201
|
Muto M, Katada C, Yokoyama T, Yano T, Oda I, Ezoe Y, Tanabe S, Shimizu Y, Doyama H, Koike T, Takizawa K, Hirao M, Okada H, Ogata T, Katagiri A, Yamanouchi T, Matsuo Y, Kawakubo H, Omori T, Kobayashi N, Shimoda T, Ochiai A, Ishikawa H, Baba K, Amanuna Y, Yokoyama A, Ohashi S, Yokoyama A. Field Effect of Alcohol, Cigarette Smoking, and Their Cessation on the Development of Multiple Dysplastic Lesions and Squamous Cell Carcinoma: A Long-term Multicenter Cohort Study. GASTRO HEP ADVANCES 2022; 1:265-276. [PMID: 39131127 PMCID: PMC11308419 DOI: 10.1016/j.gastha.2021.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 08/13/2024]
Abstract
BACKGROUND AND AIMS Multiple developments of squamous dysplasia and squamous cell carcinoma (SCC) in the upper aerodigestive tract have been explained by field cancerization phenomenon and were associated with alcohol and cigarette use. Second primary SCC development after curative treatment impairs patients' quality of life and survival; however, how these consumption and cessation affect field cancerization is still unknown. METHODS This is a multicenter cohort study including 331 patients with superficial esophageal SCC (ESCC) treated endoscopically and pooled data from 1022 healthy subjects for comparison. Physiological condition in the background esophageal mucosa was classified into 3 groups based on the number of Lugol-voiding lesions (LVLs) per endoscopic view: grade A, 0; grade B, 1-9; or grade C, ≥10 LVLs. Lifestyle surveys were conducted using a self-administered questionnaire. Patients were counseled on the need for alcohol and smoking cessation by physicians and were endoscopically surveyed every 6 months. RESULTS LVL grades were positively associated with alcohol drinking intensity, flushing reactions, smoking, and high-temperature food and were negatively associated with eating green and yellow vegetables and fruit. Second primary ESCC and head/neck SCC were significantly more prevalent in the grade C LVL (cumulative 5-y incidences 47.1%, 95% confidence interval [CI] = 38.0-57.2 and 13.3%, 95% CI = 8.1-21.5, respectively). Alcohol and smoking cessation significantly reduced the development of second primary ESCC (adjusted hazard ratios 0.47, 95% = CI 0.26-0.85 and 0.49, 95% CI = 0.26-0.91, respectively). CONCLUSION Alcohol drinking, smoking, flushing reaction, and high-temperature food were closely associated with field cancerization, and cessation of alcohol and smoking significantly reduced the risk of development of second primary cancer. UMIN Clinical Trials Registry ID:UMIN000001676.
Collapse
Affiliation(s)
- Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chikatoshi Katada
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tetsuji Yokoyama
- Department of Health Promotion, National Institute of Public Health, Wako, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yasumasa Ezoe
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Tanabe
- Research and Development Center for New Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yuichi Shimizu
- Division of Endoscopy, Hokkaido University Hospital, Sapporo, Japan
| | - Hisashi Doyama
- Department of Gastroenterology, Ishikawa Prefectural Central Hospital, Kanazawa, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kohei Takizawa
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Motohiro Hirao
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Ogata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Atsushi Katagiri
- Division of Gastroenterology, Department of Medicine, Showa University Hospital, Tokyo, Japan
| | - Takenori Yamanouchi
- Department of Gastroenterology, Kumamoto Regional Medical Center, Kumamoto, Japan
| | - Yasumasa Matsuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Japan
| | - Tai Omori
- Department of Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Japan
| | - Nozomu Kobayashi
- Department of Gastroenterology, Tochigi Cancer Center, Utsunomiya, Japan
| | - Tadakazu Shimoda
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiichiro Baba
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Amanuna
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yokoyama
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yokoyama
- Clinical Research Unit, National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| |
Collapse
|
202
|
Hishida T, Vazquez-Ferrer E, Hishida-Nozaki Y, Takemoto Y, Hatanaka F, Yoshida K, Prieto J, Sahu SK, Takahashi Y, Reddy P, O’Keefe DD, Rodriguez Esteban C, Knoepfler PS, Nuñez Delicado E, Castells A, Campistol JM, Kato R, Nakagawa H, Izpisua Belmonte JC. Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Front Cell Dev Biol 2022; 10:786031. [PMID: 35309931 PMCID: PMC8931341 DOI: 10.3389/fcell.2022.786031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of esophageal epithelial cells resulting in cellular senescence while forced MYC expression promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-induced senescence, therefore suggesting that a mitochondrial superoxide takes part in inducing senescence. Taken together, these analyses reveal extremely low levels of cellular senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for studying and understanding the links between stemness and resistance to cellular senescence.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuto Takemoto
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kei Yoshida
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sanjeeb Kumar Sahu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David D. O’Keefe
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ryuji Kato
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- *Correspondence: Juan Carlos Izpisua Belmonte,
| |
Collapse
|
203
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
204
|
Yamaguchi M, Nakaoka H, Suda K, Yoshihara K, Ishiguro T, Yachida N, Saito K, Ueda H, Sugino K, Mori Y, Yamawaki K, Tamura R, Revathidevi S, Motoyama T, Tainaka K, Verhaak RGW, Inoue I, Enomoto T. Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium. Nat Commun 2022; 13:943. [PMID: 35177608 PMCID: PMC8854701 DOI: 10.1038/s41467-022-28568-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
It has become evident that somatic mutations in cancer-associated genes accumulate in the normal endometrium, but spatiotemporal understanding of the evolution and expansion of mutant clones is limited. To elucidate the timing and mechanism of the clonal expansion of somatic mutations in cancer-associated genes in the normal endometrium, we sequence 1311 endometrial glands from 37 women. By collecting endometrial glands from different parts of the endometrium, we show that multiple glands with the same somatic mutations occupy substantial areas of the endometrium. We demonstrate that “rhizome structures”, in which the basal glands run horizontally along the muscular layer and multiple vertical glands rise from the basal gland, originate from the same ancestral clone. Moreover, mutant clones detected in the vertical glands diversify by acquiring additional mutations. These results suggest that clonal expansions through the rhizome structures are involved in the mechanism by which mutant clones extend their territories. Furthermore, we show clonal expansions and copy neutral loss-of-heterozygosity events occur early in life, suggesting such events can be tolerated many years in the normal endometrium. Our results of the evolutionary dynamics of mutant clones in the human endometrium will lead to a better understanding of the mechanisms of endometrial regeneration during the menstrual cycle and the development of therapies for the prevention and treatment of endometrium-related diseases. Through regeneration, the endometrium accumulates somatic mutations that can lead to diseases like endometriosis and cancer. Here, the authors use genomics to analyse normal endometrial glands from different patient cohorts, detect rhizome structures with common clonal ancestors and infer clonal expansion dynamics.
Collapse
Affiliation(s)
- Manako Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. .,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, 101-0062, Japan.
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Nozomi Yachida
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kyota Saito
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Haruka Ueda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kentaro Sugino
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | | | - Teiichi Motoyama
- Department of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, 565-5241, Japan
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV, Amsterdam, The Netherlands
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
205
|
Abstract
Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.
Collapse
Affiliation(s)
- Hayato Ogawa
- Department of Cardiology, Meijo Hospital, Nagoya, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Medicine II, Kansai Medical University, Hirakata, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan;
| | - Soichi Sano
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan;
| |
Collapse
|
206
|
Waters JK, Reznik SI. Update on Management of Squamous Cell Esophageal Cancer. Curr Oncol Rep 2022; 24:375-385. [PMID: 35142974 DOI: 10.1007/s11912-021-01153-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF THE REVIEW Esophageal cancer is the sixth most common cause of cancer death globally. Squamous cell carcinoma of the esophagus (ESCC) is the predominant histologic type in the world. Treatment strategies have evolved in the last decade and new paradigms are replacing traditional approaches at all stages of cancer. This review will summarize the epidemiology, diagnosis, staging, and treatment of esophageal squamous cell carcinoma. RECENT FINDINGS Novel approaches to screening may be cost-effective in regions with a high incidence of ESCC. Multi-disciplinary evaluation and treatment has become the standard of care. Endoscopic resection may be an option for early stage ESCC. Minimally invasive esophagectomy can be performed safely as a primary therapy or after-induction chemoradiation. Several recent studies have found a survival benefit to immunotherapy for patients with metastatic or persistent disease. Multi-disciplinary evaluation and multi-modal therapy including cytotoxic chemotherapy, radiation, surgery, and immunotherapy have improved survival compared to surgery alone.
