet at high salt conditions (1 M) with detergent and applied to a nickel-charged iminodiacetic acid-Sepharose column. The enzyme is eluted from the column with imidazole. The resulting protein, which is 70-80% homogeneous, is subsequently purified to homogeneity on a heparin-Sepharose column. The two-column protocol is easily completed in a day and yields approximately 2 mg of enzymatically active protein per gram of wet cell paste.
Collapse
Affiliation(s)
- E Asante-Appiah
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
249
|
Wei SQ, Mizuuchi K, Craigie R. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 1997; 16:7511-20. [PMID: 9405379 PMCID: PMC1170350 DOI: 10.1093/emboj/16.24.7511] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have probed the nucleoprotein organization of Moloney murine leukemia virus (MLV) pre-integration complexes using a novel footprinting technique that utilizes a simplified in vitro phage Mu transposition system. We find that several hundred base pairs at each end of the viral DNA are organized in a large nucleoprotein complex, which we call the intasome. This structure is not formed when pre-integration complexes are made by infecting cells with integrase-minus virus, demonstrating a requirement for integrase. In contrast, footprinting of internal regions of the viral DNA did not reveal significant differences between pre-integration complexes with and without integrase. Treatment with high salt disrupts the intasome in parallel with loss of intermolecular integration activity. We show that a cellular factor is required for reconstitution of the intasome. Finally, we demonstrate that DNA-protein interactions involving extensive regions at the ends of the viral DNA are functionally important for retroviral DNA integration activity. Current in vitro integration systems utilizing purified integrase lack the full fidelity of the in vivo reaction. Our results indicate that both host factors and long viral DNA substrates may be required to reconstitute an in vitro system with all the hallmarks of DNA integration in vivo.
Collapse
Affiliation(s)
- S Q Wei
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
250
|
Abstract
The integrase protein of retroviruses catalyzes the insertion of the viral DNA into the genomes of the cells that they infect. Integrase is necessary and sufficient for this recombination reaction in vitro; however, the enzyme's activity appears to be modulated in vivo by viral and cellular components included in the nucleoprotein pre-integration complex. In addition to integrase, cis-acting sequences at the ends of the viral DNA are important for integration. Solution of the structures of the isolated N- and C-terminal domains of HIV-1 integrase by nuclear magnetic resonance (NMR) and the available crystal structures of the catalytic core domains from human immunodeficiency virus type-1 (HIV-1) and avian sarcoma virus (ASV) integrases are providing a structural basis for understanding some aspects of the integration reaction. The role of the evolutionarily conserved acidic amino acids in the D,D(35)E motif as metal-coordinating residues that are critical for catalysis, has been confirmed by the metal-integrase (core domain) complexes of ASV integrase. The central role that integrase plays in the life cycle of the virus makes it an attractive target for the design of drugs against retroviral diseases such as AIDS. To this end, several compounds have been screened for inhibitory effects against HIV-1 integrase. These include DNA intercalators, peptides, RNA ligands, and small organic compounds such as bis-catechols, flavones, and hydroxylated arylamides. Although the published inhibitors are not very potent, they serve as valuable leads for the development of the next generation of tight-binding analogues that are more specific to integrase. In addition, new approaches are being developed, exemplified by intracellular immunization studies with conformation-sensitive inhibitory monoclonal antibodies against HIV-1 integrase. Increased knowledge of the mechanism of retroviral DNA integration should provide new strategies for the design of effective antivirals that inhibit integrase in the future.
Collapse
Affiliation(s)
- E Asante-Appiah
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|