Collapse
Affiliation(s)
- John K Waters
- Division of Thoracic Surgery, Department of Cardiovascular and Thoracic Surgery, 5323 Harry Hines Boulevard, MC 8879, Dallas, TX, 75390-8879, USA
| | - Scott I Reznik
- Division of Thoracic Surgery, Department of Cardiovascular and Thoracic Surgery, 5323 Harry Hines Boulevard, MC 8879, Dallas, TX, 75390-8879, USA.
| |
Collapse
|
207
|
Williams N, Lee J, Mitchell E, Moore L, Baxter EJ, Hewinson J, Dawson KJ, Menzies A, Godfrey AL, Green AR, Campbell PJ, Nangalia J. Life histories of myeloproliferative neoplasms inferred from phylogenies. Nature 2022; 602:162-168. [PMID: 35058638 DOI: 10.1038/s41586-021-04312-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.
Collapse
Affiliation(s)
| | - Joe Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Luiza Moore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - James Hewinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kevin J Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Andrew Menzies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna L Godfrey
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
208
|
Chin DWL, Yoshizato T, Virding Culleton S, Grasso F, Barbachowska M, Ogawa S, Jacobsen SEW, Woll PS. Aged healthy mice acquire clonal hematopoiesis mutations. Blood 2022; 139:629-634. [PMID: 34665864 PMCID: PMC8832470 DOI: 10.1182/blood.2021014235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Chin and colleagues used detailed mutational analysis of aged mice and transplantation to evaluate the mouse as a model of clonal hematopoiesis (CH). Their data suggest that while murine hematopoietic stem cells acquire mutations in CH-associated genes when aged and CH clones can expand after transplantation (as in humans), these are rare events. Nevertheless, genetically manipulated murine models mimicking human CH are feasible and may prove useful in the future.
Collapse
Affiliation(s)
- Desmond Wai Loon Chin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stina Virding Culleton
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Grasso
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Barbachowska
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden; and
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Petter S Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
209
|
Dressler L, Bortolomeazzi M, Keddar MR, Misetic H, Sartini G, Acha-Sagredo A, Montorsi L, Wijewardhane N, Repana D, Nulsen J, Goldman J, Pollitt M, Davis P, Strange A, Ambrose K, Ciccarelli FD. Comparative assessment of genes driving cancer and somatic evolution in non-cancer tissues: an update of the Network of Cancer Genes (NCG) resource. Genome Biol 2022; 23:35. [PMID: 35078504 PMCID: PMC8790917 DOI: 10.1186/s13059-022-02607-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Genetic alterations of somatic cells can drive non-malignant clone formation and promote cancer initiation. However, the link between these processes remains unclear and hampers our understanding of tissue homeostasis and cancer development. Results Here, we collect a literature-based repertoire of 3355 well-known or predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-cancer samples reveals that, despite the large size, the known compendium of drivers is still incomplete and biased towards frequently occurring coding mutations. High overlap exists between drivers of cancer and non-cancer somatic evolution, although significant differences emerge in their recurrence. We confirm and expand the unique properties of drivers and identify a core of evolutionarily conserved and essential genes whose germline variation is strongly counter-selected. Somatic alteration in even one of these genes is sufficient to drive clonal expansion but not malignant transformation. Conclusions Our study offers a comprehensive overview of our current understanding of the genetic events initiating clone expansion and cancer revealing significant gaps and biases that still need to be addressed. The compendium of cancer and non-cancer somatic drivers, their literature support, and properties are accessible in the Network of Cancer Genes and Healthy Drivers resource at http://www.network-cancer-genes.org/. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02607-z.
Collapse
|
210
|
Takeda H, Takai A, Eso Y, Takahashi K, Marusawa H, Seno H. Genetic Landscape of Multistep Hepatocarcinogenesis. Cancers (Basel) 2022; 14:568. [PMID: 35158835 PMCID: PMC8833551 DOI: 10.3390/cancers14030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although several targeted therapy agents are available for advanced HCC, their antitumor efficacy remains limited. As the complex genetic landscape of HCC would compromise the antitumor efficacy of targeted therapy, a deeper understanding of the genetic landscape of hepatocarcinogenesis is necessary. Recent comprehensive genetic analyses have revealed the driver genes of HCC, which accumulate during the multistage process of hepatocarcinogenesis, facilitating HCC genetic heterogeneity. In addition, as early genetic changes may represent key therapeutic targets, the genetic landscapes of early HCC and precancerous liver tissues have been characterized in recent years, in parallel with the advancement of next-generation sequencing analysis. In this review article, we first summarize the landscape of the liver cancer genome and its intratumor heterogeneity. We then introduce recent insight on early genetic alterations in hepatocarcinogenesis, especially those in early HCC and noncancerous liver tissues. Finally, we summarize the multistep accumulation of genetic aberrations throughout cancer progression and discuss the future perspective towards the clinical application of this genetic information.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| |
Collapse
|
211
|
Rodriguez S, Celay J, Goicoechea I, Jimenez C, Botta C, Garcia-Barchino MJ, Garces JJ, Larrayoz M, Santos S, Alignani D, Vilas-Zornoza A, Perez C, Garate S, Sarvide S, Lopez A, Reinhardt HC, Carrasco YR, Sanchez-Garcia I, Larrayoz MJ, Calasanz MJ, Panizo C, Prosper F, Lamo-Espinosa JM, Motta M, Tucci A, Sacco A, Gentile M, Duarte S, Vitoria H, Geraldes C, Paiva A, Puig N, Garcia-Sanz R, Roccaro AM, Fuerte G, San Miguel JF, Martinez-Climent JA, Paiva B. Preneoplastic somatic mutations including MYD88L265P in lymphoplasmacytic lymphoma. SCIENCE ADVANCES 2022; 8:eabl4644. [PMID: 35044826 PMCID: PMC8769557 DOI: 10.1126/sciadv.abl4644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated MYD88. We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found MYD88L265P in normal precursor and mature B lymphocytes from patients with lymphoma. We uncovered genetic and transcriptional pathways driving malignant transformation and leveraged these to model lymphoplasmacytic lymphoma in mice, based on mutated MYD88 in B cell precursors and BCL2 overexpression. Thus, MYD88L265P is a preneoplastic event, which challenges the current understanding of lymphomagenesis and may have implications for early detection of B cell lymphomas.
Collapse
Affiliation(s)
- Sara Rodriguez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jon Celay
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Ibai Goicoechea
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Jimenez
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Cirino Botta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria-José Garcia-Barchino
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Juan-Jose Garces
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marta Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Susana Santos
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Sarai Sarvide
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Aitziber Lopez
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Hans-Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, DKTK Partner Site Essen, Center for Molecular Biotechnology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Yolanda R. Carrasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)–CSIC, Madrid, Spain
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Maria-Jose Larrayoz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Maria-Jose Calasanz
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Maria Lamo-Espinosa
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Marina Motta
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandra Tucci
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Massimo Gentile
- Department of Oncohematology, “Annunziata” Hospital, Cosenza, Italy
| | - Sara Duarte
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | | | | | - Artur Paiva
- Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal
| | - Noemi Puig
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Ramon Garcia-Sanz
- Hospital Universitario de Salamanca, Instituto de Investigacion Biomedica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), CIBER-ONC, Salamanca, Spain
| | - Aldo M. Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Jesus F. San Miguel
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
| | - Jose-Angel Martinez-Climent
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigacion Medica Aplicada (CIMA), Instituto de Investigacion Sanitaria de Navarra (IDISNA), CIBER-ONC, Pamplona, Spain
- Corresponding author. (J.-A.M.-C.); (B.P.)
| |
Collapse
|
212
|
Li CH, Haider S, Boutros PC. Age influences on the molecular presentation of tumours. Nat Commun 2022; 13:208. [PMID: 35017538 PMCID: PMC8752853 DOI: 10.1038/s41467-021-27889-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is often called a disease of aging. There are numerous ways in which cancer epidemiology and behaviour change with the age of the patient. The molecular bases for these relationships remain largely underexplored. To characterise them, we analyse age-associations in the nuclear and mitochondrial somatic mutational landscape of 20,033 tumours across 35 tumour-types. Age influences both the number of mutations in a tumour (0.077 mutations per megabase per year) and their evolutionary timing. Specific mutational signatures are associated with age, reflecting differences in exogenous and endogenous oncogenic processes such as a greater influence of tobacco use in the tumours of younger patients, but higher activity of DNA damage repair signatures in those of older patients. We find that known cancer driver genes such as CDKN2A and CREBBP are mutated in age-associated frequencies, and these alter the transcriptome and predict for clinical outcomes. These effects are most striking in brain cancers where alterations like SUFU loss and ATRX mutation are age-dependent prognostic biomarkers. Using three cancer datasets, we show that age shapes the somatic mutational landscape of cancer, with clinical implications.
Collapse
Affiliation(s)
- Constance H Li
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Urology, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, CA, USA
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Human Genetics, University of California, Los Angeles, CA, USA.
- Department of Urology, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, CA, USA.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
| |
Collapse
|
213
|
Jacquemin V, Antoine M, Dom G, Detours V, Maenhaut C, Dumont JE. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers (Basel) 2022; 14:280. [PMID: 35053446 PMCID: PMC8773841 DOI: 10.3390/cancers14020280] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches. In this short review, we wish to summarize and discuss various aspects of this dynamic evolving heterogeneity and its biological, pathological, clinical, diagnostic, and therapeutic implications, using thyroid carcinoma as an illustrative example.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Correspondence: (V.J.); (J.E.D.); Tel.: +32-2-555-32-26 (V.J.); +32-2-555-41-34 (J.E.D.)
| | | | | | | | | | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.A.); (G.D.); (V.D.); (C.M.)
| |
Collapse
|
214
|
Kusne Y, Xie Z, Patnaik MM. Clonal Hematopoiesis: Molecular and Clinical Implications. Leuk Res 2022; 113:106787. [DOI: 10.1016/j.leukres.2022.106787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
|
215
|
Forming cytoplasmic stress granules PURα suppresses mRNA translation initiation of IGFBP3 to promote esophageal squamous cell carcinoma progression. Oncogene 2022; 41:4336-4348. [PMID: 35945453 PMCID: PMC9481463 DOI: 10.1038/s41388-022-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/29/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies worldwide. Recently, our group identified purine-rich element binding protein alpha (PURα), a single-stranded DNA/RNA-binding protein, to be significantly associated with the progression of ESCC. Additional immunofluorescence staining demonstrated that PURα forms cytoplasmic stress granules to suppress mRNA translation initiation. The expression level of cytoplasmic PURα in ESCC tumor tissues was significantly higher than that in adjacent epithelia and correlated with a worse patient survival rate by immunohistochemistry. Functionally, PURα strongly preferred to bind to UG-/U-rich motifs and mRNA 3´UTR by CLIP-seq analysis. Moreover, PURα knockout significantly increased the protein level of insulin-like growth factor binding protein 3 (IGFBP3). In addition, it was further demonstrated that PURα-interacting proteins are remarkably associated with translation initiation factors and ribosome-related proteins and that PURα regulates protein expression by interacting with translation initiation factors, such as PABPC1, eIF3B and eIF3F, in an RNA-independent manner, while the interaction with ribosome-related proteins is significantly dependent on RNA. Specifically, PURα was shown to interact with the mRNA 3´UTR of IGFBP3 and inhibit its expression by suppressing mRNA translation initiation. Together, this study identifies cytoplasmic PURα as a modulator of IGFBP3, which could be a promising therapeutic target for ESCC treatment.
Collapse
|
216
|
Wang G, Pan C, Cao K, Zhang J, Geng H, Wu K, Wen J, Liu C. Impacts of Cigarette Smoking on the Tumor Immune Microenvironment in Esophageal Squamous Cell Carcinoma. J Cancer 2022; 13:413-425. [PMID: 35069891 PMCID: PMC8771511 DOI: 10.7150/jca.65400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Cigarette smoking is a carcinogenic factor for esophageal cancer and evidence also indicates its effects on tumor microenvironment in patients with esophageal squamous cell carcinoma (ESCC). Materials and Methods: In our study, we demonstrated nine immune infiltrating cells and markers in non-smokers and smokers of 189 non-drinking ESCC patients with multiplex fluorescent immunohistochemistry (mflHC) staining and multispectral imaging. The impacts of cigarette smoking on tumor microenvironment and patient prognosis were also analyzed. Results: Among 189 ESCC patients of non-drinker, 86 patients was current smokers, while 34 males and 59 females were non-smokers and 10 former-smokers. Among 34 male non-smokers and 83 smokers, distinct immune infiltrating cells, with increased DCs in stromal regions (P=0.033), elevated infiltration of Treg cells in intraepithelial regions (P=0.010) and reduced activate cytotoxic T lymphocytes (aCTLs) in both intraepithelial (P=0.021) and stromal regions (P=0.017), were observed in tumor specimens of smoking males, implying an immune suppressed response during cigarette smoke exposure. For smoking characters, the level of stromal tumor-associated macrophages (TAMs) infiltration was correlated with smoking year after age adjusted (rs =0.352, P=0.002). Though cigarette smoking did not alter the expression of programmed death ligand 1 (PD-L1) in epithelial cells or TAMs in tumor specimens, higher expression of PD-L1 predicted a worse survival in non-smokers but not smokers. Conclusions: Our findings indicated smoking may impair T cell-mediated immune response and supported the possible impacts of cigarette smoking in PD-L1 related research and therapy of ESCC.
Collapse
Affiliation(s)
- Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chuqing Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kexin Cao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Jingbing Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Geng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Road. Shantou 515041, Guangdong, People's Republic of China
| |
Collapse
|
217
|
Mitani S, Kato K, Daiko H, Ito Y, Nozaki I, Kojima T, Yano M, Nakagawa S, Ueno M, Watanabe M, Tsunoda S, Abe T, Kadowaki S, Kadota T, Sasaki K, Machida R, Kitagawa Y. Second primary malignancies in patients with clinical T1bN0 esophageal squamous cell carcinoma after definitive therapies: supplementary analysis of the JCOG trial: JCOG0502. J Gastroenterol 2022; 57:455-463. [PMID: 35546373 PMCID: PMC9232445 DOI: 10.1007/s00535-022-01870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Previous studies have suggested that patients with esophageal squamous cell carcinoma (ESCC) are still at a high risk of developing second primary malignancies (SPMs) after definitive therapies. We evaluated the development of SPMs and explored its risk factors in patients with clinical T1bN0 ESCC. METHODS JCOG0502 prospectively compared esophagectomy with definitive chemo-radiotherapy for clinical T1bN0 ESCC. Here, we reviewed all JCOG0502 patients' data for SPMs and investigated the risk factors for SPMs using uni-variable and multivariable analyses by Fine and Gray model. RESULTS Among 379 enrolled patients, 213 underwent esophagectomy and 166 received chemo-radiotherapy. Patient characteristics were male (85%); median age [63 (range 41-75) years; location of the primary tumor (upper/middle/lower thoracic esophagus, 11%/63%/27%, respectively]; alcohol consumption history (79%); smoking history (66%); prevalence of no/several/many/unknown Lugol-voiding lesions (LVLs) (45%/36%/8%/11%, respectively). In a median follow-up of 7.1 years, 118 SPMs occurred in 99 (26%) patients. Cumulative incidences of SPMs after 3, 5, and 10 years were 9%, 15%, and 36%, respectively. The most common primary tumor sites were the head and neck (35%), stomach (20%) and lungs (14%). In multivariable analyses, compared to no LVLs, several LVLs [hazard ratio (HR) 2.24, 95% confidential interval (CI) 1.32-3.81] and many LVLs (HR 2.88, 95% CI 1.27-6.52) were significantly associated with the development of SPMs. Sixteen patients died due to the SPMs. CONCLUSION The incidence of SPMs was high. The presence of LVLs, which was a predictive factor for SPMs, may be useful for surveillance planning.
Collapse
Affiliation(s)
- Seiichiro Mitani
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan.
- Department of Medical Oncology, Faculty of Medicine Kindai University, 377-2 Onohigashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Daiko
- Esophageal Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Isao Nozaki
- Department of Gastroenterological Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiko Yano
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Satoru Nakagawa
- Department of Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Masaki Ueno
- Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo, Japan
| | - Masaya Watanabe
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Shigeru Tsunoda
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Abe
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Aichi, Japan
| | - Shigenori Kadowaki
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, 464-8681, Japan
| | - Tomohiro Kadota
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keita Sasaki
- Japan Clinical Oncology Group Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Ryunosuke Machida
- Japan Clinical Oncology Group Data Center, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
218
|
Yamamoto T, Sato Y, Yasuda S, Shikamura M, Tamura T, Takenaka C, Takasu N, Nomura M, Dohi H, Takahashi M, Mandai M, Kanemura Y, Nakamura M, Okano H, Kawamata S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:527-538. [PMID: 35445254 PMCID: PMC9154342 DOI: 10.1093/stcltm/szac014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/13/2022] [Indexed: 11/15/2022] Open
Abstract
Cell therapy using induced pluripotent stem cell (iPSC) derivatives may result in abnormal tissue generation because the cells undergo numerous cycles of mitosis before clinical application, potentially increasing the accumulation of genetic abnormalities. Therefore, genetic tests may predict abnormal tissue formation after transplantation. Here, we administered iPSC derivatives with or without single-nucleotide variants (SNVs) and deletions in cancer-related genes with various genomic copy number variant (CNV) profiles into immunodeficient mice and examined the relationships between mutations and abnormal tissue formation after transplantation. No positive correlations were found between the presence of SNVs/deletions and the formation of abnormal tissues; the overall predictivity was 29%. However, a copy number higher than 3 was correlated, with an overall predictivity of 86%. Furthermore, we found CNV hotspots at 14q32.33 and 17q12 loci. Thus, CNV analysis may predict abnormal tissue formation after transplantation of iPSC derivatives and reduce the number of tumorigenicity tests.
Collapse
Affiliation(s)
- Takako Yamamoto
- R&D Center for Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Masayuki Shikamura
- R&D Center for Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Takashi Tamura
- R&D Center for Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Chiemi Takenaka
- R&D Center for Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | | | | | | | | | | | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kawamata
- R&D Center for Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
- Riken BDR, Kobe, Japan
- Corresponding author: Shin Kawamata, Minatojima-minamimachi 1-5-4, Chuo-ku Kobe, 650-0047 Japan.
| |
Collapse
|
219
|
Kang M, Na HY, Ahn S, Kim JW, Lee S, Ahn S, Lee JH, Youk J, Kim HT, Kim KJ, Suh KJ, Lee JS, Kim SH, Kim JW, Kim YJ, Lee KW, Yoon YS, Kim JH, Chung JH, Han HS, Lee JS. Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors. eLife 2022; 11:78636. [PMID: 36476508 PMCID: PMC9771369 DOI: 10.7554/elife.78636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma (GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in frequently altered genes in primary tumors were detectable in concurrent precancerous lesions (biliary intraepithelial neoplasia [BilIN]), but a substantial proportion was subclonal. Subclonal diversity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) identified branching evolution in nine patients (81.8%). Of these, eight patients (88.9%) had a total of 11 subclones expanded at least sevenfold during metastasis. These subclones harbored putative metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In mutational signature analysis, six mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in precancerous lesions and clonal selection was a common event during malignant transformation in GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity in metastatic tumors.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea,Genealogy IncSeoulRepublic of Korea
| | - Sejoon Lee
- Center for Precision Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soyeon Ahn
- Medical Research Collaboration Center, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ju Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Haesook T Kim
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| |
Collapse
|
220
|
Acha-Sagredo A, Malanchi I, Ciccarelli FD. Clone competition as a mechanism to reduce tumor formation. Dev Cell 2021; 56:3307-3308. [PMID: 34932947 DOI: 10.1016/j.devcel.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With age, clones carrying somatic mutations in well-known cancer driver genes progressively populate adult tissues, yet cancer transformation is rare. In a recent issue of Nature, Colom et al. showed that competition between mutated clones with different fitness could act as a tumor-protective mechanism.
Collapse
Affiliation(s)
- Amelia Acha-Sagredo
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Ilaria Malanchi
- Tumor Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
221
|
Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol 2021; 58:226-229. [PMID: 34802544 DOI: 10.1053/j.seminhematol.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023]
Abstract
Clonal hematopoiesis (CH) is defined by the acquisition of somatic mutations in hematopoietic stem cells (HSC) leading to enhanced cellular fitness and proliferation under positive clonal selection pressures. CH most frequently involves epigenetic regulator genes (DNMT3A, TET2 and ASXL1), with these mutations being associated with enhanced inflammation and increased all-cause mortality largely from cardiovascular disease and endothelial dysfunction. These mutations also increase the risk for hematological neoplasms. Somatic mutations in UBA1, encoding the E1 ubiquitin ligase in HSC, cause a severe adult-onset autoinflammatory disease that can be associated with myeloid and plasma cell neoplasms, termed VEXAS (vacuoles, X-linked, autoinflammatory, somatic) syndrome. Given the degree of inflammation seen, one would have expected this to be a fertile ground for CH development and propagation, however, preliminary data doesn't support this. Here in, we review the current data on CH, inflammation and VEXAS syndrome.
Collapse
Affiliation(s)
- Yael Kusne
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ
| | - Jenna Fernandez
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
222
|
Keller A, Spits C. The Impact of Acquired Genetic Abnormalities on the Clinical Translation of Human Pluripotent Stem Cells. Cells 2021; 10:cells10113246. [PMID: 34831467 PMCID: PMC8625075 DOI: 10.3390/cells10113246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells’ clinical potential.
Collapse
|
223
|
A risk factor for newly diagnosed secondary cancer in patients with early-stage laryngeal, oropharyngeal, or hypopharyngeal cancer: sub-analysis of a prospective observation study. Int J Clin Oncol 2021; 27:488-494. [PMID: 34787745 DOI: 10.1007/s10147-021-02080-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND We previously identified hypopharyngeal cancer as an independent risk factor for the incidence of newly diagnosed secondary cancers after the treatment of early-stage laryngeal, oropharyngeal, and hypopharyngeal cancers. We subsequently used a different patient cohort to validate the usefulness of this factor during the follow-up period in these patients. METHODS Patients who underwent transoral surgery (TOS) as a definitive treatment between April 1, 2016, and September 30, 2020, were included. The incidence of secondary cancer was evaluated in hypopharyngeal and other cancers. Overall survival (OS), recurrence-free survival (RFS), and disease-free survival (DFS) outcomes were evaluated. Statistical analyses based on the risk factors were also performed. RESULTS Incidence of new secondary cancer was 30% in hypopharyngeal cancer patients as compared to 11% in other cancer patients, and the risk was 3.60-fold (95% confidence interval 1.07-12.10) higher after definitive treatment for initial head and neck cancers. The 3-year OS, RFS, and DFS rates were 98%, 86%, and 67%, respectively. CONCLUSIONS Among patients with early-stage laryngeal, oropharyngeal, and hypopharyngeal squamous cell carcinoma, who were initially treated with TOS, hypopharyngeal cancer patients had a higher risk of newly diagnosed secondary cancers as observed during the follow-up period.
Collapse
|
224
|
Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, Fitzgerald S, Bergstrom EN, Atkins J, He Y, Khandekar A, Smith-Byrne K, Carreira C, Gaborieau V, Latimer C, Thomas E, Abnizova I, Bucciarelli PE, Jones D, Teague JW, Abedi-Ardekani B, Serra S, Scoazec JY, Saffar H, Azmoudeh-Ardalan F, Sotoudeh M, Nikmanesh A, Poustchi H, Niavarani A, Gharavi S, Eden M, Richman P, Campos LS, Fitzgerald RC, Ribeiro LF, Soares-Lima SC, Dzamalala C, Mmbaga BT, Shibata T, Menya D, Goldstein AM, Hu N, Malekzadeh R, Fazel A, McCormack V, McKay J, Perdomo S, Scelo G, Chanudet E, Humphreys L, Alexandrov LB, Brennan P, Stratton MR. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet 2021; 53:1553-1563. [PMID: 34663923 DOI: 10.1038/s41588-021-00928-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/28/2021] [Indexed: 12/28/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.
Collapse
Affiliation(s)
- Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - S M Ashiqul Islam
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Dariush Nasrollahzadeh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | | | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Erik N Bergstrom
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Joshua Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Yudou He
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Azhar Khandekar
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Emily Thomas
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Irina Abnizova
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pauline E Bucciarelli
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Jean-Yves Scoazec
- Department Laboratory Medicine and Pathology, Gustave Roussy, Paris, France
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Azmoudeh-Ardalan
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Arash Nikmanesh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Samad Gharavi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Michael Eden
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul Richman
- Histopathology Department, Hemel Hempstead General Hospital, Hemel Hempstead, UK
| | - Lia S Campos
- West Suffolk NHS Foundation Trust, Bury St Edmunds, UK
| | | | | | | | | | - Blandina Theophil Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre & Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Centre Research Institute, Tokyo, Japan
| | | | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Abdolreza Fazel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ghislaine Scelo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Estelle Chanudet
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ludmil B Alexandrov
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
225
|
Swiatczak B. Struggle within: evolution and ecology of somatic cell populations. Cell Mol Life Sci 2021; 78:6797-6806. [PMID: 34477897 PMCID: PMC11073125 DOI: 10.1007/s00018-021-03931-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/31/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
The extent to which normal (nonmalignant) cells of the body can evolve through mutation and selection during the lifetime of the organism has been a major unresolved issue in evolutionary and developmental studies. On the one hand, stable multicellular individuality seems to depend on genetic homogeneity and suppression of evolutionary conflicts at the cellular level. On the other hand, the example of clonal selection of lymphocytes indicates that certain forms of somatic mutation and selection are concordant with the organism-level fitness. Recent DNA sequencing and tissue physiology studies suggest that in addition to adaptive immune cells also neurons, epithelial cells, epidermal cells, hematopoietic stem cells and functional cells in solid bodily organs are subject to evolutionary forces during the lifetime of an organism. Here we refer to these recent studies and suggest that the expanding list of somatically evolving cells modifies idealized views of biological individuals as radically different from collectives.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China.
| |
Collapse
|
226
|
Murakami K, Kanto A, Sakai K, Miyagawa C, Takaya H, Nakai H, Kotani Y, Nishio K, Matsumura N. Frequent PIK3CA mutations in eutopic endometrium of patients with ovarian clear cell carcinoma. Mod Pathol 2021; 34:2071-2079. [PMID: 34172890 PMCID: PMC8514336 DOI: 10.1038/s41379-021-00861-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
Recent studies have reported cancer-associated mutations in normal endometrium. Mutations in eutopic endometrium may lead to endometriosis and endometriosis-associated ovarian cancer. We investigated PIK3CA mutations (PIK3CAm) for three hotspots (E542K, E545K, H1047R) in eutopic endometrium in patients with ovarian cancer and endometriosis from formalin-fixed paraffin-embedded specimens by laser-capture microdissection and droplet digital PCR. The presence of PIK3CAm in eutopic endometrial glands with mutant allele frequency ≥ 15% were as follows: ovarian clear cell carcinoma (OCCC) with PIK3CAm in tumors, 20/300 hotspots in 11/14 cases; OCCC without PIK3CAm, 42/78 hotspots in 11/12 cases; high-grade serous ovarian carcinoma, 8/45 hotspots in 3/5 cases; and endometriotic cysts, 5/63 hotspots in 5/6 cases. These rates were more frequent than in noncancer nonendometriosis controls (7/309 hotspots in 5/17 cases). In OCCC without PIK3CAm, 7/12 (58%) cases showed multiple hotspot mutations in the same eutopic endometrial glands. In 3/54 (5.6%) cases, PIK3CAm was found in eutopic endometrial stroma. Multisampling of the OCCC tumors with PIK3CAm showed intratumor heterogeneity in three of eight cases. In two cases, PIK3CAm was detected in the stromal component of the tumor. Homogenous PIK3CAm in the epithelial component of the tumor matched the mutation in eutopic endometrial glands in only one case. Eutopic endometrial glands in ovarian cancer and endometriosis show high frequency of PIK3CAm that is not consistent with tumors, and multiple hotspot mutations are often found in the same glands. While the mutations identified in eutopic endometrium may not be driver mutations in the patient's cancer, these are still driver mutations but this specific clone has not undergone the requisite steps for the development of cancer.
Collapse
Affiliation(s)
- Kosuke Murakami
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akiko Kanto
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Chiho Miyagawa
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasushi Kotani
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
227
|
Rosendahl Huber A, Van Hoeck A, Van Boxtel R. The Mutagenic Impact of Environmental Exposures in Human Cells and Cancer: Imprints Through Time. Front Genet 2021; 12:760039. [PMID: 34745228 PMCID: PMC8565797 DOI: 10.3389/fgene.2021.760039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
During life, the DNA of our cells is continuously exposed to external damaging processes. Despite the activity of various repair mechanisms, DNA damage eventually results in the accumulation of mutations in the genomes of our cells. Oncogenic mutations are at the root of carcinogenesis, and carcinogenic agents are often highly mutagenic. Over the past decade, whole genome sequencing data of healthy and tumor tissues have revealed how cells in our body gradually accumulate mutations because of exposure to various mutagenic processes. Dissection of mutation profiles based on the type and context specificities of the altered bases has revealed a variety of signatures that reflect past exposure to environmental mutagens, ranging from chemotherapeutic drugs to genotoxic gut bacteria. In this review, we discuss the latest knowledge on somatic mutation accumulation in human cells, and how environmental mutagenic factors further shape the mutation landscapes of tissues. In addition, not all carcinogenic agents induce mutations, which may point to alternative tumor-promoting mechanisms, such as altered clonal selection dynamics. In short, we provide an overview of how environmental factors induce mutations in the DNA of our healthy cells and how this contributes to carcinogenesis. A better understanding of how environmental mutagens shape the genomes of our cells can help to identify potential preventable causes of cancer.
Collapse
Affiliation(s)
- Axel Rosendahl Huber
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ruben Van Boxtel
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
228
|
Koya J, Saito Y, Kameda T, Kogure Y, Yuasa M, Nagasaki J, McClure MB, Shingaki S, Tabata M, Tahira Y, Akizuki K, Kamiunten A, Sekine M, Shide K, Kubuki Y, Hidaka T, Kitanaka A, Nakano N, Utsunomiya A, Togashi Y, Ogawa S, Shimoda K, Kataoka K. Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1. Blood Cancer Discov 2021; 2:450-467. [PMID: 34661162 PMCID: PMC8514013 DOI: 10.1158/2643-3230.bcd-21-0044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/17/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
High-dimensional single-cell landscape of immune alterations during HTLV-1 infection and leukemogenesis identifies hallmarks of premalignant and malignant T-cell states and the accompanying shift of systemic immune state toward myeloid and immunosuppressive. Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)–infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1–infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell–restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis.
Collapse
Affiliation(s)
- Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Takuro Kameda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mitsuhiro Yuasa
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joji Nagasaki
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Marni B McClure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Sumito Shingaki
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Tabata
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Tahira
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Akizuki
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Kamiunten
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masaaki Sekine
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | | | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan.,Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
229
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
230
|
Onozato Y, Sasaki Y, Abe Y, Sato H, Yagi M, Mizumoto N, Kon T, Sakai T, Ito M, Umehara M, Koseki A, Ueno Y. Novel genomic alteration in superficial esophageal squamous cell neoplasms in non-smoker non-drinker females. Sci Rep 2021; 11:20150. [PMID: 34635759 PMCID: PMC8505482 DOI: 10.1038/s41598-021-99790-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption and smoking pose a significant risk for esophageal squamous cell neoplasia (ESCN) development in males; however, ESCN is often diagnosed in non-drinking and non-smoking females. The mechanisms underlying these differences remain elusive, and understanding them can potentially identify novel pathways involved in ESCN development. We performed short-read sequencing to identify somatic variants on a cancer panel targeting 409 genes using DNA extracted from the superficial squamous cell carcinoma (ESCC) tissues and adjacent non-neoplastic epithelium (NE), and immunohistochemical staining of the protein encoded by the target gene. All male patients (n = 117) were drinkers or smokers, whereas 45% of the female patients (n = 33) were not. Somatic variants were compared among three age-matched groups: 13 female ESCC patients with smoking and drinking habits (known-risk group, F-KR), 13 female ESCC patients without these habits (unknown-risk group, F-UR), and 27 males with ESCC and smoking and drinking habits (M-KR). In the NE, the frequencies of CDKN2A variants were significantly higher in F-UR than in F-KR and M-KR. In both ESCC and NE, p14ARF was significantly overexpressed in F-UR than in the other groups. In conclusion, CDKN2A might be important in ESCC development, independent of known risk factors.
Collapse
Affiliation(s)
- Yusuke Onozato
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Yasuhiko Abe
- Division of Endoscopy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hidenori Sato
- Genomic Information Analysis Unit, Department of Genomic Cohort Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Makoto Yagi
- Division of Endoscopy, Yamagata University Hospital, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Naoko Mizumoto
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takashi Kon
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takayuki Sakai
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Minami Ito
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Matsuki Umehara
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ayumi Koseki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
231
|
Maruyama T, Fujita Y. Cell competition in vertebrates - a key machinery for tissue homeostasis. Curr Opin Genet Dev 2021; 72:15-21. [PMID: 34634592 DOI: 10.1016/j.gde.2021.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Cell competition is a process by which cells with different properties compete with each other for survival and space, and consequently suboptimal/abnormal cells are often eliminated from, in particular, epithelial tissues. In the last few years, cell competition studies have been developing at an explosive speed, and the molecular mechanisms of cell competition have been considerably revealed. For instance, upon cell competition, loser cells are eliminated from tissues via a variety of loser phenotypes, including apoptosis, cell differentiation, and cell death-independent extrusion. In addition, upstream regulatory mechanisms for the induction of these phenotypes have been elucidated. Furthermore, it has become evident that cell competition is involved in various physiological and pathological processes and thus is a crucial and indispensable homeostatic machinery that is required for embryonic development and prevention of diseases and ageing. Moreover, cell competition now has a profound impact on other research fields such as regenerative medicine. In this review, we will summarize the development of these recent studies, especially focusing on cell competition in vertebrates.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Waseda Institute for Advanced Study, Waseda University, Tokyo 162-8480, Japan.
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
232
|
Youk J, Kwon HW, Kim R, Ju YS. Dissecting single-cell genomes through the clonal organoid technique. Exp Mol Med 2021; 53:1503-1511. [PMID: 34663940 PMCID: PMC8569207 DOI: 10.1038/s12276-021-00680-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
The revolution in genome sequencing technologies has enabled the comprehensive detection of genomic variations in human cells, including inherited germline polymorphisms, de novo mutations, and postzygotic mutations. When these technologies are combined with techniques for isolating and expanding single-cell DNA, the landscape of somatic mosaicism in an individual body can be systematically revealed at a single-cell resolution. Here, we summarize three strategies (whole-genome amplification, microdissection of clonal patches in the tissue, and in vitro clonal expansion of single cells) that are currently applied for single-cell mutational analyses. Among these approaches, in vitro clonal expansion, particularly via adult stem cell-derived organoid culture technologies, yields the most sensitive and precise catalog of somatic mutations in single cells. Moreover, because it produces living mutant cells, downstream validation experiments and multiomics profiling are possible. Through the synergistic combination of organoid culture and genome sequencing, researchers can track genome changes at a single-cell resolution, which will lead to new discoveries that were previously impossible.
Collapse
Affiliation(s)
- Jeonghwan Youk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea
| | - Hyun Woo Kwon
- Department of Nuclear Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ryul Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- GENOME INSIGHT Inc, Daejeon, 34051, Republic of Korea.
| |
Collapse
|
233
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Hayashi
- Department of Developmental Stem Cell Biology, Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Germline Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
234
|
Colom B, Herms A, Hall MWJ, Dentro SC, King C, Sood RK, Alcolea MP, Piedrafita G, Fernandez-Antoran D, Ong SH, Fowler JC, Mahbubani KT, Saeb-Parsy K, Gerstung M, Hall BA, Jones PH. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 2021; 598:510-514. [PMID: 34646013 PMCID: PMC7612642 DOI: 10.1038/s41586-021-03965-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Human epithelial tissues accumulate cancer-driver mutations with age1-9, yet tumour formation remains rare. The positive selection of these mutations suggests that they alter the behaviour and fitness of proliferating cells10-12. Thus, normal adult tissues become a patchwork of mutant clones competing for space and survival, with the fittest clones expanding by eliminating their less competitive neighbours11-14. However, little is known about how such dynamic competition in normal epithelia influences early tumorigenesis. Here we show that the majority of newly formed oesophageal tumours are eliminated through competition with mutant clones in the adjacent normal epithelium. We followed the fate of nascent, microscopic, pre-malignant tumours in a mouse model of oesophageal carcinogenesis and found that most were rapidly lost with no indication of tumour cell death, decreased proliferation or an anti-tumour immune response. However, deep sequencing of ten-day-old and one-year-old tumours showed evidence of selection on the surviving neoplasms. Induction of highly competitive clones in transgenic mice increased early tumour removal, whereas pharmacological inhibition of clonal competition reduced tumour loss. These results support a model in which survival of early neoplasms depends on their competitive fitness relative to that of mutant clones in the surrounding normal tissue. Mutant clones in normal epithelium have an unexpected anti-tumorigenic role in purging early tumours through cell competition, thereby preserving tissue integrity.
Collapse
Affiliation(s)
- B Colom
- Wellcome Sanger Institute, Hinxton, UK
| | - A Herms
- Wellcome Sanger Institute, Hinxton, UK
| | - M W J Hall
- Wellcome Sanger Institute, Hinxton, UK
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - S C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - C King
- Wellcome Sanger Institute, Hinxton, UK
| | - R K Sood
- Wellcome Sanger Institute, Hinxton, UK
| | - M P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - G Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - D Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - S H Ong
- Wellcome Sanger Institute, Hinxton, UK
| | | | - K T Mahbubani
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - K Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - M Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - B A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - P H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
| |
Collapse
|
235
|
Kostiou V, Hall MWJ, Jones PH, Hall BA. Simulations reveal that different responses to cell crowding determine the expansion of p53 and Notch mutant clones in squamous epithelia. J R Soc Interface 2021; 18:20210607. [PMID: 34637643 PMCID: PMC8510697 DOI: 10.1098/rsif.2021.0607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
During ageing, normal epithelial tissues progressively accumulate clones carrying mutations that increase mutant cell fitness above that of wild-type cells. Such mutants spread widely through the tissues, yet despite this cellular homeostasis and functional integrity of the epithelia are maintained. Two of the genes most commonly mutated in human skin and oesophagus are p53 and Notch1, both of which are also recurrently mutated in cancers of these tissues. From observations taken in human and mouse epithelia, we find that clones carrying p53 and Notch pathway mutations have different clone dynamics which can be explained by their different responses to local cell crowding. p53 mutant clone growth in mouse epidermis approximates a logistic curve, but feedbacks responding to local crowding are required to maintain tissue homeostasis. We go on to show that the observed ability of Notch pathway mutant cells to displace the wild-type population in the mouse oesophageal epithelium reflects a local density feedback that affects both mutant and wild-type cells equally. We then show how these distinct feedbacks are consistent with the distribution of mutations observed in human datasets and are suggestive of a putative mechanism to constrain these cancer-associated mutants.
Collapse
Affiliation(s)
- Vasiliki Kostiou
- Department of medical physics and biomedical engineering, UCL, Gower Street, London WC1E 6BT, UK
| | - Michael W. J. Hall
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Philip H. Jones
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Benjamin A. Hall
- Department of medical physics and biomedical engineering, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
236
|
Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer 2021; 21:619-637. [PMID: 34316057 DOI: 10.1038/s41568-021-00377-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.
Collapse
Affiliation(s)
- Gene Koh
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrea Degasperi
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Xueqing Zou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Momen
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
237
|
Hirata H, Niida A, Kakiuchi N, Uchi R, Sugimachi K, Masuda T, Saito T, Kageyama SI, Motomura Y, Ito S, Yoshitake T, Tsurumaru D, Nishimuta Y, Yokoyama A, Hasegawa T, Chiba K, Shiraishi Y, Du J, Miura F, Morita M, Toh Y, Hirakawa M, Shioyama Y, Ito T, Akimoto T, Miyano S, Shibata T, Mori M, Suzuki Y, Ogawa S, Ishigami K, Mimori K. The Evolving Genomic Landscape of Esophageal Squamous Cell Carcinoma Under Chemoradiotherapy. Cancer Res 2021; 81:4926-4938. [PMID: 34413060 DOI: 10.1158/0008-5472.can-21-0653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/22/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) often recurs after chemoradiotherapy, and the prognosis of ESCC after chemoradiotherapy has not improved over the past few decades. The mutation process in chemoradiotherapy-resistant clones and the functional relevance of genetic alterations remain unclear. To address these problems, we performed whole-exome sequencing of 52 tumor samples from 33 patients with ESCC who received radiotherapy combined with 5-fluorouracil/platinum. In multiregion analyses of pretreatment and locally recurrent lesions from five cases, most driver gene-altered clones remained under chemoradiotherapy selection pressure, while few driver gene alterations were acquired at recurrence. The mutation signatures of recurrent ESCC, including increased deletion frequency and platinum dose-dependent base substitution signatures, were substantially different from those of primary ESCC and reflected the iatrogenic impacts of chemoradiotherapy. Single-region analysis of 28 pretreatment tumors indicated that focal copy-number gain at the MYC locus was significantly associated with poor progression-free survival and overall survival after chemoradiotherapy. MYC gain remained throughout the chemoradiotherapy course and potentially contributes to intrinsic resistance to chemoradiotherapy. Consistent with these findings, MYC copy number and mRNA and protein levels in ESCC cell lines correlated positively with resistance to radiotherapy, and MYC knockdown improved sensitivity to radiotherapy. Overall, these data characterize the clonal evolution process induced by chemoradiotherapy and clinically relevant associations for genetic alterations in ESCC. These findings increase our understanding of therapeutic resistance and support the rationale for precision chemoradiotherapy. SIGNIFICANCE: Whole-exome sequencing reveals the genetic evolution of ESCC during chemoradiotherapy, highlighting MYC gain in pretreatment tumors as a potential marker of therapy resistance.
Collapse
Affiliation(s)
- Hidenari Hirata
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yushi Motomura
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Radiology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Tsurumaru
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nishimuta
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokoyama
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takanori Hasegawa
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Morita
- Department of Gastroenterological Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yasushi Toh
- Department of Gastroenterological Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masakazu Hirakawa
- Department of Radiology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshiyuki Shioyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Ion Beam Therapy Center, SAGA HIMAT Foundation, Tosu, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.
| |
Collapse
|
238
|
Seplyarskiy VB, Sunyaev S. The origin of human mutation in light of genomic data. Nat Rev Genet 2021; 22:672-686. [PMID: 34163020 DOI: 10.1038/s41576-021-00376-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
239
|
Ushijima T, Clark SJ, Tan P. Mapping genomic and epigenomic evolution in cancer ecosystems. Science 2021; 373:1474-1479. [PMID: 34554797 DOI: 10.1126/science.abh1645] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW 2010, Australia
| | - Patrick Tan
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore 169857, Singapore.,Epigenomic and Epitranscriptomic Regulation, Genome Institute of Singapore, Singapore 138672, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
240
|
Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, Guo W, Yao J, Shao M, Fan W, Cui Q, Xi Y, Sun Y, Niu X, Zhao X, Chen L, Wang Y, Liu Y, Yang X, Wang C, Zhong C, Tan W, Wang J, Wu C, Lin D. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat Commun 2021; 12:5291. [PMID: 34489433 PMCID: PMC8421382 DOI: 10.1038/s41467-021-25539-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Esophageal squamous-cell carcinoma (ESCC), one of the most prevalent and lethal malignant disease, has a complex but unknown tumor ecosystem. Here, we investigate the composition of ESCC tumors based on 208,659 single-cell transcriptomes derived from 60 individuals. We identify 8 common expression programs from malignant epithelial cells and discover 42 cell types, including 26 immune cell and 16 nonimmune stromal cell subtypes in the tumor microenvironment (TME), and analyse the interactions between cancer cells and other cells and the interactions among different cell types in the TME. Moreover, we link the cancer cell transcriptomes to the somatic mutations and identify several markers significantly associated with patients’ survival, which may be relevant to precision care of ESCC patients. These results reveal the immunosuppressive status in the ESCC TME and further our understanding of ESCC. Esophageal squamous-cell carcinomas (ESCC) have poor prognosis, and detailed molecular profiles are necessary to identify prognostic markers. Here the authors analyse 60 ESCC patient samples using scRNA-seq, TCR-seq and genomics; they find mucosal immunity markers associated with survival and immunosuppressive microenvironments.
Collapse
Affiliation(s)
- Xiannian Zhang
- School of Basic Medical Sciences, Beijing Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Linna Peng
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Luo
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Pu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjia Guo
- Cancer Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Jiacheng Yao
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Mingming Shao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyi Fan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qionghua Cui
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyi Xi
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxia Sun
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangjie Niu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqian Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yachen Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengcheng Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ce Zhong
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,CAMS Oxford Institute (COI), Chinese Academy of Medical Sciences, Beijing, China. .,CAMS key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,CAMS key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
241
|
Marongiu F, Cheri S, Laconi E. Cell competition, cooperation, and cancer. Neoplasia 2021; 23:1029-1036. [PMID: 34500336 PMCID: PMC8429595 DOI: 10.1016/j.neo.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022]
Abstract
Complex multicellular organisms require quantitative and qualitative assessments on each of their constitutive cell types to ensure coordinated and cooperative behavior towards overall functional proficiency. Cell competition represents one of the operating arms of such quality control mechanisms and relies on fitness comparison among individual cells. However, what is exactly included in the fitness equation for each cell type is still uncertain. Evidence will be discussed to suggest that the ability of the cell to integrate and collaborate within the organismal community represents an integral part of the best fitness phenotype. Thus, under normal conditions, cell competition will select against the emergence of altered cells with disruptive behavior towards tissue integrity and/or tissue pattern formation. On the other hand, the winner phenotype prevailing as a result of cell competition does not entail, by itself, any degree of growth autonomy. While cell competition per se should not be considered as a biological driving force towards the emergence of the neoplastic phenotype, it is possible that the molecular machinery involved in the winner/loser interaction could be hijacked by evolving cancer cell populations.
Collapse
Affiliation(s)
- Fabio Marongiu
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Samuele Cheri
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Ezio Laconi
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
242
|
Kim YS, Shin S, Jung SH, Park YM, Park GS, Lee SH, Chung YJ. Genomic progression of precancerous actinic keratosis to squamous cell carcinoma. J Invest Dermatol 2021; 142:528-538.e8. [PMID: 34480890 DOI: 10.1016/j.jid.2021.07.172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
The mechanism underlying the progression of actinic keratosis (AK) and cutaneous squamous cell carcinoma in situ (SCCIS) to squamous cell carcinoma (SCC) remains unclear. To investigate this, we performed regional microdissection and targeted deep sequencing in SCC (N=10) and paired adjacent SE (sun-damaged epidermis)/AK/SCCIS (N=13) samples to detect mutations and copy number alterations (CNAs). Most (11/13) SE/AK/SCCIS tissues harbored ≥ 1 driver alterations, indicating their precancerous nature. All pairs except one showed genome architectures representing genomic progression of SE/AK/SCCIS to SCC with common trunks and unique branches (7 parallel and 5 linear progression cases). SE/AK/SCCIS tissues tended to harbor lower mutation/CNA burdens than SCC tissues, but most of them had driver mutations, including NOTCH1 and TP53 mutations. SCC-specific genomic alterations included TP53, PIK3CA, FBXW7, and CDKN2A mutations and a MYC copy-number gain, but they were heterogeneous among cases, suggesting that a single gene or pathway does not explain the progression of AK to SCC. In multiregion analyses of AK lesions, only some AK samples were related to SCC. In conclusion, the SE/AK/SCCIS genomes may have previously acquired truncal driver alterations, such as NOTCH1 and TP53 mutations, which promote parallel or linear progression to SCC upon acquisition of additional genomic alterations.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea
| | - Sun Shin
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea
| | | | - Young Min Park
- Department of Dermatology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Gyeong Sin Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Sug Hyung Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, Seoul, Republic of Korea; Department of Pathology, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, Seoul, Republic of Korea; Precision Medicine Research Center, Seoul, Republic of Korea; Integrated Research Center for Genome Polymorphism, Seoul, Republic of Korea.
| |
Collapse
|
243
|
Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, Gallì A, Castellano CA, McConkey M, Tarun A, Wong W, Schenone M, Stanclift C, Tanenbaum B, Malolepsza E, Nilsson B, Bick AG, Weinstock JS, Miller M, Niroula A, Dunford A, Taylor-Weiner A, Wood T, Barbera A, Anand S, Psaty BM, Desai P, Cho MH, Johnson AD, Loos R, MacArthur DG, Lek M, Neuberg DS, Lage K, Carr SA, Hellstrom-Lindberg E, Malcovati L, Papaemmanuil E, Stewart C, Getz G, Bradley RK, Jaiswal S, Ebert BL. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov 2021; 2:500-517. [PMID: 34568833 PMCID: PMC8462124 DOI: 10.1158/2643-3230.bcd-20-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.
Collapse
Affiliation(s)
- Ellen M Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Matthew Leventhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gallì
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia A Castellano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Akansha Tarun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Waihay Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caroline Stanclift
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Benjamin Tanenbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Edyta Malolepsza
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Björn Nilsson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Andrew Dunford
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Amaro Taylor-Weiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Timothy Wood
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Alex Barbera
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Michael H Cho
- Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute Center for Population Studies, the Framingham Heart Study, Framingham, Massachusetts
| | - Ruth Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G MacArthur
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasper Lage
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Eva Hellstrom-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
244
|
Evans EJ, DeGregori J. Cells with Cancer-associated Mutations Overtake Our Tissues as We Age. AGING AND CANCER 2021; 2:82-97. [PMID: 34888527 PMCID: PMC8651076 DOI: 10.1002/aac2.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND To shed light on the earliest events in oncogenesis, there is growing interest in understanding the mutational landscapes of normal tissues across ages. In the last decade, next-generation sequencing of human tissues has revealed a surprising abundance of cells with what would be considered oncogenic mutations. AIMS We performed meta-analysis on previously published sequencing data on normal tissues to categorize mutations based on their presence in cancer and showcase the quantity of cells with cancer-associated mutations in cancer-free individuals. METHODS AND RESULTS We analyzed sequencing data from these studies of normal tissues to determine the prevalence of cells with mutations in three different categories across multiple age groups: 1) mutations in genes designated as drivers, 2) mutations that are in the Cancer Gene Census (CGC), and 3) mutations in the CGC that are considered pathogenic. As we age, the percentage of cells in all three levels increase significantly, reaching over 50% of cells having oncogenic mutations for multiple tissues in the older age groups. The clear enrichment for these mutations, particularly at older ages, likely indicates strong selection for the resulting phenotypes. Combined with an estimation of the number of cells in tissues, we calculate that most older, cancer-free individuals possess at least a 100 billion cells that harbor at least one oncogenic mutation, presumably emanating from a fitness advantage conferred by these mutations that promotes clonal expansion. CONCLUSIONS These studies of normal tissues have highlighted the specific drivers of clonal expansion and how frequently they appear in us. Their high prevalence throughout cancer-free individuals necessitates reconsideration of the oncogenicity of these mutations, which could shape methods of detection, prevention and treatment of cancer, as well as of the potential impact of these mutations on tissue function and our health.
Collapse
Affiliation(s)
- Edward J. Evans
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
245
|
Bentham R, Litchfield K, Watkins TBK, Lim EL, Rosenthal R, Martínez-Ruiz C, Hiley CT, Bakir MA, Salgado R, Moore DA, Jamal-Hanjani M, Swanton C, McGranahan N. Using DNA sequencing data to quantify T cell fraction and therapy response. Nature 2021; 597:555-560. [PMID: 34497419 DOI: 10.1038/s41586-021-03894-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31-32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes.
Collapse
Affiliation(s)
- Robert Bentham
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- The Tumour Immunogenomics and Immunosurveillance Lab, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
- Cancer Metastasis Lab, University College London Cancer Institute, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Medical Oncology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
246
|
Nikaido M, Kakiuchi N, Miyamoto S, Hirano T, Takeuchi Y, Funakoshi T, Yokoyama A, Ogasawara T, Yamamoto Y, Yamada A, Setoyama T, Shimizu T, Kato Y, Uose S, Sakurai T, Minamiguchi S, Obama K, Sakai Y, Muto M, Chiba T, Ogawa S, Seno H. Indolent feature of Helicobacter pylori-uninfected intramucosal signet ring cell carcinomas with CDH1 mutations. Gastric Cancer 2021; 24:1102-1114. [PMID: 33961152 DOI: 10.1007/s10120-021-01191-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND In Helicobacter pylori (Hp)-uninfected individuals, diffuse-type gastric cancer (DGC) was reported as the most common type of cancer. However, the carcinogenic mechanism of Hp-uninfected sporadic DGC is largely unknown. METHODS We performed whole-exome sequencing of Hp-uninfected DGCs and Hp-uninfected normal gastric mucosa. For advanced DGCs, external datasets were also analyzed. RESULTS Eighteen patients (aged 29-78 years) with DGCs and nine normal subjects (28-77 years) were examined. The mutation burden in intramucosal DGCs (10-66 mutations per exome) from individuals aged 29-73 years was not very different from that in the normal gastric glands, which showed a constant mutation accumulation rate (0.33 mutations/exome/year). Unbiased dN/dS analysis showed that CDH1 somatic mutation was a driver mutation for intramucosal DGC. CDH1 mutation was more frequent in intramucosal DGCs (67%) than in advanced DGCs (27%). In contrast, TP53 mutation was more frequent in advanced DGCs (52%) than in intramucosal DGCs (0%). This discrepancy in mutations suggests that CDH1-mutated intramucosal DGCs make a relatively small contribution to advanced DGC formation. Among the 16 intramucosal DGCs (median size, 6.5 mm), 15 DGCs were pure signet ring cell carcinoma (SRCC) with reduced E-cadherin expression and a low proliferative capacity (median Ki-67 index, 2.4%). Five SRCCs reviewed endoscopically over 2-5 years showed no progression. CONCLUSIONS Impaired E-cadherin function due to CDH1 mutation was considered as an early carcinogenic event of Hp-uninfected intramucosal SRCC. Genetic and clinical analyses suggest that Hp-uninfected intramucosal SRCCs may be less likely to develop into advanced DGCs.
Collapse
Affiliation(s)
- Mitsuhiro Nikaido
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Shin'ichi Miyamoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Department of Gastroenterology, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihata-Cho, Fushimi, Kyoto, 612-8555, Japan.
| | - Tomonori Hirano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taro Funakoshi
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yokoyama
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki Ogasawara
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Yoshihiro Yamamoto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Yamada
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Setoyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gastroenterology, Osaka Red Cross Hospital, Osaka, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukari Kato
- Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Suguru Uose
- Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pathology, Kansai Electric Power Hospital, Osaka, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Gastroenterology and Hepatology, Kansai Electric Power Hospital, Osaka, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
247
|
Freeland J, Crowell PD, Giafaglione JM, Boutros PC, Goldstein AS. Aging of the progenitor cells that initiate prostate cancer. Cancer Lett 2021; 515:28-35. [PMID: 34052326 PMCID: PMC8494000 DOI: 10.1016/j.canlet.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Many organs experience a loss of tissue mass and a decline in regenerative capacity during aging. In contrast, the prostate continues to grow in volume. In fact, age is the most important risk factor for prostate cancer. However, the age-related factors that influence the composition, morphology and molecular features of prostate epithelial progenitor cells, the cells-of-origin for prostate cancer, are poorly understood. Here, we review the evidence that prostate luminal progenitor cells are expanded with age. We explore the age-related changes to the microenvironment that may influence prostate epithelial cells and risk of transformation. Finally, we raise a series of questions about models of aging and regulators of prostate aging which need to be addressed. A fundamental understanding of aging in the prostate will yield critical insights into mechanisms that promote the development of age-related prostatic disease.
Collapse
Affiliation(s)
- Jack Freeland
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, USA
| | - Paul C Boutros
- Departments of Human Genetics & Urology, Jonsson Comprehensive Cancer Center and Institute for Precision Health, University of California, Los Angeles, USA
| | - Andrew S Goldstein
- Departments of Molecular, Cell and Developmental Biology & Urology, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA.
| |
Collapse
|
248
|
Aging and Cancer: The Waning of Community Bonds. Cells 2021; 10:cells10092269. [PMID: 34571918 PMCID: PMC8468626 DOI: 10.3390/cells10092269] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer often arises in the context of an altered tissue landscape. We argue that a major contribution of aging towards increasing the risk of neoplastic disease is conveyed through effects on the microenvironment. It is now firmly established that aged tissues are prone to develop clones of altered cells, most of which are compatible with a normal histological appearance. Such increased clonogenic potential results in part from a generalized decrease in proliferative fitness, favoring the emergence of more competitive variant clones. However, specific cellular genotypes can emerge with reduced cooperative and integrative capacity, leading to disruption of tissue architecture and paving the way towards progression to overt neoplastic phenotypes.
Collapse
|
249
|
Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature 2021; 597:393-397. [PMID: 34433967 DOI: 10.1038/s41586-021-03786-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos1. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach also provides insights into the age-related mutational processes and loss of sex chromosomes in normal somatic cells. In sum, this study provides a foundation for future studies to complete cellular phylogenies in human embryogenesis.
Collapse
|
250
|
A body map of somatic mutagenesis in morphologically normal human tissues. Nature 2021; 597:398-403. [PMID: 34433965 DOI: 10.1038/s41586-021-03836-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Somatic mutations that accumulate in normal tissues are associated with ageing and disease1,2. Here we performed a comprehensive genomic analysis of 1,737 morphologically normal tissue biopsies of 9 organs from 5 donors. We found that somatic mutation accumulations and clonal expansions were widespread, although to variable extents, in morphologically normal human tissues. Somatic copy number alterations were rarely detected, except for in tissues from the oesophagus and cardia. Endogenous mutational processes with the SBS1 and SBS5 mutational signatures are ubiquitous among normal tissues, although they exhibit different relative activities. Exogenous mutational processes operate in multiple tissues from the same donor. We reconstructed the spatial somatic clonal architecture with sub-millimetre resolution. In the oesophagus and cardia, macroscopic somatic clones that expanded to hundreds of micrometres were frequently seen, whereas in tissues such as the colon, rectum and duodenum, somatic clones were microscopic in size and evolved independently, possibly restricted by local tissue microstructures. Our study depicts a body map of somatic mutations and clonal expansions from the same individual.
Collapse
|